
Appendix440

A Additional GFP analysis441

Design-bench difficulty. Prior works have used the GFP task introduced by design-bench (DB),442

a suite of model-based reinforcement learning tasks [37], which samples a starting set of 5,000443

sequences from the 50-60th percentile fitness range. The wild-type (WT) sequences have 534444

fluorescence measurements ranging from the 58th to the 100th percentile (Figure 4) which implies445

it may be in the training set depending on the random seed5 and allow strong performance by446

memorization. Even if there is no data leakage (due to the random seed), the 50-60th percentile447

fitness starting range includes sequences that require 1 mutation to reach the 99th percentile (see448

Figure 5). The task is overly simplified in this sense and does not provide accurate evaluation of449

different methods.450

Harder difficulty. The DB starting set is "easy" in the sense of only requiring a few mutations451

to sample the top sequences – BiGGS and AdaLead requires average novelty of 1.0 to sample the452

92nd percentile on average (Table 2). We propose the "medium" and "hard" difficulty which test a453

method’s ability to search large mutations and extrapolate far beyond the training set. Statistics of454

each difficulty are in Table 1 while a plot of their respective starting training sets is in Figure 5.455

New oracle. The DB transformer-based oracle [27] is unreliable in the upper fitness echelon of456

sequences Figure 6. The DB oracle also suspectible to false positives. We propose a improved oracle457

based on a CNN that alleviates both issues. The CNN architecture is described in Section 3.458

Figure 4: GFP wild-type multiplicity. The same wildtype sequence is measured a total of 534 times
in the Sarkisyan et al. [31] dataset with a wide range of fitness measurements from the 58th to 100
percentile. As a result, it is possible for the wild-type or other sequences with multiple measurements
to contaminate the training set when filtering only on fitness range.

5We confirmed this to be the case in the design-bench codebase.

13

Figure 5: GFP task difficulty comparisons. Easy difficulty is taken from design-bench. We take
all GFP sequences between the 50-60th percentile regardless of distance to sequences in the 99th
percentile of GFP sequences resulting in 5609 sequences the method has access to. Data leakage is
present due to the multiplicity of GFP measurements that allows the wild-type sequence and other
top sequences to be present in the 50-60th percentile. Medium difficulty filters the starting dataset to
have sequences in the 20-40th percentile and be 6 or more mutations away from anything in the top
99th percentile resulting in 2628 sequences in the starting dataset. Hard difficulty filters the starting
dataset to have sequences in the 10-30th percentile and be 7 or more mutations away from anything
in the top 99th percentile resulting in 1636 sequences.

Figure 6: Design-bench (DB) and our CNN oracle Comparison. DB oracle exhibits strange behaviour
of predictions being thresholded at min/max values. Yet the Spearman correlation (rho) is high and
closely matches the reported rho in [36]. Our simpler CNN oracle on the other hand is able to fit the
ground truth data more accurately (higher rho) and has less false positives. We perform experiments
with both oracles in our work.

B Additional methods459

In this section, we provide additional details of Graph-based Smoothing (GS) and algorithms.460

Algorithm 2 describes pseudo code for Bi-level Gibbs (BiG) sampling introduced in Section 2.2.461

Algorithm 3 describes pseudo code for GS described in Section 2.3 with algorithm 4 and algorithm 5462

as sub-routines used in GS.463

14

We now describe remaining details of GS. We use the same optimization algorithm from Lu et al.464

[17] to solve eq. (4) which is reproduced here. As a reminder, eq. (4) is465

S⇤ = argmin
Ŝ

kBŜk1 + �kŜ � Sk1.

Solving the above, a combination of L1-optimization problems, is notoriously difficult therefore we466

introduce an auxiliary variable F with same dimensions as S and instead solve the following,467

min
Ŝ�0,U

1

2
kŜ � Fk2F + �kBFk1 + �kŜ � Sk1 (6)

where k · kF is the Frobenius norm. The purpose of F is to disentangle Ŝ from being part of two468

L1-norm terms such that we can solve smaller sub-problems. The new term kŜ �Fk2F enforces F to469

be close to Ŝ . Equation (6) can be solved with two easier sub-problems.470

F
⇤ = argmin

F

1

2
kF � Ŝ⇤k2F + �kBFk1 (7)

Ŝ⇤ = argmin
Ŝ�0

1

2
kŜ � F

⇤k2F + �kŜ � Sk1 = SoftThreshold(F ⇤
,S, �) (8)

where Ŝ⇤ = S initially and � is a Lagrange multiplier. Equation (8) has a closed-form solution using471

the soft-threshold function (SoftThreshold) which is defined in eq. (9) of Lu et al. [17] (we omit it472

here for ease of exposition). Equation (7) requires iterative optimization due to the computational473

intractability of B. This is overcome by a dimensionality reduction,474

F = UV A, UV = [u1| . . . |u50]

where UV is a matrix whose columns are the 50 smallest eigenvectors of L and A = {aij} is the475

reconstruction coefficients. Lu et al. [17] let the number of projected eigenvectors be a hyperparameter476

but we found 50 to work well. Equation (7) can be reformulated as,477

F
⇤ = argmin

A

1

2
kUV A� Ŝ⇤k2F + �kBUV Ak1

= argmin
A

X

j

1

2
kUV A·j � Ŝ⇤

·jk2F + �kBUV A·jk1
| {z }

(⇤)

(9)

where Ŝ⇤
·j and A·j denotes the j-th column of Ŝ⇤ and A respectively. Lu et al. [17] proved solving478

eq. (9) is equivalent to solving eq. (8) under certain conditions but is a good approximation otherwise.479

Each (*) can be solved independently,480

(⇤) = argmin
A·j

1

2
kUV A·j � Ŝ⇤

·jk22 + �kBUV A·jk1

= argmin
A·j

1

2
kUV A·j � Ŝ⇤

·jk22 + �

X

i

⌃
1
2
ii|aij | (10)

See Lu et al. [17] for derivation. Recall ⌃ii is the ith eigenvalue. Equation (10) can be solved using481

off-the-shelf solvers. We can now solve eq. (7) and eq. (8) in iterative fashion. We set a number of482

rounds (1000 in our case) and alternate between solving eq. (8) and eq. (7). The full algorithm is483

provided as NoiseReduction in Algorithm 4 which follows Algorithm 1 of Lu et al. [17].484

15

Algorithm 2 BiG: Bi-level Gibbs
Require: Parent sequence: x
Require: Predictor weights: ✓
Require: Sampling temperature: ⌧
Require: Upper mutation limit: M
Require: Number of sequences to sample: Nprop

1: X 0 ;
2: for m = 1, . . . ,M do . Enumerate number of mutations to sample.
3: for i = 1, . . . ,m do . Sample each mutation.
4: ` ⇠ q(·|x) . Sample index eq. (2)
5: (x)0` ⇠ q(·|x, `) . Sample token eq. (2)
6: end for
7: if accept using eq. (3) then
8: X 0 X 0 [{x0}
9: end if

10: end for
11: Return X 0

. Return accepted sequences.

Algorithm 3 GS: Graph-based Smoothing
Require: Sequences: X
Require: Predictor weights: ✓0
Require: Number of perturbations: Nperturb
Require: Number of neighbors: Nneigh
Require: Sparsity weight: �

1: V Perturb(X , Nperturb) . Construct graph nodes algorithm 5.
2: W {!ij = 1/dist(vi, vj) : vi, vj 2 V } . Construct similarity matrix.
3: E NearestNeighbor(X ;W,Nneigh) . Nneigh nearest neighbor graph edges based on W .
4: S {f✓0(v) 8v 2 V } . Node attributes
5: S⇤ NoiseReduction(V,E,S, �) . Solves eq. (4) with algorithm 4
6: D (V,S⇤)
7: ✓ argmax✓̃ E(x,y)⇠D

⇥
(y � f✓̃(x))

2
⇤

. Train on smoothed dataset.
8: Return ✓

Algorithm 4 NoiseReduction: follows Algorithm 1 in Lu et al. [17]
Require: Nodes: V
Require: Edges: E
Require: Noisy labels: S
Require: Sparsity weight: �

1: L Compute normalized Laplacian on graph G = (V,E).
2: VE Find 50 smallest eigenvectors* of L.
3: Ŝ S
4: for i = 1 . . . 1000 optimization rounds do
5: A

⇤ Solution in eq. (9) using off-the-shelf solvers.
6: F

⇤ UV A
⇤

7: Ŝ⇤ SoftThreshold(F ⇤
,S, �)

8: end for
9: Return Ŝ⇤

16

Algorithm 5 Perturb
Require: Sequences: X
Require: Number of perturbations: Nperturb

1: V X
2: while |V | < (|X | ·Nperturb) do
3: x ⇠ Uniform(V)
4: x

0 Random point mutation to x

5: V V [{x0}
6: end while
7: Return V

C Additional results485

AAV evaluation. Our experiments use GFP (Section 3) due to its long sequence length (237 residues)486

resulting in a large search space and wide coverage of fitness measurements (56,806 data points).487

The proposed medium and hard difficulties were possible because of GFP’s measurements up to 15488

mutations. We sought to experiment on a different fitness landscape to see if (1) mutational gap is a489

valid criterion for task difficulty and (2) our method isn’t over-optimized for fluorescence fitness in490

GFP.491

A second commonly studied protein fitness dataset is the Adeno-Associated Virus (AAV) [7]. The492

fitness of the AAV capsid protein is its ability to package a DNA payload, i.e. gene delivery. This493

dataset encompasses 201,426 subsequences of the AAV2 wild-type known to be immportant for gene494

delivery based on the structure. Of these, we consider 44,156 subsequences of length 28 and consist495

solely of substitutions6. The benchmark difficulties on AAV are defined the same way in the GFP496

task. The same oracle architecture is used to train on all 44,156 sequences while BiGGS uses the497

same hyperparameters as in GFP.498

Results from evaluating BiGGS and baselines on AAV is presented in Table 4. BiGGS outperforms499

all baselines on this dataset as well, demonstrating its robustness across another protein fitness500

landscapes. The improvement using BiGGS over baselines is lower for AAV compared to GFP. This501

could be explained due to the smaller search space (28 residues) than GFP (237 residues) suggesting502

AAV is easier. We observe a decrease in fitness performance across all methods to suggest mutational503

gap is a valid criterion for task difficulty.504

Table 4: AAV optimization results (our oracle).
AAV Task Method

Difficulty Metric GFN-AL CbAS Adalead BO-qei CoMs PEX BiGGS

Easy
Fit. 0.02 (0.0) 0.53 (0.0) 0.53 (0.0) 0.42 (0.2) 0.31 (0.1) 0.47 (0.0) 0.57 (0.0)
Div. 12.5 (0.8) 6.7 (0.6) 5.8 (0.1) 10.1 (7.2) 4.3 (1.71) 2.1 (0.1) 7.1 (0.2)
Nov. 20.9 (1.2) 5.6 (0.6) 5.0 (0.0) 8.4 (7.6) 5.7 (0.6) 1.0 (0.0) 2.1 (0.2)

Medium
Fit. 0.01 (0.0) 0.35 (0.0) 0.42 (0.0) 0.30 (0.1) 0.32 (0.1) 0.36 (0.0) 0.53 (0.0)
Div. 15.9 (1.1) 13.7 (0.4) 7.7 (1.4) 17.3 (3.6) 10.2 (3.7) 2.2 (0.2) 9.0 (0.1)
Nov. 21.8 (0.7) 7.8 (0.5) 1.0 (0.0) 4.2 (9.4) 9.0 (2.0) 1.0 (0.0) 7.8 (0.5)

Hard
Fit. 0.00 (0.0) 0.31 (0.0) 0.00 (0.0) 0.28 (0.0) 0.31 (0.2) 0.27 (0.0) 0.45 (0.0)
Div. 18.5 (1.2) 15.1 (0.7) 24.7 (0.1) 20.8 (1.6) 9.2 (4.2) 2.0 (0.0) 12.1 (0.4)
Nov. 22.2 (1.0) 8.4 (0.5) 22.0 (0.0) 0.0 (0.0) 8.2 (2.6) 1.0 (0.0) 4.0 (0.0)

Results with DB oracle. Table 5 shows results of using the design-bench (DB) oracle compared505

against our CNN oracle. We find BiGGS is still state-of-the-art on all fitness metrics.506

6AAV contains sequences of varying length with insertions and deletions. We excluded these since our
method and the majority of our baselines cannot handle insertion and deletions.

17

Table 5: GFP optimization results with design-bench (DB) oracle. Note that diversity, novelty and
unique are the same regardless of oracle.

GFP Task Method

Difficulty Metric GFN-AL CbAS Adalead BO-qei CoMs PEX BiGGS

Easy

Fit. 0.1 (0.0) 0.84 (0.0) 0.86 (0.0) 0.84 (0.0) 0.54 (0.3) 0.81 (0.0) 0.86 (0.0)
Div. 27.9 (2.0) 4.5 (0.4) 2.1 (0.2) 5.9 (0.0) 64.6 (86) 2.2 (0.1) 2.2 (0.0)
Nov. 215 (2.9) 1.4 (0.5) 1.0 (0.0) 0.0 (0.0) 41.1 (43) 1.0 (0.0) 1.0 (0.0)

Med.

Fit. 0.1 (0.0) 0.0 (0.0) 0.75 (0.0) 0.0 (0.0) 0.45 (0.3) 0.74 (0.0) 0.86 (0.0)
Div. 30.9 (2.7) 9.2 (1.5) 9.3 (0.1) 20.1 (7.1) 96.8 (92.9) 2.0 (0.0) 4.0 (0.2)
Nov. 212 (2.0) 7.0 (0.7) 1.0 (0.0) 0.0 (0.0) 82.3 (82.1) 1.0 (0.0) 5.9 (0.2)

Hard

Fit. 0.1 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.21 (0.2) 0.0 (0.0) 0.58 (0.1)
Div. 29.3 (2.5) 98.7 (16) 6.6 (0.6) 84.0 (7.1) 152 (21) 2.0 (0.0) 4.1 (0.1)
Nov. 212 (2.0) 46.2 (9.4) 1.0 (0.0) 0.0 (0.0) 160 (55) 1.0 (0.0 7.0 (0.0)

D Additional analysis507

We include a supporting plot to show the fitness difference when we consider all small mutations508

(M < 3) vs. large mutations (M � 3).509

Figure 7: Mutational trajectory analysis for large vs. small accepted mutations. Among mutations
that were accepted during the course of running BiGGS, large (M � 3) mutations resulted in more
substantial fitness increases (i.e. > 1) than small (M < 3) mutations.

18

	Introduction
	Method
	Problem formulation
	BiG: Bi-level Gibbs (with Gradients)
	GS: Graph-based smoothing
	IE: Iterative Extrapolation

	Benchmarks
	Related work
	Experiments
	Results
	Ablations
	Analysis

	Discussion
	Additional GFP analysis
	Additional methods
	Additional results
	Additional analysis

