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Content Overview

The supplementary material contains further details for the content presented in the main body.
The first two sections provide additional information on the simulator, spanning its 3D assets and
configuration interface for the user, as well as its limitations. Thereafter, datasets generated for the
classification tasks are discussed in more detail, and we elaborate on our conducted experimental
training details, hyper-parameters and used neural network architectures. In the ultimate section of
the supplementary material, we provide a description and intuition behind the photometric color
invariance operators, as used in the main body to demonstrate the severity of the shortcomings of the
deep continual learning algorithms in the progressive lighting experiments. In summary, the overall
structure of the supplementary material is as follows:

A. Additional simulator details

B. Limitations of the simulator

C. Dataset generation for classification

D. Deep neural network training hyper-parameters

E. Operators for quasi-invariance to illumination

Please note that further detailed readme files, containing extra instructions on installation for our
software contributions, as pointed out in the main body, can be found in the respectively linked
repositories.

A Additional Simulator Details

In section 2 of the main body we have introduced our key contribution of a computer graphics
simulation framework for the flexible composition of data streams that facilitate assessment of
continual learning. There, we have detailed the underlying modular generative model and its random
variables. Recall, that a majority of objects and actors are placed stochastically and their appearance
is modelled largely through categorical variables. In this supplementary section, we further illustrate
the currently available 3-D assets that are subject to this categorical sampling, their placement in the
scene, and the overall possibilities of configuration for the simulator to re-emphasize its flexibility in
creating specifically customized scenarios in the context of continual learning.

Sampled assets: In the main body, we have already described Ei, a convenience variable which
defines whether a certain object or actor category i, for example a tree or a human, is sampled into
the generated scene. Depending on the result or the user’s choice, a spawned object or actor is then
subject to categorical sampling, followed by stochastic placement on a street tile. This categorical
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Figure 1: Overview of 3-D assets used in the current implementation of our simulator, spanning
6 street segment layouts, 10 buildings, 19 human actors, 7 trees, 1 street lamp, and 2 cars with
corresponding 3 and 4 colorings.

sampling represents a simple process of randomly selecting a 3-D asset from the available repository.
Recall, that for each street tile this categorical sampling is repeated in order to place multiple objects
or actors of the same type within the bounds of each randomly selected street segment. As such,
controlling the probabilities on the categorical variables and extending or limiting the used repertoire
of 3-D assets directly impacts the diversity of possibly generated scenes.

Figure 1 illustrates the assets that have currently been included in our simulator for the presented
experiments. The figure shows the six available street segment types, representing right and left
curves, a continuing straight road and three choices for crossings. The discretized set of buildings
and trees can be observed to have been picked to balance variations in width and height. Vehicles
vary in color and car model. Pedestrians were selected with different body type, skin color, age and
gender in mind. The presently used amount of distinct 3-D assets is made up of 6 street segment
layouts, 10 buildings, 7 trees, one street lamp, 2 cars with respective 3 and 4 colors, and 19 human
actors. These assets where mostly generated by hand, using editors such as Blender[1], TreeIt[2],
MakeHuman[3] and modular asset packs provided by the Unreal Engine store [4].

The heterogeneity of the scenes is thus presently controlled solely through the set of available assets
and their categorical sampling probabilities. In order to allow for more nuanced control, it is however
imaginable to further decompose these categorical variables into separate complementary variables
that manage e.g. the geometry of a car and its color independently. For our current investigative CL
experiment purposes, the purely categorical sampling has been observed to be sufficient and further
extensions are left to future work.

Sampled positioning: Sampling the position of an object upon placing it into the scene is imple-
mented by a finite support uniform distribution, with its bounds resembling intuitive assumptions on
real-world statistics, such as trees not being planted in the middle of a road. In figure 2 we show a
schematic illustration of the bounds for each object category’s placement for the example of a straight
street segment. Object-spawning areas are depicted as colored bounding boxes, which indicate the
limits for the uniform sampling of each object’s placement in the tile’s space with respect to its
category. These areas are individually defined for each tile layout, however, all bounds’ definitions
follow the same structure of design, as is illustrated in the figure. Providing each object category its
own, non-overlapping, space on the tile is a deliberate choice to reduce the complexity to prevent
objects of different categories from overlapping or otherwise colliding at runtime. Collision between
objects of the same category, e.g. humans being placed into one-another, are initially avoided by the
spawn routine itself checking for overlaps when placing an object into the scene. For dynamic actors
collision avoidance is handled by their behavioral implementation.
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Figure 2: Schematic illustration of the object placement for the example of a straight street segment.
The bounded areas for each object category are color coded as follows: vehicles (red), streetlamps
(yellow), trees (green), pedestrians (cyan), buildings (brown). Arrow-markers inside these areas
indicate an additional direction specification in which spawning objects should face. This way,
vehicles do not drive against their lane direction, and building-fronts face the street. The black
arrow-marker at the top of the tile, indicates the spawn anchor for the next sampled tile’s attachment.

Configuration: Simulator configuration by the user is a straightforward process on the basis of the
generative model for video sub-sequences, as defined in section 2.1 of the main body. Being able to
manipulate the parameters of this model, the user is provided with the freedom to define arbitrary
chains of sub-sequences in the generated video stream. We re-emphasize that this translates to a vast
number of scenarios to be generated with nuanced control over abrupt and/or continuous distribution
changes. In the executable version of the simulator, provided with this work, all configuration of the
sequences to be constructed can be specified prior to actually running the data generation process. The
configuration itself is interfaced by JSON-config files. Example files containing the configurations
to the data generation for all experimentation conducted in the main body are part of the repository
containing our simulator.

For the following further explanation of the configuration parameters we proceed with the Unreal
Engine editor’s view of a sequence’s configuration. A corresponding visualization is depicted in figure
3. We note that the presented visualization of a sequence configuration is automatically generated by
the Engine’s-Editor from our data-structure holding the configured parameters.

Overall, the configuration of a sequence can be understood as being divided into two major parts.
The first part defines parameters that are applied to the entire stream. These stay unchanged for all
sub-sequences and include the camera’s settings θC , such as the frames-per-second and resolution
of the rendered output and the render-modes to be considered. Additional included parameters are

Figure 3: Overview of a sequence’s parameter configuration as visualized by the Unreal Engine
editor. Left: parameter settings that are applied to the entire stream, including rendering options and
random-seed. Center and right: parameters settings of an example individual sub-sequence, outlining
the range of configuration possibilities.
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a general random-seed that is the basis for all sampling in the sequence, and the number of tiles to
make up the main street track at any time during the simulation.
The second part covers all remaining detailed parameters to provide the specification for each individ-
ual sub-sequences. The length of a sub-sequence is specified by the ’Number of Tiles‘ to be sampled.
The ’Street Sampling‘ covers θS , controlling the curvature in the street track. The ’Environment
Settings‘ are composed of θL and θW , manipulating lighting and weather related variables. The
’Material Settings‘ control the shading options, equivalent to θR. The ’Object Presence‘ governs
parameters θE for the Bernoulli variables.
Finally, the ’Categorical Sampling Weights‘ used for the conditional selection of specific objects
can be adjusted, which correspond to θH , θV , θTr, θLp, θB . Similarly, ’Object Sampling Numbers‘
control the number of said objects NH , NV , NTR, NLp, NB to be sampled for each tile. The categor-
ical sampling weights are specified by mapping identifiers, i.e. string-typed names, to probability
values. These correspond to names in the directory structure, which is used to store the respective
object-assets inside the simulator. This way, sampling probabilities can be assigned to individual
object instances, e.g. one specific birch tree, or alternatively, to entire sub-categories, e.g. all birches.
The exact directory structure is provided to the user as part of the repository of this work.
A similar specification process is used for the object numbers. However, here only top level identifiers,
that correspond to respective object categories, e.g. tree, car, or people, are considered.

To lift potential confusion regarding the interplay of ’Object Presence‘ settings (parameters of θE),
’Object Sampling Numbers‘, and ’Categorical Weights‘, we briefly recapitulate their relations: as
already touched upon in the main body, the ’Object Presence’ settings are convenience parameters, to
easily allow or deny sampling of certain object categories. This design has been chosen in light of
often applied incremental class continual learning scenarios. The same effect could be achieved by
setting ’Object Sampling Numbers‘ for the respective category to a value of 0. However, once the
’Object Presence‘ for a given object is turned off, further ’Object Sampling Numbers‘ are ignored.
Regarding the categorical weights in this context, we want to highlight that these are understood
as being conditioned on the event of an object being sampled. Setting an object-category identifier
to zero, or likewise all identifiers of this particular category to zero individually, will fall back to
consistently sampling the first asset entry of that category.

B Simulator Limitations

Building on the previously described extended information on assets and sequence configuration,
we discuss the limitations of the provided simulator in its current state. As we pointed out, the
heterogeneity of the scenes to be generated is eventually dependent on the diversity of the 3-D assets
available for sampling. This is because the restriction to the used asset repository naturally affects
the number of achievable, truly distinct, tile configurations. In principle, the data generation may
’endlessly’ sample a continuous world, which is in contrast to static maps that can be internalized
over time. However, there is inevitably going to be a re-occurrence of some previously observed
patterns after the repertoire has been exhausted in all possible configurations (which we re-emphasize
is still a large number considering randomness in locations, environmental factors etc.) Towards the
ultimate goal of transferring models trained in virtual environments to applications in the real-world,
which is the most common use-case of synthetic data generation, the total number of distinct possible
patterns to be observed should be maximized and likewise, the distance to matching real-world
statistics minimized. This issue is presently inherent to any graphics simulation for computer vision
and has seen multiple solution attempts, as elaborated in the main body’s related work section. At
this point, adaptation from our simulator to real remains a desideratum. Even though this limitation is
recognized, we re-emphasize that our main body’s experimentation suggests that there nevertheless is
large merit in the generated datasets as benchmarks for continual learning.

One imaginable way to easily overcome the asset limitation is through the inclusion of further publicly
provided assets. Online repositories for the latter are fortunately growing at a rapid pace. However,
being publicly accessibly and both non-commercially and commercially distributable are two distinct
factors. Most commonly used licensing unfortunately prohibits re-distribution by any third-party,
particularly if assets require a prior purchase. This includes some of the above mentioned assets,
where we have referenced third party software respectively. For our open-source contribution we
have thus opted for a two-fold distribution of our work: the source code of our simulator, where
various assets have been removed, but the core code mechanisms are accessible and can be build upon.
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We believe that reintegration of assets and inclusion of new ones can be managed with reasonable
effort. At the same time, for the continual learning practitioner and investigator, we also distribute
our simulator in a self-contained and encrypted executable, as encouraged by Unreal Engine’s market
place policy. Although the assets cannot exchanged in this version, it provides the user with the
necessary means to set the generative process’ parameters through configuration files, as described in
the previous section.

C Dataset Generation for Classification

An empirical analysis of multiple continual learning scenarios has been shown in the experimental
section of the main body. There, we have argued that the simplest conceivable assessment is a
classification setup. The respective empirical results have indicated that this already provides a
significant challenge in consideration of the even more complex semantic segmentation, surface
normal or depth prediction tasks. In this supplementary material section we first provide additional
detail on general parameter choices for the generation of our video streams, illustrate how they
can almost trivially be used for classification purposes, and then proceed to further specifying the
precisely constructed datasets. Before continuing, we would at this point like to remind the reader
that the constructed classification scenarios present but a tiny fraction of the imaginable applications
of our proposed simulation framework, as thoroughly explained in the main body’s discussion.

Parameter Choices: For our current purposes, the default parameters of all categorical variables in
the generative model are set such that each of the M choices is equally likely:

P (Obj = Objm | θObj) = 1/M ∀m = 1, . . . ,M . (1)

The parameters governing the number of individual objects and actors is set in analogous fashion,
with empirically set maximum number of 4 buildings, 8 humans, 2 additional cars, 4 street lamps
and 6 trees per street segment. The number of tiles NS is treated as deterministic and set to 7 at
a time, as a practical trade-off to surpass the view distance of the employed camera. In order to
prioritize multiple straight street segments before occurrence of a curve or crossing, the number of
the next consecutive straight street segments is predetermined by drawing from a normal distribution
nS ∼ N (4, 0.45) each time a straight street is spawned. The specific straight street layout for the
individual segments is then determined by:

P (S = Straighti |θS) = (1/I),∀i = 1, ..., I . (2)

After nS straights have been placed, a curve or crossing is spawned with equal sampling weights for
all available layouts, resulting in their placement probabilities:

P (S = Curvek | θS) = (1/K) · 1/2 ∀ k = 1, . . . ,K (3)
P (S = Crossingl | θS) = (1/L) · 1/2 ∀ l = 1, . . . , L ,

where I, K, L indicate the respective number of available distinct street tiles. For an initial practical
assessment of continual learning, only one straight tile of constant width and length, two choices for
left and right turning curves and three variations for crossings have been included. We have visualized
the collection of currently available object and actors in previous section’s figure 1. These parameter
settings are kept constant over time. In contrast, considered continuous learning scenarios can be
characterized through a change of parameters over time. Whereas this could be nuanced modifications
in above probabilities on specific object models or locations over time, we choose to investigate
sequences with respect to variations in weather, lighting and the Bernoulli variables E for existence
of entire object categories, mirroring class incremental scenarios. As an example, an incremental
weather video sequence can be generated by initially sampling the categorical weather with equal
probability, akin to equation 1, and subsequently setting the already sampled condition’s probability
to zero and raising the remaining choices’ likelihoods to sum to unity. Alternatively, the probability
for a desired categorical outcome can just be set to one. In the same spirit the existence of particular
objects defined through Bernoulli variables EB , ETr, ELp, EH , EV can just be assigned probability
vectors. For instance, short notation πE,t=0 = (1, 0, 1, 0, 0) indicates the presence of buildings and
lamps, and the absence of humans, additional vehicles and trees in a video sub-sequence. Exact
considered set-ups are described in the experimental section.
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Figure 4: Example video frame illustrating the
extraction of squared image-patches for a pure
classification task. Given respective bounding
boxes for each object instance, a quadratic crop
is taken based on the larger of the two bounding
box dimensions, such that the object is centered
in the resulting patch. Example extracted image
patches have been connected to their original
bounding boxes to provide better intution for
this process.

Classification Dataset Construction: Given that
our simulator already provides exact pixel-wise
ground truths of the scene, construction of the clas-
sification tasks for our class incremental, incre-
mental weather and incremental lighting scenario
is but a matter of straightforward image patch ex-
traction from video frames. In other words, given
an object’s bounding box only the content enclosed
by its extent is presented to the neural network to
learn a simple prediction with respect to the con-
tained class. Intuitively, this can be thought of as
being granted access to exact object positions in
the video stream by an all-knowing oracle. An ex-
ample video frame with depicted bounding boxes
and their extracted contents is illustrated in figure
4. At a closer look, it can be observed that the
bounding boxes are of a general rectangular for-
mat, with e.g. a street lamp always being much
taller than its corresponding width. In contrast, the
extracted image patches for the classification task
always featuring a 1:1 aspect ratio. This represents
a choice and further simplification in dataset con-
struction, as a direct consequence of assuming a
deep convolutional neural network that is designed
for static quadratic spatial input dimensions, see
supplementary part D for neural network details.

We can summarize the explicit extraction procedure from a full video frame to separate square image
patches in a few key steps:

1. Object bounding boxes: Given the exact semantic segmentation pixel-wise ground-truths,
a tight bounding box is directly acquired based on the furthest labelled pixels with respect to
the height and width dimensions.

2. Background bounding boxes: For each video frame, four "background" bounding boxes
are randomly sampled in order to include regions that are not explicitly included as a separate
category in the classification task. To imitate the average extent of the bounding boxes
for the other classes, background width and height are randomly sampled from a uniform
distribution in a range of 64 to 200 pixels. To avoid conflicts between categories of interest
and the background, a sampled background bounding box is rejected if it collides with an
already existing object bounding box of the particular frame.

3. Image patch crops: Create a set of image patches for each video frame by taking crops
of the bounding boxes. In our specific case of a later trained neural network that requires
spatially symmetrical input, we take a square crop based on the larger of the bounding box’s
dimensions, such that the contained object is centered. In other words, a small amount of
background is included for the shorter side of the bounding box. We do not at this point
randomize the cropping to contain stochastic translations of the object, as is commonly done
in training of datasets such as ImageNet [5] for data augmentation purposes.

4. Consistency step: For our main body’s experiments we have chosen to include a further
simplification step to facilitate the classification and assure consistency between extracted
patches. Specifically, we discard any bounding boxes and resulting crops with a minimum
width or height that does not surpass 32 pixels. That is we do not include objects that are far
in the distance in our current assessment. We also guarantee that the classification task is
strictly single target by excluding bounding boxes that have more than 20% overlap with
adjacent objects. That is, we do not include image patches that feature more than one class
at its center or contain any occluded objects.

We further note that for our presently constructed classification dataset, we skip above steps 1-4
whenever subsequent video frames are identical. The latter scenario can arise e.g. when the camera
car is stopped at a street intersection. This represents a simple choice to balance the constructed
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classification dataset as much as possible and avoid heavy redundancy. For all videos the camera
model is assumed to be unchanging and corresponds to Unreal Engine 4’s default camera, with an
effective shutter speed of 1/s, an ISO value of 100 and an Aperture equal to unity.

For our specific continual learning experiments the data generation for all scenario’s corresponding
five training and testing datasets has been conducted using an overall amount of NS = 150 street
tiles per video sub-sequence. Because our used investigated deep convolutional neural network
does not explicitly encode temporal dependency between video frames and the extracted image
patches no longer contain most of the respective scene context, we have further lowered the capturing
rate to 5 frames per second, equalling approximately 15 minutes of discretized video per sub-
sequence. Depending on the precisely generated video sequence, the above process configuration
yields an approximate amount of ∼ 20000 classification image patches per video sub-sequence. We
show an example illustration of the obtained class balance in figure 5 for one such sub-sequence.

Figure 5: Number of image patches per object
category extracted from a video sub-sequence
according to the procedure presented in sup-
plementary part C.

We can see that the classes background, tree and
humans are balanced almost equally, with a factor
less than four in terms of decreased amount of over-
all car and street lamp instances. However, we did
not observe any difficulties with respect to training
due to this imbalance. We re-emphasize the main
body’s statement that all generated dataset sequences
are simply a result of particular choices for the spe-
cific continual learning experiments to illustrate their
volatility across considered scenarios, but are made
publicly available for full reproducibility of exact ex-
periments. The respective detailed set-up for how
the constructed classification datasets are used for
convolutional neural network training are provided
in the upcoming supplementary material section. We specifically encourage future researchers to lift
our currently included dataset construction simplifications and evaluate our simulator and respective
continual learning techniques in light of more challenging tasks.

D Deep Neural Network Training Hyper-parameters

The preceding supplementary section has provided further details on the main body’s experimentation
with respect to the constructed and used classification datasets. In this section, we elaborate on the
respective hyper-parameters that have been used in conjunction with these datasets. Recall that we
have shown empirical results for continual learning classification tasks to contrast five deep continual
learning techniques in three scenarios. Consequently the performance of Synaptic Intelligence (SI) [6],
Learning without Forgetting (LwF) [7], Elastic Weight Consolidation (EWC) [8], Gradient Episodic
Memory (GEM) [9], and Open set Classifying Denoising Variational Auto-Encoders (OCDVAE)
[10] has been shown for object classification in incremental scenarios. To reinforce the main body’s
description of these scenarios in an intuitive form, we show a snapshot of each training video sub-
sequence in figure 6. Here, we can see an illustration of the appearance and disappearance of entire
categories in the class incremental scenario (left column), a progressive decrease in lighting intensity
(center column), and changes in weather (right column).

To focus on the limitations of our selection of deep continual learning procedures in the paper’s
main body, even in very simple settings, we have used the previously described constructed image
patch datasets and have treated each sub-sequence as a separate dataset. That is, we have trained
neural networks for multiple epochs on repeatedly shuffled mini-batches until convergence on one
sub-sequence, before proceeding to the next sub-sequence that is then trained analogously. Intuitively,
this breaks any assumption of temporal dependency, as our used model does not explicitly encode
temporal information and predicts on a patch-by-patch basis. It further lifts any requirement of online
learning or prediction. Each video sub-sequence has thus been decomposed into a training dataset
that is treated in isolation, as is frequently done in simple computer vision classification benchmarks.
The respective generated test sequences have been treated in similar isolation. For each sub-sequence
a separate image patch dataset has been constructed. The key difference to the training datasets is
that for evaluation the test datasets are always evaluated over all images of all sub-sequences ranging
up to the current task, where the training is conducted solely on one task at a time.
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Figure 6: Snapshot of training sub-sequences for incremental class, lighting and weather, learning
scenarios. Recall that the task is always object classification with given location.

To assure that the neural network baseline’s accuracy is in principle sufficient to learn our tasks and
the generated data is sufficient in amount, we have thus first trained a so called continual learning
upper-bound. That is, we have trained on the sequence of training data, whereas all sequential tasks
are accumulated similar to the test set to investigate whether we can reach a 100% accuracy if the
neural network has access to all data. This experiment has been validated for each of the three
scenarios and has a particular purpose. It allowed an initial investigation with respect to different
state-of-the-art neural networks and their basic training hyper-parameters, in which it has quickly been
determined that a four layer convolutional architecture based on the popular DCGAN architecture
[11] suffices for our classification tasks.

The DCGAN based "DCNN" architecture (as we do not train a GAN) serves as a common baseline
for all experiments, where the encoder is always trained for all methods, and the mirrored decoder
is required exclusively in the variational autoencoder based generative replay experiments. Note
that as indicated by the original authors of OCDVAE, the classification nevertheless is based on the
latent space resulting from the encoder. The main difference is that the generative classifier also
takes into account the joint distribution between labels and data, instead of solely predicting the
conditional probability of a class given a data point. The precise configuration of encoder and decoder
architecture components is shown in tables 1. For each convolutional layer, the tables specify the
size of the convolutional kernel, the used amount of learnable features, employed zero padding and
convolutional strides. Each convolutional layer is to be understood as a block that is followed by
batch-normalization [12] with ε = 10−5 and rectified linear unit activations. Classifiers are linear
in nature and simply project from the resulting feature space of the encoder to a vector of length
corresponding to the amount of classes. As the considered classification task is of single target nature,
a Softmax function is used to obtain prediction confidences. In case of the variational auto-encoder,
this classifier is preceded by the variational re-parametrization.
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Table 1: 4-layer DCNN encoder and decoder architecture. Convolutional (conv) and tranposed
convolutional layers (conv_t) are parameterized by size and number of filters, input padding p, and
stride s. Fully-connected layers (fc) are parameterized by their number of input and output units,
where LDim is the dimension of the latent space, and FlatEnc the number of units for the enoder’s
flattened last layer. Each full-connected and convolutional layer is followed by batch-normalization
with value of 10−5, and a rectified linear unit activation function. The decoder’s ultimate layer ends
on a Sigmoid activation function.

Layer Encoder
Encoder 1 (conv) 4× 4, 128, p = 1, s = 2
Encoder 2 (conv) 4× 4, 256, p = 1, s = 2
Encoder 3 (conv) 4× 4, 512, p = 1, s = 2
Encoder 4 (conv) 4×4, 1024, p = 0, s = 2

Layer Decoder
Decoder 1 (fc) LDim → FlatEnc + Reshape
Decoder 2 (conv_t) 4× 4− 512 p = 0, s = 2
Decoder 3 (conv_t) 4× 4− 256 p = 1, s = 2
Decoder 4 (conv_t) 4× 4− 128 p = 1, s = 2
Decoder 5 (conv) 4× 4− 3 p = 1, s = 1

An adequate length of the training procedure on shuffled mini-batches of the extracted patch dataset
for each video sub-sequence has empirically been determined to correspond to 60 epochs for encoder
only models and 120 epochs for VAE models, after which convergence of losses has been observed.
Optimization is conducted using an Adam optimizer, with an identified learning-rate of 0.001, and
the momenta parameter set to β = (0.9, 0.999), as proposed by Kingma et al. [13]. All model
weights are initialized according to He et al. [14]. The used mini-batch size is 64, and all quadratic
image patches have been resized to meet a static input resolution of 64 × 64, with no further data
augmentation applied. Realization of the experimentation has been conducted in approximately 800
GPU hours on an NVIDIA A100-SXM4-40GB GPU cluster using the repository provided in the
main body, which is a fork of the public OCDVAE codebase [10] in combination with the Avalanche
[15] continual learning library.

Apart from these general shared training hyper-parameters, the five deep continual learning methods
each come with their own additional hyper-parameters. For the reader’s convenience we also provide a
short summary of each method, to provide a better intuition behind the hyper-parameters’ significance.

• LwF: Learning without Forgetting [7] is a functional regularization mechanism that relies
on knowledge distillation [16]. Based on the latter, a trained classifier for an initial task is
used as a reference for desired predictions of the task’s classes, so called soft-labels, when
proceeding to train the classifier on additional classes of subsequent tasks. Specifically,
before updating the encoder’s and classifier’s weights to incorporate new classes, their output
vector is recorded. Even though the new class labels are not yet included, the assumption
is that preserving this output to an extent also prevents forgetting of the older classes for
data instances where the prediction is actually correct. As such, a hyper-parameter λLwF

controls the strength with which the additional loss term that imposes this constraint acts on
the continual learning.

• EWC and SI: Elastic Weight Consolidation [8] and Synaptic Intelligence [6] both em-
ploy parameter regularization by associating each learned parameter with an importance
measure. In EWC this measure is based on the diagonal of the Fisher information matrix
for each weight layer. For SI it is derived from the extent to which specific parameters
have contributed to the total loss decrease. Assuming a generally over-parametrized deep
neural network, an additional quadratic loss is then imposed in order to prevent changes
to the subset of important parameters. The strength of the loss that simply minimizes the
difference between the previous important parameter state and the next is controlled by a
hyper-parameter λEWC and λSI respectively.

• GEM: Gradient Episodic Memory [9] is a hybrid approach of regularization that includes an
additional memory buffer to store examples for each learned task. Stored samples are used
to impose constraints on gradient updates for future task learning. During optimization, the
gradient obtained from the observed new examples is projected using gradients recovered
from each task memory, such that the resulting parameter update of the model shall not
increase the loss on any of the memorized examples of a previous task. A respective hyper-
parameter λGEM (gamma in the original paper) biases the gradients’ projection to favor
backwards transfer, as stated by the authors.
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• Exemplar Replay: Exemplar replay utilizes an external memory and a pattern storing
heuristic to interleave the model’s training process for a continual learning mechanism
[17, 18, 19, 20]. In our implementation we use a naive heuristic where for each trained task
a number ε of randomly selected patterns from the experienced data is stored to the external
memory. During training for any new task, the resulting mini-batches are interleaved with
patterns from the external memory, such that they are balanced to be comprised from patterns
of each experience.

• OCDVAE: Open set Classifying Denoising Variational Auto-Encoder [10] relies on training
a deep generative model to replay data in order to prevent older tasks from being forgotten.
It uses the VAE’s approximation to the data distribution and employs an open set recognition
mechanism to sample data distribution inliers for formerly seen tasks and decodes these
sampled values into images to rehearse. A respective hyper-parameter serves as a constraint
on the inlier likelihood that is expected to yield clear and representative exemplars.

Following the original authors’ suggestions we assume a 60-dimensional latent space for OCDVAE,
use a unit Gaussian prior and consider sampled data points with an outlier likelihood of less than 5%
to be key representatives of the dataset. With respect to SI and LwF, we have observed the choice
of λLwF and λSI to barely influence the experimental outcome. In our main body’s experiments
we have used values of λSI = λLwF = 0.5. These parameters have been verified by a preliminary
grid-search which revealed no fundamental deviations in performance for λ-values of 0.1, 0.5, 1.0,
10.0, and 100.0. Regarding the sizes for external memory of GEM and the Exemplar Replay approach,
we allowed storing of ε = 200 examples per task, which amounts to approximately 1% to 4% of the
total dataset’s size of the respective scenarios.

E Operators for Quasi-invariance to Illumination

In the main body we have emphasized the lack of robustness of some continual learning approaches,
particularly in scenarios such as the incremental lighting setting, where the overall illumination
intensity is varied. For the latter, we have shown that rather simple transformations, as a pre-
processing step to operate on a space that is quasi-invariant to homogeneous illumination changes,
can solve the imposed continual learning task, without the necessity of any additional mechanism to
prevent catastrophic forgetting. Naturally, this is due to the image not changing in the quasi-invariant
space when the illumination intensity is varied, much in contrast to the original raw RGB color image
input that a deep neural network is typically expected to process.

To provide the visual intuition behind the lighting invariant transformations, we provide illustrations
of snapshots showcasing a simulated human with varied degrees of lighting strength and the respective
image after transformation in figures 7 and 8. Here, figure 7 exhibits the quasi-invariance of the space
resulting from application of local binary patterns (LBP) [21, 22]. Figure 8 provides an analogous
depection for the raw image transformation through calculation of color ratios [23], which yield
a similarly invariant space under the assumption of non-changing illumination color. The chosen
illumination intensity in these figures corresponds to the precise Lux values assumed in the main
body’s experiments. To explain how these visualized spaces are formed, we briefly summarize the
core concepts of the two respectively investigated transformations.

RGB

LBP

Figure 7: Illustration of the LBP transform applied to the incremental lighting scenario for the
example of a pedestrian.
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RGB c1c1c1 c2c2c2 c3c3c3

Figure 8: Illustration of the color ratio transform applied to the incremental lighting scenario for the
example of a pedestrian.

The quasi illumination invariance of the LBP operator originates from an encoding of pixels according
to their relative relations to their neighbors in a limited spatial vicinity. That is, within a chosen radius
the operation checks whether values have greater or smaller magnitude. In the case of homogeneous
lighting variations, these relationships remain unaltered. For our specific experiments of the main
body, the LBP radius has been set to 3, i.e. including 24 neighboring pixels. We note that we have
found no necessity to tune this value and have refrained from investigation of different radii, as the
initially chosen radius immediately resulted in almost perfect accuracy in the main body’s experiment.
This is not very surprising as the transformed images of figure 7 are almost identical and learning the
task on the any sub-sequence is expected to provide the solution to all other sub-sequences.

The quasi illumination invariance of Gever’s and Smeulder’s color constancy transformation results
from the simple insight that ratios of individual intensity channels remain constant under varying
lighting intensity. Recalling the transformation for an individual image channel as introduced in the
main body: c1 = arctan(R/max{G,B}), and corresponding definitions for the other two channels,
we can qualitatively grasp this concept for the images presented in figure 8. Note how the sequence
of raw RGB images and their transformation also nicely illustrates the quasi-invariance, in contrast
to an ideally desired full invariance. In the case of too strong illumination intensity coupled with a
specific set of non-adaptive camera parameters, we can observe how the brightest image suffers from
an onset of over-exposure. As a result, the transformed image features some discrepancy to the other
transformed images that remain unchanged for the other considered intensities. Instinctively, this
explains why the resulting final accuracy of this approach in the main body is worse than that of LBP,
although we reinforce that it still provides significant improvement over processing of raw images.

The short visual examples of this section and their respective quantitative results presented in the
main body reinforce our message that continual learning can benefit from further explicit modelling
beyond relying on representations derived exclusively from raw data. In particular, operation in
quasi-invariant spaces can provide a massive benefit and sometimes a straightforward solution to the
catastrophic forgetting challenge. We have chosen the two above operators to illustrate the importance
of taking into account the application context and encourage future researchers to conduct additional
investigations towards a symbiosis of quasi-invariant operators and deep neural networks with the
help of our proposed continual simulation framework.

11



References
[1] Blender Foundation. Blender.

[2] EVOLVED Software. TreeIt.

[3] MakeHuman Community. MakeHuman.

[4] Epic Games. Unreal Engine 4, 2015.

[5] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[6] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual Learning Through Synaptic Intelligence.
International Conference on Machine Learning (ICML), 70:3987–3995, 2017.

[7] Zhizhong Li and Derek Hoiem. Learning without forgetting. European Conference on Computer Vision
(ECCV), 2016.

[8] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia
Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences (PNAS), 114(13):3521–3526, 2017.

[9] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient Episodic Memory for Continual Learning. Neural
Information Processing Systems (NeurIPS), 2017.

[10] Martin Mundt, Sagnik Majumder, Iuliia Pliushch, Yong Won Hong, and Visvanathan Ramesh. Unified
Probabilistic Deep Continual Learning through Generative Replay and Open Set Recognition. arXiv
preprint arXiv:1905.12019, 2020.

[11] A. Radford, L. Metz, and S. Chintala. Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks. International Conference on Learning Representations (ICLR), 2016.

[12] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. International Conference on Machine Learning (ICML), 2015.

[13] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization. International
Conference on Learning Representations (ICLR), 2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. International Conference on Computer Vision (ICCV),
2015.

[15] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L. Hayes,
Matthias De Lange, Marc Masana, Jary Pomponi, Gido van de Ven, Martin Mundt, Qi She, Keiland Cooper,
Jeremy Forest, Eden Belouadah, Simone Calderara, German I. Parisi, Fabio Cuzzolin, Andreas Tolias,
Simone Scardapane, Luca Antiga, Subutai Amhad, Adrian Popescu, Christopher Kanan, Joost van de
Weijer, Tinne Tuytelaars, Davide Bacciu, and Davide Maltoni. Avalanche: an End-to-End Library for
Continual Learning. CVPR-W, Continual Learning in Vision Workshop at Computer Vision and Pattern
Recognition (CVPR), 2021.

[16] Geoffrey E. Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. NeurIPS
Deep Learning Workshop, 2014.

[17] Sylvestre A. Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL: Incremental
classifier and representation learning. Computer Vision and Pattern Recognition (CVPR), 2017.

[18] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational Continual Learning.
International Conference on Learning Representations (ICLR), 2018.

[19] Olivier Bachem, Mario Lucie, and Andreas Krause. Coresets for nonparametric estimation-The case of
DP-means. 32nd International Conference on Machine Learning, ICML 2015, 1:209–217, 2015.

[20] Ameya Prabhu, Philip H.S. Torr, and Puneet K. Dokania. GDumb: A Simple Approach that Questions Our
Progress in Continual Learning. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 12347 LNCS:524–540, 2020.

12



[21] Dong-Chen He and Li Wang. Texture Unit, Texture Spectrum, And Texture Analysis. IEEE Transactions
on Geoscience and Remote Sensing, 28(4), 1990.

[22] Li Wang and Dong-Chen He. Texture Classification Using Texture Spectrum. Pattern Recognition,
23(8):905–910, 1990.

[23] Theo Gevers and Arnold W. M. Smeulders. Color based object recognition. Pattern Recognition, 32(3):453–
464, 1999.

13


	Additional Simulator Details
	Simulator Limitations
	Dataset Generation for Classification
	Deep Neural Network Training Hyper-parameters
	Operators for Quasi-invariance to Illumination

