440

441

442
443
444
445
446
447
448
449
450

451
452
453
454
455

456
457

Appendix

A Additional GFP analysis

Design-bench difficulty. Prior works have used the GFP task introduced by design-bench (DB),
a suite of model-based reinforcement learning tasks [37], which samples a starting set of 5,000
sequences from the 50-60th percentile fitness range. The wild-type (WT) sequences have 534
fluorescence measurements ranging from the 58th to the 100th percentile (Figure 4) which implies
it may be in the training set depending on the random seed’ and allow strong performance by
memorization. Even if there is no data leakage (due to the random seed), the 50-60th percentile
fitness starting range includes sequences that require 1 mutation to reach the 99th percentile (see
Figure 5). The task is overly simplified in this sense and does not provide accurate evaluation of
different methods.

Harder difficulty. The DB starting set is "easy" in the sense of only requiring a few mutations
to sample the top sequences — BiGGS and Adalead requires average novelty of 1.0 to sample the
92nd percentile on average (Table 2). We propose the "medium" and "hard" difficulty which test a
method’s ability to search large mutations and extrapolate far beyond the training set. Statistics of
each difficulty are in Table 1 while a plot of their respective starting training sets is in Figure 5.

New oracle. The DB transformer-based oracle [27] is unreliable in the upper fitness echelon of
sequences Figure 6. The DB oracle also suspectible to false positives. We propose a improved oracle
based on a CNN that alleviates both issues. The CNN architecture is described in Section 3.

GFP wild-type fitness measurements

n
)
c
£
H 40-
1
5
n
©
Q
£
—
°
5 20-
2
£
F]
2
0,
© A ‘ ‘ \
o [\)¢ O:” 09 ~

Fitness percentile

Figure 4: GFP wild-type multiplicity. The same wildtype sequence is measured a total of 534 times
in the Sarkisyan et al. [31] dataset with a wide range of fitness measurements from the 58th to 100
percentile. As a result, it is possible for the wild-type or other sequences with multiple measurements
to contaminate the training set when filtering only on fitness range.

SWe confirmed this to be the case in the design-bench codebase.

13

460
461
462
463

GFP task difficulty

a Easy (n=5609) Medium (n=2828) Hard (n=1636)
99th
![.II]II:EZZZZZiIIZIZ
40th
3-
n
0 |
[}
c
>
'S
2-
‘ f_p 30h
20th L\ 10th AARAALNL
QYT HPHH0ADO Q'»&b»uosm'bu@e'\%g ,\, 0&'1'”)0‘66'\%%0 QQ«,"‘

Mutation gap: edit distance from 99th quantile

Figure 5: GFP task difficulty comparisons. Easy difficulty is taken from design-bench. We take
all GFP sequences between the 50-60th percentile regardless of distance to sequences in the 99th
percentile of GFP sequences resulting in 5609 sequences the method has access to. Data leakage is
present due to the multiplicity of GFP measurements that allows the wild-type sequence and other
top sequences to be present in the 50-60th percentile. Medium difficulty filters the starting dataset to
have sequences in the 20-40th percentile and be 6 or more mutations away from anything in the top
99th percentile resulting in 2628 sequences in the starting dataset. Hard difficulty filters the starting
dataset to have sequences in the 10-30th percentile and be 7 or more mutations away from anything
in the top 99th percentile resulting in 1636 sequences.

DB Oracle CNN Oracle (ours)
as Spearman Rho = 0.86 Cas Spearman Rho = 0.89
4.0 4.0
35 35
n
c
(=]
5 3.0 3.0
9
T
225 2.5
[-%
9
V2.0 2.0
m©
i
o
1.5 1.5
1.0 1.0
0.5~ 0.5~
05 1.0 15 20 25 30 35 40 45 05 10 15 20 25 30 35 40 45
GFP Ground Truth GFP Ground Truth

Figure 6: Design-bench (DB) and our CNN oracle Comparison. DB oracle exhibits strange behaviour
of predictions being thresholded at min/max values. Yet the Spearman correlation (rho) is high and
closely matches the reported rho in [36]. Our simpler CNN oracle on the other hand is able to fit the
ground truth data more accurately (higher rho) and has less false positives. We perform experiments
with both oracles in our work.

B Additional methods

In this section, we provide additional details of Graph-based Smoothing (GS) and algorithms.
Algorithm 2 describes pseudo code for Bi-level Gibbs (BiG) sampling introduced in Section 2.2.
Algorithm 3 describes pseudo code for GS described in Section 2.3 with algorithm 4 and algorithm 5
as sub-routines used in GS.

14

464
465

466
467

468
469
470

471
472
473
474

475
476
477

478
479
480

481
482
483
484

We now describe remaining details of GS. We use the same optimization algorithm from Lu et al.
[17] to solve eq. (4) which is reproduced here. As a reminder, eq. (4) is

§* = argmin||B$||1 + 9|8 = S
S

Solving the above, a combination of L;-optimization problems, is notoriously difficult therefore we
introduce an auxiliary variable F' with same dimensions as S and instead solve the following,

. 1,4 R
min 28 = FI% + ABFl + 718 - Sl ®
$>0,U

where | - || # is the Frobenius norm. The purpose of F is to disentangle S from being part of two
L;-norm terms such that we can solve smaller sub-problems. The new term ||S — F||% enforces F to
be close to S. Equation (6) can be solved with two easier sub-problems.

1 ~
F* = argmin Z|F — 8|3 + \| BF || @
F
R 1,4 A
S§* = argmin §||3 — F*||% + 7S — S||1 = SoftThreshold(F*,S,~) (®)
$>0

where §* = & initially and)\ is a Lagrange multiplier. Equation (8) has a closed-form solution using
the soft-threshold function (SoftThreshold) which is defined in eq. (9) of Lu et al. [17] (we omit it
here for ease of exposition). Equation (7) requires iterative optimization due to the computational
intractability of B. This is overcome by a dimensionality reduction,

F:UvA, UV = [u1|...|U50]

where Uy is a matrix whose columns are the 50 smallest eigenvectors of £ and A = {a;;} is the
reconstruction coefficients. Lu et al. [17] let the number of projected eigenvectors be a hyperparameter
but we found 50 to work well. Equation (7) can be reformulated as,

1 ~
F* = arg min §||UVA — S*|% + \|BUVA||;
A

1 -
= argjnmz SIOvA; = S511% + AIBUv A,)
J

()

where $* and A. j denotes the j-th column of S*and A respectively. Lu et al. [17] proved solving
eq. (9) is equivalent to solving eq. (8) under certain conditions but is a good approximation otherwise.
Each (*) can be solved independently,

1 Ax
(x) = aramln §||UVA.j — 8513 4+ AlIBUv A1

1 S 1
:ar%lmiHUVA.j —S.AI%HZEMW (10)

See Lu et al. [17] for derivation. Recall 3J;; is the ¢th eigenvalue. Equation (10) can be solved using
off-the-shelf solvers. We can now solve eq. (7) and eq. (8) in iterative fashion. We set a number of
rounds (1000 in our case) and alternate between solving eq. (8) and eq. (7). The full algorithm is
provided as NoiseReduction in Algorithm 4 which follows Algorithm 1 of Lu et al. [17].

15

Algorithm 2 BiG: Bi-level Gibbs

Require: Parent sequence: x

Require: Predictor weights: 0

Require: Sampling temperature: 7

Require: Upper mutation limit: M

Require: Number of sequences to sample: Npyop

1 X 0
2: form=1,...,M do > Enumerate number of mutations to sample.
3: fori=1,...,mdo > Sample each mutation.
4: £~ q(-|z) > Sample index eq. (2)
5: (@) ~ q(-|z,0) > Sample token eq. (2)
6: end for
7: if accept using eq. (3) then
8: X+ X' U{2'}
9: end if

10: end for

11: Return X’ > Return accepted sequences.

Algorithm 3 GS: Graph-based Smoothing

Require: Sequences: X

Require: Predictor weights: 6

Require: Number of perturbations: Nperturb
Require: Number of neighbors: Nyeign
Require: Sparsity weight: y

1: V 4 Perturb(X, Nperwurb) > Construct graph nodes algorithm 5.
20 W {w;; = 1/dist(v;,v5) 1 v;,v; € V} > Construct similarity matrix.
3: E < NearestNeighbor(X; W, Npeigh) > Nneigh Nearest neighbor graph edges based on 1.
4: S+ {fo,(v) Vv e V} > Node attributes
5: 8* + NoiseReduction(V, E,S,~) > Solves eq. (4) with algorithm 4
6: D« (V,8%)

7: 0« argmax; E(,)op [(y — f5(2))?] > Train on smoothed dataset.
8: Return 6

Algorithm 4 NoiseReduction: follows Algorithm 1 in Lu et al. [17]

Require: Nodes: V'
Require: Edges:
Require: Noisy labels: S
Require: Sparsity weight:
: L « Compute normalized Laplacian on graph G = (V| E).
Vg < Find 50 smallest eigenvectors* of L.
S«S
for : = 1...1000 optimization rounds do
A* < Solution in eq. (9) using off-the-shelf solvers.
F* Uy A*
S* < SoftThreshold(F*,S,%)
end for
Return &*

R AR A

16

485

486
487
488
489
490
491

492

494
495
496
497
498

499
500
501

503
504

505
506

Algorithm 5 Perturb

Require: Sequences: X
Require: Number of perturbations: Nperturb
VX
while |V| < (|X| - Nperturn) do
x ~ Uniform(V)
2’ +Random point mutation to x
V«Vu{z}
6: end while
7: Return V/

AN

C Additional results

AAV evaluation. Our experiments use GFP (Section 3) due to its long sequence length (237 residues)
resulting in a large search space and wide coverage of fitness measurements (56,806 data points).
The proposed medium and hard difficulties were possible because of GFP’s measurements up to 15
mutations. We sought to experiment on a different fitness landscape to see if (1) mutational gap is a
valid criterion for task difficulty and (2) our method isn’t over-optimized for fluorescence fitness in
GFP.

A second commonly studied protein fitness dataset is the Adeno-Associated Virus (AAV) [7]. The
fitness of the AAV capsid protein is its ability to package a DNA payload, i.e. gene delivery. This
dataset encompasses 201,426 subsequences of the AAV2 wild-type known to be immportant for gene
delivery based on the structure. Of these, we consider 44,156 subsequences of length 28 and consist
solely of substitutions®. The benchmark difficulties on AAV are defined the same way in the GFP
task. The same oracle architecture is used to train on all 44,156 sequences while BiGGS uses the
same hyperparameters as in GFP.

Results from evaluating BiGGS and baselines on AAV is presented in Table 4. BiGGS outperforms
all baselines on this dataset as well, demonstrating its robustness across another protein fitness
landscapes. The improvement using BiGGS over baselines is lower for AAV compared to GFP. This
could be explained due to the smaller search space (28 residues) than GFP (237 residues) suggesting
AAV is easier. We observe a decrease in fitness performance across all methods to suggest mutational
gap is a valid criterion for task difficulty.

Table 4: AAV optimization results (our oracle).
AAV Task Method

Difficulty Metric GFN-AL CbAS Adalead BO-qei CoMs PEX BiGGS

Fit. 0.02(0.0) 0.53 (0.0) 0.53(0.0) 0.42 (0.2) 0.31(0.1) 0.47 (0.0) 0.57 (0.0)
Easy Div. 125(0.8) 6.7(0.6) 5.8(0.1) 10.1(7.2) 43(1.71) 2.1(0.1) 7.1(0.2)
Nov. 209(1.2) 5.6(0.6) 5.0(0.0) 84(7.6) 57(0.6) 1.0(0.0) 2.1(0.2)

Fit. 0.01(0.0) 0.35(0.0) 0.42(0.0) 0.30 (0.1) 0.32(0.1) 0.36 (0.0) 0.53 (0.0)
Medium Div. 159 (1.1) 13.7(0.4) 7.7(1.4) 17.3(3.6) 10.2(3.7) 2.2(0.2) 9.0(0.1)
Nov. 21.8(0.7) 7.8(0.5) 1.0(0.0) 42(9.4) 9.0(2.0) 1.0(0.0) 7.8(0.5)

Fit. 0.00(0.0) 0.31 (0.0) 0.00 (0.0) 0.28 (0.0) 0.31 (0.2) 0.27 (0.0) 0.45 (0.0)
Hard Div. 18.5(1.2) 15.1(0.7) 24.7(0.1) 20.8 (1.6) 9.2(42) 2.0(0.0) 12.1(0.4)
Nov. 222(1.0) 8.4(0.5) 22.0(0.0) 0.0(0.0) 82(2.6) 1.0(0.0) 4.0(0.0)

Results with DB oracle. Table 5 shows results of using the design-bench (DB) oracle compared
against our CNN oracle. We find BiGGS is still state-of-the-art on all fitness metrics.

SAAV contains sequences of varying length with insertions and deletions. We excluded these since our
method and the majority of our baselines cannot handle insertion and deletions.

17

Table 5: GFP optimization results with design-bench (DB) oracle. Note that diversity, novelty and
unique are the same regardless of oracle.

GFP Task Method
Difficulty Metric GFN-AL CbAS Adalead BO-gei CoMs PEX BiGGS

Fit. 0.1(0.0) 0.84(0.0) 0.86(0.0) 0.84 (0.0) 0.54(0.3) 0.81 (0.0) 0.86 (0.0)
Div. 27.9(2.0) 45(0.4) 2.1(02) 59(0.0) 64.6(86) 22(0.1) 2.2(0.0)
Easy Nov. 215(2.9) 1.4(0.5) 1.0(0.0) 0.0(0.0) 41.1(43) 1.0(0.0) 1.0(0.0)

Fit. 0.1(0.0) 0.0(0.0) 0.75(0.0) 0.0(0.0) 0.45(0.3) 0.74 (0.0) 0.86 (0.0)
Div. 30.9(2.7) 9.2(1.5) 9.3(0.1) 20.1(7.1) 96.8 (92.9) 2.0 (0.0) 4.0(0.2)

Med Nov. 212(20) 7.0(0.7) 1.0(0.0) 0.0(0.0) 82.3(82.1) 1.0(0.0) 59 (0.2)
Fit. 0.1(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.21(0.2) 0.0(0.0) 0.58(0.1)
Hard DIV 293(25) 987(16) 66(06) 840(7.1) 152(21) 20(00) 41(0.1)

Nov. 212(2.0) 46.2(9.4) 1.0(0.0) 0.0(0.0) 160(55) 1.0(0.0 7.0(0.0)

so D Additional analysis

s08 We include a supporting plot to show the fitness difference when we consider all small mutations
s09 (M < 3) vs. large mutations (M > 3).

BiGGS Accepted Mutations

Im Large Mutations (M = 3)

1730 B Small Mutations (M < 3)

1500
1250

1000

Count

75

o

50

o

25

o

I' \
H“WM”HWW’IMMMMM;.m

0 e ealell ||!MH ‘
-1 0 1 3

Oracle Difference

Figure 7: Mutational trajectory analysis for large vs. small accepted mutations. Among mutations
that were accepted during the course of running BiGGS, large (M > 3) mutations resulted in more
substantial fitness increases (i.e. > 1) than small (M < 3) mutations.

18

	Introduction
	Method
	Problem formulation
	BiG: Bi-level Gibbs (with Gradients)
	GS: Graph-based smoothing
	IE: Iterative Extrapolation

	Benchmarks
	Related work
	Experiments
	Results
	Ablations
	Analysis

	Discussion
	Additional GFP analysis
	Additional methods
	Additional results
	Additional analysis

