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A APPENDIX

A.1 FHA-Kitchens Dataset

A.1.1  Data Annotation.

We recruited 10 voluntary annotators to annotate hand actions
for each frame with high quality. Their responsibility was to an-
notate bounding boxes and multi-granularity action categories for
each hand interaction region. To enhance annotation efficiency,
we implemented a parallel annotation approach. We utilized the
LabelBee tool for annotating bounding boxes and coarse-grained
categories, while fine-grained action triplets were annotated on the
Amazon Mechanical Turk platform. To ensure annotation quality,
we conducted three rounds of cross-checking and corrections. In
the main paper, we described the annotation details for bounding
boxes and categories. In addition to this, we also provide segment
annotations for the objects.

Bounding Box Annotation. During annotation, we may en-
counter overlapping bounding boxes, i.e., the same interacting ob-
ject will satisfy two annotation definitions, for example, the utility
knife in Figure 1, which is both the object directly touched by
the right hand in the R-O interaction region and the active force
provider in the O-O interaction region. In this case, we annotated
all the labels because the same object participates in different inter-
action actions and has different roles (The corresponding visualiza-
tions are shown in Figure 1 and the annotation details are listed in
Figure 2). Finally, we annotated a total of 198,839 bounding boxes
over 9 types, including 49,746 hand boxes, 66,402 interaction region
boxes, and 82,691 interaction object boxes. Compared to existing
datasets [5], we added an average of 5 additional annotation types
per frame.

Object Segment Annotation. To enrich our FHA-Kitchens, we
utilized the state-of-the-art SAM model [9] to annotate object masks
in all video frames, which can be used for action segmentation
relevant tasks.

5 Right-hand

601
9 Object
3

4 Left-hand

Figure 1: Visualization of bounding box annotations for the
example of “fry vegetables”.

Bounding Box Annotation Action Triplets Annotation

b-box

id definition Jabel action triplet label

1 left hand-object interaction region L-O (hand_left, press-on, carrot_end)

2 right hand-object interaction region R-O (hand_right, hold-in, utility-knife_handle)
3 object-object interaction region 0-0 (utility-knife_body, cut-slice, carrot_head)
4 left hand Left-hand

5 right hand Ff:‘a?:t;-

6 object touched by left hand in L-O o1

7 object touched by right hand in R-O 02

8 active force provider in 0-O Subject

9 passive force receiver in 0-O Object

Figure 2: Descriptive list of action triplets and bounding box
annotations.

A.1.2 More statistics of the FHA-Kitchens Dataset.

In this part, we re-arrange some figures in the paper to make
them more readable and provide more statistics of the FHA-Kitchens
dataset. Our annotation primarily focuses on hand interaction re-
gions, interaction objects, and their corresponding interaction ac-
tions, resulting in a diverse array of verbs, nouns, and bounding
boxes.

Verbs. The annotated dataset comprises 130 action verbs that
have been grouped into 43 parent verb categories (Figure 3 and
Figure 4). The three most prevalent parent verb categories, based on
the count of sub-action verbs, are Cut, Hold, and Take, representing
the most frequently occurring hand actions in human interactions.
Figure 4 visually depicts the distribution of all verb categories within
FHA-Kitchens, ensuring the presence of at least one instance for
each verb category. Specifically, the mapping between action verb
IDs and their corresponding category names can be seen in Table 11.

Nouns. In our annotation process, we identified a total of 384
interaction object noun categories that are associated with actions,
categorized into 17 super-categories. Figure 13 shows the distri-
bution of noun categories based on their affiliations with super-
categories. Notably, the super-category “vegetables & plants” ex-
hibits the highest number of sub-categories, followed by “kitchen-
ware”, which aligns with typical kitchen scenes. Specifically, the
mapping between interaction object noun IDs and their correspond-
ing category names can be seen in Table 12, Table 13, and Table 14.

Bounding Boxes. We performed a comprehensive statistical
analysis on the bounding boxes of the three hand interaction re-
gions and the corresponding interacting objects. Specifically, we
focused on two aspects: the box area and the aspect ratio. Detailed
results can be found in Figure 5 and Figure 6. Figure 5 shows the
considerable range of sizes covered by our bounding boxes, with
many interaction objects exhibiting small and challenging sizes for
accurate detection. Moreover, in Figure 6, the aspect ratios of the
bounding boxes exhibit notable variation. The aspect ratios of the
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Figure 3: An overview of the action verbs and their parent action categories in FHA-Kitchens.
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Figure 4: The distribution of instances per action verb category (the outer ring of the circle in Figure 3) in the FHA-Kitchens

dataset.

three regions tend to concentrate within the range of [0.5,2], which
can be attributed to the typical composition of interaction regions
involving two interacting objects. Consequently, the bounding box
encompasses the combined region of both objects. For instance, the
R-O interaction region frequently involves the interaction between
the “right hand” and “utility knife”. In such cases, the aspect ratio

of the bounding box is observed to be 2:1, as depicted in Figure 1.

These findings highlight the significant challenges of the detection
task in our dataset.

Long-tail Property. The distribution of instances per action
triplet category in FHA-Kitchens, as depicted in Figure 7, depicts a

long-tail property. This distribution reflects the frequency of hand
interactions in real-world kitchen scenes, taking into account the
varying commonness or rarity of specific hand actions. For instance,
the action triplet “<hand_right, hold-in, utility-knife_handle>" con-
sists of 9,887 instances, which is nine times more prevalent than
the “<hand_left, hold-in, utility-knife_handle>" triplet. This long-tail
characteristic of the distribution renders FHA-Kitchens a challeng-
ing benchmark for hand action recognition, making it suitable for
investigating few-shot learning and out-of-distribution generaliza-
tion in action recognition as well.

A.1.3  More quantitative and qualitative results.
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Figure 5: The distributions of bounding box areas of interaction objects (left) and interaction regions (right) in the FHA-Kitchens

dataset.
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Figure 6: The distributions of bounding box aspect ratios of interaction objects (left) and interaction regions (right) in the

FHA-Kitchens dataset.

1) Quantitative Results

SL-AR Track: Supervised Learning for Fine-grained Hand
Action Recognition

Settings. The SL-AR track primarily evaluates the performance

of different action recognition models on fine-grained hand actions.

We adopted the representative TSN [19] and Slowfast [6] with
the ResNet50 and ResNet101 backbones, VideoSwin [12] with the
Swin-B backbone, VideoMAE V2 [18] with the three different size
backbones, and Hiera [15] with the Hiera-B backbone. We trained
these models on the FHA-Kitchens dataset using two settings: (1)
Pre-training on Kinetics 400 [3] and hybrid dataset, where

we initialized the backbone with Kinetics 400 or Hybrid dataset
pre-trained weights and fine-tuned the entire model on the FHA-
Kitchens training set; and (2) Training from scratch on FHA-
Kitchens, where we randomly initialized the model weights and
directly train them on FHA-Kitchens. For different models, we used
the recommended optimization strategy and batch size, and the
maximum training period was set to 210 epochs.

Results on the SL-AR Track. Table 1 presents the performance
of different action recognition methods on the Kinetics 400 [3]
dataset and the proposed FHA-Kitchens dataset, with and with-
out pre-trained models. From the experimental results, it can be
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Figure 7: The distribution of instances per action triplet category in the FHA-Kitchens dataset.

Table 1: Classification results (Top-1 and Top-5 accuracy) of fine-grained hand actions using different methods on the validation
set of the SL-AR track. w/ Pre-train : using pre-trained weights. w/o Pre-train: Training from scratch (the Kinetics 400 [3]

dataset results from mmaction2 [4], VideoMAE V2 [18], and Hiera [15]).

w/ Pre-train

w/o Pre-train

Dataset Method Backbone Pre-train Data
Top-1 Top-5 Top-1 Top-5
ResNet50 ImageNet 72.83  90.65 - -
TSN [19] ResNet101 ImageNet 75.89  92.07 - -
ResNet50 - - - 76.65  92.86
o SlowFast [¢] ResNet101 § N - 7865 93.88
Kinetics 400
VideoSwin [12] Swin-B ImageNet 80.57 94.49 - -
ViT-B UnlabeledHybrid ~ 81.50 - - -
VideoMAE V2 [18] ViT-L UnlabeledHybrid ~ 85.40 - - -
ViT-H UnlabeledHybrid ~ 86.90 - - -
Hiera [15] Hiera-B Kinetics 400 84.00 - - -
Dataset Method Backbone Pre-train Data W/ Pre-train _ w/o Pre-train
Top-1 Top-5 Top-1 Top-5
TSN [19] ResNet50 Kinetics 400 30.37 7426 29.11 73.84
ResNet101 Kinetics 400 30.80 73.42 3038 74.26
SlowFast [6] ResNet50 Kinetics 400 3333 7046 27.85 68.35
. ResNet101 Kinetics 400 36.71 6793 31.22 69.62
FHA-Kitchens
VideoSwin [12] Swin-B Kinetics 400 37.13 70.89 34.18 66.67
ViT-B UnlabeledHybrid  21.67  57.08 - -
VideoMAE V2 [18] ViT-L UnlabeledHybrid  32.92  68.75 - -
ViT-H UnlabeledHybrid  34.58  68.33 - -
Hiera [15] Hiera-B Kinetics 400 27.00  69.20 - -

observed that the performance trends of all action recognition
methods on FHA-Kitchens are similar to their performance on
Kinetics 400 [3], while the models perform much better on the
coarse-grained actions of Kinetics 400. For the best-performing
VideoSwin [12] model, the top-1 accuracy on Kinetics 400 surpasses
the top-1 accuracy on FHA-Kitchens by 43.44%. And those methods
with even large models cannot achieve satisfactory performance.
This is clear evidence that validates the challenging nature of the
fine-grained hand action recognition on FHA-Kitchens. Besides,
the utilization of pre-trained weights has proven to be beneficial,
resulting in improved accuracy compared to training models from

Anon.

scratch. This finding suggests that despite the existence of a domain
gap between coarse-grained and fine-grained actions, pre-training
remains an effective strategy for addressing the challenges inherent
in FHA-Kitchens, which have a larger number of action categories
and relatively limited training data.

In addition, we further supplemented the hand pose information
and conducted experiments using the skeleton-based STGCN [20]
method. We used STGCN pre-trained on NTU60 [16] and NTU120 [11]
and fine-tuned the models on the SL-AR track using different fea-
tures for fine-grained hand actions, the results (Top-1 and Top-5
accuracy) can be seen in Table 2.
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Table 2: Classification results (Top-1 and Top-5 accuracy) of fine-grained hand actions using different features and the skeleton-
based STGCN [20] method (pre-trained on NTU60 [16] and NTU120 [11]) on the validation set of the SL-AR track.

Pre-train Data Feature Top-1 Top-5 ‘ Pre-train Data Feature Top-1 Top-5
joint-2d 22.78  47.68 joint-2d 20.68  48.10
joint-3d 2236  52.32 joint-3d 21.10  47.68

joint-motion-2d ~ 8.02  19.83
joint-motion-3d  10.97  23.63
bone-2d 2236  49.79
bone-3d 24.05 52.32
bone-motion-2d  10.55  23.21
bone-motion-3d  13.50  26.16

NTU60

joint-motion-2d ~ 9.28  20.25
joint-motion-3d  11.81  26.16
bone-2d 24.05 57.81
bone-3d 24.05 51.05
bone-motion-2d  9.28 23.21
bone-motion-3d  12.24  27.00

NTU120

According to the experimental results, it can be observed that
3D pose features outperform 2D pose features and bone features
achieve better results than joint features. Nevertheless, the over-
all results did not surpass the efficacy of hand-object interaction-
based approaches, highlighting that relying only on hand pose
information is insufficient for accomplishing fine-grained action
recognition tasks. Because the generation of hand actions involves
interacting objects, achieving a fine-grained hand action recog-
nition task is required to consider the information of the objects
interacting with the hand, which is different from a whole-body
action recognition task (e.g., AVA, FineGym dataset).

DG Track: Intra- and Inter-class Domain Generalization
for Interaction Region Detection

o Intra-class Domain Generalization
Settings. We conducted intra-class DG experiments using the
three most prevalent parent action categories, i.e., Cut, Hold,
and Take. For each parent action category, we selected the most
prevalent sub-categories and adopted the cross-validation pro-
tocol, i.e, randomly choosing one sub-category as the test set
while using all other sub-categories for training. Following the
SL-AD track, we selected the Faster RCNN [14] model with the
ResNet50 backbone as the default model, which is pre-trained
on the MS COCO [10] object detection dataset.
Results on the Intra-class DG Track. The results on Cut, Hold,
and Take are summarized in Table 3, 4, and 5. In the “Cut” parent
category, the performance of all four detection models remains
stable for the sub-categories seen during training but deterio-
rates for unseen sub-categories, as evidenced by the diagonal
scores, which exhibit a minimum drop of 15 mAP. The findings
in the results of the other two parent categories align with the
observations in the “Cut” parent category. This finding suggests
that there is still potential for enhancing the models’ general-
ization abilities, e.g., by exploring the domain generalization or
unsupervised domain adaptation techniques.

o Inter-class Domain Generalization
Settings. We chose the three most prevalent parent action cat-
egories Cut, Hold, and Take, and adopted the cross-validation
protocol, i.e, randomly choosing one parent category for training
and using the other parent categories for testing. Other settings
follow those in the intra-class DG track.
Results on the Inter-class DG Track. The results are listed
in Table 6. Similar to the results in the intra-class DG track, the

Table 3: Intra-class DG test results of Faster RCNN [14] with
the ResNet50 backbone on the “Cut” Setting. A; = % 2jjri Ji=

u,A}k = §Zj,j¢ilj—ll,l:0,1,2,3.

‘ Test (mAP)

Train ‘cut-slice cut-off cut-down cut-dice | A*

w/o cut-slice | 33.30  65.00 56.00 60.90 |27.33

w/o cut-off 57.10  48.00 54.80 62.80 |10.23
w/o cut-down | 57.30 64.40 41.30 63.50 |20.43
w/o cut-dice 57.50 64.90 58.70 41.10 | 19.27

A | 2400 1677 1520 2130 |

Table 4: Intra-class DG test results of Faster RCNN [14]
with the ResNet50 backbone on the “Hold” Setting. A; =
3 N jei Ji— LAY = 3 N i — il i =0,1,2.

‘ Test (mAP)
Train ‘ hold-up hold-in hold-around | A*
w/o hold-up 44.00 53.50 71.70 18.60
w/o hold-in 44.30 7.30 69.10 49.40
w/o hold-around 52.30 52.80 47.80 4.75
A | 430 45.85 2260 |

Table 5: Intra-class DG test results of Faster RCNN [14]
with the ResNet50 backbone on the “Take” Setting. A; =

1 ce e Ak 1 ce e
EZj’j:#i]l—ll,Ai = EZj’j¢il]—ll,l=0,1,2.

\ Test (mAP)

Train ‘pick—up grab catch‘ A*

w/o pick-up 0.40 47.10  46.60 | 46.45
w/o grab 19.00 4.50 39.00 | 24.50
w/o catch 19.10 46.00 15.60 | 16.95

27.20 |

A | 1865  42.05

detection models perform well on the seen categories while dete-
riorating on the unseen categories. Nevertheless, it is interesting
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to find that the performance gap (A9 = 6.05 and A = 8.05) be-
tween Cut and others are smaller than those in the intra-class DG
track, implying that there is likely a large intra-class variance,
and the detection model is prone to overfitting the seen cate-
gories, particularly when the volume of training data is smaller
(there are 7,463 training frames in Hold while only 1,680 in Take).

Table 6: Inter-class DG test results. A; = ii — % Zj,jii Jji, A;‘ =
o1 S
ii—5 Zj,#i ij,i=0,1,2.

‘ Test (mAP)
Train ‘ Cut Hold

Cut | 37.40 2950 29.20 | 8.05
Hold | 48.70 52.30 41.80 | 7.05
Take | 14.00 13.20 41.20 | 27.60

Take ‘ A*

A | 605 3095 570

2) Qualitative Results

The visual results of the SL-AD and SL-AR track experiments are
presented in Figure 10, Figure 11, and Figure 12. We showcased the
visualization results of interaction region detection, interacting ob-
ject detection, and action recognition, focusing on hand interaction
scenarios of varying complexity. In the interaction region detection
results, we provide coarse-grained action categories corresponding
to the sub-interaction regions, i.e., <L-O, R-O, O-O>. In the recogni-
tion results, we provide fine-grained action verbs corresponding to
the three hand sub-interaction regions, denoted as <L-O action verb,
R-O action verb, O-O action verb>. Figure 10 shows some challenging
cases of hand interactions, providing compelling evidence of the
good prediction performance of detection and recognition models,
i.e., the Faster-RCNN [14] with a ResNet50 backbone for detection
and a pre-trained TSN [19] model with a ResNet50 backbone for
action recognition. Moreover, Figure 11 and Figure 12 also demon-
strate accurate detection and recognition results for some common
interaction cases.

A.2 MG-HAD: Multi-Granularity Hand Action
Detection

A.2.1 Multi-dimensional Action Queries.

To enhance the model’s understanding of multi-dimensional ac-
tion information from global and local perspectives, in our design
of multi-dimensional action queries, we introduce an action dimen-
sional hyper-parameter wy (d € {s, a, o}), to control the proportion
of local information (sub-categories) fused with global information
(triplet categories). In the three action dimensions <s, a, 0>, the a
dimension is the most crucial for our task. Therefore, we use w, as
the key weight to dynamically adjust the weight proportions of the
three action dimensions, with a total sum of 1. To determine the
optimal weight distribution, we conducted a total of 10 compara-
tive experiments under different backbones, with detailed results
provided in Table 7. Based on the experimental results, the action
dimensional weight setting we selected is as follows:

06 ifd=a
w_d—{ 0.2 ifd=sord=o0 "’ @

Anon.

Table 7: Comparative experiments of the action dimensional
weight, i.e., hyper-parameter w; (d € {s, a, o}), under different
ratio settings. ws = wy = (1 — wq)/2, ws + wg + wo = 1, M-G:
Mixed-Grained.

Method  Backbone ‘ Train Data ‘ wg M-G mAP(%)
0.5 54.9
0.6 57.0
Ours-4scale ResNet-50 0.7 55.6
0.8 56.0
0.9 54.7
‘ Multi-Granularity ‘—
0.5 57.2
0.6 59.4
Ours-5scale  Swin-L 0.7 58.2
0.8 57.4
0.9 57.1

where ws = wo = (1 —wg)/2, ws + wg + wo = 1.

A.2.2  Coarse-Fine Contrastive DeNoising (C-F CDN).

To enable the model to handle multi-granularity hand action
labels and understand the differences between different granularity
labels, we propose the C-F CDN module. When designing the noise
label generation strategy, we replaced the “random” generation of
noise with “specified”, reducing randomness by specifying noise
positions and categories. This ensures noise is added to different
granularity labels, generating CDN queries encompassing various
granularity. To determine the optimal setting, we considered the
noise distribution of different granularity categories in real-world
scenarios and ensured contrastive learning between coarse- and
fine-grained information. We conducted three sets of comparative
experiments (see Table 8). The final selected setting, as shown in
Eq. (2), exhibits the most significant improvement. Hence, subse-
quent experiments were conducted using this setting for further
investigation. Our method’s success lies in its ability to suppress
confusion at the category level and select appropriate granularity to
predict hand action categories, thus enhancing its ability to predict
multi-granularity information.

i€0,3)
i€[3,C)

where i indexes the multi-granularity action category for a specific
instance (i.e., 0~2 denote coarse-grained categories while 3~C-1
denote fine-grained categories), and C is the number of categories.
“fine-grained” and “mixed-grained” denote that the noise label is
chosen randomly from the fine-grained categories and the combina-
tion of the coarse-grained and fine-grained categories, respectively.

fine-grained
mixed-grained

noise label = { (2)

A.2.3  Action Detection Results of MG-HAD.

Visualization detection results. Based on the 5scale-Swin-L
backbone, qualitative comparison results with the baseline [21]
on the FHA-Kitchens dataset are shown in Figure 8. Our model
accurately detects three hand sub-interaction regions (i.e., “Left
hand-Object interaction region (L-O)”, “Right hand-Object interac-
tion region (R-0)”, and “Object-Object interaction region (O-0)”)

639
640
641
642
643
644
645
646
647
648
649

650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

721

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

742

Multi-Granularity Hand Action Detection
Supplementary Material

ACM MM, 2024, Melbourne, Australia

Table 8: Three sets comparative experiments of the “noise label generation strategy” in the Coarse-Fine Contrastive DeNoising
(C-F CDN). M-G: Mixed-Grained, C-G: Coarse-Grained, F-G: Fine-Grained.

‘ Backbone Train Data

Method

‘ noisy label location ‘ noisy label class ‘

FHA-Kitchens val mAP(%)

Baseline [21] random

ap: fine-grained

Ours-4scale | ResNet-50 multi-granularity

ay: coarse-grained

‘ M-G label C-G sub-label F-G sub-label
random 54.7 76.3 54.5
a; — rmxed—grfnned 56.6 759 6.4
ay — fine-grained
@1 — coarse-grained 56.1 75.5 55.8
ay — fine-grained
@1 — coarse-grained | oo 745 55.6
ay — mixed-grained

and provides multi-granularity hand action categories (i.e., “Coarse-
Grained” and “Fine-Grained”). Compared to the DINO, we demon-
strate superior performance across multiple dimensions of fine-
grained categories, illustrating the effectiveness of our designed
multi-dimensional action queries. Additionally, we present our
model’s multi-granularity hand action detection results in more
kitchen scenarios, as shown in Figure 9. We randomly selected
four different kitchen scenarios, i.e., “fry vegetables”, “sandwich”,
“salad”, and “fruit”, showcasing complex hand actions. Our model
offers accurate bounding boxes and multi-granularity hand action
information for three hand sub-interaction regions.

Basic Hyper-parameters. For the basic hyper-parameters, con-
sistent with DINO [21], we utilized a 6-layer Transformer encoder
and a 6-layer Transformer decoder with a hidden feature dimen-
sion of 256. We set the initial learning rate (Ir) to 1 x 10™* and
employed a MultiStep Ir scheduler, dropping Ir by multiplying 0.1
at the 11-th and 20-th epochs for ResNet50, corresponding to the 12
and 24 epoch settings. We employed the AdamW [8, 13] optimizer
with a weight decay of 1 x 10™# and trained our model on NVIDIA
GeForce RTX 3090 GPUs. The ResNet50 backbone was trained with
a batch size of 2 per GPU, while the SwinL backbone had a batch
size of 1. We initialized 900 decoder queries, maintaining the same
computational cost as DINO. We provide detailed hyper-parameters
in Table 10 for reproducibility.

A.3 Datasheets for Datasets

A.3.1 Motivation.

1. For what purpose was the dataset created? Was there a
specific task in mind? Was there a specific gap that needed
to be filled? Please provide a description.

A1: FHA-Kitchens is created to facilitate research in the field
of complex multi-granularity hand action. It is important to study
several challenging questions in the context of more training data
from diverse multi-granularity hand actions, such as: (1) How do
different representative action recognition models perform on fine-
grained hand action tasks? (2) How do state-of-the-art detection
models perform on the refined hand interaction regions with multi-
granularity hand action categories? (3) How about the impact of
pre-training, e.g., on the whole-body actions dataset [3], in the con-
text of the large-scale dataset with diverse multi-granularity hand

actions? and (4) How do the intra-class and inter-class generaliza-
tion capabilities of models trained with specific fine-grained hand
actions or parent hand actions perform? However, existing action
datasets primarily focus on whole-body actions or coarse-grained
action categories, lacking finer-grained hand-action localization
and category information. Therefore, it is impossible to study these
questions using existing datasets. In contrast, FHA-Kitchens pri-
marily focuses on hand actions and refines hand interaction regions
into three sub-interaction regions. We annotated coarse- and fine-
grained actions for each sub-interaction region. Coarse-grained
categories, denoted by the generic terms “L-O”, “R-O”, and “O-0”,
represent the coarse actions within the sub-interaction regions.
Fine-grained action category in a triplet format: <subject, action
verb, object>. Overall, we meticulously annotated 880 hand action
categories (coarse- and fine-grained) for approximately 220k bound-
ing boxes, with each category corresponding to a sub-interaction
region’s localization box. Fine-grained categories per frame have
nine dimensions, resulting in 877 action triplets, significantly en-
hancing the granularity of actions and providing valuable resources
for researchers to study these questions effectively.

FHA-Kitchens aims to provide a better, more comprehensive,
and finer-grained benchmark for hand action. However, existing
hand-action datasets exhibit limitations including insufficient rep-
resentation of hand-action granularity, lack of annotation of hand-
action interaction regions, and neglect of the relationships between
interacting objects. With its diverse and finer-grained hand action
information, the FHA-Kitchens dataset enables a better evaluation
performance for hand action tasks.

2. Who created this dataset (e.g., which team, research group)
and on behalf of which entity (e.g., company, institution,
organization)?

A2: Our dataset is created by the authors as well as some volun-
teer undergraduate students.

3. Who funded the creation of the dataset? If there is an
associated grant, please provide the name of the grantor and
the grant name and number.

A3: This information will be made public once the paper is
accepted after peer review.

A.3.2 Composition.

1. What do the instances that comprise the dataset represent
(e.g., documents, photos, people, countries)? Are there multi-
ple types of instances(e.g., movies, users, and ratings; people
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and interactions between them; nodes and edges)? Please
provide a description.

A1: FHA-Kitchens consists of video clips, each video clip consists
of consecutive video frames, including 880 coarse- and fine-grained
hand action categories. For each frame, we provide bounding boxes
for three hand sub-interaction regions (i.e., left hand-object (L-O),
right hand-object (R-O), and object-object (O-O) interaction regions)
and the interaction objects. Each sub-interaction region action was
annotated using coarse- and fine-grained action categories. Coarse-
grained categories, denoted by the generic terms “L-O”, “R-O”, and
“O-0”, fine-grained action category in a triplet format: <subject,
action verb, object>. Additionally, we provide segmentation masks
related to hands and interaction objects.

2. How many instances are there in total (of each type, if
appropriate)?

A2: The FHA-Kitchens contains 30,047 frames from 2,377 video
clips, with each frame annotated for three hand sub-interaction
regions, resulting in a total of 877 fine-grained action triplets and
3 coarse-grained action categories. Among them, there are 597
frames where no hand interaction action occurs, represented as
L-O_triplet:<none>, R-O_triplet:<none>, O-O_triplet: <none>.

3. Does the dataset contain all possible instances or is it a sam-
ple (not necessarily random) of instances from a larger set?
If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic cov-
erage)? If so, please describe how this representativeness was
validated/verified. If it is not representative of the larger set,
please describe why not (e.g., to cover a more diverse range of
instances, because instances were withheld or unavailable).

A3: FHA-Kitchens is a real-world sample of human hands part in
the kitchen scenes, including information about their hand actions.
The data is sourced from an existing large-scale whole-body action
dataset [17], from which we selected videos featuring hand interac-
tion actions. We extracted a total of 2,377 video clips, amounting to
84.22 minutes of footage, encompassing 8 distinct types of dishes.
Due to the diversity of real-world human hand actions, it’s impossi-
ble to cover all types of actions. The FHA-Kitchens dataset focuses
primarily on multi-granularity hand action tasks. To address the
granularity issue, we improved the hand action information in the
existing dataset. Compared to the data’s original annotations in
Kinetics-700_2020 [17], our dataset expanded the action labels by 7
dimensions, increased the number of action categories by 52 times,
and introduced 122 new action verbs. We provide a finer-grained
set of hand-action instances than ever before, facilitating further
research in hand-action.

4. What data does each instance consist of? “Raw” data (e.g.,
unprocessed text or images)or features? In either case, please
provide a description.

A4: Each video frame consists of at most 9 types of bonding
boxes (i.e., three hand sub-interaction regions and interaction ob-
jects within interaction region) and sub-interaction region corre-
sponding coarse- and fine-grained descriptions (i.e., L-O, R-O, O-O,
and <subject, action verb, object>). Additionally, we took into account
the “active-passive” relationships between object pairs and the spe-
cific contact areas involved in the interaction actions. Consequently,
our annotation process encompassed a total of nine dimensions,
resulting in a total of 877 fine-grained hand action triplets and 3

Anon.

coarse-grained hand action categories. The annotated visualiza-
tions are shown in Figure 1 and corresponding details are listed in
Figure 2.

5. Is there a label or target associated with each instance? If
so, please provide a description.

A5: Yes. Due to our parallel annotation process, we generated

annotation files in different styles. However, we consolidated all
the bounding box and triplet annotation information into a single
CSV file. In the merged CSV file, each instance is annotated with
labels following the style of the Kinetics [1-3, 17] and AVA [7]
datasets, which include video_name, video_id, clip_id, clip_name,
frame_name, timestamp, L-O_triplet, L-O_action_verb_id, L-O_
action_verb_class, L-O_action_bbox, left_hand bbox, O1_class, O1
_bbox, R-O_triplet, R-O_action_verb_id, R-O_action_verb_class, R-
O_action _bbox, right _hand_bbox, O2_class, O2_bbox, O-O_triplet,
0-0_action _verb_id, O-O_action _verb_class, O-O_action_bbox,
subject_class, subject_bbox, object_class, object_bbox, action_verb
_triplet, action_verb_triplet_id.
6. Is any information missing from individual instances? If
so, please provide a description, explaining why this infor-
mation is missing (e.g., because it was unavailable). This does
not include intentionally removed information but might
include, e.g., redacted text.

A6: Yes. Some instances may not have all 9 types of bonding
boxes and their corresponding coarse-fine-grained action categories
and segmentation annotation because of interaction action scenes,
severe occlusion, truncation, blur, or small scale. We just annotated
“None” in our annotation file to represent this situation.

7. Are relationships between individual instances made ex-
plicit (e.g., users’ movie ratings, and social network links)? If
so, please describe how these relationships are made explicit.

A7: Yes. We provide different styles of annotation files, in COCO-
style, the annotations are connected by image id and category id,
you can easily access them by COCO APIs. In CSV style, one line
represents the annotations of one frame and can be processed by
the pandas library easily.

8. Are there recommended data splits (e.g., training, develop-
ment/validation, testing)? If so, please provide a description
of these splits, explaining the rationale behind them.

A8: Yes. We randomly split the dataset into the disjoint train,
validation, and test sets following the ratio of 7:1:2.

9. Are there any errors, sources of noise, or redundancies in
the dataset? If so, please provide a description.

A9: Although we conducted three rounds of cross-checking
and corrections, there may still be some errors in the annotations,
e.g., inappropriate bounding box annotations, or small drifts of
the bounding box locations, incorrectly written verbs or nouns,
insufficient granularity in verb or noun descriptions, inappropriate
formatting of triplets, etc. However, we have made every effort to
minimize such occurrences.

To analyze the quality of annotations, we randomly selected
500 frames and conducted manual evaluations for correctness. The
results are reported in Table 9. These error rates are comparable to
recently published datasets [5].

10. Is the dataset self-contained, or does it link to or other-
wise rely on external resources (e.g., websites, tweets, other
datasets)? If it links to or relies on external resources, a) are
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Table 9: Error rate in FHA-Kitchens. I-O: Interaction Objects,
I-R: Interaction Regions.

Frames I-O Boxes I-R Boxes Verb Noun

Total Number 500 3,006 1,503 1,503 2,006
Error Rate (%) - 49 2.5 2.2 5.3

there guarantees that they will exist, and remain constant,
over time; b) are there official archival versions of the com-
plete dataset (i.g., including the external resources as they
existed at the time the dataset was created); c) are there any
restrictions (e.g., licenses, fees) associated with any of the
external resources that might apply to a future user? Please
provide descriptions of all external resources and any restric-
tions associated with them, as well as links or other access
points, as appropriate.

A10: Our dataset was derived from a large-scale publicly avail-

able dataset, namely Kinetics-700_2020 [17], which is publicly avail-
able for download from their website. The Kinetics dataset follows
the Creative Commons Attribution 4.0 International License. We
would like to express our gratitude to the authors for their signifi-
cant contributions to the research community.
11. Does the dataset contain data that might be considered
confidential (e.g., data that is protected by legal privilege or by
doctor-patient confidentiality, data that includes the content
of individuals’ non-public communications)? If so, please
provide a description.

A11: No.

12. Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might other-
wise cause anxiety? If so, please describe why.

A12: No.

A.3.3  Collection Process.

1. How was the data associated with each instance acquired?
Was the data directly observable (e.g., raw text, movie rat-
ings), reported by subjects (e.g., survey responses), or indi-
rectly inferred/derived from other data (e.g., part-of-speech
tags, model-based guesses for age or language)? If data was re-
ported by subjects or indirectly inferred/derived from other
data, was the data validated/verified? If so, please describe
how.

A1: Our data was obtained from the existing large-scale publicly

available dataset, namely Kinetics-700_2020 [17], which is publicly
available for download from their website, and then further cleaned,
frame segmented, and reorganized to obtain 2377 video clips.
2. What mechanisms or procedures were used to collect the
data (e.g., hardware apparatus or sensor, manual human cu-
ration, software program, software API)? How were these
mechanisms or procedures validated?

A2: The data in FHA-Kitchens come from dataset publicly avail-
able datasets described above, which can be directly downloaded
from their websites.

3. If the dataset is a sample from a larger set, what was the
sampling strategy (e.g., deterministic, probabilistic with spe-
cific sampling probabilities)?

ACM MM, 2024, Melbourne, Australia

A3: Currently, we focus exclusively on hand interaction actions
in kitchen scenes, thus primarily extracting data that includes hand
interaction actions in kitchen scenes.

4. Who was involved in the data collection process (e.g., stu-
dents, crowdworkers, contractors), and how were they com-
pensated (e.g., how much were crowdworkers paid)?

A4: The authors collected this dataset. The annotation compen-

sation is based on the prevailing market rates.
5. Over what timeframe was the data collected? Does this
timeframe match the creation timeframe of the data asso-
ciated with the instances (e.g., the recent crawl of old news
articles)? If not, please describe the timeframe in which the
data associated with the instances was created.

AS5: It took about 1 week to collect the data and about 6 weeks to
complete organization and annotation, as each participant labeled
the bonding boxes and action triplets about four hours per work-
day. And the segmentation masks are generated by the Segment-
Anything Model [9] guided by the bonding boxes, and corrected by
human annotators for about one week.

A.3.4  Preprocessing/cleaning/labeling.

1. Was any preprocessing/cleaning/labeling of the data done
(e.g., discretization or bucketing, tokenization, part-of-speech
tagging, SIFT feature extraction, removal of instances, pro-
cessing of missing values)? If so, please provide a description.
If not, you may skip the remainder of the questions in this
section.

A1: Yes. Since we focus on hand actions, we performed filtering
and processing operations on the original videos, including the fol-
lowing three steps. (1) First, we observed that kitchen scenes often
featured hand actions, with video content prominently showcasing
human hand parts. Therefore, we sought out and extracted relevant
videos that were set against a kitchen backdrop. (2) Then, to ensure
the quality of the dataset, we selectively chose videos with higher
resolutions. Specifically, 87% of the videos were recorded at 1,280
X 720 resolution, while another 13% had a shorter side of 480. Ad-
ditionally, 67% of the videos were captured at 30 frames per second
(fps), and another 33% were recorded at 24~25 fps. (3) Subsequently,
we imposed a duration constraint on the videos, ranging from 30
seconds to 5 minutes, to exclude excessively long-duration videos.
This constraint aimed to maintain a balanced distribution within
the sample space. Finally, we collected a total of 2,377 video clips,
amounting to 84.22 minutes of footage, encompassing 8 distinct
types of dishes.

The collected video data was reorganized and cleaned to align
with our annotation criteria. First, we split the collected video data
into individual frames, as our annotated units are frames. Subse-
quently, we conducted further cleaning of the frames by excluding
those that did not depict hands or exhibited meaningless hand ac-
tions. This cleaning process took into consideration factors such as
occlusion, frame quality (i.e., without significant blur, subtitles, and
logos), meaningful hand actions, and frame continuity. As a result,
we obtained a total of 30,047 high-quality candidate video frames
containing diverse hand actions for our FHA-Kitchens dataset. Com-
pared to the initial collection, 113,436 frames were discarded during
the cleaning process.
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We recruited 10 voluntary annotators, whose responsibility was

to annotate bounding boxes and multi-granularity action categories
for each hand interaction region. To enhance annotation efficiency,
we implemented a parallel annotation pipeline. The annotation of
fine-grained action triplets was carried out on the Amazon Me-
chanical Turk platform, while the bounding box and coarse-grained
actions annotation was facilitated using the LabelBee tool. To en-
sure the annotation quality, three rounds of cross-checking and
corrections were conducted.
2. Was the “raw” data saved in addition to the preprocessed/
cleaned/ labeled data (e.g., to support unanticipated future
uses)? If so, please provide a link or other access point to the
“raw” data.

A2: No.
3.Is the software used to preprocess/clean/label the instances
available? If so, please provide a link or other access point.

A3: The annotation of fine-grained action triplets was carried
out on the Amazon Mechanical Turk platform, while the bounding
box and coarse-grained actions annotation was facilitated using
the LabelBee tool.

A.3.5 Uses.
1. Has the dataset been used for any tasks already? If so,
please provide a description.

A1: No.

2. Is there a repository that links to any or all papers or
systems that use the dataset? If so, please provide a link or
other access point.

A2:N/A.

3. What (other) tasks could the dataset be used for?

A3: FHA-Kitchens can be used for the research of fine-grained
hand action recognition, multi-granularity hand action detection,
and interaction object detection. Besides, it can also be used for
specific machine learning topics such as domain generalization and
action segmentation. Please see the Discussion part of the main
paper and supplementary material.
4.Is there anything about the composition of the dataset or
the way it was collected and preprocessed/cleaned/labeled
that might impact future uses? For example, is there anything
that a future user might need to know to avoid uses that
could result in unfair treatment of individuals or groups (e.g.,
stereotyping, quality of service issues) or other undesirable
harms (e.g., financial harms, legal risks) If so, please provide
a description. Is there anything a future user could do to
mitigate these undesirable harms?

A4: No.

5. Are there tasks for which the dataset should not be used?
If so, please provide a description.
A5: No.

A.3.6 Distribution.
1. Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide
a description.

A1: Yes. The dataset will be made publicly available to the re-
search community.

10
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2. How will the dataset will be distributed (e.g., tarball on
website, API, GitHub)? Does the dataset have a digital object
identifier (DOI)?

A2: Tt will be publicly available on the dataset project website at
GitHub.
3. When will the dataset be distributed?

A3: The dataset will be distributed once the paper is accepted
after peer review.
4. Will the dataset be distributed under a copyright or other
intellectual property (IP) license, and/or under applicable
terms of use (ToU)? If so, please describe this license and/or
ToU, and provide a link or other access point to, or otherwise
reproduce, any relevant licensing terms or ToU, as well as
any fees associated with these restrictions.

A4: It will be distributed under the MIT license.
5. Have any third parties imposed IP-based or other restric-
tions on the data associated with the instances? If so, please
describe these restrictions, and provide a link or other ac-
cess point to, or otherwise reproduce, any relevant licensing
terms, as well as any fees associated with these restrictions.

A5: No.
6. Do any export controls or other regulatory restrictions
apply to the dataset or to individual instances? If so, please
describe these restrictions, and provide a link or other access
point to, or otherwise reproduce, any supporting documen-
tation.

A6: No.

A.3.7 Maintenance.
1. Who will be supporting/hosting/ maintaining the dataset?

A1: The authors.

2. How can the owner/curator/manager of the dataset be
contacted (e.g., email address)?

A2: They can be contacted via email available on our dataset
project website.
3.Is there an erratum? If so, please provide a link or other
access point.

A3: No.

4. Will the dataset be updated (e.g., to correct labeling errors,
add new instances, delete instances)? If so, please describe
how often, by whom, and how updates will be communicated
to users (e.g., mailing list, GitHub)?

A4: No. We have carefully three rounds of cross-checking the
annotations to reduce the labeling errors. There may be very few
labeling errors, which can be treated as noise.

5. Will older versions of the dataset continue to be supported/
hosted/maintained? If so, please describe how. If not, please
describe how its obsolescence will be communicated to users.

A5: N/A.

6. If others want to extend/augment/build on/contribute to
the dataset, is there a mechanism for them to do so? If so,
please provide a description. Will these contributions be val-
idated/verified? If so, please describe how. If not, why not? Is
there a process for communicating/distributing these contri-
butions to other users? If so, please provide a description.

A6: N/A.
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Table 10: Hyper-parameters used in MG-HAD.

Item Value
Ir 0.0001
Ir_backbone 1le-05
weight_decay 0.0001
clip_max_norm 0.1
pe_temperature 20
enc_layers 6
dec _layers 6
dim _feedforward 2048
hidden_dim 256
dropout 0.0
nheads 8
num_queries 900
enc_n_points 4
dec_n_points 4
transformer_activation | “relu”
set_cost_class 2.0
set_cost_bbox 5.0
set_cost_giou 2.0
cls_loss_coef 1.0
bbox_loss_coef 5.0
giou_loss_coef 2.0
focal_alpha 0.25
dn_box_noise_scale (y1) 1.0
dn_label_noise_scale (y2) 0.5
subject_weight (ws) 0.2
action_weight (wgq) 0.6
object_weight (w,) 0.2
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Figure 8: Qualitative comparison on the FHA-Kitchens dataset. Our model accurately detects three hand sub-interaction regions
and provides multi-granularity hand action categories. Compared to the baseline [21], our model performs better across
multi-dimensional fine-grained categories, demonstrating the effectiveness of our designed multi-dimensional action queries.
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Figure 9: Visual detection results of our method in four different kitchens scenarios containing complex hand actions, i.e., “fry
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, ‘utility-knife-handle’]: 95.4

’, ‘half-watermelon-middle’]:

vegetables”, “sandwich”, “salad”, and “fruit”. Our model offers accurate bounding boxes and multi-granularity hand action

information for three hand sub-interaction regions.
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I-0

I-A

Figure 10: Visual results of Faster-RCNN [14] and TSN [19] methods in the SL-AD and SL-AR track experiments on our FHA-
Kitchens dataset, showcasing interaction scenes with three hand sub-interaction regions, i.e., “Left hand-Object interaction
region (L-0)”, “Right hand-Object interaction region (R-0)”, and “Object-Object interaction region (0-0)”. I-R: Interaction

Ei i

Region, I-O: Interaction Object, I-A: Interaction Region Action Verb.

Figure 11: Visual results of Faster-RCNN [14] and TSN [19] methods in the SL-AD and SL-AR track experiments on our FHA-
Kitchens dataset, showcasing interaction scenes with #wo hand sub-interaction regions, i.e., “Left hand-Object interaction
region (L-O)” and “Right hand-Object interaction region (R-0)”. I-R: Interaction Region, I-O: Interaction Object, I-A: Interaction

Region Action Verb.
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I-R

Figure 12: Visual results of Faster-RCNN [14] and TSN [19] methods in the SL-AD and SL-AR track experiments on our FHA-
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L-0: 100.0

Kitchens dataset, showcasing interaction scenes with a single hand sub-interaction region, i.e., “Left hand-Object interaction
region (L-0)” or “Right hand-Object interaction region (R-0)”. I-R: Interaction Region, I-O: Interaction Object, I-A: Interaction

Region Action Verb.
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Anon.

Table 11: Vocabulary of fine-grained hand action verbs.

ID Verb #Instance | ID  Verb #Instance
0 hold-around 1,593 65 knead 298
1 hold-at 788 66 contain 144
2 fill-with 265 67 roll-on 82
3 pinch-on 1,115 68 stick-to 50
4 rub-around 45 69 touch-to 12
5 hold-in 20,520 70 smooth-out 144
6 touch-on 42 71 sprinkle-on 203
7 hold-with 341 72 squeeze-around 189
8 press-on 9,369 73 press-down 675
9 cut-out 889 74 cut-up 100
10  fix-on 2,037 75 shovel-up 123
11 peel-off 1,413 76 grab-out 1
12 slice-along 1,306 77 close 51
13 grab 2,531 78 rotate 51
14 cut-half 230 79 open 72
15  take-up 134 80 open-down 27
16  pinch 609 81 hold-down 41
17  catch 446 82 cut-dice 443
18  put-down 1,406 83 dig-seeds 124
19  roll-up 1,296 84 chop 346
20 fix 293 85 push-forward 8
21  scrub-inside 53 86 cut-halves 22
22 lay-down 111 87 peel 87
23 hold-onto 453 88 push-ahead 2
24 pick-up 526 89 screw-on 5
25  cut-slice 2,808 90 sprinkle-into 16
26  take-out 178 91 SCoop-up 85
27  turn-off 22 92 hold-along 129
28 cut-down 1,040 93 scrape-on 331
29  cut-off 820 94 stick-with 13
30 grab-up 115 95 cut-in 275
31  put-up 56 96 rub-on 11
32  break-apart 221 97 put-on 2
33  touch 483 98 push-off 10
34  cut-into-halves 136 99  place-on 17
35  bring-up 140 100 cut 15
36  pour-out 832 101  dip-in 9
37  pour-into 395 102 stretch-out 31
38  pour 154 103 flip 8
39  scrape 70 104  set-aside 22
40  rotate-around 162 105  julienne 165
41  screw-down 19 106  unroll 270
42 remove-out 69 107  adjust 46
43 hold-up 664 108  place-down 262
44  scoop-out 76 109  pile 49
45  open-up 21 110 pull 137
46 hold 946 111 attach-to 18
47  hold-on 187 112 grab-in 15
48  squeeze 334 113 knock-on 29
49  squeeze-out 254 114  press-against 13
50  mix-together 187 115  stir-in 114
51  spread-on 342 116  pull-up 47
52  twist-off 20 117 point-at 25
53  wrap-around 204 118  pull-out 33
54  break-off 417 119  scrape-down 6
55  grab-at 621 120  grab-onto 558
56  grab-on 384 121 hold-into 88
57  cut-through 25 122 hold-over 67
58  chop-dice 63 123 stir-into 49
58  chop-dice 63 124  press-onto 1
60 insert-into 106 125  roll 68
61  put-in 30 126  roll-out 33
62  dig-out 23 127 dip 51
63  cut-chunks 91 128  brush-onto 54
64  churn 369 129 flip-over 83
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Table 12: Vocabulary of fine-grained interaction object nouns.

Super category ID Noun #Instance | Super category | ID  Noun #Instance
0  basil-end 201 65  apple-all 22
1 beet-end 143 66  apple-end 34
2 beet-head 136 67  apple-head 253
3 beet-middle 36 68  apple-middle 301
4 bell-pepper-all 2 69  avocado-end 156
5  bell-pepper-end 210 70  avocado-head 12
6  bell-pepper-head 67 71  avocado-left 34
7 bell-pepper-middle 139 72 avocado-middle 174
8  broccoli-head 38 73 avocado-right 34
9 carrot-end 1,625 74  block-watermelon-edge 5
10  carrot-head 205 75  green-melon-all 4,074
11 carrot-middle 638 76  green-melon-end 68
12 chopped-vegetables-surface 38 77  green-melon-middle 68
13 courgette-end 921 78  half-apple-head 139
14  courgette-middle 39 79  half-apple-middle 47
15 cucumber-end 288 80  half-pineapple-head 6
16  cucumber-middle 165 81  half-pineapple-middle 99
17  cucumber-strip-all 14 82  half-tomato-end 1
18  cucumber-strip-end 72 83  half-tomato-middle 1
19 cucumber-strip-middle 22 84  half-watermelon-edge 79
20 garlic-middle 240 85  half-watermelon-end 17
21 garlic-end 164 86  half-watermelon-head 301
22 garlic-head 46 87  half-watermelon-middle 232
23 ginger-end 248 Fruits 838  lemon-end 156
24 ginger-head 169 89  lemon-middle 108
25 ginger-middle 70 90  melon-skin-all 119
26 green-beans-end 937 91  melon-skin-end 576
27 green-pepper-dice 1 92  melon-pulp-all 28
28 green-pepper-end 710 93  melon-pulp-end 163
29  green-pepper-head 142 94  melon-pulp-middle 49
30 green-pepper-middle 505 95  melon-slice-end 200
31 half-bell-pepper-end 116 96  orange-all 22

Vegetables&Plants | 32 half-bell-pepper-middle 110 97  orange-end 24
33 half-onion-all 23 98  orange-head 209
34 half-onion-head 11 99  orange-middle 547
35  half-onion-middle 11 100 peelless-orange-middle 93
36 mushroom-middle 15 101 piece-orange-edge 276
37 nori-all 506 102 pineapple-all 26
38 nori-end 262 103  pineapple-end 476
39 onion-end 78 104 pineapple-head 959
40  onion-head 28 105 pineapple-middle 1,346
41 onion-middle 49 106  slice-pineapple-end 25
42 pepper-seeds-all 4 107  slice-pineapple-middle 63
43 piece-onion-middle 38 108 watermelon-edge 29
44  piece-tomato-end 41 109 watermelon-end 966
45  purple-cabbage-end 77 110 watermelon-head 155
46  purple-cabbage-head 70 111  watermelon-middle 631
47  purple-cabbage-middle 23 112 boiled-egg-end 226
48 red-pepper-all 21 113 boiled-egg-head 22
49  red-pepper-head 25 114  boiled-egg-middle 14
50 red-pepper-middle 18 115 boiled-egg-shell 88
51 small-tomato-head 9 116  egg-all 248
52  small-tomato-middle 27 . 117  egg-head 1
53  spinach-end 4 Dairy&Eggs 118  egg-middle 26
54 spinach-head 35 119  egg-liquid-all 10
55 spinach-middle 30 120  egg-shell-all 86
56  spring-garlic-all 18 121  egg-shell-edge 34
57  spring-garlic-end 53 122 milk-all 594
58 spring-garlic-head 23 123 yolk-all 112
59  spring-garlic-middle 52 124  chicken-dice 8
60 sun-flower-seeds 104 125 raw-chicken-dice 69
61 tomato-cube 22 . 126  crab-shred 328
62 tomato-end 280 Meat&Fish 127 meat-end 515
63 tomato-middle 17 128 meat-head 573
64 tomato-sliced-middle 109 129 meat-middle 142
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Table 13: Vocabulary of fine-grained interaction object nouns.

Anon.

Super category | ID  Noun #Instance | Super category | ID  Noun #Instance
130 meat-piece-end 442 194  bottle-body 52
131 meat-slice-all 1 195 box-lid-bottom 21
132 meat-slice-end 202 196  bottle-cap 8
133 piece-pepperoni-all 87 197  bottle-cap-all 106
Meat&Fish 134 piece-pepperoni-end 158 198  bottle-cap-bottom 19
135 salmon-piece-all 36 199 can-cover-edg 2
136  salmon-piece-end 399 200 can-cover-edge 106
137  salmon-piece-middle 14 201  ceramic-cup-all 68
138  salmon-slice-end 44 202  ceramic-cup-body 671
139  butter-all 45 203  ceramic-cup-handle 12
140  crumbles-cheese-all 116 204 ceramic-lid-all 25
141 cheese-all 27 205 ceramic-lid-edge 85
142 green-butter-all 85 206 ceramic-teapot-handle 132
143  mozzarella-all 84 207 ceramic-teacup-body 69
144 mozzarella-end 12 208 ceramic-teacup-edge 138
Spices&Sauces | 145 pizza-sauce-end 193 209 cup-edge 79
146 powder-all 29 210 glass-bottle-edge 40
147 sauce-all 397 211 glass-bottle-top 59
148  slice-cheese-end 44 212 glass-cup-body 1
149 tomato-sauce-all 151 213  glass-cup-edge 217
150 tomato-sauce-edge 15 214 glass-cup-handle 51
151 sauce-mixed 70 215 glass-goblet-stem 333
152 can-opener 108 216 glastic-bottle-edge 4
153  green-mixture-all 248 217  glastic-bottle-top 4
Liquids 154 jam-all 23 Containers 218 grass-bottle-top 30
155  oil-all 60 219  iron-basin-body 29
156 olive-oil-all 51 220 iron-basin-edge 145
157 baking-paper-edge 99 221 iron-basin-middle 115
Baked&Baking | 158 baking-paper-top 25 222 iron-cup-body 1,005
159 baking-plate-edge 54 223 iron-cup-handle 325
160 piece-pizza-end 125 224 iron-dipper-handle 14
161 pizza-all 63 225 plastic-basin-edge 33
162 pizza-end 27 226 plastic-bottle-bottom 21
163 pizza-middle 29 227 plastic-bottle-edge 352
164 sandwich-edge 32 228 plastic-bottle-top 78
165 sandwich-end 297 229 plastic-cup-body 19
166 sandwich-head 141 230 sauce-container-end 4
Cooked Food | 167 sandwich-middle 123 231  small-cup-edge 195
168 sandwich-side 85 232 small-plastic-bottle-edge 154
169 sandwich-top 27 233 small-plastic-bottle-end 120
170  sandwich-all 23 234 small-plastic-bottle-top 167
171  sushi-roll-all 151 235 teapot-lid-edge 126
172  sushi-roll-end 1,659 236 teapot-lid-handle 267
173 sushi-roll-head 233 237  wine-bottle-bottom 75
174  sushi-roll-middle 622 238 yogurt-box-bottom 63
175 bamboo-mat-edge 284 239  yogurt-box-edge 62
176  bamboo-mat-end 528 240  yogurt-box-handle 2
177 bamboo-mat-head 8 241 yogurt-box-top 14
178 bamboo-mat-middle 244 242 sauce-cup-all 9
179 mozzarella-bag-end 71 243 bowl-bottom 69
180 mozzarella-bag-middle 24 244 bowl-edge 198
181 onion-bag-end 86 245 glass-bowl-all 23
Packaging 182  onion-bag-middle 30 246  glass-bowl-body 23
183 pepperoni-bag-end 60 247  glass-bowl-bottom 91
184 pepperoni-bag-middle 16 248 glass-bowl-edge 415
185 piping-bag-all 251 249 glass-bowl-handle 8
. Cutlery
186 pizza-box-edge 140 250 grass-bowl-edge 13
187 tea-leaves-bag-body 38 251 green-bowl-edge 29
188 tea-leaves-bag-bottom 42 252 small-bowl-edge 16
189 tea-leaves-bag-top 38 253  steel-bowl-edge 153
190  black-bottle-top 42 254  steel-bowl-top 13
Containers 191  bottle-all 1 255 metal-bowl-edge 470
192 bottle-edge 19 8 256 plastic-bowl-all 46
193  bottle-top 30
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Table 14: Vocabulary of fine-grained interaction object nouns.

Super category | ID  Noun #Instance | Super category | ID  Noun #Instance
257  plastic-bowl-body 10 321 shovel-body 49
258 plastic-bowl-edge 31 322 shovel-handle 49
259  porcelain-bowl-edge 39 323 sieve-spoon-body 13
260 porcelain-bowl-middle 2 324 sieve-spoon-handle 12
261 porcelain-bowl-top 17 325 small-iron-pot-handle 90
262 fork-handle 9 326 small-knife-body 663
263 iron-spoon-body 353 327 small-knife-handle 706
264 iron-spoon-handle 395 Kitchenware 328 tea-strainer-body 108
265  plastic-scoop-body 48 329 tea-strainer-edge 4
266 plastic-scoop-handle 94 330 tea-strainer-handle 224
267 plastic-spoon-body 22 331 turnplate-corner 15

Cutlery 268  plastic-spoon-handle 22 332 turnplate-edge 9
269 spoon-body 692 333  utility-knife-body 10,419
270 spoon-handle 1,011 334 utility-knife-handle 11,157
271 tablespoon-body 327 335 carrot-peeler-body 255
272  tablespoon-handle 332 336 carrot-peeler-handle 518
273 teaspoon-body 51 337 grater-body 70
274 teaspoon-handle 191 Appliances 338 grater-handle 70
275 wooden-spoon-body 116 339 oven-door-handle 22
276 wooden-spoon-handle 152 340 ball-dough-end 27
277 wooden-spatula-body 25 341 ball-dough-head 24
278 wooden-spatula-handle 28 342  ball-dough-middle 173
279  table-knife-handle 34 343 dough-all 413
280 tableware-handle 11 344 dough-flour-all 117
281 beater-end 25 345 dough-flour-middle 35
282 plate-edge 335 346 flat-dough-all 42
283 plate-end 20 347 flat-dough-edge 206
284 brush-body 105 348 flat-dough-end 963
285 brush-handle 195 Rice&Flour 349 flat-dough-middle 13
286 can-opener-edge 83 350 flour-all 35
287 can-opener-end 25 351 green-dough-all 123
288  ceramic-plate-all 91 352 little-dough-al 1
289  ceramic-plate-edge 208 353 little-dough-all 386
290 chopping-board-edge 2 354 oval-dough-end 170
291 cooking-spoon-body 77 355 rice-all 585
292  cooking-spoon-handle 382 356  slice-bread-end 92
293 food-mixer-handle 372 357 bread-end 510
294 food-mixer 369 358 bread-head 199
295 pizza-cutter-body 29 359 bread-middle 258
296 pizza-cutter-handle 17 360 chocolate-cake-edge 242
297 food-plate-center 75 361 chocolate-cake-top 111
298 food-plate-edge 36 362 chocolate-all 21
299 handle 108 363 candies-all 159

. 300 iron-plate-edge 76 364 candy-all 4

Kitchenware 301 kitch}e)n—knifeg—body 552 365 candz—top 51
302 kitchen-knife-handle 1,215 366 chocolate-bar-middle 87
303 knife-body 26 367 chocolate-chips-all 49
304 knife-handle 27 Dessert 368 chocolate-cream-all 189
305 jam-knife-body 50 369 chocolate-cream-top 261
306 jam-knife-handle 53 370 chocolate-donut-all 35
307 metal-plate-edge 47 371 cookie-all 41
308 metal-spatula-body 71 372 cookie-end 57
309 metal-spatula-handle 123 373  cookie-head 1
310 pizza-spatula-body 70 374 cookies-all 49
311 pizza-spatula-handle 99 375 cookie-top 9
312 pizza-tray-edge 122 376 cream-all 139
313 plastic-spatula-body 328 377  tea-all 14
314 plastic-spatula-handle 531 Drink 378 tea-leaves-all 219
315 rolling-pin-body 198 379  whisk-head-top 9
316 rolling-pin-handle 174 380 hand-left 23,305
317 rolling-pin-middle 82 Uncategorised 381 hand-right 26,441
318 rolling-pin-miidle 5 1 382 towel-all 82
319  serrated-knife-body 38 383 towel-edge 38
320 serrated-knife-handle 43
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Figure 13: The distribution of instances per object noun category from 17 super-categories in the FHA-Kitchens dataset.
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