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ABSTRACT
Recent advancements in large language model (LLM)-powered agents have shown
that collective intelligence can significantly outperform individual capabilities,
largely attributed to the meticulously designed inter-agent communication topolo-
gies. Though impressive in performance, existing multi-agent pipelines inher-
ently introduce substantial token overhead, as well as increased economic costs,
which pose challenges for their large-scale deployments. In response to this
challenge, we propose an economical, simple, and robust multi-agent commu-
nication framework, termed AgentPrune, which can seamlessly integrate into
mainstream multi-agent systems and prunes redundant or even malicious com-
munication messages. Technically, AgentPrune is the first to identify and for-
mally define the communication redundancy issue present in current LLM-based
multi-agent pipelines, and efficiently performs one-shot pruning on the spatial-
temporal message-passing graph, yielding a token-economic and high-performing
communication topology. Extensive experiments across six benchmarks demon-
strate that AgentPrune (I) achieves comparable results as state-of-the-art topolo-
gies at merely $5.6 cost compared to their $43.7, (II) integrates seamlessly into
existing multi-agent frameworks with 28.1% ∼ 72.8% ↓ token reduction, and
(III) successfully defend against two types of agent-based adversarial attacks
with 3.5% ∼ 10.8% ↑ performance boost. The source code is available at
https://github.com/yanweiyue/AgentPrune.

1 INTRODUCTION

Figure 1: The workflow of existing LLM-based (problem-
solving) multi-agent systems. The agent-agent communica-
tion occurs at both intra- and inter-dialogue stages.

Large Language Model (LLM) based
agents (Richards & et al., 2023; Naka-
jima, 2023; Reworkd, 2023) have demon-
strated strong performance across a di-
verse range of tasks, including reasoning
(Yao et al., 2023b), code generation (Shinn
et al., 2023), and even more complex ap-
plications like video gaming (Wang et al.,
2023) and autopilot systems (Jin et al.,
2023). Recent endeavors have shown that
combining implicitly or explicitly differ-
ent LLM-based agents into a team can out-
perform a single agent in handling com-
plex tasks (Du et al., 2023b; Liang et al.,
2023; Wang et al., 2023c; Jiang et al.,
2023; Shinn et al., 2023; Zheng et al.,
2023; Wu et al., 2023), which supports the
presence of human-esque collaborative in-
telligence in multi-agent systems (Zhang et al., 2023b). In practice, previous research has explored
approaches in which instances of LLMs, referred to as agents (Wang et al., 2024b; Xi et al., 2023;
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Figure 2: (Left) The accuracy comparison on MMLU (Hendrycks et al., 2021) among (1) a single
gpt-3.5-turbo, (2) three gpt-3.5-turbo as agents equipped with intra-dialogue communication struc-
tures like chain and tree (Qian et al., 2024), complete graph, and GPTSwarm (Zhuge et al., 2024), and (3) those
equipped with inter-dialogue communication structures like PHP (Zheng et al., 2023), LLM-Debate (Du et al.,
2023b), DyLAN (Liu et al., 2023b) and our AgentPrune. (Middle) The prompt token consumption comparison
on MMLU between different methods. (Right) The overview of our proposed AgentPrune.

Gao et al., 2023; Cheng et al., 2024; Ma et al., 2024), collaborate synergistically (e.g., through de-
bate or reflection) to complete tasks (Du et al., 2023a; Pezeshkpour et al., 2024; Guo et al., 2024;
Du et al., 2024; Han et al., 2024) via diverse communication topologies (e.g., chain (Wei et al.,
2022), tree (Yao et al., 2023a), complete graph (Qian et al., 2024), random graph (Qian et al., 2024),
optimizable graph (Zhuge et al., 2024), LLM-based network (Hao et al., 2023; Liu et al., 2023b)).
The exceptional performance of these cooperative agents significantly benefits from their interac-
tive communication and collaboration, specifically how agents transmit, exchange, and assimilate
information (Chan et al., 2023; Wang et al., 2023c; Liu et al., 2023b).

Taking a closer look into the communication mechanisms in existing multi-agent systems, they
typically involve two key types (as shown in Figure 1): ❶ Intra-dialogue communication: For a
given query/task, multiple agents interact–whether by cooperating (Du et al., 2023a; Wu et al., 2023;
Hong et al., 2024), teaching (Zhang et al., 2024d), or competing (Zhao et al., 2023; Fu et al., 2023)–
to produce a solution within a dialogue round; ❷ Inter-dialogue communication: In a specific
manner—whether by summarizing (Chan et al., 2023; Shen et al., 2024), replicating (Yin et al.,
2023; Du et al., 2023b), or filtering (Liu et al., 2023b)—the content of the current dialogue is passed
to the next round of interaction as a reference, initiating a new cycle of collaborative efforts.

To better illustrate the power of agent communication, Figure 2 (Left) compares the performance of
a single gpt-3.5-turbo with three agents equipped with different inter/intra-dialogue commu-
nication structures. The results demonstrate that even the simplest communication framework sig-
nificantly leads to a notable accuracy improvement, which vividly showcases the social intelligence
and collaborative capabilities of LLMs (Mei et al., 2024). However, the success of multi-agents
comes at the cost of significantly increased token consumption, imposing substantial economic bur-
dens (Wang et al., 2024a), which are detrimental to the widespread application of multi-agent sys-
tems, as deployment on edge devices does not accommodate excessively costly inference (Liu et al.,
2023a). A piece of empirical evidence is in Figure 2 (Middle), where various communication meth-
ods result in a 2 ∼ 11.8× increase in token consumption compared to the simple chain structure,
severely undermining the token economy of existing multi-agent systems.

In the light of this limitation, we for the first time identify a significant phenomenon of Communica-
tion Redundancy (Meyer et al., 2021) within existing LLM-based multi-agent (LLM-MA) communi-
cation topologies, where a substantial portion of message passing does not contribute meaningfully
to the collaborative intelligence. With this finding, we introduce an economical and versatile com-
munication pruning framework for LLM-powered multi-agent systems, dubbed AgentPrune, which
can be smoothly incorporated within various existing LLM-MA systems, offering comparable rea-
soning and planning performance as well as significantly lower token consumption. Practically,
AgentPrune treats the entire LLM-MA framework as a spatial-temporal communication graph, in
which each agent, along with its unique properties (e.g., profile (Li et al., 2023a), external API
tools (Zhuang et al., 2023), or knowledge base (Chen et al., 2024a)), is packaged as a node, commu-
nication between agents within the same dialogue forms spatial edges, and communication across
dialogues forms temporal edges. By training a low-rank-principle-guided graph mask, AgentPrune

2



Published as a conference paper at ICLR 2025

efficiently identifies the important graph connectivities (i.e., message passing through edges). This
comes with a one-shot pruning to derive a sparse yet informative communication graph (in Figure 2
(Right)), which is then fixed as the communication topology for subsequent token-economic and
efficient reasoning. Our contributions can be summarized as follows:

❶ System Discovery. We present a spatial-temporal graph paradigm to describe the communication
topology of contemporary LLM-MA frameworks, and further identify and define the Communi-
cation Redundancy issue in current systems, wherein a significant portion of spatial and temporal
edges, i.e., communication, does not contribute to collaborative intelligence.

❷ Pratical Solution. We propose AgentPrune, an economical, simple, and robust multi-agent com-
munication pruning pipeline. By leveraging a trainable communication graph mask, AgentPrune
identifies key message exchanges and prunes non-essential components in a one-shot manner, re-
sulting in a sparse, token-economical, and highly informative communication graph. Notably,
AgentPrune employs a low-rank principle to guide the graph mask training, successfully robus-
tifying LLM-MA systems against various agent-targeted adversarial attacks.

❸ Experimental Validation. Extensive experiments on six benchmarks show that AgentPrune is:
(1) high-performing, achieving comparable performance on MMLU at $5.6 cost, to that of state-
of-the-art communication topologies at $43.7; (2) token-economical, integrating seamlessly into
popular multi-agent frameworks including AutoGen and GPTSwarm, reducing their token cost by
28.1% ∼ 72.8% ↓; and (3) adversarially robust, successfully defending against two types of
agent adversarial attacks, with a 3.5% ∼ 10.8% ↑ performance improvement.

2 LLM-MA AS SPATIAL-TEMPORAL GRAPHS

Notations We describe the whole multi-agent system as a graph G = (V, E), with V =
{v1, v2, · · · , v|V|} being the node set and E being the edge set. Each node vi ∈ V represents an
agent, which can be further interpreted as follows:

vi = {Basei,Rolei,Statei,Pluginsi}, Pluginsi = {Fj ,Cj}Pj=1, (1)
where an agent vi consists of: (1) Basei, the language model instance used by vi; (2) Rolei, the
pre-defined role or responsibility of the agent; (3) Statei, the state of the agent, encapsulating
the accumulated knowledge and experience from previous interactions; (4) Pluginsi, a set of P
external plugins available to agent vi, where each plugin is defined by its functionalities Fj (e.g.,
web search, python compiler) and configurations Cj .
For the edges, we divide them into two subsets: intra-dialogue (spatial) edges ES ⊆ V(t)×V(t) and
inter-dialogue (temporal) edges ET ⊆ V(t−1) × V(t). For each spatial edge eSij = (Mij ,Oij), it
represents the information flow from agent vi to agent vj within the same utterance, composed of the
message content Mij , as well as the associated operation Oij (e.g., task assignments, requests). For
each temporal edge eTij , it denotes the message passing between two utterance rounds, i.e., whether
the output from agent vi in the (t − 1)-th round should be passed on to agent vj in the t-th round.
Further, we define the temporal/spatial (in-)neighbors for each agent as follows:

N T (vi) = {vj | (j, i) ∈ ET }, NS(vi) = {vj | (j, i) ∈ ES}. (2)

Multi-agent Communication We provide a graph-based description of the reasoning process in
task-oriented multi-agent systems. Given a query/task q, it is sequentially fed to each agent, which
produces its output. To maintain an orderly sequence of agent interactions, we utilize topological
ordering (Bondy et al., 1976) to ensure that each node is processed only after all its dependencies
have been addressed. This necessitates that the spatial communication graph GS = (V, ES) be
structured as a directed acyclic graph (DAG). Formally, for GS , the following condition holds:

∀(vi, vj), I(vi) < I(eij) < I(vj), (3)

where I(x) denotes the execution order of x. For each agent v(t)i at round t, it produces its rationale
or answers, uniformly denoted as Mi, as follows:

M
(t)
i ∼ Pθ

(
Mi | q, Role(t)

i , State(t)
i ,

temporal︷ ︸︸ ︷
∪vj∈NT (vi)

Mj ,

spatial︷ ︸︸ ︷
∪vj∈NS (vi)

Mji

)
, (4)

where agent vi responds based on the query q, its current role and state, temporal and spatial mes-
sages, and certain prompting instruction Pθ. Typically, after K rounds of dialogue, a summarizer
agent or an answer aggregation mechanism (e.g., voting) is employed to produce the final solution
a(K) for the given query q. We conclude the general pipeline in Algorithm 1.
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Algorithm 1: Execution pipeline of LLM-MA systems from spatial-temporal graph perspective
Input: Query q, Communication graph G = {GS ,GT }, Maximum number of iterations N

1 for iteration t← 1 to N do
2 if MeetEndCondition() then
3 break // Extra stopping criteria like agent consensus
4 end
5 for vi in TopologicalSort(V) do
6 mT ← {Mj | vj ∈ N T (vi)} // Messages from temporal in-neighbors
7 mS ← {Mij | vj ∈ NS(vi)} // Messages from spatial in-neighbors
8 M

(t)
i ∼ Pθ(Mi | q,Role(t)

i ,State(t)
i ,mT ,mS) // Generate rationale or answer

9 end
10 a(t) ← AggregateSolution(M(t)

1 ,M
(t)
2 , · · · ,M(t)

|V|) // Depending on the specific
system, possible implementations of AggregateSolution include (but are
not limited to) majority voting or using the output of a summarizer agent.

11 end
12 return a(t) as the final solution

Spatial Pruning Temporal Pruning

Figure 3: The performance of mesh graph and LLM-Debate
structure under different random pruning ratios on MMLU.

Problem Formulation In this section,
we explore and define the communication
redundancy issue within existing multi-
agent communication pipelines. Specifi-
cally, we examine two representative com-
munication topologies: (1) for spatial
communication, the fully-connected mesh
graph from MacNet (Qian et al., 2024),
which exemplifies a densely structured
intra-utterance communication, and (2)
for temporal communication, the LLM-
Debate (Du et al., 2023b), where at the
start of each dialogue round, an agent receives all responses from the previous round as input. Us-
ing four gpt-3.5-turbo as agents, we assess system performance on MMLU after randomly
pruning a certain proportion of connections. As illustrated in Figure 3, when randomly removing
10% ∼ 30% of the communication connectivity, the performance actually gains up to 2.83% im-
provement. This suggests that, in both spatial and temporal information flow, a substantial portion
of messages does not contribute to the task-solving process, which we formally define as follows:

Definition 1 (Communication Redundancy). For any LLM-based multi-agent communication graph
G = (V, ES ∪ ET ), the following condition holds:

∃ Gsub = (V, E ′ ∪ E ′′) ⊆ G, where E ′ ⊆ ES , E ′′ ⊆ ET , s. t. ϕ(Gsub) ≥ ϕ(G), (5)

where ϕ(·) represents a utility function that measures the solution quality achieved by the system.
The redundant components in the communication topology, denoted as (Est \ E ′) ∪ (Etp \ E ′′), are
referred to as the communication redundancy in LLM-MA systems.

We further outline the objective of this study as follows:

argmaxE′,E′′G \ Gsub, s.t. |ϕ(Gsub)− ϕ(G)| ≤ ϵ, (6)

where ϵ represents the allowable threshold for performance variation. Equation (6) aims to minimize
communication redundancy with performance guarantee.

3 METHODOLOGY

Figure 4 illustrates how our method is applied within an LLM-MA system. Specifically, given an
input query, AgentPrune first performs spatial pruning by eliminating redundant spatial messages
within a dialogue round, followed by temporal pruning to discard unnecessary dialogue history.
In the following sections, we will first explain how AgentPrune facilitates efficient multi-round
communication based on an optimizable spatial-temporal communication graph (▷ Sections 3.1
and 3.2), leverages one-shot pruning to derive a sparse interaction topology (▷ Section 3.3), and
finally, detail the optimization paradigm for the entire framework (▷ Section 3.4).
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  {Question} How many arithmetic sequences of consecutive odd integers sum to 240?

Thinker 1
✉️ Input: 

Thinker 2

Thinker 3 Summarizer

🙋 Output: The three thinkers'
answers are 5,8,8, respectively.
According to the analysis,  I think the
answer to the problem is 8.

N iterations

After applying AgentPrune

378 tokens

378 tokens
378 tokens 432 tokens 432 tokens

261 tokens

Thinker 1 Thinker 2

Thinker 3 Summarizer

{Answer 1} {Answer 2}

{Answer 3} {Conclusion}

378 tokens

402 token 402 token
299 token

🙋 Output: Answer 1 set n<24,
which is not reasonable. We write the
consecutive sum as: (n/2)(4n + 8) = 240
By factoring the quadratic equation, we
arrive at the solution n = 12. Hence,
Answer 2 is correct. The answer to the
problem should be 12.

{Utterance history} {Utterance history}

{Answer 1} {Answer 2} {Answer 3} {Conclusion} {Answer 3} {Conclusion}

✉️ Prompt for next round: Given the last round's utterance: {Utterance history}, please ...
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Intra-iteration token: (378×3+432×2+261) 

Inter-iteration token: (378+432+261+188)×4

Original Communication Topology

3,425 tokens7,295 tokens
Intra-iteration token: 378+402×2+299 

Inter-iteration token: (299+187)×4 

🙋 Output: Suppose the
arithmetic sequence has n consecutive
odd integers, starting with the first
term a. The terms of the sequence
are: a, a+2, ..., a+2(n-1) ... Thus, the
values of n that work are n
= 6,8,10,12,20. Therefore, the answer
to the question is 5.

🙋 Output: The two thinkers'
answers are 12,12, respectively. They
use different reason processes and
receive the same result. I think the
answer to the problem is 12.

{Answer 1} {Answer 2}

{Answer 3} {Conclusion}

{Question} ✉️ Input: 

{Question} {Answer 1}

✉️ Input:  {Question}

{Answer 1}

✉️ Input:  {Question}

{Answer 1}{Answer 2} {Answer 2}

{Answer 3}

🙋 Output: Based on previous
response, we factor 240 to explore
possible n:

240=2^4×3×5
...we argue that the valid
sequences occur for n=1,2,4,...,20,
because n should not be greater than 24.
The answer is 8.

🙋 Output: The terms of the
sequence are:

a, a+2, ..., a+2(n-1) ...
Thus, the values of n that work are n
= 6,8,10,12,20, because n should be
smaller than 24. Therefore, the
answer to the question is 5.

🙋 Output: I generally agree with
the second response. Following the
given paradigm, I will (1) set up the
sequence; (2) calculate the sum of the
sequence; (3) Solve for a; (4) Check
each valid n. ...
Therefore, the answer is 8.

✉️ Input:  {Question}

🙋 Output: We factor 240 to
explore possible n:

240=2^4×3×5
...After checking possible values, we
argue that the valid sequences occur for
n=1,2,4,...,40, because n should not be
greater than 24. The answer is 12.

✉️ Input: 

{Question} {Answer 1}

✉️ Input:  {Question}

{Answer 1} {Answer 2}

✉️ Input:  {Question}

{Answer 1}
{Answer 2}

{Answer 3}

Figure 4: The overview of our proposed AgentPrune.

3.1 SPATIAL-TEMPORAL GRAPH COMMUNICATION

Given an arbitrary LLM-MA system and its corresponding spatial-temporal communication graph
G, the task of AgentPrune is to discover its sparse yet equally high-performing counterpart Gsub.
The objective is essentially a graph sparsification problem (Spielman & Srivastava, 2008; Chen et al.,
2023b), whose goal is to identify the essential graph connections and discard the less critical ones.
To achieve this, following classical practices in graph sparsification (Chen et al., 2021b; Wang et al.,
2023a; Zhang et al., 2024a), we relax the original binary communication graph G by transforming
its edge elements from binary values to continuous variables, denoted as G̃. We have:

A(G) = {AS ,AT }, A(G̃) = A({G̃S , G̃T }) = {AS ⊙ SS ,AT ⊙ ST }, (7)

where A(G) obtains the adjacency matrix of input graph G, and AS ,AT ∈ {0, 1}|V|×|V| represent
the spatial and temporal adjacency matrices, respectively. Specifically, Ax[i, j] = 1 indicates that
eij ∈ Ex, and 0 otherwise. It is important to note that both AS and AT are predefined by the
LLM-MA system. SS ,ST ∈ R|V|×|V| are differentiable graph masks. As mentioned in Section 2,
we require the interaction topology to be a DAG to ensure that agent input/output (I/O) can be
processed sequentially. Therefore, we leverage a DAGSampling function to transform the original
G̃S into a DAG: ĜS ← DAGSampling(G̃S), whose procedure is described in Algorithm 2.

3.2 OPTIMIZING SPATIAL-TEMPORAL CONNECTIVITY

With ĜS and G̃T in hand, we aim to optimize them toward both high-performance and token ef-
ficiency. To this end, we introduce two optimization objectives for ĜS and G̃T : ❶ distribution
approximation, ensuring accurate estimation of their underlying probability distributions, and ❷
low-rank sparsity, which promotes a more efficient and sparse structure (Li et al., 2024). The first
objective ensures that the magnitudes of the graph masks correctly reflect the importance of different
communication channels, facilitating subsequent redundancy pruning, and the second ensures that
the learned connectivity remains sparse and robust. Formally, we define the following objective:

argmax
SS ,ST ∈S

distribution approximation︷ ︸︸ ︷
EĜS ,GT ∼G

[
ϕ
(
{ĜS , G̃T }

)]
−

low-rank sparsity︷ ︸︸ ︷∑
X∈{S,T }

rank(SX ), s. t.
∑

X∈{S,T }

||AX − SX ||F ≤ δ, (8)
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where S and G represent the viable parameter space, ϕ(·) serves as the utility evaluator for the input
multi-agent framework, rank(·) calculates the rank of matrix, and δ is the noise level. Next, we will
provide a detailed explanation of the implementation of these two optimization objectives.

Distribution Approximation The first term in Equation (8) encourages {SS ,ST } towards the
maximization of the system’s utility. However, since ϕ(·) often depends on external APIs (Li et al.,
2023b) or compilers (Chen et al., 2021a) for evaluation, it is generally non-differentiable. Therefore,
we employ policy gradient (Williams, 1992) to make Equation (8) tractable:

∇S EĜS ,G̃T ∼G

[
ϕ
(
{ĜS , G̃T }

)]
≈ 1

M

M∑
k=1

ϕ
(
{ĜSk , G̃Tk }

)
∇S log

(
pS({ĜSk , G̃Tk })

)
, (9)

pS

(
{ĜSk , G̃Tk }

)
=
(∏

1eij∈ESSS [i, j]
)
·
(∏

1eij∈ET ST [i, j]
)

(10)

where S = {SS ,ST }, {ĜS , G̃T }Mk=1 are independently sampled from {ĜS , G̃T }, pS({ĜSk , G̃Tk })
calculates the probability of the sampled structure, and 1(·) is an indicator function.

Low-rank Sparsity The second term in Equation (8) promotes the graph masks {SS ,ST } to be
low-rank, which not only filters out informative agent communications but also aids in removing
redundant, noisy, and even malicious messages, which has been demonstrated in recent studies,
showing that low-rank graphs are more robust to network attacks (Entezari et al., 2020; Ennadir
et al., 2024). We will empirically validate AgentPrune’s ability to enhance multi-agent robustness
in Section 4.4. However, directly optimizing the rank minimization is NP-hard, so we replace the
rank function with the nuclear norm as an alternative, reformulating this term as follows:

argmin
SS ,ST ∈S

∑
X∈{S,T }||S

X ||∗, s. t. ||AX − SX ||F ≤ δ, (11)

where ||S||∗ =
∑

i σi, and σi represents the i-th singular value of S. Guided by Equation (8), we
iteratively optimize the spatial-temporal connectivity in conjunction with the multi-agent conversa-
tion over K ′ rounds, where K ′ ≪ K.

3.3 ONE-SHOT PRUNING

We dynamically optimize {SS ,ST } for only K ′ iterations, rather than the full K iterations, because
prior work on Early-bird (EB) and Graph EB has demonstrated that limited training can also con-
struct high-quality benchmarks reflecting the topology distribution (Achille et al., 2018; You et al.,
2019; Zhang et al., 2024b), which also aligns with AgentPrune’s token-saving initiation. To elim-
inate redundancy in the current communication structure, we perform one-shot magnitude pruning
on the optimized graph masks S (either SS or ST ):

B = 1

(
A ̸= 0 ∧ TopK

(
S, |A| × (1− p%)

))
, (12)

where TopK(S, x%) return the largest x% elements in matrix S, and p% is the pruning ratio. By
applying the binary masks to the original topology, we obtain sparse, compact, and communication-
minimizing connectivity Gsub, where A(Gsub) = {AS⊙BS ,AT ⊙BT }. In the subsequent (K−K ′)
rounds, the entire framework’s message passing pipeline is strictly constrained by Gsub, and agents
are continuously optimized to refine the solution for query q.

3.4 APPLICATION AND ANALYSIS

Algorithm Pipeline As a plug-and-play module, AgentPrune can be harmoniously embedded in
mainstream multi-agent frameworks to facilitate token-efficient communication, provided that the
number of agents exceeds three and the communication structure is moderately organized (e.g., chain
or direct-output structures are too simple to be applicable). When combined with AgentPrune, mul-
tiple agents first undergo K ′ rounds of interactions alongside trainable graph masks, which are then
one-shot pruned to yield the sparse Gsub, leveraged for the subsequent (K − K ′) rounds of opti-
mization. We summarize all the notations used in Appendix B and the comprehensive algorithmic
workflow in Appendix C.
Multi-Query Training For complex tasks like repository-level code generation (Qian et al., 2023;
Liu et al., 2024), multi-turn dialogues are often inevitable. However, for simpler tasks that involve a
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Table 1: Performance comparison with three types of baselines, including single-agent execution, spatial com-
munication and temporal communication. The best results are highlighted in bold, and the runner-ups are
underlined. All methods, except for the single-agent category, utilize five gpt-4-based agents.

Method Spa. Tem. MMLU GSM8K MultiArith SVAMP AQuA HumanEval Avg.
Vanilla % % 82.14 85.40 93.15 87.18 70.34 71.68 81.65
CoT % % 82.65↑0.51 87.17↑1.77 94.79↑1.64 88.32↑1.14 73.91↑3.57 75.52↑3.84 83.73
ComplexCoT % % 83.78↑1.64 87.62↑2.22 95.86↑2.71 90.17↑2.99 77.58↑7.24 74.94↑3.26 84.99
SC (CoT) % % 82.66↑0.52 87.93↑2.53 96.88↑3.73 88.69↑1.51 75.08↑4.74 77.30↑5.62 84.67
SC (ComplexCoT) % % 83.65↑1.51 86.14↓0.74 96.94↑3.79 89.72↑2.54 77.69↑7.35 77.94↑6.26 85.35
Chain ! % 82.35↑0.21 85.57↑0.17 94.38↑1.23 83.41↓3.77 70.94↑0.60 80.88↑9.20 82.92
Star ! % 80.79↓1.35 85.55↑0.15 93.79↓0.64 88.09↑0.91 68.57↓1.77 75.65↓3.97 82.07
Tree ! % 81.89↓0.25 84.56↓0.84 94.60↑1.45 89.25↑2.07 72.84↑2.50 77.38↑5.70 83.42
Complete Graph ! % 83.15↑1.01 86.49↑1.09 97.20↑4.05 89.48↑2.30 79.21↑8.87 83.75↑12.07 86.55
Layered Graph ! % 78.41↓3.73 85.34↓0.06 95.04↑1.89 88.61↑1.43 73.18↑2.84 80.38↑8.70 83.49
Random Graph ! % 83.76↑1.62 86.14↑0.74 95.46↑2.31 85.41↓1.77 74.07↑3.73 82.66↑10.98 84.58
LLM-Blender ! % 81.22↓0.92 89.17↑3.77 94.27↑1.12 88.77↑1.59 77.05↑6.71 - 86.10
GPTSwarm ! % 83.98↑1.84 89.74↑4.34 97.84↑4.69 86.42↓0.76 78.16↑7.82 88.49↑16.81 86.77
LLM-Debate % ! 83.69↑1.55 90.23↑4.83 96.27↑3.12 90.56↑3.38 77.52↑7.18 83.79↑12.11 87.01
PHP % ! 83.45↑1.31 92.45↑7.05 96.41↑3.26 90.62↑3.44 76.25↑5.91 82.96↑11.28 87.02
DyLAN % ! 80.16↓1.98 88.16↑2.76 94.27↑1.12 87.40↑0.22 74.16↑3.82 89.70↑18.02 84.48
AgentPrune-C ! ! 84.72↑2.58 95.62↑10.22 97.25↑4.10 91.85↑4.67 79.47↑9.13 89.38↑15.70 89.72
AgentPrune-L ! ! 83.50↑1.36 93.78↑8.38 96.39↑3.24 89.58↑2.40 78.44↑8.10 88.61↑16.93 88.38
AgentPrune-R ! ! 83.94↑1.80 95.83↑10.43 96.30↑3.15 91.68↑4.50 78.60↑8.26 90.30↑18.62 89.44

large number of queries, such as multiple choice answering (Agashe et al., 2023; Qian et al., 2024),
typically only one or two dialogue rounds are needed, according to previous practices (Yin et al.,
2023). Under such circumstances, optimizing the connectivity for each query independently can be
unnecessarily costly. Therefore, we give a multi-query training paradigm for AgentPrune, which
optimizes and prunes the spatial-temporal topology using merely Q′(Q′ ≪ Q) queries, given a
dataset composed of Q queries. See details in Appendix D.
Cost Analysis In this section, we quantify the difference in token consumption between
AgentPrune and the vanilla pipeline. Given a communication graph G and K dialogue rounds, as-
suming that the average token count per spatial/temporal/query message is cS , cT , cq , respectively,
then the total token consumption of the vanilla system is CG = K

[
cS |ES |+ cT |ET |+ Cq|V|

]
. The

token consumption after applying AgentPrune is divided into two stages. The first stage involves
MK ′ [cS |ES |+ cT |ET |+ Cq|V|

]
, while in the second stage, after the topology is fixed, the con-

sumption becomes (K −K ′)
[
(1− p%) ·

(
cS |ES |+ cT |ET |

)
+ Cq|V|

]
. Therefore, the total token

savings ∆ achieved by AgentPrune can be expressed as:

∆ =
(
(1 + p%)K − (M + p%)K ′

)(
cS |ES |+ cT |ET |

)
+(1−M)K ′Cq|V|. (13)

We present the cost analysis of AgentPrune in multi-query training in Appendix E. We will empir-
ically evaluate the substantial token savings gained by AgentPrune in Section 4.2.

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions: (RQ1)
How does AgentPrune perform with respect to task completion and token efficiency? (RQ2) Can
AgentPrune reduce the economical cost of existing multi-agent systems without compromising
performance? (RQ3) Is AgentPrune effective in defending against adversarial attacks on agents?
(RQ4) How sensitive is AgentPrune to its key components or parameters?

4.1 EXPERIMENTAL SETUP

Tasks and Benchmarks In our experiments, we test the performance of AgentPrune on three
types of reasoning tasks and the corresponding logically challenging benchmarks: (1) General
Reasoning: We opt for MMLU (Hendrycks et al., 2021) dataset; (2) Mathematical Reasoning: We
select GSM8K (Cobbe et al., 2021), MultiArith (Roy & Roth, 2016), SVAMP (Patel et al., 2021)
and AQuA (Ling et al., 2017) to verify the mathematical reasoning capacity; (3) Code Generation:
We use the HumanEval (Chen et al., 2021a) to test the function-level code generation ability.
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Figure 5: Visualization of performance and prompt token consumption. This scatter plot illustrates the per-
formance metrics and prompt token consumption of different multi-agent communication topologies across
MMLU, HumanEval, and GSM8K. The diameter of each point is proportional to its y-axis value.

Baselines We compare AgentPrune with three series of multi-agent communication paradigms,
namely: (1) Single agent execution methods, including Chain-of-Thought prompting (CoT; Wei
et al. (2022)), (2) Complexity-based prompting (ComplexCoT; Fu et al. (2022)), and (3) Self-
Consistency (SC; Wang et al. (2023b)); (2) Spatial communication methods, including chain,
tree, star, complete graph, layered graph and random graph1 from MacNet (Qian et al., 2024), LLM-
Blender (Jiang et al., 2023), and GPTSwarm (Zhuge et al., 2024); (3) Temporal communication
methods, including PHP (Zheng et al., 2023), LLM-Debate (Du et al., 2023b), DyLAN (Liu et al.,
2023b). Detailed introductions and implementations of the baselines are in Appendix G.1.
Implementation Details We accessed the GPT models via the OpenAI API, and mainly tested
on gpt-3.5-turbo-0301 (gpt-3.5) and gpt-4-1106-preview (gpt-4). We set the
temperature at 1 during the generation. We set the dialogue round K = 2 for mathematical and
general reasoning tasks, and K = 4 for code generation tasks. For multi-query settings, we vary
Q′ ∈ {5, 10, 20} and fix M = 10. We generate different agent profiles using gpt-4. The pruning
ratio is chosen among {50%, 30%}. More experimental details are in Appendix G.2.

4.2 PERFORMANCE & COST COMPARISON (RQ1)

Table 2: Performance on the HumanEval
Benckmark with more baselines. The best and
runner-up results are bolded and underlined, re-
spectively.

Method Pass@1 ∆

Vanilla 71.68 -
AutoGen [2023] 85.41 ↑11.97
Reflexion [2023] 91.40 ↑19.72
CodeT+Parsel [2023a] 85.10 ↑13.42
MetaGPT [2023] 85.90 ↑14.22
ANPL [2024] 86.60 ↑14.92
AgentPrune-C 89.38 ↑17.70
AgentPrune-R 90.30 ↑18.62

To evaluate whether AgentPrune achieves a dual
benefit of token savings and task completion, we
integrate it with three predefined spatial commu-
nication topologies: the complete graph, layered
graph, and random graph, denoted as AgentPrune-
C, AgentPrune-L, and AgentPrune-R, respec-
tively. For the temporal communication topology,
we consistently employ the fully connected LLM-
Debate-style structure. Tables 1 and 2 presents
a performance comparison of various communica-
tion paradigms within five gpt-4-based multi-agent
systems, and Figures 5 and 17 to 19 visualizes the
performance and token cost of different methods.
Our observations (Obs.) are as follows: Obs.❶ Not
all multi-agent topologies consistently deliver collective intelligence. As illustrated in Table 1,
certain topologies, such as star/tree structures, fail to consistently improve performance for multi-
agent systems, even resulting in performance drops of 0.17% ∼ 3.97%. In contrast, single-agent
prompting methods like CoT or ComplexCoT demonstrate much more stable and significant im-
provements. Obs.❷ The high performance of existing multi-agent systems comes at a substan-
tial economical cost. From Table 1, we observe that the top-performing baselines, GPTSwarm and
DyLAN, achieve pass@1 improvements of 16.81% and 18.02% on HumanEval, respectively; how-
ever, this is accompanied by extremely high economic costs. As shown in Figure 5, the prompt token
consumption of GPTSwarm and DyLAN is 2.4 ∼ 5.3× that of the random graph structure. Obs.❸
AgentPrune achieves a double win in economic savings and utility. Among the three variants,
AgentPrune-R delivers consistently impressive performance, achieving 90.3% on HumanEval and
95.8% on GSM8K. Importantly, this performance does not come at a high token cost: on both Hu-
manEval and GSM8K, the token consumption of AgentPrune is less than 40% that of DyLAN.
Overall, AgentPrune excels in both task completion and token efficiency.

1Detailed explanations of these topologies are placed in Appendix F.
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Table 3: Performance and cost comparison before/after combining AgentPrune. We evaluated the per-
formance and economical cost of AgentPrune in conjunction with two classic multi-agent systems, under a
five gpt-4-based setting. “# Prompt tokens” refers to the total number of tokens input, while “# Completion
tokens” accounts for the total number of tokens output by the API.

Dataset Method Performance # Prompt Tokens # Completion Tokens Cost (USD)

MMLU AutoGen 82.13 486, 034 89, 224 $7.537
+AgentPrune 82.78(↑ 0.65) 349, 583(71.9%) 86, 582 $6.093(80.8%)

AutoGen 85.41 492, 273 130, 196 $8.828HumanEval
+AgentPrune 86.65(↑ 1.24) 315, 105(64.0%) 139, 714 $7.342(83.1%)

AutoGen 90.06 4, 327, 740 998, 042 $73.21GSM8K
+AgentPrune 92.85(↑ 2.79) 3, 791, 251(59.9%) 1, 156, 884 $59.60(81.4%)

GPTSwarm 83.98 3, 055, 230 569, 124 $47.60MMLU
+AgentPrune 83.05(↓ 0.93) 990, 312(32.4%) 439, 551 $23.05(48.4%)

GPTSwarm 88.49 2, 736, 136 1, 004, 616 $57.49HumanEval
+AgentPrune 88.96(↑ 0.47) 745, 617(27.2%) 745, 926 $29.80(51.8%)

GPTSwarm 89.74 14, 005, 945 3, 156, 916 $234.76GSM8K
+AgentPrune 90.58(↑ 0.84) 3, 526, 035(39.4%) 730, 552 $57.17(24.3%)

Figure 6: Performance under adversarial attack. We compare the accuracy (%) of various multi-agent
frameworks before and after prompt attacks on MMLU. “w/ AP” indicates the integration with AgentPrune.

4.3 PLUG-IN INTO EXISTING FRAMEWORKS (RQ2)

As a plug-in, AgentPrune can be seamlessly combined with mainstream multi-agent pipelines, ef-
fectively reducing the economic costs associated with LLM token throughput while maintaining the
original performance levels. To validate our argument, we combined AgentPrune with two repre-
sentative LLM-MA frameworks, AutoGen and GPTSwarm. With the results presented in Table 3
and Table 5, we offer the following two key observations: Obs.❹ Scaling multi-agent collabora-
tion is costly. Comparing Table 3 and Table 5, we observe that for the GPTSwarm on the GSM8K
dataset, optimizing a three-agent system incurs a cost of $97.23, while the expense for a five-agent
system skyrockets to $234.76, with the total token count reaching 1.7e + 7. AutoGen, on the other
hand, has relatively lower costs because it does not involve the iterative optimization of the commu-
nication topology as extensively as GPTSwarm (Zhuge et al., 2024). Nevertheless, it still requires
$73.21 on the GSM8K benchmark, which comprises up to 8.5K data entries. Obs.❺ AgentPrune is
an economically friendly assistant. When applied to HumanEval+AutoGen, AgentPrune achieves
a 36% reduction in prompt tokens and saves $1.486. In tasks with larger datasets, the economic sav-
ings become even more pronounced: on GSM8K+GPTSwarm, AgentPrune reduces 60.6% of the
prompt token consumptions and saves a cost of up to $177.58, with even a performance increase of
0.84%. Overall, AgentPrune serves as a token-efficient plug-in, effectively fostering the develop-
ment of larger and more cost-effective multi-agent systems.

4.4 ROBUSTNESS VERIFICATION (RQ3)

AgentPrune can not only eliminate unnecessary communications but also remove malicious mes-
sages. To validate this, we design two types of adversarial attacks for the multi-agent frameworks:
the agent prompt attack and agent replacement attack. The former attacks the role prompts
of the agents, while the latter attacks the LLM’s generation process, with detailed implementation
elaborated in Appendix G.4. We observe that: Obs.❻ Existing LLM-MA frameworks often lack
adversarial robustness. Despite variations in performance, most frameworks experience significant
declines when subjected to both types of attacks. As shown in Figures 6 and 20, the chain-like struc-
ture suffers a performance drop of up to 20.8% due to its oversimplistic topology. AutoGen and Dy-
LAN similarly experience accuracy declines ranging from 3.2% to 6.2%. Obs.❼ AgentPrune sig-
nificantly enhances multi-agent robustness. Figure 6 demonstrates that combining AgentPrune
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with a complete graph not only improves performance (83.1%→ 84.7%), but also increases robust-
ness under agent prompt attacks (78.4%→ 83.9%). Additionally, AgentPrune successfully boosts
the robustness of DyLAN and AutoGen by up to 6.3%. The impact of AgentPrune on GPTSwarm
is relatively marginal, due to its inherent defenses against adversarial agents. Overall, AgentPrune
serves as an easy-to-use enhancer for multi-agent robustness.

4.5 EXPERIMENTAL ANALYSIS

Ablation Study We ablate agent profiling and low-rank regularization in AgentPrune, with de-
tails presented in Table 7 and Appendix H.4.1. Our key finding is that (1) the utility of agent profiling
varies across different datasets, demonstrating a more pronounced effect on general reasoning and
code generation tasks, while being relatively less significant in math reasoning; (2) low-rank sparsity
consistently facilitates the optimization of the communication topology.
Sensitivity Analysis and Case Study We present the parameter sensitivity analysis concerning
three hyper-parameters, |V|, Q′ and p% in Appendix H.4.2, and provide extensive visualizations on
AgentPrune’s pruning process and optimized communication structure in Appendix I.

5 RELATED WORK

LLM-agent Collaboration Collaboration between multiple LLM-based agents has emerged as a
promising approach to enhance the capabilities of individual LLMs (Du et al., 2023b; Liang et al.,
2023; Wang et al., 2023c; Zhang et al., 2024c; Niu et al., 2025). As stated in Section 1, current
multi-agent communication methods can be categorized into two types: ❶ Intra-dialogue (spatial)
communication focuses on how different agents exchange messages within a single dialogue round.
Common structures include (1) Direct output, where functioning agents do not communicate with
each other, adopted by systems like LATM (Zhang et al., 2023a), LLM-Debate (Du et al., 2023b); (2)
Chain, employed by ChatDev (Qian et al., 2023), MetaGPT (Hong et al., 2023) and L2MAC (Holt
et al., 2024); (3) Tree, where an administrative agent (usually referred to as commander, manager,
etc.) controls subordinate agents, adopted by AutoGen (Wu et al., 2023), SecurityBot (Yan et al.,
2024), and MiniGrid (Zhou et al., 2023); and (4) Graph, employed by LLM-Blender (Jiang et al.,
2023), ChatEval (Chan et al., 2023), MacNet (Qian et al., 2024) and GPTSwarm (Zhuge et al., 2024);
❷ Inter-dialogue (temporal) communication focuses on how information is passed between dif-
ferent rounds of utterances. Common topologies include (1) Full transmission, where every agent
receives the utterances of all agents from the previous round, as used by LLM-Debate (Du et al.,
2023b); (2) Partial transmission, where some responses are filtered through scoring or rating mech-
anisms, adopted by PHP (Zheng et al., 2023) and DyLAN (Liu et al., 2023b); (3) Summarization,
where dialogue history is compressed and summarized for the next round of communication, as
seen in Reflexion (Shinn et al., 2023), ICL-AIF (Fu et al., 2023), AgentVerse (Chen et al., 2023a),
CoMM (Chen et al., 2024b), Corex (Sun et al., 2023), and MAD (Liang et al., 2023).
Agents as Graphs Learning to facilitate communication via learning graph connectivity is a long-
standing and viable approach to enhance multi-agent cooperation (Pesce & Montana, 2023; Hu
et al., 2024). In the pre-LLM era, numerous efforts explored optimal communication graph struc-
tures for reinforcement learning-based multi-agents with graph diffusion (Pesce & Montana, 2023),
weighted GNN (Liu et al., 2022), or transformers (Hu et al., 2024). In the emerging wave of LLM-
powered agents, attempts that leverage graphs for modeling agent-agent interaction also exist: Chat-
Eval (Chan et al., 2023) and AutoGen (Wu et al., 2023) implicitly adopt graph structures to de-
scribe ”simultaneous talk”, and STOP (Zelikman et al., 2023b) and DSPy (Khattab et al., 2023)
optimize both the prompts and the inference structure together. MacNet (Qian et al., 2024) and
GPTSwarm (Zhuge et al., 2024) model agent communication via directed acyclic graphs (DAG).
However, none of these approaches simultaneously optimize both intra- and inter-dialogue commu-
nication structures, and they often result in even increased token consumption.

6 CONCLUSION

This paper makes the first attempt towards a high-performance and token-efficient LLM-powered
multi-agent system. We propose an economical, simple, and robust multi-agent communication
pipeline, termed AgentPrune, which can be harmoniously embedded into mainstream multi-agent
frameworks while effectively pruning the communication redundancy that we have identified and
defined. AgentPrune achieves performance comparable to, or even superior to, the original systems
with significantly smaller token throughput and economic costs. We believe that AgentPrune can
facilitate the advancement toward larger-scale collective intelligence.
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A DAG SAMPLING FUNCTION

Algorithm 2: Sample DAG from spatial communication graph

Input: Spatial communication graph GS = {V, ES}
Output: A directed acyclic graph ĜS
Ĝ ← GS // Create a copy of GS

while not is acyclic (Ĝ) do
/* Use DFS to locate cycle */
cycle← find cycle (Ĝ)
e← random choice (cycle) // Randomly select an edge from the cycle
Ĝ ← Ĝ.remove edge (e) // Remove the selected edge from G′

return ĜS ← Ĝ

B NOTATIONS

We conclude the commonly used notations in Table 4 for reference.
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Table 4: The notations that are commonly used throughout the manuscript.

Notation Definition
G = (V, E) = {GS ,GT } the spatial-temporal communication graph
V = {v1, v2, · · · , v|V|} the set of nodes (agents)
E = ES ∪ ET the overall edge set
ES ⊆ V(t) × V(t) the spatial edge set
ET ⊆ V(t−1) × V(t) the temporal edge set

Basei the LLM base utilized by agent vi
Rolei the predefined responsibilities or roles of agent vi
Statei the state of agent vi

Pluginsi = {Fj ,Cj}Pj=1 the plugins available to agent vi
eSij = (Mij ,Oij) the spatial edge from vi to vj

eTij the temporal edge from vi to vj
N T (vi) = {vj | (j, i) ∈ ET } the temporal (in-)neighbors of vi
NS(vi) = {vj | (j, i) ∈ ES} the spatial (in-)neighbors of vi

M
(t)
i the rationale or answers provided by vi at the t-th epoch

Gsub = (V, E ′ ∪ E ′′) the sparsified communication topology
SS ,ST ∈ R|V|×|V| the spatial and temporal graph masks
AS ∈ {0, 1}|V|×|V| the predefined spatial communication topology
AT ∈ {0, 1}|V|×|V| the predefined temporal communication topology

G̃S the parameterized spatial graph
ĜS the parameterized spatial graph after DAG sampling
G̃T the parameterized temporal graph
ϕ(·) the utility evaluation function

BS ∈ {0, 1}|V|×|V| the obtained binary spatial mask
BT ∈ {0, 1}|V|×|V| the obtained binary temporal mask

K the total number of dialogue rounds
K′ the dialogue round after which pruning takes place
Q the total number of queries
Q′ the number of queries after which pruning takes place

C ALGORITHM WORKFLOW

We conclude the overall algorithm workflow of AgentPrune in algorithm 3.

D MULTI-QUERY TRAINING OF AgentPrune

For complex tasks such as repository-level code generation (Qian et al., 2023), multi-turn dialogues
(K > 5) are often essential. In such cases, utilizing K ′ ∈ {1, 2} rounds to optimize the topology
and subsequently continue the dialogue for K − K ′ rounds is reasonable. However, for simpler
tasks that involve numerous queries, such as multiple-choice answering (Agashe et al., 2023) or
basic mathematical problems (Cobbe et al., 2021), previous studies (Yin et al., 2023; Qian et al.,
2024) suggest that typically only 1 to 2 dialogue rounds are needed. In this context, prior dialogue-
level optimization is no longer applicable. To better adapt AgentPrune to such circumstances, we
propose a query-level optimization paradigm for AgentPrune.

Given a benchmark consisting of Q queries, any LLM-MA framework processes these Q queries se-
quentially to provide solutions one by one. We utilize the initial Q′(Q′ << Q) queries as a ”training
phase,” collaboratively optimizing the spatio-temporal communication topology while leveraging
multiple agents for reasoning and evaluation. Following this, we perform one-shot pruning as de-
scribed in Equation (12). The fixed topology Gsub is then employed for the reasoning and evaluation
of the remaining (Q − Q′) queries. We also refer to this approach as query-level optimization, in
contrast to the dialogue-level optimization discussed in the main text. The distinction between the
two lies in their focus: the latter concentrates on resolving a single query by utilizing several initial
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Algorithm 3: Execution pipeline of LLM-MA systems combined with AgentPrune.

Input: Query q, Communication graph G = {GS ,GT }, Maximum rounds of iterations K,
Rounds for optimization K ′, Initial masks SS ,ST

1 A({G̃S , G̃T })← {AS ⊙ SS ,AT ⊙ ST }
/* Optimizing spatial-temporal communication topology */

2 for iteration t← 1 to K ′ do
3 ĜS = (V, ES ∪ ET )← DAGSampling(G̃S)
4 for vi in TopologicalSort(V) do
5 Obtain temporal (in-)neighbors N T (vi)← {vj | (j, i) ∈ ET }
6 Obtain spatial (in-)neighbors NS(vi)← {vj | (j, i) ∈ ES}
7 mT ← {Mj | vj ∈ N T (vi)},mS ← {Mij | vj ∈ NS(vi)}
8 M

(t)
i ∼ Pθ(Mi | q,Role(t)

i ,State(t)
i ,mT ,mS)

9 end
10 a(t) ← AggregateSolution(M(t)

1 ,M
(t)
2 , · · · ,M(t)

|V|)

11 Update SS ,ST according to Equation (8)
12 end

/* One-shot pruning spatial-temporal communication topology */
13 BS = I(AS ̸= 0 ∧ TopK(SS , |AS | × (1− p%)))

14 BT = I(AT ̸= 0 ∧ TopK(ST , |AT | × (1− p%)))

15 Obtain Gsub, where A(Gsub) = {AS ⊙BS ,AT ⊙BT }
/* Fixing the topology for subsequent iterations */

16 for iteration t← K ′ to K do
17 Use Gsub for multi-agent dialogues as in Algorithm 1
18 end
19 return a(t) as the final solution

utterances to derive the topology, while the former considers the entire benchmark, employing a few
early queries to inform the topology.

E COST ANALYSIS

In Section 3.4, we present a token-saving analysis in a single-query setting. In this section, we pro-
vide a cost analysis for AgentPrune in a multi-query optimization context. Given a communication
graph G and a benchmark with Q queries, we assume that the LLM-MA framework iterates for K
dialogue rounds for each query. Furthermore, we denote the average token count per spatial, tem-
poral, and query message as cS , cT , and cq , respectively. Hence, the total token consumption of the
vanilla system can be expressed as:

CG = QK
[
cS |ES |+ cT |ET |+ Cq|V|

]
(14)

When utilizing AgentPrune, the LLM-MA framework processes the initial Q′ queries while simul-
taneously optimizing the spatial-temporal connectivity. The token cost for this phase is:

MQ′K
[
cS |ES |+ cT |ET |+ Cq|V|

]
. (15)

After pruning GS and GT , we use the obtained Gsub to solve the remaining Q − Q′ queries, with a
cost of:

(Q−Q′)K
[
(1− p%) ·

(
cS |ES |+ cT |ET |

)
+ Cq|V|

]
. (16)

Overall, the token savings of AgentPrune in a multi-query setting can be expressed as:

∆ = (p% ·Q+ (1− p%−M)Q′)K
(
cS |ES |+ cT |ET |

)
+ (1−M)Q′KCq|V| (17)

F EXISTING SPATIAL COMMUNICATION TOPOLOGIES

In this section, we introduce several existing spatial communication topologies, including chain,
tree, star, complete graph, layered graph, random graph, and LLM-Blender.
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F.1 CHAIN STRUCTURE

The chain structure (in Figure 7) is one of the most widely utilized communication architectures
in contemporary multi-agent systems, as demonstrated by its application in ChatDev (Qian et al.,
2023), MetaGPT (Hong et al., 2023), and L2MAC (Holt et al., 2024). In this architecture, the first
agent receives input from the user, transforms it into new instruction, and subsequently forwards it
to the next agent. For instance, in MetaGPT, user instructions are initially sent to the first agent,
termed the ”product manager,” with information progressively relayed to subsequent agents, such as
the architect agent, engineer agent, and QA engineer agent. Generally, the final agent in the chain
provides a solution to the user’s request.

Figure 7: Demonstration of chain structure as spatial communication topology.

F.2 TREE STRUCTURE

In a tree-like multi-agent pipeline, as shown in Figure 8, an administrative agent (commonly referred
to as a teacher, commander, manager, etc.) oversees subordinate agents, which typically have distinct
responsibilities. Ultimately, these subordinate agents submit their outputs to the administrative agent
for final evaluation. Notable works employing this structure include AutoGen (Wu et al., 2023),
SecurityBot (Yan et al., 2024), and MiniGrid (Zhou et al., 2023). For instance, in AutoGen (A4:
Multi-Agent Coding), there exists a Commander agent alongside a Safeguard agent. The Writer is
responsible for crafting the code and its interpretation, the Safeguard ensures safety (e.g., preventing
information leaks and avoiding malicious code), and the Commander executes the code.

Figure 8: Demonstration of tree structure as spatial communication topology.

F.3 STAR STRUCTURE

The star structure resembles the tree structure and can essentially be viewed as a tree with a depth
of two. When utilizing the star configuration for spatial communication, the central administra-
tive agent receives queries from the user and dispatches instructions to subordinate agents. Upon
completing their tasks using various tools, these subordinate agents return all outputs to the admin-
istrative agent, which then compiles a final summary, as illustrated in Figure 9.

F.4 COMPLETE GRAPH STRUCTURE

In the main text, we refer to the structure shown in Figure 10 as a complete graph. However, this
complete graph differs from the traditional definition, i.e., an undirected graph where each vertex
is connected to every other vertex. Instead, it is a directed graph that would represent a complete
graph if converted to an undirected form. This distinction is necessary because the execution of the
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Figure 9: Demonstration of star structure as spatial communication topology.

multi-agent system relies on topological ordering (Qian et al., 2024; Zhuge et al., 2024), requiring
the spatial communication topology to be a DAG. In MacNet (Qian et al., 2024), this structure is
also referred to as a “Mesh graph.” After executing in the order determined by topological sorting,
the final agent summarizes the dialogue and provides a concluding output or reflection.

Figure 10: Demonstration of complete graph structure as spatial communication topology.

F.5 LAYERED GRAPH STRUCTURE

A layered graph, proposed by Qian et al. (2024), refers to the structure illustrated in Figure 11,
resembling a stacked configuration similar to a multilayer perceptron (MLP). The query is first
provided to all agents in the first layer, whose outputs serve as prompts that, along with the query,
are then fed to the agents in the second layer. The final layer consists of a single agent that receives
information from the previous layer and generates the ultimate solution.

F.6 RANDOM GRAPH STRUCTURE

A random graph refers to a sparse graph randomly sampled from a complete graph, as illustrated in
Figure 12. Irregular random structures have been shown to outperform regular fully connected struc-
tures (Qian et al., 2024), which is attributed to the presence of random edge connections. Analogous
to social networks, these connections can link “unacquainted” agents through direct shortcuts, trans-
forming them into adjacent “acquaintances” and implicitly reducing the average path length, thereby
exhibiting small-world characteristics.
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Figure 11: Demonstration of layered graph structure as spatial communication topology.

Figure 12: Demonstration of random graph structure as spatial communication topology.

F.7 LLM-BLENDER STRUCTURE

The structure of LLM-Blender is relatively straightforward. It feeds a query to multiple LLM-
powered agents from different sources, employing a PairRanker mechanism to score each agent’s
output. The top K responses are then selected and merged using an LLM called GenFuser, as
illustrated in Figure 13.

c

Figure 13: Demonstration of LLM-Blender structure as spatial communication topology.

G EXPERIMENTAL DETAILS

G.1 BASELINES

In this section, we will provide a detailed overview of the various baselines mentioned in Section 4.1
and their adaptations for our evaluation.
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G.1.1 SPATIAL COMMUNICATION BASELINES

The methods described below fall under the category of spatial communication, meaning they are
designed to regulate how different agents interact and exchange information within the same dia-
logue round. Unless stated otherwise, we do not employ explicit inter-dialogue message passing and
limit iterations to two rounds (i.e., K = 2).

Chain Given the diversity of benchmarks we employed (including mathematical reasoning, code
generation, etc.), we organized distinct agent pools for different categories of reasoning tasks, as
detailed in Appendix G.3. In addition to personalized prompts for each agent, we also designed
a universal prompt template applicable to all agents for generating outputs. Taking the MMLU
benchmark as an example:

Prompt Template for Agents on the Chain

I will ask you a question and 4 answers enumerated as A, B, C
and D.
Only one answer out of the offered 4 is correct.
You must choose the correct answer to the question from your
perspective.
Using the reasoning from other agents as additional advice
with critical thinking, can you give an updated answer?
You are strictly prohibited from imitating the analysis
process of other agents.
Your reply must be less than 100 words but include your
answer and a brief step-by-step analysis of the question.
The first line of your reply must contain only one letter(for
example A, B, C or D)

We utilize the output from the final agent as the decision for the entire system.

Star When employing the star structure, as described in Appendix F.3, we designate one agent
as the administrative agent and utilize the other agents as subordinates. The administrative agent
ultimately collects outputs from the subordinate agents to make a decision. During the final decision-
making process, the prompt is as follows:

Prompt Template for Decision Making

You are the top decision-maker and are good at analyzing
and summarizing other people’s opinions, finding errors and
giving final answers.

Tree We reduce the tree structure to a binary tree and sequentially assign agents based on the
binary tree indexing, depending on the number of agents. The outputs from all non-root nodes are
ultimately relayed to the root node’s agent for the final decision, with the prompt template remaining
the same as the Star structure.

Complete Graph We employ the structure outlined in Figure 10 and execute the input/output
for each agent node through topological sorting. Before performing topological sorting, it may be
necessary to apply the DAG sampling method discussed in Section 3.1 to ensure that the spatial
communication graph is a DAG. Given the relative complexity of the graph structure, which does
not possess a straightforward core agent like a chain or tree, we introduce an additional summarizer
node to which all other nodes direct their outputs. Naturally, this summarizer node is executed last
in the topological order, positioning it as the final decision-making expert.

Layered Graph As discussed in Appendix F.5, we arrange the agents in an MLP-like layered
structure, ensuring that the final layer contains only one agent. This agent receives outputs from all
agents in the preceding layer and produces the final solution.
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Random Graph The implementation of a random graph is similar to that of a complete graph. It
also begins with DAG sampling, followed by execution through topological sorting, and concludes
with a summarizer agent that generates the overall response. We generate the random graph with a
connection probability set as 0.5.

LLM-Blender LLM-Blender (Jiang et al., 2023) was originally designed to consolidate responses
from various LLM architectures. In this context, we treat it as a spatial message-passing paradigm,
standardizing all agents to utilize either gpt-3.5 or gpt-4, with the final output from GenFuser
serving as the solution. Notably, LLM-Blender is specifically tailored for single-turn dialogues;
thus, we do not employ multi-turn dialogues in conjunction with LLM-Blender.

GPTSwarm GPTSwarm (Zhuge et al., 2024) conceptualizes the connections among all agents
as a parameterized, dense adjacency matrix, which is continuously optimized to enhance collabo-
rative performance. In the original paper, distinct internal structures were customized for differ-
ent agents, such as configuring a specific agent to first receive a query, followed by performing
FileAnalyze and WebSearch, and ultimately outputting the results. To ensure a fair com-
parison, we did not utilize such configurations in Section 4; instead, we assigned each agent dif-
ferent profiles, similar to the other structures mentioned above, along with possible external tools
like a Python compiler or Wikipedia searcher. Our implementation is based on the resources avail-
able at https://github.com/metauto-ai/GPTSwarm. Important Note: in the originally
open-sourced code, the multi-agent collaboration for MMLU dataset only transmitted the options
A/B/C/D during dialogues, without including the content of agents’ reasoning process, which is
not consistent with the description in Section 2.2 of their manuscript. To ensure a fair comparison
and maintain consistency with the original description, we modified their code to transmit both the
choices and the reasoning process.

G.1.2 TEMPORAL COMMUNICATION BASELINES

LLM-Debate LLM-Debate (Du et al., 2023b) is designed for multiple agents to engage in a de-
bate, where in each round, every agent receives the outputs of all agents from the previous round
before making their own statements. Consequently, it essentially forms a fully connected temporal
communication graph, as illustrated in Figure 14.

c

Figure 14: Demonstration of LLM-Debate structure as temporal communication topology.

PHP PHP (Zheng et al., 2023) progressively improves prompts by utilizing the entirety of his-
torical dialogue, offering potential ”hint” prompts. In this context, we adapt this setting to the
multi-agent collaboration framework, using the decisions made after each round of dialogue as hint
prompts for all agents in the subsequent round, as depicted in Figure 15.

DyLAN DyLAN (Liu et al., 2023b) primarily focuses on optimizing temporal communication and
reducing redundancy by employing a specific scoring mechanism to eliminate low-quality outputs
between every two rounds of dialogue. We utilize the official implementation available at https:
//github.com/SALT-NLP/DyLAN.
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Hint Hint

Figure 15: Demonstration of PHP structure as temporal communication topology.

Manager

Engineer Critic

query
input Solution

Manager

Engineer Critic Executor

Query

User Proxy

Solution

Figure 16: The AutoGen system design with three/five LLM-based agents. The dashed line indicates the agent
will propagate its rationale or output back to the manager for its final decision-making.

G.1.3 OTHERS

In Section 4.3, we integrated AgentPrune with AutoGen and GPTSwarm under both three-agent
and five-agent configurations. Here, we elaborate on how we implemented AutoGen, which is inher-
ently a customizable framework. Based on the setup from AutoGen (A5: Dynamic Group Chat), we
define five roles: user proxy, manager, engineer, critic, and code executor. For the three-agent con-
figuration, we condense these roles into manager, engineer, and critic. The detailed communication
structure is depicted in Figure 16.

G.2 EXPERIMENTAL CONFIGURATIONS

In this section, we supplement a detailed description of the experimental setup for AgentPrune:

• Evaluation function ϕ: The implementation of ϕ varies across tasks. For multiple-choice bench-
marks such as MMLU and AQuA, ϕ represents accuracy. For HumanEval, it corresponds to the
pass@1 metric for code execution. For other mathematical benchmarks, ϕ computes accuracy by
comparing the system-generated answers with the ground truth using string matching.

• Initialization of graph masks: The graph masks S = SS ,ST are initialized as 0.5 · 1|V|, and 1
is an all-one matrix.

• Training queries Q′: As noted in Section 4.1, Q′ is set to one of {5, 10, 20}.
• Temperature setting: The temperature parameter for gpt-3.5 and gpt-4 is consistently set

to 1 during generation.

• Samples per query M : We set M = 10 for each training query.

G.3 AGENT PROFILING

Previous works (Wang et al., 2024c) have formally established that assigning different personas or
roles to LLM-based agents can enhance cognitive synergy among agents. Consequently, we utilized
gpt-4 to generate a series of agent profiles for various tasks, thereby promoting diversity and
collective intelligence in a multi-agent setting.
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G.3.1 PROFILE EXAMPLES FOR GENERAL REASONING

Below are some examples of agent profiles tailored for general reasoning tasks:

Knowledge Expert

You are a knowledgeable expert in question answering.
Please give several key entities that need to be searched in
Wikipedia to solve the problem.
Key entities that need to be searched are included between two ’@’
when output, for example: @catfish effect@, @broken window effect@,
@Shakespeare@.
If there is no entity in the question that needs to be searched in
Wikipedia, you don’t have to provide it

Wiki Searcher

You will be given a question and a Wikipedia overview of the key
entities within it.
Please refer to them step by step to give your answer.
And point out potential issues in other agent’s analysis.

Critic

You are an excellent critic.
Please point out potential issues in other agent’s analysis point by
point.

Mathematician

You are a mathematician who is good at math games, arithmetic
calculation, and long-term planning.

Programmer

You are good at computer science, engineering, and physics.
You have experience in designing and developing computer software
and hardware.
You are especially good at writing code or complex programs with
Python, C++, MATLAB, JAVA, etc.

Doctor

You are a doctor and come up with creative treatments for illnesses
or diseases.
You are able to recommend conventional medicines, herbal remedies
and other natural alternatives.
You also consider the patient’s age, lifestyle and medical history
when providing your recommendations.

Economist

You are good at economics, finance, and business.
You have experience on understanding charts while interpreting the
macroeconomic environment prevailing across world economies.

G.3.2 PROFILE EXAMPLES FOR MATHEMATICAL REASONING

Below are some examples of agent profiles tailored for mathematical reasoning tasks:
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Math Solver

You are a math expert.
You will be given a math problem and hints from other agents.
Give your own solving process step by step based on hints.
The last line of your output contains only the final result without
any units, for example: The answer is 140.
You will be given some examples you may refer to.

Mathematical Analyst

You are a mathematical analyst.
You will be given a math problem, analysis and code from other
agents.
You need to first analyze the problem-solving process step by step,
where the variables are represented by letters.
Then you substitute the values into the analysis process to perform
calculations and get the results.
The last line of your output contains only the final result without
any units, for example: The answer is 140
You will be given some examples you may refer to.

Programming Expert

You are a programming expert.
You will be given a math problem, analysis and code from other
agents. Integrate step-by-step reasoning and Python code to solve
math problems.
Analyze the question and write functions to solve the problem.
The function should not take any arguments and use the final result
as the return value.
The last line of code calls the function you wrote and assigns the
return value to the
(answer
) variable.
Use a Python code block to write your response. For example: <some
python code>
Do not include anything other than Python code blocks in your
response. You will be given some examples you may refer to.

G.3.3 PROFILE EXAMPLES FOR CODE GENERARION

Below are some examples of agent profiles tailored for code generation tasks:

Project Manager

"You are a project manager. "
"You will be given a function signature and its docstring by the
user. "
"You are responsible for overseeing the overall structure of
the code, ensuring that the code is structured to complete the
task Implement code concisely and correctly without pursuing
over-engineering."
"You need to suggest optimal design patterns to ensure that the code
follows best practices for maintainability and flexibility. "
"You can specify the overall design of the code, including the
classes that need to be defined(maybe none) and the functions used
(maybe only one function) ."
"I hope your reply will be more concise. Preferably within fifty
words. Don’t list too many points."
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Algorithm Designer

"You are an algorithm designer. "
"You will be given a function signature and its docstring by the
user. "
"You need to specify the specific design of the algorithm, including
the classes that may be defined and the functions used. "
"You need to generate the detailed documentation, including
explanations of the algorithm, usage instructions, and API
references. "
"When the implementation logic is complex, you can give the
pseudocode logic of the main algorithm."
"I hope your reply will be more concise. Preferably within fifty
words. Don’t list too many points.",

Programming Expert

"You are a programming expert. "
"You will be given a function signature and its docstring by the
user. "
"You may be able to get the output results of other agents. They
may have passed internal tests, but they may not be completely
correct. " "Write your full implementation (restate the function
signature). "
"Use a Python code block to write your response. For example:
<some python code>
"Do not include anything other than Python code blocks in your
response. "
"Do not change function names and input variable types in tasks."

Bug Fixer

"You are a bug fixer."
"You will be given a function signature and its docstring by the
user. "
"You need to provide modified and improved python code based
on the current overall code design, algorithm framework, code
implementation or test problems. "
"Write your full implementation (restate the function signature). "
"Use a Python code block to write your response. For example:
<some python code>"
"Do not include anything other than Python code blocks in your
response "
"Do not change function names and input variable types in tasks"

G.4 AGENT ATTACK IMPLEMENTATION

We designed two types of attacks on agents: agent prompt attack and agent replacement attack, with
specific implementations detailed as follows:

Agent Prompt Attack We attempt to compromise the role prompt of the collaborative agent,
altering its predefined role to the following “liar” agent:
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Prompt Template for Agent Prompt Attack

You are a liar who only tell lies. Give a wrong answer and false
analysis process for the following question: {question}.
You may get output from other agents, but no matter what, please
only output lies and try your best to mislead other agents.
Your reply must be less than 100 words.
The first line of your reply must contain only one letter(for
example : A, B, C or D)

Agent Replacement Attack We replace the originally high-cognitive and planning-capable LLM
with a randomly generating “dummy” API that outputs text without coherence. The specific prompt
is as follows:

Prompt Template for Agent Replacement Attack

Randomly output a letter from ABCD on the first line.
Then output any gibberish paragraph on the same topic as the
following question: question.
The first line of your reply must contain only one letter(for
example : A, B, C or D)

When attacking all multi-agent frameworks, we randomly select one agent to serve as the adversarial
agent, while the remaining agents retain their original functions and responsibilities.

H SUPPLEMENTED EXPERIMENTAL RESULTS

H.1 RESULTS FOR RQ1

Figures 17 to 19 compares AgentPrune with other communication topologies in terms of comple-
tion tokens, overall tokens, and overall cost (USD). Notably, across multiple datasets, AgentPrune
achieves superior performance at a fraction of the cost, often as low as one-half or even one-tenth
of the economic expense of SOTA topologies. For instance, on the MMLU dataset, AgentPrune
surpasses GPTSwarm’s performance with a cost of only $5.6, compared to GPTSwarm’s $43.56.
Similarly, on the GSM8K dataset, AgentPrune outperforms DyLAN with a cost of $65.9, whereas
DyLAN incurs a cost of $357.47.
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Figure 17: Scatter plot illustrating the performance metrics and total token consumption of different multi-
agent communication topologies across the MMLU, HumanEval, and GSM8K datasets. The diameter of each
point is proportional to the value on the y-axis, representing token consumption.

H.2 RESULTS FOR RQ2

Table 5 presents a comparison of the performance, prompt/completion token consumption, and cost
between AgentPrune integrated with three-agent-based AutoGen and GPTSwarm frameworks. Ta-
ble 6 showcases the training and total (training + inference) token costs of AgentPrune when com-
bined with various LLM-MAS backbones. As shown, AgentPrune requires only around 2% ∼ 6%
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Figure 18: Scatter plot illustrating the performance metrics and completion token consumption of different
multi-agent communication topologies across the MMLU, HumanEval, and GSM8K datasets. The diameter of
each point is proportional to the value on the y-axis, representing token consumption.
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Figure 19: Scatter plot illustrating the performance metrics and total cost (USD) of different multi-agent
communication topologies across the MMLU, HumanEval, and GSM8K datasets. The diameter of each point
is proportional to the value on the y-axis, representing the economic cost.

Table 5: Performance and cost comparison before and after combining AgentPrune. We evaluated the
performance and economical cost comparison of AgentPrune in conjunction with two classic multi-agent
systems, AutoGen and GPTSwarm, under a three gpt-4-based setting.

Dataset Method Performance # Prompt Tokens # Completion Tokens Cost

MMLU AutoGen 81.94 346, 028 66, 204 $5.446
+AgentPrune 82.20(↑ 0.26) 274, 665(79.4%) 66, 803 $4.750(87.2%)

AutoGen 83.66 351, 985 90, 762 $6.242HumanEval
+AgentPrune 85.04(↑ 1.38) 254, 203(72.2%) 89, 362 $5.282(84.6%)

AutoGen 87.23 2, 317, 937 624, 055 $41.92GSM8K
+AgentPrune 88.51(↑ 1.23) 1, 481, 780(63.9%) 629, 771 $33.71(80.4%)

GPTSwarm 83.32 1, 521, 504 325, 994 $24.99MMLU
+AgentPrune 83.66(↑ 0.34) 554, 698(35.8%) 336, 887 $15.65(62.6%)

GPTSwarm 83.62 1, 478, 312 612, 815 $33.16HumanEval
+AgentPrune 84.74(↑ 1.12) 432, 480(29.2%) 598, 367 $22.07(66.5%)

GPTSwarm 87.85 6, 274, 665 186, 510 $68.34GSM8K
+AgentPrune 88.30(↑ 0.45) 3, 009, 115(47.9%) 173, 296 $35.29(51.6%)

Table 6: Training and total token costs of AgentPrune (AP) applied to different LLM-MAS backbones on the
GSM8K dataset.

LLM-MAS #Training
Prompt Tokens

#Total
Prompt Tokens Ratio (%) #Training

Completion Tokens
#Total

Completion Tokens Ratio (%)

Complete Graph+AP 274,821 8,526,035 3.22 69,808 2,022,560 3.45
Random Graph+AP 269,732 7,495,738 3.59 63,054 1,796,603 3.50
AutoGen+AP 158,474 3,791,251 4.18 78,899 1,156,884 6.82
GPTSwarm+AP 91,192 3,526,035 2.80 22,982 730,552 3.10

of token consumption to complete the spatial-temporal connectivity optimization. Once this opti-
mization is achieved, all subsequent inferences benefit from a token-efficient and economical com-
munication structure.
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Figure 20: Performance under adversarial attack. We compare the performance of various multi-agent
frameworks before and after agent replacement attacks. “w/ AP” indicates the integration with AgentPrune.

Table 7: Abltion study of AgentPrune. “w/o profile” denotes not assigning agents with different roles and
profiles; “w/o low-rank” denotes not using the low-rank regularization as described in Equation (11).

Variant MMLU GSM8K MultiArith SVAMP AQuA HumanEval
AgentPrune-C 84.72 95.62 97.25 91.85 79.47 89.38
w/o profile 84.37 93.70 96.21 91.79 79.19 87.83
w/o low-rank 84.65 94.55 96.84 91.12 79.57 88.90
AgentPrune-R 83.94 95.83 96.30 91.68 78.60 90.30
w/o profile 83.36 95.67 95.72 91.75 78.75 88.60
w/o low-rank 83.52 95.46 96.05 91.30 78.49 89.39

H.3 RESULTS FOR RQ3

We supplement the performance of various topologies before and after being perturbed by agent
replacement attack in Figure 20.

H.4 RESULTS FOR RQ4

H.4.1 ABLATION STUDY

We develop two variants of AgentPrune: “AgentPrune w/o profile”, which assigns no unique
roles to each agent, and “AgentPrune w/o low-rank”, which does not implement the low-rank
regularization described in Equation (11). The results are presented in Table 7.

H.4.2 SENSITIVITY ANALYSIS

We analyze the sensitivity of AgentPrune to two parameters: the number of agents |V| and the
early stopping round K. The findings are presented in Figure 21. Notably, as the number of agents
increases, there is a significant performance enhancement initially (from 3 to 5 agents), while sub-
sequent improvements (from 5 to 9 agents) in accuracy become relatively marginal. The early
stopping round Q′ indicates the number of queries used to optimize spatial-temporal connectivity in
a multi-query training setting. Intuitively, increasing the number of optimization rounds leads to a
more refined and accurate graph mask, resulting in substantial performance gains from multi-agent
collaboration, along with reduced performance fluctuations. To balance performance with token sav-
ings, we consistently set Q′ ∈ {5, 10, 20}. As for the pruning ratio, we can observe that, with p%
increasing, the performance exhibits an overall decreasing trend. Taking both the token efficiency
and performance into consideration, we set p% ∈ {50%, 30%}.

H.5 COMPARISON WITH RANDOM PRUNING

To better illustrate the differences between AgentPrune and random pruning, we supplement the
analysis with results on six datasets: MMLU, GSM8K, MultiArith, SVAMP, AQuA, and Hu-
manEval, as shown in Table 8
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Figure 21: Parameter sensitivity analysis on AgentPrune. we vary the number of agents |V| ∈
{3, 4, 5, 6, 7, 8, 9} , the early stopping round Q′ ∈ {5, 10, 15, 15, 20, 25} and the pruning ratio p% ∈
{10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%} on MMLU dataset.

Table 8: Performance comparison between AgentPrune and random pruning. The pruning ratio is fixed
at 50%, and five gpt-4-based agents are employed.

LLM-MAS Pruning Method MMLU GSM8K MultiArith SVAMP AQuA HumanEval
Complete Graph N/A 83.15 86.49 97.20 89.48 79.21 83.75

+AgentPrune 84.72 95.62 97.25 91.85 79.47 89.38
+Random Pruning 82.30 85.60 95.80 83.90 74.50 82.70

Random Graph N/A 83.76 86.14 95.46 85.41 74.07 82.66
+AgentPrune 83.94 95.83 96.30 91.68 78.60 90.30
+Random Pruning 83.20 86.40 92.90 82.70 71.10 77.40

GPTSwarm N/A 83.98 89.74 97.84 86.42 78.16 88.49
+AgentPrune 83.05 90.58 97.11 88.41 78.50 88.96
+Random Pruning 83.10 85.21 96.30 83.60 75.30 82.70

Table 9: Transferability analysis of AgentPrune, with the backbone LLM-MAS being a complete graph.

Structure From \Performance Tested On AQuA MultiArith SVAMP GSM8K
w/o AgentPrune 79.21 97.20 89.48 93.80
Optimized From AQuA 79.47 - - -
Optimized From MultiArith - 97.25 - -
Optimized From SVAMP 78.92 96.54 91.85 94.80
Optimized From GSM8K 80.50 97.73 91.68 95.62

The results demonstrate that random pruning consistently underperforms AgentPrune across var-
ious LLM-MAS backbones, causing notable performance degradation. While this degradation is
relatively modest in dense communication structures like the Complete Graph, it becomes more
pronounced in inherently sparse structures such as Random Graph and GPTSwarm. For example,
random pruning results in a significant 5.79% drop in pass@1 on HumanEval+GPTSwarm. In con-
trast, AgentPrune achieves a 0.47% performance gain while requiring only 27.2% of the vanilla
GPTSwarm’s prompt tokens. This improvement can be attributed to AgentPrune’s refined optimiza-
tion strategy and precise connection importance evaluation.

H.6 TRANSFERABILITY OF AgentPrune

We conducted transferability experiments across four mathematical reasoning datasets, evaluating
the performance of communication graphs optimized by AgentPrune when transferred to other
datasets without further optimization. The results are summarized in Table 9. We draw several
key conclusions:

1. AgentPrune-optimized communication graphs exhibit strong transferability on sim-
ilar tasks. For instance, directly applying the structure optimized on GSM8K to AQuA
outperforms the structure specifically optimized on AQuA itself.

2. Transferability is influenced by the knowledge capacity of the dataset. GSM8K, with
thousands of mathematical queries, yields communication graphs that generalize well to
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other datasets. For example, the GSM8K-optimized structure achieves near or even bet-
ter performance compared to vanilla optimization on MultiArith and AQuA, including a
1.03% improvement on AQuA. In contrast, SVAMP, composed of merely elementary-level
queries, demonstrates relatively limited generalization capacity. Its optimized structure
sometimes leads to minor performance drops, such as a 0.71% ↓ decrease when transferred
to MultiArith.

I CASE STUDY

I.1 SPATIAL TOPOLOGY VISUALIZATION

In this section, we will demonstrate how AgentPrune operates on the predefined spatial commu-
nication structure and the resulting structure after one-shot pruning. It is important to note that the
pruned sparse graph we present is likely not a Directed Acyclic Graph (DAG). This is because,
during the practical application, we still need to utilize the DAGSampling function on the pruned
graph to ensure it conforms to DAG properties before sequentially executing agent I/O.

GPTSwarm + MMLU Figure 22 illustrates how AgentPrune applies one-shot pruning within a
five-agent GPTSwarm framework, where three agents serve as simple I/O agents, and the remaining
two are TOT (Tree of Thoughts) agents. Notably, AgentPrune prunes many in-edges for the I/O
agents, while preserving many for the TOT agents. This behavior likely stems from the stronger
reasoning capabilities of TOT agents, which makes them better suited for synthesizing the agents’
discussions and providing the final solution. Figure 23 showcases how AgentPrune completely
prunes the adversarial agent out of the system by deleting all its in/out-edges.
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agent

TOT
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one-shot
pruning

GPTSwarm + MMLU

I/O
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I/O
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TOT
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TOT
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Figure 22: The pruning process of AgentPrune on a five-agent GPTSwarm framework when tested on MMLU.

AutoGen + HumanEval Figure 24 illustrates how AgentPrune applies one-shot pruning within
a five-agent AutoGen framework.

Complete Graph + MMLU Figure 25 illustrates how AgentPrune performs one-shot pruning to
achieve a compact sparse spatial communication graph, given five predefined agent roles: knowledge
expert, critic, historian, mathematician, and psychologist, along with a predefined complete graph
structure on MMLU dataset. It is evident that in the pruned graph, the Critic has a high number of
incoming edges, while the Knowledge Expert has a high number of outgoing edges. This aligns with
their respective functions: the Critic is expected to receive a broad range of external information and
provide feedback, whereas the Knowledge Expert should output useful knowledge based on their
knowledge base.
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Figure 23: The pruning process of AgentPrune on a five-agent GPTSwarm framework when tested on MMLU,
where one of the five agents is set as the adversarial agent.
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Figure 24: The pruning process of AgentPrune on a five-agent AutoGen framework when tested on MMLU.
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Figure 25: The pruning process of AgentPrune on a five-agent complete-graph-like framework when tested
on MMLU dataset.

Random Graph + MMLU Figure 26 illustrates how AgentPrune performs one-shot pruning,
given five predefined agent roles along with a predefined random graph structure on MMLU
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dataset. The pruned graph structure is similarly aligned with that in Figure 25, with the Critic
having many incoming edges and the Knowledge Expert having many outgoing edges. Notably, the
absence of outgoing edges for the psychologist in Figure 26 may suggest that this role has limited
utility within the overall system.

knowledge
expert

Critic Historian

Mathematician Psychologist

one-shot
pruning

Random Graph + MMLU

knowledge
expert

Critic Historian

Mathematician Psychologist

Figure 26: The visualization of how AgentPrune prunes a five-agent random-graph-like framework when
tested on MMLU dataset.

Random Graph + HumanEval Figure 27 demonstrates how AgentPrune implements one-shot
pruning based on five predefined agent roles: project manager, algorithm designer, bug fixer, test an-
alyst, and programming expert, utilizing a predefined complete graph structure on the HumanEval
dataset. Notably, the outer edges of the graph are retained, aligning with the standard workflow for
code completion, which is consistent with the designs of multi-agent code generation frameworks
like MetaGPT (Hong et al., 2023). The Bug Fixer has no outgoing edges, as it represents the fi-
nal step in the code completion process. This effectively highlights AgentPrune’s capability for
autonomous optimization of multi-agent collaborative topologies.
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Figure 27: The visualization of how AgentPrune prunes a five-agent complete-graph-like framework when
tested on the HumanEval dataset.

Complete Graph + HumanEval Figure 27 illustrates how AgentPrune executes one-shot prun-
ing based on four predefined agent roles: math solver, math analyst, programming expert, and in-
spector, utilizing a predefined complete graph structure on the GSM8K dataset. In this scenario,
we designated two agents as math solvers. Interestingly, the pruned graph structure reveals explicit
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Figure 28: The visualization of how AgentPrune prunes a five-agent random-graph-like framework when
tested on the HumanEval dataset.

differentiation in roles for the two math solvers: one is responsible for preliminary solving, while
the other is tasked with final solving. The final solver gathers information from all other nodes and
has no outgoing edges.

Complete Graph + GSM8K Figure 29 illustrates how AgentPrune performs one-shot pruning
based on four predefined agent roles and a predefined random graph structure on the GSM8K
dataset. We observe a distinct differentiation in node characteristics: the agents focused on problem
analysis exhibit a high out-degree with no incoming edges, while the agents responsible for problem-
solving demonstrate a high in-degree and a low out-degree.
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Figure 29: The visualization of how AgentPrune prunes a five-agent complete-graph-like framework when
tested on the GSM8K dataset.

I.2 TEMPORAL TOPOLOGY VISUALIZATION

Figures 31 to 33 demonstrate how AgentPrune operates on the predefined temporal communication
structure and the resulting structure after one-shot pruning.
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Figure 30: The visualization of how AgentPrune prunes a five-agent random-graph-like framework when
tested on the GSM8K dataset.
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Figure 31: The visualization of how AgentPrune temporally prunes a five-agent LLM-Debate-like framework
when tested on the HumanEval dataset.

I.3 SPATIAL CONNECTIVITY OPTIMIZATION

Figures 34 to 36 illustrate the optimization trajectory of spatial connectivity before applying one-shot
pruning. As time progresses, the initially identical graph masks begin to show increasing differenti-
ation, with their magnitudes serving as a crucial reference for subsequent pruning decisions.

I.4 THE PRUNING ELEMENT ANALYSIS

In this section, we summarize the pruning mechanism of AgentPrune, focusing on two primary cat-
egories of messages that it targets: malicious or misleading information and redundant content.
For the first category, as illustrated in Figure 38, Web Browser 1 acts as an adversarial agent by
introducing a direct prompt injection. This leads to misleading information, such as the claim that
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Figure 32: The visualization of how AgentPrune temporally prunes a four-agent LLM-Debate-like framework
when tested on the GSM8K dataset.
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Figure 33: The visualization of how AgentPrune temporally prunes a five-agent LLM-Debate-like framework
when tested on the GSM8K dataset.

the “Top 5 Silliest Animal Moments” includes the fictitious “kakapo parrot.” Consequently, down-
stream agents such as inspectors and aggregators are misled, failing to provide the correct answer.
For the second category, redundant information is more prevalent. As shown in Figure 39, the math
analyst, after receiving input from the math solver, fails to contribute novel insights and instead
nearly replicates the solver’s content. In such scenarios, AgentPrune eliminates most of the outgo-
ing edges from the redundant agent, thereby reducing unnecessary information flow and minimizing
token consumption.
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Figure 34: The demonstration of how spatial connectivity evolves and optimizes over time on MMLU.
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Figure 35: The demonstration of how spatial connectivity evolves and optimizes over time on HumanEval.
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Figure 36: The demonstration of how spatial connectivity evolves and optimizes over time on GSM8K dataset.
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Figure 37: The absolute difference of consecutive spatial graph masks.
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Web browser 1

In the BBC Earth's YouTube
video "Top 5 Silliest Animal
Moments," one of the featured
bird species is the kakapo, a
large, flightless parrot known
for its comical and unusual
behavior. 

You can watch the full video
on the BBC Earth channel for
more details .

Web browser 2

The "Top 5 Silliest Animal
Moments" video by BBC
Earth features a penguin as
one of the highlighted bird
species. Penguins often
appear in lighthearted
contexts in BBC Earth
videos due to their amusing
and relatable behaviors. 

You can watch the video for
more entertaining highlights
.

benign

Inspector

Both answers identify
different bird species (kakapo
in answer 1 and penguin in
answer 2) as being featured in
the video, creating conflicting
claims. Neither answer
provides specific timestamps
or detailed descriptions to
confirm their assertions, and
both rely on generic context
about the species. To
determine accuracy, viewers
would need to watch the video
themselves. 

mislead

Aggregator

mislead

The BBC Earth YouTube
video "Top 5 Silliest Animal
Moments" features multiple
bird species, including the
kakapo, a large, flightless
parrot, and penguins, known
for their humorous and
relatable behaviors. To get a
comprehensive view of all
the featured bird species,
you can watch the video on
the BBC Earth channel.

Pru
ned

adversarial

Query: On the BBC Earth YouTube video of the Top 5 Silliest Animal Moments, what species of bird is featured?

Figure 38: Pruning focus of AgentPrune: Malicious or misleading information. This example highlights how
adversarial agents, such as Web Browser 1, inject misleading content (e.g., referencing a fictitious “kakapo
parrot”), which propagates errors through subsequent agents.

Math Solver

To solve this:

1. Calculate the number of guests who will attend:
   Christina invited 16 friends, but  of them won't show up. This
means  will attend: 

2. Determine the total number of gift bags needed: Christina plans
 gift bags per guest:

3. Calculate the total cost of the gift bags:  Each gift bag costs $2: 

Final Answer: Christina will spend **$18**.

Math Analyst

The solution from math solver agent is correct and methodical. Here's
a quick recap of the problem-solving steps and calculations:
1. Calculate the number of guests who will attend. Christina invited 16
friends. Since  of them won’t show up,  of them will attend:

2. Determine the total number of gift bags needed. Christina needs
 gift bags per guest: 

3. Calculate the total cost of the gift bags. Each gift bag costs $2:

Final Verification:
The reasoning aligns with the problem's conditions, and all
calculations are correct. Christina will spend **$18** on the gift bags.

Pru
ned

Programmer

Here is the Python code to solve the problem:

# Number of invited guests
invited_guests = 16
# Fraction of guests who attend
attendance_rate = 0.75
# Gift bags required per guest
gift_bags_per_guest = 0.75
# Cost per gift bag
cost_per_bag = 2
# Calculate the number of guests attending
attending_guests = invited_guests * attendance_rate
# Calculate the number of gift bags needed
gift_bags_needed = attending_guests * gift_bags_per_guest
# Calculate the total cost
total_cost = gift_bags_needed * cost_per_bag
# Print the result
print(f"Christina will spend ${total_cost:.2f} on gift bags.")

### Output
When you run the code, the output will be:

Christina will spend $18.00 on gift bags.

This accounts for the .75 gift bags per attending guest and the $2 cost per bag.

Inspector

The problem has been thoroughly analyzed,
and the solution is correct. Here's the concise
breakdown:

1. Christina invited 16 friends, and  will not
attend, so  (12 guests) will attend.
2. Each guest requires 0.75 gift bags, resulting
in  gift bags.
3. At $2 per gift bag, the total cost is

.

Final Answer: **Christina will spend $18 on
gift bags.** 

The Python code provided validates this result,
confirming the calculations.

Query: Christina is planning a birthday party and needs .75 gift bags per invited guest, because 1/4 of attendees don't show up. She invited 16
friends. Gift bags are $2 each. How much will she spend?

Figure 39: Pruning focus of AgentPrune: Redundant information.
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