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A Corrections to the main paper29

In the course of preparing the supplementary materials we identified the following two mistakes.30

1. First we found a mistake in one of the proofs for a lemma describing the conditions at31

initialization. We have fixed this issue in the supplementary and highlight below the two32

errors this has caused in the main paper.33

• An entry in the Table 1 needs to be updated to reflect these changes: in particular the34

dependence on n is 1
δ not n ≥ 1 for Theorem 3.1. Aside from this one entry Table 1 is35

correct. For the convenience of the reader we provide the full, corrected table below.

Table 1: Comparison of results up to constants, note in all cases d ≥ Cn2 log(n/δ), k ≤ n
C where C

is an appropriatly chosen constant.
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36

• The same mistake also means that the sentence starting on line 188 “Comparing37

specifically the results on benign overfitting, we observe a better dependency on n in38

particular compared with Xu & Gu (2023)..." is incorrect and indeed their work has39

better dependence on n.40

2. On line 262 we made a mistake in the explanation of our results: instead of Cϵ(1 + nγ) it41

should read Cεnγ
(η(γ+ρ) .42
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B Problem setup43

B.1 Notation44

In order to provide a convenient reference for the reader, we summarize our notation as follows.45

• For n ∈ Z≥1 then [n] := {1, 2, 3...n}. Furthermore we let [n]e := {i ∈ [n] : i is even}46

and [n]o := {i ∈ [n] : i is odd}.47

• For two iterations t0, t1 with t1 > t0 we define the following counting functions.48

1. Tij(t0, t1) :=
∑t1−1

τ=t0
1(i ∈ A(τ)

j ∩ F (τ)) is the number of times the i-th data point49

updates the j-th neuron between iterations t0 and t1.50

2. Ti(t0, t1) :=
∑

j∈[2m] Tij(t0, t1) is the total number of updates from the i-th data51

point to the entire network between iterations t0 and t1.52

3. Gj(t0, t1) :=
∑

i∈ST
Tij(t0, t1) and Bj(t0, t1) :=

∑
i∈SF

Tij(t0, t1) are the number53

of clean and corrupt updates applied to the j-th neuron respectively between iterations54

t0 and t1. We further define G
(i)
j (t0, t1) := Gj(t0, t1) − 1(i ∈ ST )Tij(t0, t1) and55

B
(i)
j (t0, t1) := Bj(t0, t1)− 1(i ∈ SF )Tij(t0, t1).56

4. H
(i)
j (t0, t1) :=

∑
ℓ ̸=i Tℓj(t0, t1) is the number of times any data point except the i-th57

updates the j-th neuron between iterations t0 and t1.58

5. G(t0, t1) :=
∑

j∈[2m] Gj(t0, t1) and B(t0, t1) :=
∑

j∈[2m] Bj(t0, t1) are the total59

number of clean and corrupt updates applied to the entire network between iterations60

t0 and t1. We similarly define G(i)(t0, t1) = G(t0, t1) − 1(i ∈ ST )Ti(t0, t1) and61

B(i)(t0, t1) = B(t0, t1)− 1(i ∈ SF )Ti(t0, t1)62

6. T (t0, t1) :=
∑

ℓ Tℓ(t0, t1) is the total number of updates from all points applied63

to the entire network between iterations t0 and t1. We also define T (i)(t0, t1) =64

T (t0, t1)− Ti(t0, t1), the number of updates excluding those from point i.65

7. Si(t0, t1) :=
∑t1−1

τ=t0
1(∃j ∈ [2m] : i ∈ A(τ)

j ∩ F (τ)) is the number of iterations66

between t0 and t1 in which the ith data point participates. We say a data point67

participates during an iteration if it contributes to the update of at least one neuron at68

said iteration.69

• We extend each of these definitions to the case t0 = t1 by letting the empty sum be zero.70

• The signal alignment of the j-th neuron is defined as C(t)
j = ⟨w(t)

j , (−1)jv⟩.71

• We use the notation O(η) to denote a quantity f(η) such that72

lim sup
η→0

|f(η)|
η

< ∞.

Likewise, f(η) = O(1) if73

lim sup
η→0

|f(η)| < ∞,

f(η) = Ω(η) if74

lim inf
η→0

|f(η)|
η

> 0,

and f(η) = Ω(1) if75

lim inf
η→0

|f(η)| > 0.

Here the limit is taken as η and λw go to zero while the other parameters of the model and76

data remain fixed. We will always choose λw such that λw = O(η).77

• Denote T0 be the first iteration t where F (t) ̸= [2n].78

• We use C ≥ 1 and c ≤ 1 to generically represent sufficiently large and small constants79

respectively. Furthermore, we reuse both C and c from one line to another: for example,80

2Cx = Cx and 0.5cx = cx.81
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• Finally, in much of our analysis for particular variables, notably γ, the constants involved82

matter and as such we work with explicit constants. For other variables, in particular m and83

n, then typically as long as they are sufficiently large the explicit constants involved are not84

important. As such we typically resort to using a generically large enough constant C.85

B.2 Data model86

For the reader’s convenience we recap the data model studied in this work. We consider a training sam-87

ple of 2n pairs of points and their labels (xi, yi)
2n
i=1 where (xi, yi) ∈ Rd × {−1,+1}. Furthermore,88

we identify two disjoint subsets ST ⊂ [2n] and SF ⊂ [2n], where ST ∪SF = [2n], which correspond89

to the clean and corrupt points in our sample respectively. The categorization of a point as clean or90

corrupted is determined by its label: for all i ∈ [2n] we assume yi = β(i)(−1)i where β(i) = −191

iff i ∈ SF and β(i) = 1 otherwise. In addition, we assume |SF ∩ [2n]e| = |SF ∩ [2n]o| = k and92

|ST ∩ [2n]e| = |ST ∩ [2n]o| = n− k. We remark that this assumption simplifies the exposition of93

our results but is not actually integral to our analysis. Each data point is assumed to have the form94

xi = (−1)i(
√
γv +

√
1− γβ(i)ni). (1)

Here v ∈ Rd satisfies ∥v∥ = 1. We refer to v as the signal component as the alignment of a95

clean point with v determines its sign. Indeed, sign(⟨xi,v⟩) = (−1)i = yi for i ∈ ST whereas96

sign(⟨xi,v⟩) = −yi for i ∈ SF . Thus we may view the labels of corrupt point as flipped from their97

clean state. The random vectors (ni)
2n
i=1 are mutually independent and identically distributed (i.i.d.)98

drawn from the uniform distribution over Sd−1∩ span{v}⊥, which we denote U(Sd−1∩ span{v}⊥).99

This distribution is symmetric, mean zero and for any n ∼ U(Sd−1 ∩ span{v}⊥) it holds that n ⊥ v100

and ∥n∥ = 1. We refer to these vectors as noise components due to the fact that they are independent101

of the labels of their respective points. We also remark that as the noise distribution is symmetric then102

clean and corrupt points are identically distributed. Indeed, the multiplication of the noise component103

by β(i) results in the following expression which will prove convenient.104

yixi = β(i)
√
γv +

√
1− γni. (2)

This expression entails that the only difference between clean and corrupt points during training is105

that they push neurons in opposite directions along the signal vector. Finally, the real, scalar quantity106

γ ∈ [0, 1] controls the strength of the signal versus noise, furthermore the clean margin, i.e., the107

distance from any clean point to the max margin classifier, is
√
γ by construction. Thus far we have108

discussed only the data in the training sample. We assume test data are drawn mutually i.i.d. from the109

same distribution as the points in the training sample but with the added proviso that they are always110

clean: to be clear, at test time a label is sampled as y ∼ U({−1, 1}) and the corresponding data point111

has the form112

x = y(
√
γv +

√
1− γn), (3)

where again n ∼ U(Sd−1 ∩ span{v}⊥).113

B.3 Network architecture, optimization and initialization114

Here we also recap the network architecture and optimization and initialization setting. We consider115

a densely connected, single layer feedforward neural network f : R2m×d × Rd → Rd with the116

following forward pass map,117

f(W,x) =

2m∑
j=1

(−1)jϕ(⟨wj ,x⟩).

Here ϕ := max{0, z} denotes the ReLU activation function, wj the jth row of W and wjc the118

element of W on row j ∈ [m] and column c ∈ [d]. We remark that only the weights of the119

hidden layer, which we also refer to as the weights of the network, are trainable and the outer120

weights remain frozen throughout training. The network weights are optimized using full batch121

gradient descent (GD) with step size η > 0 to minimize the hinge loss over a training sample122

((xi, yi))
2n
i=1 ⊂ (Rd×{−1, 1})2n as described in Section B.2. After t′ > 0 iterations this optimization123

process generates a sequence of weight matrices (W(t))t
′

t=0. For convenience we overload our124
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notation for the forward pass map of the network by letting f(t,x) := f(W(t),x). We denote the125

hinge loss on the i-th point at iteration t as126

ℓ(t, i) := max{0, 1− yif(t,xi)},

the hinge loss over the entire training sample at iteration t is therefore defined as127

L(t) :=

2n∑
i=1

ℓ(t, i).

Let F (t) := {i ∈ [2n] : ℓ(t,xi) < 1} be the set of points that have nonzero loss at iteration t, and128

A(t)
j := {i ∈ [2n] : ⟨w(t)

j ,xi⟩ > 0} the set of points which activate the jth neuron at iteration t.129

Combining (2) with130

∂ℓ(t, i)

∂wjr
=

{
0, ⟨w(t)

j ,xi⟩ ≤ 0,

−(−1)jyixir, ⟨w(t)
j ,xi⟩ > 0

gives that the GD update rule2 for the neuron weights for any iteration t ≥ 0,131

w
(t+1)
j = w

(t)
j + (−1)jη

2n∑
ℓ=1

1(ℓ ∈ A(t)
j ∩ F (t))yℓxℓ. (4)

In regard to the initialization of the network weights, for convenience we assume each neuron’s132

weight vector is drawn mutually i.i.d. uniform from the centered sphere with radius λw > 0. We133

remark that results analogous to the ones presented trivially hold if the weights are instead initialized134

mutually i.i.d. as w(0)
jc ∼ N (0, σ2

w) as long as σ2
w is sufficiently small.135

B.4 Properties of the data and network at initialization136

For each of our results to hold we require certain properties on both the network weights and training137

sample to hold at initialization. Here we bound the probabilities of each of these events in isolation138

and later will combine them using the union bound.139

First, and in order to prove convergence, we require the noise components of the training sample to140

be approximately orthogonal to one another. A training sample whose noise components satisfy this141

approximate orthogonality condition we refer to as “good".142

Lemma B.1. Let ρ, δ ∈ (0, 1). Given a sequence (ni)
2n
i=1 of mutually i.i.d. random vectors with143

ni ∼ U(Sd−1 ∩ span(v)⊥), then assuming d ≥ max
{
6, 3ρ−2 ln

(
2n2

δ

)}
144

P

⋂
i̸=ℓ

{|⟨ni,nℓ⟩| ≤ ρ}

 ≥ 1− δ.

Proof. For any pairs of mutually i.i.d. random vectors n,n′ ∼ U(Sd−1 ∩ span(v)⊥) and u,u′ ∼145

U(Sd−2) observe146

⟨n,n′⟩ d
= ⟨u,u′⟩.

Due to independence of u,u′ and the rotational invariance of U(Sd−2)147

⟨u,u′⟩ d
= ⟨u, e1⟩,

where here e1 = [1, 0..0]T . Let Cap(e1, ρ) := {z ∈ Sd−2 : ⟨e1, z⟩ ≥ ρ} denote the spherical cap148

of Sd−2 centered on e1. As d ≥ 6 then from Ball (1997)[Lemma 2.2] it follows that149

P(|⟨n,n′⟩| ≥ ρ) = P(u ∈ Cap(e1, ρ)) ≤ exp

(
− (d− 2)ρ2

2

)
≤ exp

(
−dρ2

3

)
.

2Although the derivative of ReLU clearly does not exist at zero, we follow the routine procedure of defining
an update rule that extends the gradient update to cover this event.
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Applying the union bound then150

P

 ⋂
i,ℓ∈[2n],i̸=ℓ

{|⟨ni,nℓ⟩| ≤ ρ}

 = 1− P

 ⋃
i,ℓ∈[2n],i̸=ℓ

{|⟨ni,nℓ⟩| ≥ ρ}


≥ 1− 2n2P (|⟨ni,nℓ⟩| ≥ ρ)

≥ 1− 2n2 exp

(
−dρ2

3

)
.

Setting δ ≥ 2n2 exp
(
−dρ2

3

)
and rearranging we arrive at the result claimed.151

In addition to requiring the approximate orthogonality property on the training data, our approach152

also requires at least a large proportion of the neurons at initialization to satisfy certain conditions.153

To this end, we introduce the following notation, where p ∈ {−1, 1}.154

• Let Γp := {j : (−1)
j
= p, Gj(0, 1)(γ − ρ) − Bj(0, 1)(γ + ρ) ≥ 2λw

η } denote the set155

of neurons with output weight (−1)p which have more clean points activating them than156

corrupt ones at initialization. We will show that these sets of neurons have a predictable157

behavior early during training before any clean points achieve zero loss. Let Γ = Γ1 ∪ Γ−1.158

• Let Θp := {j ∼ Γp : Gj(0, 1)(γ + ρ) − Bj(0, 1)(γ − ρ) < 1 − γ + ρ} ⊂ Γp. We will159

show that neurons in this subset are able to carry corrupt points through training, eventually,160

at least in the overfitting setting, enabling them to achieve zero loss.. Let Θ = Θ1 ∪Θ−1.161

Our goals are two-fold: first show Γp accounts for a significant proportion of the neurons with output162

label sign matching p, second, and of particular importance for our result on benign overfitting, ensure163

each corrupt point activates a neuron in Θp where p matches its label. To this end we first provide the164

following result.165

Lemma B.2. Define µ := 2k
n+k and assume κ ∈ (0, 1) satisfies κ > µ. Given an arbitrary neuron166

wj ∼ U(Sd−1), we say that a collection of training points is (ε, κ)-good iff both Tj(0, 1) ≥ 1 and167

Bj(0, 1) < κTj(0, 1) with probability at least 1− ϵ over the randomness of the neuron. Define168

δ := 2 exp

(
− (n+ k)(κ− µ)2

16

)
,

then with probability at least 1− δ
ϵ the training sample is (ε, κ)-good.169

Proof. First we establish the notation for what follows: we say a point x is positive iff ⟨x,v⟩ > 0170

and is negative iff ⟨x,v⟩ < 0. We use S+ and S− to denote these sets of points respectively. Note171

by construction, see (1), clean and corrupt points of the same sign are mutually i.i.d. As here we172

only ever consider the activations at initialization, we also drop both the subscript j as well as the173

argument parentheses on the counting functions. We also use ± superscripts to denote the subsets174

corresponding to activations from positive and negative points respectively: as indicative examples of175

this notation, T is therefore used as shorthand for the total number of activations, B+ is the number176

corrupt positive activations and G− is the number of clean negative activations.177

By the symmetry of the distribution of w, P(⟨w,v⟩ > 0) = P(⟨w,v⟩ < 0) = 1
2 . As a result178

P((B < κT ) ∩ (T > 0)) =
1

2
P((B < κT ) ∩ (T > 0) | ⟨w,v⟩ > 0)

+
1

2
P((B < κT ) ∩ (T > 0) | ⟨w,v⟩ < 0).

As the analysis and results derived under either condition will prove identical under reversal of the179

signs involved, without loss of generality we let ⟨w,v⟩ > 0. Using the union bound180

P((B < κT ) ∩ (T > 0) | ⟨w,v⟩ > 0) ≥ 1− P(T = 0 | ⟨w,v⟩ > 0)− P(B ≥ κT | ⟨w,v⟩ > 0),

therefore it suffices to upper bound the two probabilities on the right-hand-side.181
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Observe if ⟨w,v⟩ > 0 then for x ∈ S+ P(⟨x,w⟩) > 1/2 and for x ∈ S− P(⟨x,w⟩) < 1/2. By182

the mutual independence of the preactivations (⟨x,wj⟩)2ni=1 then P(T = 0 | ⟨w,v⟩ > 0) ≤ (1/2)n.183

To upper bound the other probability of interest we further condition on the following two events:184

there are no negative clean activations and all corrupt points are positive. Conditioning on these185

three events, which we denote for convenience Λ, then T+ = T and furthermore the event B < κT186

is equivalent to B+ < κT+. Again as the preactivations are mutually independent the number187

of positive activations can be lower bounded using a binomial distribution with probability 1/2.188

Applying a Chernoff bound189

P
(
T+ ≥ n+ k

4

∣∣∣∣ Λ) ≥ 1− exp

(
−n+ k

16

)
.

Furthermore, sampling positive points which activate wj is equivalent to uniformly sampling without190

replacement T+ points from S+. Let Zℓ = 1 iff the ℓ-th element sampled from S+ is corrupt and is191

0 otherwise. Using a variant of Hoeffding’s bound for sampling without replacement (see Proposition192

1.2 of Bardenet & Maillard (2015) for example)193

P
(
B+ ≥ κT+

∣∣ Λ) = P

 1

T+

T+∑
ℓ=1

Zℓ − µ ≥ κ− µ

 ≤ exp
(
−2T+(κ− µ)2

)
.

Therefore194

P((B < κT ) ∩ (T > 0) | ⟨w,v⟩ > 0)

≥ 1− P(T = 0 | ⟨w,v⟩ > 0)− P(B ≥ κT | ⟨w,v⟩ > 0)

≥ 1− (1/2)n − P
(
B+ ≥ κT+

∣∣∣∣ T+ ≥ n+ k

4
,Λ

)
P
(
T+ ≥ n+ k

4

∣∣∣∣ Λ)
≥ 1− (1/2)n − exp

(
− (n+ k)(κ− µ)2

16

)
≥ 1− δ.

Now if instead ⟨x,w⟩ < 0 then swapping the roles of the negative and positive points in the argument195

above gives the same answer. As a result196

P((B < κT ) ∩ (T > 0)) ≥ 1− δ.

For convenience let X := (xi)
2n
i=1 and197

χc
κ,ϵ = {X : Pw((B ≥ κT ) ∪ (T = 0)) > ϵ}.

Note here that the subscript w indicates randomness over the neuron alone and in addition clearly by198

construction199

P
(
(B ≥ κT ) ∪ (T = 0) | X ∈ Xc

κ,ϵ

)
> ϵ.

Furthermore, as200

δ ≥ P ((B ≥ κT ) ∪ (T = 0)) ≥ P
(
(B ≥ κT ) ∪ (T = 0) | X ∈ Xc

κ,ϵ

)
P(X ∈ χc

κ,ϵ),

then it follows that P
(
X ∈ Xc

κ,ϵ

)
≤ δ

ϵ . As a result we conclude that the probability of drawing a201

(κ, ϵ)-good training sample is at least 1− δ
ϵ .202

Based on Lemma B.2, the following lemma bounds the probability that Γp is sufficiently large for our203

purposes. In particular, for our result on non-overfitting we require |Γp| = m, while for our benign204

overfitting result only that |Γp| ≥ (1− α)m for some constant α ∈ (0, 1).205

Lemma B.3. Suppose n ≥ 15k, 2λw ≤ η(γ − ρ), γ ≥ 2ρ and p ∈ {−1, 1}. Then for sufficiently206

large n there exists a constant c > 0 such that the following are true.207

1. P (|Γp| = m) = 1−m exp(−cn).208

2. With α ∈ (0, 1) a constant such that αm ∈ [m], then209

P (|Γp| ≥ (1− α)m) ≥ 1− exp(−cn).
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Proof. As here we only ever consider the activations at initialization, for convenience we drop the210

argument parentheses “(0, 1)" on the counting functions: in particular we write Tj(0, 1) as Tj and211

Bj(0, 1) as Bj . Suppose (j)−1 = p, under the assumption λw ≤ η(γ − ρ) then if212

Gj(γ − ρ)−Bj(γ + ρ) > (γ − ρ) ≥ 2λw

η

we may conclude j ∈ Γp. Rearranging this expression, equivalently j ∈ Γp if213

(1 +Bj)γ < (γ − ρ)Tj .

As a result, membership to Γp is guaranteed as long as Tj > 0 and Bj < γ−ρ
2γ Tj . Note by the214

assumptions of the lemma µ := 2k
n+k ≤ 1

8 and γ−ρ
2γ ≥ 1

4 . Conditioning on the event we draw a (ε, 1
4 )-215

good training sample then the probability that j /∈ Γp is at most ϵ by Lemma B.2. Furthermore, with216

the training sample fixed the activations of each neuron are mutually independent. Let X = (xi)
n
i=1217

denote the draw of the training sample and218

χκ,ϵ = {X : Pw((B ≥ κT ) ∪ (T = 0)) ≤ ϵ}

the set of (ε, 1
4 )-good training samples. Let ϵ = exp(−cn), where c in what follows is a sufficiently219

small constant. By the assumptions of the lemma220

P
(
X ∈ X1/4,ϵ

)
≥ 1− δ

ϵ
≥ 1− 2 exp

(
− n

1024
+ cn

)
≥ 1− 2 exp (−cn) .

For the first result, using the union bound221

P (|Γp| = m) ≥ P
(
|Γp| = m | X ∈ X1/4,ϵ

)
P
(
X ∈ X1/4,ϵ

)
≥ (1−m exp(−cn)) (1− 2 exp (−cn))

≥ 1−m exp(−cn)

as claimed. For the second result observe222

P
(
|Γp| < (1− α)m | X ∈ X1/4,ϵ

)
= P (∃J ⊂ [2m]p, |J | = αm : j /∈ Γp ∀j ∈ J | X ∈ Xκ,ϵ)

≤
(

m

αm

)
ϵαm

≤
(ϵe
α

)αm
.

As α is a constant again there is a sufficiently small constant c such that223

ϵe

α
= exp(−cn+ 1 + log(1/α)) ≤ exp(−cn).

Therefore, there exists a sufficiently small constant c such that224

P (|Γp| ≥ (1− α)m) ≥ P
(
|Γp| ≥ (1− α)m | X ∈ X1/4,ϵ

)
P
(
X ∈ X1/4,ϵ

)
≥ (1− exp (−cmnα)) (1− 2 exp (−cn))

≥ 1− exp(−cn)

as claimed.225

Lemma B.4. Assume γ + ρ ≤ 1
1.02(n−k) , n − k ≥ 2 × 106, |Γp| > 0.99m for p ∈ {−1, 1} and226

m ≥ C log(n) for a sufficiently large constant C. Then with probability at least 1− C
n for all i ∈ SF227

there exists a j ∈ Θyi
such that i ∈ A(0)

j .228

Proof. For convenience in what follows we use Gj and Bj for Gj(0, 1) and Bj(0, 1) respectively.229

For a neuron to be in Θp it must satisfy the following condition,230

Gj(γ + ρ)−Bj(γ − ρ) < 1− γ + ρ,

or alternatively231

Gj <
1− γ + ρ

γ + ρ
=

1

γ + ρ
− γ − ρ

γ + ρ
.
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By our assumptions this is in turn implied by the following condition Gj < 1.02(n − k) − 1 or232

Gj < 1.01(n− k) for n− k > 100.233

Let P (i, l) be the probability that an arbitrary random neuron is active on points i and l. Consider234

independently drawing two points from the distribution over points with either positive or negative235

signal sign component, and let p be the probability that an arbitrary random neuron is active on both236

points. Similarly let q be the probability that an arbitrary neuron is active on two points which are237

drawn with opposite signal signs. By rotational invariance of the weight distribution the probability a238

random neuron activates on a point is 1/2, therefore E(Gj) = n− k and furthermore P (i, i) = 1/2.239

In addition, by writing Gj as a sum of indicator functions, expanding, and using the linearity of240

expectation we have241

E(G2
j ) =

∑
(i,l)∈[n−k]×[n−k]

P (i, l) =
1

2
2(n− k) + 2(n− k)2q + 2(n− k)(n− k − 1)p.

Recall i and l index over the clean points. Observe by construction that for i ̸∼ l then −xl
d
= xi. As242

a result, using an abuse of notation where the index −j indicates the point −xj , then for i ∼ l ̸∼ j243

we have P (i, j) = P (i,−l). If a neuron activates on xl iff it does not activate on −xl, therefore244

P (i, l) + P (i,−l) = P (i, i) = 1/2 and hence we conclude p+ q = 1/2. As a result245

E(G2
j ) = (n− k) + 2(n− k) ((n− k)q + (n− k)p− p)

= (n− k) + 2(n− k)

(
1

2
(n− k)− p

)
≤ (n− k) + (n− k)2.

As E(Gj) = n− k, it follows that Gj has variance n− k. Therefore by Chebyshev’s inequality246

P(Gj ≥ 1.01(n− k)) ≤ 104

n− k
.

Therefore a given random neuron j satisfies the condition Gj < 1.01(n− k) with failure probability247

at most 104

n−k . Applying Markov’s inequality248

P

 2m∑
j=1

1 (Gj ≥ 1.01(n− k)) ≥ 2m

100

 ≤ 106

2(n− k)

and therefore249

P

 2m∑
j=1

1 (Gj < 1.01(n− k)) ≥ 1.998m

 ≥ 1− 106

2(n− k)
.

Now by a Chernoff bound, there exists a small constant c > 0 such that with probability at least250

1−exp(−cm), a fixed training point is activated by at least 1/3 of the neurons of each sign. Therefore,251

using the union bound every training point is activated by at least m/3 of the neurons with probability252

at least 1− n exp(−cm) ≥ 1− exp(−cm) using that log n ≤ O(m).253

Let Λ := {j ∈ [2m] : Gj < 1.01(n − k)} and observe that if j ∈ Γp and j ∈ Λ then j ∈ Θp.254

Condition on two further events in addition to |Γp| ≥ 0.99m for p ∈ {−1, 1}: |Λ| ≥ 1.998m and for255

all i ∈ SF then |Ii(0) ∩ {j : (−1)j = yi}| ≥ m/3 and for any p ∈ {−1, 1} . Then with probability256

one we have for all i ∈ SF that there exists a j ∈ Θyi
such that i ∈ A(0)

j . The probability that these257

two conditions hold is at least258

1− C

n
− exp(−cm).

Supposing that m ≥ C log(n) for a sufficiently large constant C then this probability can in turn be259

lower bounded as260

1− C

n
as claimed.261

262
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The final lemma we provide here states, under mild conditions on the network width, that with high263

probability every point in the training sample activates a neuron whose output weight matches its264

label in sign. We will use this to prove our result on non-benign overfitting, which is discussed in265

Section E.266

Lemma B.5. Let δ ∈ (0, 1), then if m ≥ log2(
2n
δ ) the probability that for all i ∈ [2n] there exists a267

j ∈ [2m] such that (−1)j = yi and i ∈ A(0)
j is at least 1− δ.268

Proof. Observe by the rotational symmetry of the weight distribution that269

P(⟨wj ,xi⟩ > 0) = P(⟨wj , e1⟩ > 0) = 1/2.

By construction, for each element in the training sample (xi, yi) there are m neurons whose output270

weight has the same sign as yi. As the preactivations of xi with each neuron are mutually independent271

from one another, then using the union bound it follows that272

P

(
2n⋂
i=1

{∃j ∈ [2m] : (−1)j = yi, i ∈ A(0)
j }

)
= 1− P

(
2n⋃
i=1

{̸ ∃j ∈ [2m] : (−1)j = yi, i ∈ A(0)
j }

)
≥ 1− 2nP(⟨wj ,xi⟩ > 0)

= 1− 2n2−m.

Setting δ ≥ 2n2−m and rearranging we arrive at the stated result.273

C Supporting Lemmas274

C.1 Bounds on activations and preactivations275

For any pair of iterations t, t0 satisfying t > t0, unrolling the GD update rule (4) gives276

w
(t1)
j = w

(t0)
j + (−1)jη

2n∑
ℓ=1

Tℓj(t0, t)yℓxℓ.

Using (1) and the fact that ni ⊥ v, then for any i ∈ [2n]277

⟨w(t)
j ,xi⟩ = ⟨w(t0)

j ,xi⟩+ (−1)jη

2n∑
ℓ=1

Tℓj(t0, t)yℓ⟨xℓ,xi⟩

= ⟨w(t0)
j ,xi⟩+ (−1)j+iη

2n∑
ℓ=1

Tℓj(t0, t)(−1)ℓ+iβ(ℓ)⟨xℓ,xi⟩

= ⟨w(t0)
j ,xi⟩+ (−1)j+iβ(i)η

2n∑
ℓ=1

Tℓj(t0, t)λiℓ,

(5)

where we define λiℓ := (−1)ℓ+iβ(i)β(ℓ)⟨xℓ,xi⟩. Towards the goal of bounding the activation of a278

neuron with a data point we provide the following results.279

Lemma C.1. Assume |⟨ni,nℓ⟩| ≤ ρ
1−γ for all i, ℓ ∈ [2n] such that i ̸= ℓ.280

1. If i = ℓ then λiℓ = 1.281

2. If i ̸= ℓ, i ∈ ST , and ℓ ∈ SF , then −(γ + ρ) ≤ λiℓ ≤ −(γ − ρ).282

3. If i ̸= ℓ, i ∈ SF , and ℓ ∈ ST , then −(γ + ρ) ≤ λiℓ ≤ −(γ − ρ).283

4. If i ̸= ℓ and i, ℓ ∈ ST , then γ − ρ ≤ λiℓ ≤ γ + ρ.284

5. If i ̸= ℓ and i, ℓ ∈ SF , then γ − ρ ≤ λiℓ ≤ γ + ρ.285

Proof. Observe by the data model, described in Section B.2, that286

⟨xi,xℓ⟩ = (−1)ℓ+i (γ + (1− γ)β(i)β(ℓ)⟨ni,nℓ⟩) .
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Therefore287

λiℓ = β(i)β(ℓ)γ + (1− γ)⟨ni,nℓ⟩
from which the results claimed follow.288

Lemma C.2. Assume |⟨xi,xℓ⟩| ≤ ρ
1−γ for all i, ℓ ∈ [2n] such that i ̸= ℓ. Then for any j ∈ [2m] the289

following are true.290

1. If i ∈ ST , i ∼ j then291

⟨w(t)
j ,xi⟩ ≥ ⟨w(t0)

j ,xi⟩+ η
(
Tij(t0, t) +G

(i)
j (t0, t)(γ − ρ)−B

(i)
j (t0, t)(γ + ρ)

)
⟨w(t)

j ,xi⟩ ≤ ⟨w(t0)
j ,xi⟩+ η

(
Tij(t0, t) +G

(i)
j (t0, t)(γ + ρ)−B

(i)
j (t0, t)(γ − ρ)

)
.

2. If i ∈ ST , i ̸∼ j then292

⟨w(t)
j ,xi⟩ ≥ ⟨w(t0)

j ,xi⟩ − η
(
Tij(t0, t) +G

(i)
j (t0, t)(γ + ρ)−B

(i)
j (t0, t)(γ − ρ)

)
⟨w(t)

j ,xi⟩ ≤ ⟨w(t0)
j ,xi⟩ − η

(
Tij(t0, t) +G

(i)
j (t0, t)(γ − ρ)−B

(i)
j (t0, t)(γ + ρ)

)
.

3. If i ∈ SF , i ∼ j then293

⟨w(t)
j ,xi⟩ ≥ ⟨w(t0)

j ,xi⟩ − η
(
Tij(t0, t)−G

(i)
j (t0, t)(γ − ρ) +B

(i)
j (t0, t)(γ + ρ)

)
⟨w(t)

j ,xi⟩ ≤ ⟨w(t0)
j ,xi⟩ − η

(
Tij(t0, t)−G

(i)
j (t0, t)(γ + ρ) +B

(i)
j (t0, t)(γ − ρ)

)
.

4. If i ∈ SF , i ̸∼ j then294

⟨w(t)
j ,xi⟩ ≥ ⟨w(t0)

j ,xi⟩+ η
(
Tij(t0, t)−G

(i)
j (t0, t)(γ + ρ) +B

(i)
j (t0, t)(γ − ρ)

)
⟨w(t)

j ,xi⟩ ≤ ⟨w(t0)
j ,xi⟩+ η

(
Tij(t0, t)−G

(i)
j (t0, t)(γ − ρ) +B

(i)
j (t0, t)(γ + ρ)

)
.

Proof. Considering (5) we can further separate the summation term as follows,295

⟨w(t)
j ,xi⟩ = ⟨w(t0)

j ,xi⟩+ (−1)j+iβ(i)η

Tij(t0, t) +
∑
ℓ∈ST
ℓ̸=i

Tℓj(t0, t)λil +
∑
ℓ∈SF
ℓ ̸=i

Tℓj(t0, t)λiℓ

 .

Note, with i ∈ ST and i ∼ j, or i ∈ SF and i ̸∼ j, then (−1)j+iβ(i) = 1. On the other hand, with296

i ∈ ST and i ̸∼ j, or i ∈ SF and i ∼ j, then (−1)j+iβ(i) = −1. Substituting the relevant bounds297

on λiℓ provided in Lemma C.1, and observing by definition that G(i)
j (t0, t) =

∑
ℓ∈ST ,ℓ̸=i Tℓj(t0, t)298

and B
(i)
j (t0, t) =

∑
ℓ∈ST ,ℓ̸=i Tℓj(t0, t), one arrives at the results claimed.299

We will often make use of the following similar but more pessimistic bounds on the activations.300

Recall that ϕ is the ReLU function: ϕ(a) = max{a, 0}.301

Lemma C.3. For any j ∈ [2m] and iterations t0, t with t0 ≤ t the following hold:302

1. If i ∈ ST , i ∼ j then303

ϕ(⟨w(t)
j ,xi⟩) ≥ ϕ(⟨w(t0)

j ,xi⟩) + ηTij(t0, t)− η(γ + ρ)Bj(t0, t)− ηϕ(ρ− γ)G
(i)
j (t0, t)

ϕ(⟨w(t)
j ,xi⟩) ≤ ϕ(⟨w(t0)

j ,xi⟩) + ηTij(t0, t) + η(γ + ρ)G
(i)
j (t0, t) + ηϕ(ρ− γ)Bj(t0, t).

2. If i ∈ ST , i ̸∼ j then304

ϕ(⟨w(t)
j ,xi⟩) ≥ ϕ(⟨w(t0)

j ,xi⟩)− ηTij(t0, t)− η(γ + ρ)G
(i)
j (t0, t)− ηϕ(ρ− γ)Bj(t0, t)

ϕ(⟨w(t)
j ,xi⟩) ≤ ϕ(⟨w(t0)

j ,xi⟩)− ηTij(t0, t) + η(γ + ρ)Bj(t0, t) + ηϕ(ρ− γ)G
(i)
j (t0, t) + η.
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3. If i ∈ SF , i ∼ j then305

ϕ(⟨w(t)
j ,xi⟩) ≥ ϕ(⟨w(t0)

j ,xi⟩)− ηTij(t0, t)− η(γ + ρ)B
(i)
j (t0, t)− ηϕ(ρ− γ)Gj(t0, t)

ϕ(⟨w(t)
j ,xi⟩) ≤ ϕ(⟨w(t0)

j ,xi⟩)− ηTij(t0, t) + η(γ + ρ)Gj(t0, t) + ηϕ(ρ− γ)B
(i)
j (t0, t) + η.

4. If i ∈ SF , i ̸∼ j then306

ϕ(⟨w(t)
j ,xi⟩) ≥ ϕ(⟨w(t0)

j ,xi⟩) + ηTij(t0, t)− η(γ + ρ)Gj(t0, t)− ηϕ(ρ− γ)B
(i)
j (t0, t)

ϕ(⟨w(t)
j ,xi⟩) ≤ ϕ(⟨w(t0)

j ,xi⟩) + ηTij(t0, t) + η(γ + ρ)B
(i)
j (t0, t) + ηϕ(ρ− γ)Gj(t0, t).

The η term in the upper bound for cases 2 and 3 is only necessary if Tij(t0, t) > 0.307

We remark that we will often use this result in a setting where ρ ≤ γ. In these cases, the terms that308

involve ϕ(ρ− γ) are zero and will be dropped.309

Proof. For each of these results, we make use of Lemma C.2, a ≤ ϕ(a) for all a ∈ R, and310

0 ≤ G
(i)
j (t0, t1) ≤ Gj(t0, t1)

0 ≤ B
(i)
j (t0, t1) ≤ Bj(t0, t1)

for all i, j, t0, t1. We will only prove the inequalities for i ∈ ST here, as the inequalities for i ∈ SF311

are analogous: statement 4 is just statement 1 with the roles of Gj(t0, t) and Bj(t0, t) switched,312

while statement 3 is the same for statement 2.313

For the first inequality in statement 1 we claim it suffices to show314

ϕ(⟨w(τ+1)
j ,xi⟩) ≥ ϕ(⟨w(τ)

j ,xi⟩)+ηTij(τ, τ+1)−η(γ+ρ)Bj(τ, τ+1)−ηϕ(ρ−γ)G
(i)
j (τ, τ+1)

(6)
Indeed, if (6) is true then the result desired follows as315

ϕ(⟨w(t)
j ,xi⟩)− ϕ(⟨w(t0)

j ,xi⟩) =
t−1∑
τ=t0

ϕ(⟨w(τ+1)
j ,xi⟩)− ϕ(⟨w(τ)

j ,xi⟩)

≥
t−1∑
τ=t0

(
ηTij(τ, τ + 1)− η(γ + ρ)Bj(τ, τ + 1)

− ηϕ(ρ− γ)G
(i)
j (τ, τ + 1)

)
= ηTij(t0, t)− η(γ + ρ)Bj(t0, t)− ηϕ(ρ− γ)G

(i)
j (t0, t).

In order to prove (6) we bound316

ϕ(⟨w(τ+1)
j ,xi⟩) ≥ ⟨w(τ+1)

j ,xi⟩

≥ ⟨w(τ)
j ,xi⟩+ ηTij(τ, τ + 1)− η(γ + ρ)Bj(τ, τ + 1)

− ϕ(ρ− γ)G
(i)
j (τ, τ + 1).

This follows from statement 1 in Lemma C.2. From here, we consider two cases: first, if ⟨w(τ)
j ,xi⟩ ≥317

0 then ⟨w(τ)
j ,xi⟩ = ϕ(⟨w(τ)

j ,xi⟩) and so (6) clearly holds. Alternatively, if ⟨w(τ)
j ,xi⟩ < 0 then318

Tij(τ, τ + 1) = 0, ϕ(⟨w(τ)
j ,xi⟩) = 0 and as a result the right-hand-side of (6) is non-positive while319

the left is non-negative. As such (6) holds trivially.320

For the second equality in statement 1 we bound321

⟨w(t)
j ,xi⟩ ≤ ⟨w(t0)

j ,xi⟩+ η
(
Tij(t0, t) +G

(i)
j (t0, t)(γ + ρ)−B

(i)
j (t0, t)(γ − ρ)

)
≤ ϕ(⟨w(t0)

j ,xi⟩) + ηTij(t0, t) + η(γ + ρ)G
(i)
j (t0, t) + ηϕ(ρ− γ)Bj(t0, t).
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Since the right-hand side is non-negative, this inequality is true even if we replace the left-hand side322

by ϕ(⟨w(t)
j ,xi⟩).323

We now proceed to statement 2. For the first inequality, notice that if ϕ(⟨w(t0)
j ,xi⟩) = 0 then the324

right-hand side is non-positive and therefore the inequality trivially holds. Otherwise, it must be the325

case that ϕ(⟨w(t0)
j ,xi⟩) = ⟨w(t0)

j ,xi⟩. Using statement 2 from Lemma C.2, we obtain the bound326

ϕ(⟨w(t)
j ,xi⟩) ≥ ⟨w(t)

j ,xi⟩

≥ ⟨w(t0)
j ,xi⟩ − η

(
Tij(t0, t) +G

(i)
j (t0, t)(γ + ρ)−B

(i)
j (t0, t)(γ − ρ)

)
≥ ϕ(⟨w(t)

j ,xi⟩)− ηTij(t0, t)− η(γ + ρ)G
(i)
j (t0, t)− ηϕ(ρ− γ)Bj(t0, t).

We now turn to the second inequality in statement 2. The corresponding statement from Lemma C.2327

yields328

⟨w(t)
j ,xi⟩ ≤ ⟨w(t0)

j ,xi⟩ − ηTij(t0, t) + η(γ + ρ)Bj(t0, t) + ηϕ(ρ− γ)G
(i)
j (t0, t)

≤ ϕ(⟨w(t0)
j ,xi⟩)− ηTij(t0, t) + η(γ + ρ)Bj(t0, t) + ηϕ(ρ− γ)G

(i)
j (t0, t)

≤ ϕ(⟨w(t0)
j ,xi⟩)− ηTij(t0, t) + η(γ + ρ)Bj(t0, t) + ηϕ(ρ− γ)G

(i)
j (t0, t) + η,

(7)

we remark that the reason for the addition of η to the right-hand-side will soon become apparent.329

The desired inequality holds as long as the right-hand-side is non-negative, we therefore proceed by330

induction to prove331

ϕ(⟨w(t0)
j ,xi⟩)− ηTij(t0, τ) + η(γ + ρ)Bj(t0, τ) + ηϕ(ρ− γ)G

(i)
j (t0, t) + η ≥ 0

for τ ≥ t0. The base case τ = t0 is trivial, assume then that the induction hypothesis holds332

for some τ ≥ t0. For iteration τ + 1 there are two cases to consider: first, if ⟨w(τ)
j ,xi⟩ < 0 then333

Tij(t0, τ+1) = Tij(t0, τ). In addition, as Bj(t0, τ) ≤ Bj(t0, τ+1) and G(i)
j (t0, τ) ≤ G

(i)
j (t0, τ+1)334

then335

0 ≤ ϕ(⟨w(t0)
j ,xi⟩)− ηTij(t0, τ) + η(γ + ρ)Bj(t0, τ) + ηϕ(ρ− γ)G

(i)
j (t0, τ) + η

≤ ϕ(⟨w(t0)
j ,xi⟩)− ηTij(t0, τ + 1) + η(γ + ρ)Bj(t0, τ + 1) + ηϕ(ρ− γ)G

(i)
j (t0, τ + 1) + η

by the induction hypothesis. Alternatively, if instead ⟨w(τ)
j ,xi⟩ ≥ 0 one may use the second336

inequality from (7) to conclude that337

0 ≤ ⟨w(τ)
j ,xi⟩ ≤ ϕ(⟨w(t0)

j ,xi⟩)− ηTij(t0, τ) + η(γ + ρ)Bj(t0, τ) + ηϕ(ρ− γ)G
(i)
j (t0, τ).

In addition, as Tij(t0, τ + 1) ≤ Tij(t0, τ) + 1 it follows that338

0 ≤ ϕ(⟨w(t0)
j ,xi⟩)− ηTij(t0, τ) + η(γ + ρ)Bj(t0, τ) + ηϕ(ρ− γ)G

(i)
j (t0, τ)

≤ ϕ(⟨w(t0)
j ,xi⟩)− ηTij(t0, τ + 1) + η(γ + ρ)Bj(t0, τ + 1) + ηϕ(ρ− γ)G

(i)
j (t0, τ + 1) + η

which completes the induction.339

Lastly, we consider the final remark in the statement of the lemma. If Tij(t0, t) = 0 then the right340

hand side of the second line in (7) is non-negative trivially, so we do not need the additional η341

term.342

C.2 Useful convergence lemmas343

Lemma C.4. For any iteartions t, t0 satisfying t ≥ t0,344

1. if i ∈ ST then345

yif(t,xi) ≥ yif(t0,xi) + η(Ti(t0, t)− (γ + ρ)B(t0, t)− ϕ(ρ− γ)G(i)(t0, t)−m),

2. if i ∈ SF then346

yif(t,xi) ≥ yif(t0,xi) + η(Ti(t0, t)− (γ + ρ)G(t0, t)− ϕ(ρ− γ)B(i)(t0, t)−m).
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Proof. Both statements follow from the bounds provided in Lemma C.3. For Statement 1347

yif(t,xi) =
∑
j∼i

ϕ(⟨w(t)
j ,xi⟩)−

∑
j ̸∼i

ϕ(⟨w(t)
j ,xi⟩)

≥
∑
j∼i

(
ϕ(⟨w(t0)

j ,xi⟩) + ηTij(t0, t)− η(γ + ρ)Bj(t0, t)− ηϕ(ρ− γ)G
(i)
j (t0, t)

)
−
∑
j ̸∼i

(
ϕ(⟨w(t0)

j ,xi⟩)− ηTij(t0, t) + η(γ + ρ)Bj(t0, t) + ηϕ(ρ− γ)G
(i)
j (t0, t) + η

)
= yif(t0,xi) + η(Ti(t0, t)− (γ + ρ)B(t0, t)− ϕ(ρ− γ)G(i)(t0, t)−m).

For Statement 2348

yif(t,xi) =
∑
j ̸∼i

ϕ(⟨w(t)
j ,xi⟩)−

∑
j∼i

ϕ(⟨w(t)
j ,xi⟩)

≥
∑
j ̸∼i

(
ϕ(⟨w(t0)

j ,xi⟩) + ηTij(t0, t)− η(γ + ρ)Gj(t0, t)− ηϕ(ρ− γ)B
(i)
j (t0, t)

)
−
∑
j ̸∼i

(
ϕ(⟨w(t0)

j ,xi⟩)− ηTij(t0, t) + η(γ + ρ)Gj(t0, t) + ηϕ(ρ− γ)B
(i)
j (t0, t) + η

)
≥ yif(t0,xi) + η(Ti(t0, t)− (γ + ρ)G(t0, t)− ϕ(ρ− γ)B(i)(t0, t)−m).

Lemma C.5. Let t ≥ t0. For i ∈ ST ,349

Ti(t0, t) ≤
ℓ(t0,xi)

η
+ (γ + ρ)B(t0, t) + ϕ(ρ− γ)G(i)(t0, t) + 3m.

For i ∈ SF ,350

Ti(t0, t) ≤
ℓ(t0,xi)

η
+ (γ + ρ)G(t0, t) + ϕ(ρ− γ)B(i)(t0, t) + 3m.

Proof. We will show this for i ∈ ST ; the i ∈ SF case is similar. We proceed by induction on t.351

If t = t0 this holds trivially because the left-hand side is zero and the right-hand side is positive.352

Otherwise, assume the desired inequality holds at iteration t. By Lemma C.4 and our assumption on353

ℓ(t0,xi),354

yif(t,xi) ≥ yif(t0,xi) + η(Ti(t0, t)− (γ + ρ)B(t0, t)− ϕ(ρ− γ)G(i)(t0, t)−m)

≥ (1− a) + η(Ti(t0, t)− (γ + ρ)B(t0, t)− ϕ(ρ− γ)G(i)(t0, t)−m).

We consider two cases:355

1. If η(Ti(t0, t)−(γ+ρ)B(t0, t)−ϕ(ρ−γ)G(i)(t0, t)−m) ≥ a then we see that ℓ(t,xi) = 0.356

Therefore,357

Ti(t0, t+ 1) = Ti(t0, t)

≤ a

η
+ (γ + ρ)B(t0, t) + 3m

≤ a

η
+ (γ + ρ)B(t0, t+ 1) + 3m

2. Otherwise, Ti(t0, t) ≤ a
η +(γ+ ρ)B(t0, t)+ϕ(ρ− γ)G(i)(t0, t)+m. Since there are only358

2m neurons, we bound359

Ti(t0, t+ 1) = Ti(t0, t) + 2m

≤
(
a

η
+ (γ + ρ)B(t0, t) + ϕ(ρ− γ)G(i)(t0, t) +m

)
+ 2m

≤ a

η
+ (γ + ρ)B(t0, t+ 1) + ϕ(ρ− γ)G(i)(t0, t) + 3m.

360
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D Benign overfitting361

Assumption 1. Let δ ∈ (0, 1). With n ≥ C/δ and η ≤ c then for benign overfitting we assume the362

following conditions on the other data and model hyperparameters.363

1. k < n
100 ,364

2. 5
√
2 log(2en2/δ)/d ≤ γ ≤ 4

5n365

3. λw ≤ ηγ
4 ,366

4. m ≥ C log(n)367

5. d ≥ 3ρ−2 ln
(

6n2

δ

)
where ρ ≤ γ

5368

We remark that under these conditions then for sufficiently large n, ρ as defined above clearly369

satisfies the inequalities ρ ≤ min
{

n−3k
n+k γ, 1

6(n−k)

}
and γ + ρ < min

{√
1

4(n−k)k ,
1

n−k ,
1

99k ,
1

100

}
.370

In addition to the assumptions detailed in Assumption 1, for convenience we assume three further371

conditions hold.372

Assumption 2. In addition to the assumptions detailed in Assumption 1, assume the following373

conditions hold.374

1. |Γp| > 0.99m for p ∈ {−1, 1}.375

2. For all i ∈ SF there is j ∈ Γyi
such that i ∈ A(0)

j .376

3. For all i, l ∈ [2n], i ̸= l |⟨ni,nl⟩| ≤ ρ
1−γ .377

As shown in the following lemma, these two additional conditions hold with high probability over378

the randomness of the initialization and training set.379

Lemma D.1. The extra conditions of Assumption 2 hold with probability at least 1− δ.380

Proof. Using Lemma B.3, then for sufficiently large n there exists a constant c such that the proba-381

bility the first condition does not hold is at most exp(−cn). Alternatively, setting δ ≥ 3 exp(−cn)382

and rearranging, as long as n ≥ C ln
(
3
δ

)
then the probability the first condition does not hold is at383

most δ/3. Using Lemma B.4 then the probability condition two does not hold is at most C/n for384

some large constant C, therefore as long as n ≥ C/delta then the probability the second condition385

does not hold is at most δ/3. Using Lemma B.1, observing ρ
1−γ > ρ and under the conditions of the386

lemma that 3ρ−2 ln
(
6n2)

)
> 6, then as long as387

d ≥ 3ρ−2 ln

(
6n2

δ

)
the probability that the third condition does not hold is also at most δ/3. Using the union bound we388

therefore conclude that all three properties hold with probability at least δ.389

D.1 Proof of Lemma 3.2390

Lemma D.2 (Lemma 3.2). Assume Assumption 2 holds. Suppose further that at some epoch t0 the391

loss of every clean point is bounded above by a ∈ R≥0, while the loss of every corrupted point is392

bounded above by b ∈ R≥0. Then the total number of updates which occurs after this epoch is upper393

bounded as follows,394

G(t0, t) ≤
2(n− k)

1− 4k(n− k)(γ + ρ)
2

(
a

η
+ 3m+ 2k(γ + ρ)

(
b

η
+ 3m

))
B(t0, t) ≤

2k

1− 4k(n− k)(γ + ρ)
2

(
b

η
+ 3m+ 2(n− k)(γ + ρ)

(
a

η
+ 3m

))
for all t ≥ t0.395
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Proof. From Lemma C.5, ρ ≤ γ, and the assumption on a and b,396

G(t0, t) =
∑
i∈ST

Ti(t0, t) ≤ 2(n− k)

(
a

η
+ (γ + ρ)B(t0, t) + 3m

)
,

B(t0, t) =
∑
i∈SF

Ti(t0, t) ≤ 2k

(
b

η
+ (γ + ρ)G(t0, t) + 3m

)
.

Substituting these bounds into each other, and as γ + ρ < (4(n − k)k)−1/2 (Assumption 2), we397

arrive at the epoch independent bound on the number of updates as claimed in the statement of the398

theorem.399

D.2 Early training and proof of Lemma 3.3400

Lemma D.3. Assuming Assumption 2, then for i ∈ ST and j ∈ Γ it follows that ⟨w(1)
j ,xi⟩ > 0 iff401

i ∼ j. For i ∈ SF , j ∈ Θp, and i ̸∼ j it follows that ⟨w(1)
j ,xi⟩ > 0 if i ∈ A(0)

j .402

Proof. Suppose j ∈ Γ, i ∼ j, i ∈ ST . Recall from definition of Γp that G(i)
j (0, 1)(γ − ρ) −403

B
(i)
j (0, 1)(γ + ρ) ≥ 2λw

η . Using Lemma C.2404

⟨w(1)
j ,xi⟩ ≥ ⟨w(0)

j ,xi⟩+ η
(
Tij(0, 1) +G

(i)
j (0, 1)(γ − ρ)−B

(i)
j (0, 1)(γ + ρ)

)
> ⟨w(0)

j ,xi⟩+ η (Gj(0, 1)(γ − ρ)−Bj(0, 1)(γ + ρ))

≥ ⟨w(0)
j ,xi⟩+ 2λw

> λw.

On the other hand, if i ̸∼ j then again from Lemma C.2405

⟨w(1)
j ,xi⟩ ≤ ⟨w(0)

j ,xi⟩ − η
(
Tij(0, 1) +G

(i)
j (0, 1)(γ − ρ)−B

(i)
j (0, 1)(γ + ρ)

)
≤ ⟨w(0)

j ,xi⟩ − η (Gj(0, 1)(γ − ρ)−Bj(0, 1)(γ + ρ))

≤ −λw.

Now consider i ∈ SF , i ̸∼ j, and i ∈ A(0)
j . By Lemma C.2 and the definition of Θ,406

⟨w(1)
j ,xi⟩ ≥ ⟨w(0)

j ,xi⟩+ η
(
Tij(0, 1) +B

(i)
j (0, 1)(γ − ρ)−G

(i)
j (0, 1)(γ + ρ)

)
> η(1− γ + ρ) + η (Bj(0, 1)(γ − ρ)−Gj(0, 1)(γ + ρ))

≥ 0.

Lemma D.4 (Lemma 3.3). Suppose Assumption 2 holds. Let j ∈ Γp. Let 0 < t < T0. A point407

i ∈ A(t)
j if one of the following conditions hold:408

1. i ∈ ST and i ∼ j409

2. i ∈ SF , i ̸∼ j, and i ∈ A(1)
j .410

Furthermore, if one of the following conditions hold, then i /∈ A(t)
j :411

1. i ∈ ST and i ̸∼ j412

2. i ∈ SF , i ̸∼ j, and i /∈ A(1)
j .413

Proof. We proceed by induction. For t = 1, the i ∈ ST case was shown in Lemma D.3 and the414

i ∈ SF , i ̸∼ j case is clear. Now, suppose the lemma holds for iteration t and consider iteration t+ 1.415
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First let i ∈ SF , i ̸∼ j. If i ∈ A(1)
j then416

⟨w(t+1)
j ,xi⟩ ≥ ⟨w(t)

j ,xi⟩+ η
(
Tij(t, t+ 1)−G

(i)
j (t, t+ 1)(γ + ρ) +B

(i)
j (t, t+ 1)(γ − ρ)

)
> η (1− (n− k)(γ + ρ))

≥ 0.

Here the first line is Lemma C.2, the second line comes from the inductive hypothesis, and the third417

line comes from (γ + ρ) < 1
n−k (Assumption 2). If i /∈ A(1)

j then418

⟨w(t+1)
j ,xi⟩ ≤ ⟨w(t)

j ,xi⟩+ η
(
Tij(t, t+ 1)−G

(i)
j (t, t+ 1)(γ − ρ) +B

(i)
j (t, t+ 1)(γ + ρ)

)
< η (−(n− k)(γ − ρ) + 2k(γ + ρ))

= −η((n− 3k)γ − (n+ k)ρ)

≤ 0.

Again, the first line is Lemma C.2, the second line uses the inductive hypothesis, and the fourth line419

uses ρ ≤ n−3k
n+k γ (Assumption 2).420

Now, let i ∈ ST . We again use, in order, Lemma C.2, the inductive hypothesis, and ρ ≤ n−3k
n+k γ. If421

i ∼ j then422

⟨w(t+1)
j ,xi⟩ ≥ ⟨w(t)

j ,xi⟩+ η
(
Tij(t, t+ 1) +G

(i)
j (t, t+ 1)(γ − ρ)−B

(i)
j (t, t+ 1)(γ + ρ)

)
> η(1 + ρ− γ) + η((n− k)(γ − ρ)− 2k(γ + ρ))

> 0.

If i ̸∼ j then423

⟨w(t+1)
j ,xi⟩ ≤ ⟨w(t)

j ,xi⟩ − η
(
Tij(t, t+ 1) +G

(i)
j (t, t+ 1)(γ − ρ)−B

(i)
j (t, t+ 1)(γ + ρ)

)
< −η((n− k)(γ − ρ)− 2k(γ + ρ))

= −η((n− 3k)γ − (n+ k)ρ)

≤ 0.

Lemma D.5. Suppose Assumption 2 holds. For all t0 ≤ t1 < T0,424

Gj(t0, t1) ≤ (n− k)(t1 − t0 + 2) +
1

γ − ρ

Proof. First we claim that for all i ∈ ST , j ̸∼ i, and t < T0,425

⟨w(t)
j ,xi⟩ ≤ λw + 2ηk(γ + ρ).

We prove the claim by induction. The base case t = 0 follows because ⟨w(0)
j ,xi⟩ ≤ λw. Now426

suppose it is true at iteration t. If ⟨w(t)
j ,xi⟩ > 0 then by Lemma C.2,427

⟨w(t+1)
j ,xi⟩ ≤ ⟨w(t)

j ,xi⟩ − ηTij(t, t+ 1) + η(γ + ρ)Bj(t, t+ 1)

≤ ⟨w(t)
j ,xi⟩ − η(1− 2k(γ + ρ))

≤ ⟨w(t)
j ,xi⟩

using γ + ρ < 1
2k . From this, the claim follows. Otherwise,428

⟨w(t+1)
j ,xi⟩ ≤ ⟨w(t)

j ,xi⟩ − ηTij(t, t+ 1) + η(γ + ρ)Bj(t, t+ 1)

≤ 2ηk(γ + ρ).

We now turn to the statement of the lemma, again proceeding by induction. The base case t1 = t0 is429

clear. Otherwise, we consider two cases:430
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1. If Gj(t0, t1) >
1+2k(t1−t0+1)(γ+ρ)

γ−ρ then for all i ∈ ST and j ̸∼ i, by Lemma C.2,431

⟨w(t1)
j ,xi⟩ ≤ ⟨w(t0)

j ,xi⟩ − η
(
Tij(t0, t1) +G

(i)
j (t0, t1)(γ − ρ)−B

(i)
j (t0, t1)(γ + ρ)

)
≤ ⟨w(t0)

j ,xi⟩ − η (Gj(t0, t1)(γ − ρ)−Bj(t0, t1)(γ + ρ))

< (λw + 2ηk(γ + ρ)) + 2ηk(t1 − t0)(γ + ρ)− ηGj(t0, t1)(γ − ρ)

≤ 0

by the claim and λw < η (Assumption 2). Therefore, Gj(t0, t1+1) ≤ Gj(t0, t1)+ (n−k).432

2. If Gj(t0, t1) ≤ 1+2k(t1−t0+1)(γ+ρ)
γ−ρ , then433

Gj(t0, t1 + 1) ≤ 1 + 2k(t1 − t0 + 1)(γ + ρ)

γ − ρ
+ 2(n− k)

≤ 1

γ − ρ
+

2k(t1 − t0 + 1)(n− k)

2k
+ 2(n− k)

≤ 1

γ − ρ
+ (t1 − t0 + 3)(n− k).

Lemma D.6. Suppose Assumption 2 holds. For all t < T0, i ∈ SF , and i ∼ j,434

⟨w(t)
j ,xi⟩ ≤ (λw + 2ηk(γ − ρ)) + 2η(γ + ρ)(n− k) +

η(γ + ρ)

γ − ρ

Proof. Consider t < T0. We consider three cases435

1. If t = 0 then436

⟨w(0)
j ,xi⟩ ≤ λw.

2. If ⟨w(t−1)
j ,xi⟩ ≤ 0 then by Lemma C.2437

⟨w(t)
j ,xi⟩ ≤ ⟨w(t−1)

j ,xi⟩

− η
(
Tij(t− 1, t)−G

(i)
j (t− 1, t)(γ + ρ) +B

(i)
j (t− 1, t)(γ − ρ)

)
≤ 2ηk(γ − ρ).

3. If ⟨w(t−1)
j ,xi⟩ > 0 then let t′ < t be the smallest iteration such that ⟨w(τ)

j ,xi⟩ > 0 for all438

t′ ≤ τ < t. By Lemma C.2, Lemma D.5, and the previous two cases above,439

⟨w(t)
j ,xi⟩ ≤ ⟨w(t′)

j ,xi⟩ − η
(
Tij(t

′, t)−G
(i)
j (t′, t)(γ + ρ) +B

(i)
j (t′, t)(γ − ρ)

)
≤ (λw + 2ηk(γ − ρ))

− η

(
[1− (γ + ρ)(n− k)](t− t′)− 2(γ + ρ)(n− k)− γ + ρ

γ − ρ

)
.

By γ + ρ < 1
n−k (Assumption 2) we conclude440

⟨w(t)
j ,xi⟩ ≤ (λw + 2ηk(γ − ρ)) + 2η(γ + ρ)(n− k) +

η(γ + ρ)

γ − ρ
.

D.3 Proof of Lemma 3.4441

Lemma D.7 (Lemma 3.4). Suppose Assumption 2 holds. There is an iteration T1 < T0 during442

training and expressions C1, C2, and C3 where the following hold:443

1. For all p ∈ {−1, 1}, j ∈ Γp, i ∼ j, and i ∈ ST ,444

⟨w(T1)
j ,xi⟩ ≥

3

4m
.
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2. For all p ∈ {−1, 1}, j ∈ Γp, i ̸∼ j, and i ∈ ST ,445

⟨w(T1)
j ,xi⟩ ≤ −3nγ

4m
.

3. For all i ∈ ST ,446

ℓ(T1,xi) ≤
1

3
.

Furthermore,447

T1 =
1

1.03ηm(1 + (γ + ρ)(n− k))
+O(1)

Proof. Fix i ∈ ST . At every iteration 1 ≤ t < T0, we bound448

ℓ(t,xi)− ℓ(t+ 1,xi) = yi[f(t+ 1,xi)− f(t,xi)]

=

2m∑
j=1

(−1)
i+j

[ϕ(⟨w(t+1)
j ,xi⟩)− ϕ(⟨w(t)

j ,xi⟩)]

=
∑

j /∈Γ(−1)i+1

(−1)
i+j

[ϕ(⟨w(t+1)
j ,xi⟩)− ϕ(⟨w(t)

j ,xi⟩)]

≤ η
∑

j /∈Γ(−1)i+1

Tij(t, t+ 1) + (γ + ρ)G
(i)
j (t, t+ 1)

= η

 ∑
j∈Γ(−1)i

Tij(t, t+ 1) + (γ + ρ)G
(i)
j (t, t+ 1)


+ η

∑
j /∈Γ

Tij(t, t+ 1) + (γ + ρ)G
(i)
j (t, t+ 1)


≤ η0.99m[1 + (γ + ρ)(n− k)] + 0.02ηm[1 + 2(γ + ρ)(n− k)],

where we use in order: t < T0, the definition of f(t,x), Lemma D.4, Lemma C.3, Γ−1 ∩ Γ1 = ∅,449

and Lemma D.4 again. We also use |Γp| ≥ 0.99m (Assumption 2). We further simplify this bound to450

conclude451

ℓ(t+ 1,xi)− ℓ(t,xi) ≤ 1.03ηm[1 + (γ + ρ)(n− k)]

Additionally, we bound452

ℓ(1,xi) = 1− yif(1,xi)

= 1−
2m∑
j=1

(−1)
i+j

ϕ(⟨w(1)
j ,xi⟩)

≥ 1−
∑
i∼j

ϕ(⟨w(1)
j ,xi⟩)

≥ 1−
∑
i∼j

[ϕ(⟨w(0)
j ,xi⟩) + ηTij(0, 1) + η(γ + ρ)G

(i)
j (0, 1)]

≥ 1−m[λw + η + 2η(γ + ρ)(n− k)].

Therefore as long as453

t <
1−m[λw + η + 2η(γ + ρ)(n− k)]

1.03ηm[1 + (γ + ρ)(n− k)]
+ 1 =

1

1.03ηm[1 + (γ + ρ)(n− k)]
+O(1),

then454

ℓ(t,xi) = ℓ(1,xi) +

t∑
t′=1

ℓ(t′ + 1,xi)− ℓ(t′,xi)

≥ 1−m[λw + η + 2η(γ + ρ)(n− k)]− 1.03(t′ − 1)ηm[1 + (γ + ρ)(n− k)]

> 0.
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Notice that this does not depend on i or p. Therefore we can let T1 be the largest integer satisfying455

this bound for t and bound ℓ(T1,xℓ) > 0 for all l ∈ ST . To verify that T1 < T0, consider i ∈ SF :456

yif(t,xi) =

2m∑
j=1

−(−1)
i+j

ϕ(⟨w(t)
j ,xi⟩)

=
∑
i ̸∼j

[(ϕ(⟨w(t)
j ,xi⟩)− ϕ(⟨w(0)

j ,xi⟩)) + ϕ(⟨w(0)
j ,xi⟩)]

≤
∑
i ̸∼j

(
Tij(0, t) + (γ + ρ)B

(i)
j (0, t) + λw

)
≤ ηmt[1 + 2(γ + ρ)k] +mλw

This is less than 1 for all t < T1 since k ≤ n
3 (Assumption 2).457

Now, fix i ∈ ST again. For i ∼ j, we then can use Lemma C.2 and Lemma D.4:458

⟨w(T1)
j ,xi⟩ ≥ ⟨w(1)

j ,xi⟩+ η
(
Tij(1, T1) + (γ − ρ)G

(i)
j (1, T1)− (γ + ρ)B

(i)
j (1, T1)

)
≥ 0 + η(T1 − 2)(1 + (n− k − 1)(γ − ρ)− 2k(γ + ρ))

=
1 + (n− k − 1)(γ − ρ)− 2k(γ + ρ)

1.03m[1 + (γ + ρ)(n− k)]
+O(η)

≥ 1

m
− 2ρ(n− k)− 2k(γ + ρ)− (γ + ρ)− 2k(γ + ρ)

m(1 + (γ + ρ)(n− k))
+O(η)

≥ 1

m
− 1/6 + 4/99 + 1/100

m
+O(η)

≥ 3

4m
.

using ρ ≤ 1
6(n−k) , η is sufficiently small, and γ+ρ < min

{
1

99k ,
1

100

}
(Assumption 2). Now assume459

i ̸∼ j. Using Lemma C.2 and Lemma D.4 we can bound460

⟨w(T1)
j ,xi⟩ ≤ ⟨w(1)

j ,xi⟩ − η
(
Tij(1, T1) + (γ − ρ)G

(i)
j (1, T1)− (γ + ρ)B

(i)
j (1, T1)

)
≤ 0− η(T1 − 2)((n− k)(γ − ρ)− 2k(γ + ρ))

= − (n− k)(γ − ρ)− 2k(γ + ρ)

1.03m[1 + (γ + ρ)(n− k)]
+O(η)

≤ − (n− 3k)γ − (n+ k)ρ

1.03m
+O(η)

≤ −
0.97nγ − 1.01

5 n

1.03m
+O(η)

≤ −3nγ

4m
.
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using η is sufficiently small and k ≤ n
100 and ρ ≤ γ

5 (Assumption 2). Likewise, for 1 ≤ t < T1,461

ℓ(t,xi)− ℓ(t+ 1,xi) = yi[f(t+ 1,xi)− f(t,xi)]

=

2m∑
j=1

(−1)
i+j

[ϕ(⟨w(t+1)
j ,xi⟩)− ϕ(⟨w(t)

j ,xi⟩)]

=
∑

j /∈Γ(−1)i+1

(−1)
i+j

[ϕ(⟨w(t+1)
j ,xi⟩)− ϕ(⟨w(t)

j ,xi⟩)]

= η

 ∑
j∈Γ(−1)i

[⟨w(t+1)
j ,xi⟩ − ⟨w(t)

j ,xi⟩]


+ η

∑
j /∈Γ

(−1)
i+j

[ϕ(⟨w(t+1)
j ,xi⟩)− ϕ(⟨w(t)

j ,xi⟩)]


≥ η

 ∑
j∈Γ(−1)i

Tij(t0, t) +G
(i)
j (t0, t)(γ − ρ)−B

(i)
j (t0, t)(γ + ρ)


+ η

∑
j /∈Γ

Tij(t, t+ 1)− (γ + ρ)Bj(t, t+ 1)


≥ 0.99ηm[1 + (γ − ρ)(n− k − 1)− 2(γ + ρ)k]− 0.04ηm(γ + ρ)k

≥ 0.99ηm[1 + (γ − ρ)(n− k − 1)]− 2.02ηm(γ + ρ)k

In the first six lines we use: t < T0, the definition of f(t,x), Lemma D.4, Lemma C.2 and Lemma C.3,462

Lemma D.4 again, and |Γp| ≥ 0.99m (Assumption 2), respectively.463

We also bound464

ℓ(1,xi) = 1− yif(1,xi)

= 1−
2m∑
j=1

(−1)
i+j

ϕ(⟨w(1)
j ,xi⟩)

≤ 1 +
∑
i ̸∼j

ϕ(⟨w(1)
j ,xi⟩)

≤ 1 +
∑
i ̸∼j

[ϕ(⟨w(0)
j ,xi⟩)− ηTij(0, 1) + η(γ + ρ)Bj(0, 1) + η]

≤ 1 +m[λw + η + 2η(γ + ρ)k].

Combining these two bounds we see that465

ℓ(T1,xi) ≤ ℓ(1,xi)− η(T1 − 1)(0.99m(1 + (γ − ρ)(n− k − 1))− 2.02m(γ + ρ)k)

≤ 1− 0.99m[1 + (γ − ρ)(n− k − 1)]− 2.02m(γ + ρ)k

1.03m(1 + (γ + ρ)(n− k))
+O(η)

≤
0.99((γ + ρ) + 2ρ(n− k − 1)) + 0.08 + 4.04

99

1.03m(1 + (γ + ρ)(n− k))
+O(η)

≤
0.99( 1

100 + 1
6 + 0.08 + 4.04

99 )

1.03
+O(η)

≤ 1

3
.

at this iteration, as desired. Here we use (γ+ ρ) ≤ min
{

1
99k ,

1
100 ,

1
n−k

}
, η is sufficiently small, and466

ρ ≤ 1
6(n−k) (Assumption 2)467
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D.4 Late training468

Lemma D.8. Suppose Assumption 2 holds. Fix ε > 0. We will say a neuron is aligned (at iteration t)469

if470

(−1)
j
sgn ⟨w(t)

j ,xi⟩ = yi

for all i ∈ ST . For t ≥ T1, if471

B(T1, t) ≤
5εn

8η

than at least (1− ε)m neurons in each Γp will be aligned.472

Proof. Let p ∈ {−1, 1} and t be such that εm different neurons in Γp are unaligned at iteration t.473

For any neuron index j ∈ Γp and i ∈ ST , we can use Lemma C.2 to bound474

(−1)
i+j⟨w(t)

j ,xi⟩ ≥ (−1)
i+j⟨w(T1)

j ,xi⟩+ ηTij(T1, t)

+ η(γ − ρ)G
(i)
j (T1, t)− η(γ + ρ)B

(i)
j (T1, t)

= min

{
3

4m
,
3nγ

4m

}
− η(γ + ρ)Bj(T1, t)

≥ 3nγ

4m
− η(γ + ρ)Bj(T1, t).

Since nγ < 1 (Assumption 2), we see that min{ 3
4m , 3nγ

4m } = 3nγ
4m . If the lower bound above is475

positive then (−1)
j
sgn⟨w(t)

j ,xi⟩ = yi. Therefore, if a neuron j is unaligned then Bj(T1, t) ≥476

3nγ
4ηm(γ+ρ) ≥

5n
8ηm (using ρ ≤ γ

5 from Assumption 2). If there are εm unaligned neurons, then477

B(T1, t) =
2m∑
j=1

Bj(T1, t) ≥
5εn

8η
.

Denote the first iteration after T1 where more than εm neurons in one of the Γp are unaligned as T ε.478

If no such iteration exists, let T ε = ∞. We will eventually show that indeed T ε = ∞, by showing479

that the training process reaches zero loss before such an iteration can happen.480

Lemma D.9. Assume Assumption 2 holds and also γ + ρ < 0.99(1−ε)
4k . There is an iteration T2 ≥ T1481

so that for all iterations t satisfying T2 ≤ t < T ε and all i ∈ ST ,482

ℓ(t,xi) ≤ 4η(γ + ρ)km.

Furthermore, we can choose T2 so that483

T2 − T1 ≤ 1

3ηm(0.99(1− ε)− 4k(γ + ρ))
+ 1.

Proof. Fix i ∈ ST and t < T ε − 1. Suppose ℓ(t,xi) > 0. Using Lemma C.3 and t < T ε,484

yif(t+ 1,xi)− yif(t,xi) =

2m∑
j=1

(−1)
i+j

(ϕ(⟨w(t+1)
j ,xi⟩)− ϕ(⟨w(t)

j ,xi⟩))

≥
2m∑
j=1

η(Tij(t, t+ 1)− (γ + ρ)Bj(t, t+ 1))

≥ η0.99(1− ε)m− 4ηmk(γ + ρ).

Therefore,485

ℓ(t+ 1,xi) ≤ min{ℓ(t,xi)− ηm(0.99(1− ε)− 4k), 0}.
By Lemma D.7, the loss of each clean point at T1 is at most 1

3 , so each clean point reaches zero loss486

in at most487 ⌈
1

3ηm(0.99(1− ε)− 4k(γ + ρ))

⌉
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iterations.488

Now suppose ℓ(t,xi) = 0. We similarly argue489

yif(t+ 1,xi)− yif(t,xi) =

2m∑
j=1

(−1)
i+j

(ϕ(⟨w(t+1)
j ,xi⟩)− ϕ(⟨w(t)

j ,xi⟩))

≥
2m∑
j=1

η(Tij(t, t+ 1)−Bj(t, t+ 1))

≥ −4ηmk.

This implies ℓ(t+ 1,xi) ≤ 4ηmk. By induction, we see that if t < T ε and ℓ(t,xi) ≤ 4ηmk, then490

ℓ(t+ 1,xi) ≤ 4ηmk.491

Lemma D.10. Assume Assumption 2 holds and γ + ρ < 0.99(1−ε)
4k . For all t1, t2 satisfying T2 ≤492

t1 ≤ t2 < T ε and i ∈ ST ,493

Si(t1, t2) ≤
4(t2 − t1)(γ + ρ)k + 4k + 3

0.99(1− ε)
.

Proof. Recall Lemma C.5 (restated in this setting, using Lemma D.9):494

Ti(t1, t2) ≤
4ηmk

η
+ (γ + ρ)B(t1, t2) + 3m.

Using t < T ε we bound495

0.99(1− ε)mSi(t1, t2) ≤ Ti(t1, t2)

≤ 4ηmk

η
+ (γ + ρ)B(t1, t2) + 3m

≤ 4mk + 4(t2 − t1)(γ + ρ)mk + 3m.

From this, the desired inequality follows.496

Lemma D.11. Assume Assumption 2 holds and γ + ρ ≤ min
{

0.99(1−ε)
4k ,

√
0.99(1−ε)
8(n−k)k

}
. Let i ∈ SF .497

Suppose there is j ̸∼ i such that498

⟨w(T2)
j ,xi⟩ > η

2(n− k)(γ + ρ)(4k + 3)

0.99(1− ε)
.

Then for all t satisfying T2 ≤ t < T ε, ⟨w(t)
j′ ,xi⟩ > 0 for some neuron j′ depending on t.499

Proof. Let τ0 ≥ T2 be the first iteration after T2 where ℓ(t,xi) = 0. We will show by induction that500

for all t satisfying T2 ≤ t ≤ τ0 that ⟨w(t)
j ,xi⟩ > 0. The case t = T2 follows immediately by the501

assumption of the lemma. Otherwise, assume ⟨w(t′)
j ,xi⟩ > 0 for all T2 ≤ t′ < t. By Lemma C.2502
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and Lemma D.10,503

⟨w(t+1)
j ,xi⟩ ≥ ⟨w(T2)

j ,xi⟩

+ η
(
Tij(T2, t+ 1)−G

(i)
j (T2, t+ 1)(γ + ρ) +B

(i)
j (T2, t+ 1)(γ − ρ)

)
≥ ⟨w(T2)

j ,xi⟩+ η(t+ 1− T2)− η(γ + ρ)
∑
i∈ST

Si(T2, t+ 1)

≥ ⟨w(T2)
j ,xi⟩+ η(t+ 1− T2)

− η2(n− k)(γ + ρ)

(
4(t+ 1− T2)(γ + ρ)k + 4k + 3

0.99(1− ε)

)
= η(t+ 1− T2)

(
1− 8(n− k)k(γ + ρ)

2

0.99(1− ε)

)
+ ⟨w(T2)

j ,xi⟩

− η
2(n− k)(γ + ρ)(4k + 3)

0.99(1− ε)

> 0.

We now continue the induction past τ0. If ℓ(t,xi) = 0, then point i clearly activates some neuron.504

Let τ1 be the first iteration after τ0 where ℓ(t,xi) > 0. By Lemma C.3505

yif(τ1,xi)− yif(τ1 − 1,xi) =

2m∑
j′=1

−(−1)
i+j

(ϕ(⟨w(τ1)
j ,xi⟩)− ϕ(⟨w(τ1−1)

j ,xi⟩))

≥
2m∑
j=1

η(Tij(t, τ1)−Gj(t, τ1 − 1))

≥ −4ηm(n− k).

This means506 ∑
j′ ̸∼i

(−1)
j
ϕ(⟨w(τ1)

j′ ,xi⟩) ≥ yif(τ1,xi) ≥ 1− 4ηm(n− k)

and there is some j′ satisfying507

ϕ(⟨w(τ1)
j′ ,xi⟩) ≥

1

m
− 4η(n− k) > η

2(n− k)(γ + ρ)(4k + 3)

0.99(1− ε)
,

assuming η is sufficiently small (Assumption 2). We can run the original induction argument with508

τ1 replacing T2 and τ2 = min{t ≥ τ2 : ℓ(t,xi) = 0} replacing τ0 to verify the conclusion for509

τ1 ≤ t ≤ τ2. By switching back and forth between these two arguments, we can show that point i510

activates some neuron for all T2 ≤ t < T ε.511

Lemma D.12. If Assumption 2 holds, the training process reaches loss.512

Proof. In this proof, let ε = 1
5 . The conditions of Lemma D.9, Lemma D.10, and Lemma D.11 hold513

because γ + ρ ≤ min
{

0.99/5
k ,

√
0.99/5

2k(n−k)

}
.514

By Lemma D.2, there is a finite bound on the number of updates, independent of the number of515

iterations spent training. If we carry out the training procedure for infinitely many iterations, there516

must be some iteration where we make no updates. Since the training procedure is deterministic, we517

will not make any updates after this point, and we will have converged. It remains to show that this518

convergence results in zero training loss. The only way for a point to not update any neurons is for519

that point’s loss to be zero or for that point to activate no neurons.520

Lemma D.8 and Lemma D.11 say, under certain conditions, that every clean point and every corrupted521

point activates some neuron for each iteration t ≤ T ε. We need only to verify that these conditions522

hold and that B(T1, t) remains below the limitation set in Lemma D.8.523
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We apply Lemma D.2 starting at t0 = T1. By Lemma D.7, ℓ(T1,xi) ≤ 1
3 for all i ∈ ST . Using524

Lemma D.6, for i ∈ SF ,525

ℓ(T1,xi) ≤ 1− yi

2m∑
j=1

(−1)
j
ϕ(⟨w(T1)

j ,xi⟩)

≤ 1 +

2m∑
j∼i

ϕ(⟨w(T1)
j ,xi⟩)

≤ 1 +O(η).

With these bounds, Lemma D.2 shows that for all t ≥ T1,526

B(T1, t) ≤
2k

1− 4k(n− k)(γ + ρ)
2

(
1

η
+ 2(n− k)(γ + ρ)

1

3η

)
+O(1)

≤ 2k(1 + (2/3)(n− k)(γ + ρ))

η(1− 4k(n− k)(γ + ρ)
2
)

+O(1)

≤ 2k(5/3)

η(1− 4/99)
+O(1)

≤ n

10η

using γ + ρ ≤ min{ 1
n−k ,

1
99k}, η sufficiently small, and k ≤ n

100 (Assumption 2). By Lemma D.8,527

T ε = ∞ if n
10η < 5εn

8η , which is clearly true for ε = 1
5 .528

We now show that every training point i activates at least one neuron each iteration. By Lemma D.9,529

this is true if i ∈ ST . By Lemma D.11, this is true for i ∈ SF if there is a neuron j ̸∼ i such that530

⟨w(T2)
j ,xi⟩ > η 2(n−k)(γ+ρ)(4k+3)

0.99(1−ε) . Fix i ∈ SF .531

First, assume that ℓ(t,xi) > 0 for all t < T2. By Assumption 2 and Lemma D.3, we know there is532

j ∈ Γyi
such that i ∈ A(1)

j . Using Lemma C.2 and Lemma D.4 we can bound533

⟨w(T1)
j ,xi⟩ ≥ ⟨w(1)

j ,xi⟩+ ηTij(1, T1)− η(γ + ρ)G
(i)
j (1, T1) + η(γ − ρ)B

(i)
j (1, T1)

≥ η(1− (γ + ρ)(n− k))(T1 − 1)

and534

⟨w(T2)
j ,xi⟩ ≥ ⟨w(T1)

j ,xi⟩+ ηTij(T1, T2)− η(γ + ρ)G
(i)
j (T1, T2) + η(γ − ρ)B

(i)
j (T1, T2).

By induction on t we see that535

Gj(T1, t) ≤ max
T1≤t′<t

(
(n− k)(t+ 1− t′) +

(γ + ρ)Bj(T1, t′)
γ − ρ

)
for t > T1. The base case t = T1 + 1 is clear. Suppose the inequality holds for t. Either Gj(T1, t)536

increases by at most n − k or there is some i′ ∈ ST ∩ A(t+1)
j with i′ ̸∼ j. By Lemma C.2 and537

Lemma D.7,538

0 < ⟨w(t)
j ,xi′⟩ ≤ ⟨w(T1)

j ,xi′⟩ − η(γ − ρ)Gj(T1, t+ 1) + η(γ + ρ)Bj(T1, t)
≤ −η(γ − ρ)Gj(T1, t) + η(γ + ρ)Bj(T1, t)

from which the inequality follows. Since (γ+ρ)Bj(T1,t
′)

γ−ρ ≤ 3k(t′ − T1) < (n− k)(t′ − T1) (using539

ρ < γ
5 and k ≤ n

100 from Assumption 2), this maximum occurs at τ = T1. This yields540

⟨w(T2)
j ,xi⟩ ≥ η(1− (γ + ρ)(n− k))(T2 + 1− 1)η(γ − ρ)B

(i)
j (T1, T2)

≥ η(1− (γ + ρ)(n− k))T2
We want to show this bound is larger than a quantity that is O(η). This happens when both of the541

following hold:542

O(1) ≤ (1− (γ + ρ)(n− k))T2,
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which holds when η is sufficiently small.543

Now suppose ℓ(τ,xi) = 0 for some iteration τ ≤ T2. By Lemma D.7, T1 < τ . In this case, we see544

that545

yif(T2,xi) = yif(T2,xi) +

2m∑
j=1

−(−1)
i+j

[ϕ(⟨w(T1)
j ,xi⟩)− ϕ(⟨w(τ)

j ,xi⟩)]

≥ 1− η(γ + ρ)G(τ, T2)

≥ 1− (γ + ρ)
2(n− k)

1− 4k(n− k)(γ + ρ)
2

[
1

3
+ 2k(γ + ρ)

]
+O(η)

≥ 1− 2

1− 4/99

(
1

3
+

2

99

)
+O(η) ≥ 1

4

where in the third line we use Lemma D.2 and the fourth line we use γ + ρ ≤ min{ 1
n−k ,

1
99k} and η546

sufficiently small (Assumption 2). Sine this is positive, there is some neuron j with i ̸∼ j such that547

ϕ(⟨w(T2)
j ,xi⟩) is at least 1

m this bound. This is an Ω(1) lower bound. Since the required condition is548

⟨w(T2)
j ,xi⟩ > O(η), this can be achieved by taking η sufficiently small.549

D.5 Proof of Lemma 3.5550

Lemma D.13 (Lemma 3.5). Assume Assumption 2 holds. Let y ∈ {−1, 1} chosen uniformly and551

x := (y
√
γv,

√
1− γn), where n ∼ Uniform(Sd−1 ∩ span{v}⊥). Suppose that |⟨n,nℓ⟩| < ρ

1−γ552

for all l ∈ [2n], then yf(Tend,x) > 0.553

Proof. Following the same steps as in (5) for any j ∈ [2m]554

⟨w(Tend)
j ,x⟩ = ⟨w(1)

j ,xi⟩+ (−1)jη

2n∑
ℓ=1

Tℓj(1, Tend)yℓ⟨xℓ,xi⟩

= ⟨w(t0)
j ,xi⟩+ (−1)jyη

2n∑
ℓ=1

Tℓj(t0, t)(−1)ℓyβ(ℓ)⟨xℓ,x⟩

= ⟨w(t0)
j ,xi⟩+ (−1)jyη

2n∑
ℓ=1

Tℓj(t0, t)λ
′
iℓ,

where λ′
ℓ := (−1)lyβ(ℓ)⟨xℓ,x⟩ = β(ℓ)γ + (1− γ)⟨nℓ,n⟩. Then as in Lemma C.1555

γ − ρ ≤λ′
ℓ ≤ γ + ρ, if i ∈ ST ,

−(γ + ρ) ≤λ′
ℓ ≤ −(γ − ρ), if i ∈ SF ,.

Recall, from Lemma D.4 for any j ∈ Γp then Gj(1, Tend) ≥ Gj(1, T1) = T1(n − k). As a556

consequence, for j ∈ Γp we have557

⟨w(Tend)
j ,x⟩ ≥ ⟨w(1)

j ,xi⟩+ ηGj(1, Tend)(γ − ρ)− ηBj(1, Tend)(γ + ρ)

≥ O(η) + T1(n− k)(γ − ρ)− ηBj(1, Tend)(γ + ρ).

For j such that (−1)j = y then558

ϕ(⟨w(Tend)
j ,x⟩) ≤ ϕ(⟨w(1)

j ,xi⟩ − ηGj(1, Tend)(γ − ρ) + ηBj(1, Tend)(γ + ρ))

≤ O(η) + ηBj(1, Tend)(γ + ρ).
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As a result559

yf(Tend,x) =
∑

j∈[2m]

ϕ(⟨w(Tend)
j ,x⟩)

≥
∑
j∈Γp

⟨w(Tend)
j ,x⟩ −

∑
j : (−1)j ̸=y

ϕ(⟨w(Tend)
j ,x⟩)

≥ η
∑
j∈Γp

T1(n− k)(γ − ρ)− η
∑

j∈[2n]

Bj(1, Tend)(γ + ρ) +O(η)

≥ 0.99ηmT1(n− k)− ηB(1, Tend)(γ + ρ)) +O(η)

using |Γp| ≥ 0.99 (Assumption 2). From Lemma D.7560

T1 =
1

1.03ηm[1 + (γ + ρ)(n− k)]
+O(1),

furthermore, combining the assumptions 100k < n, η sufficiently small, and γ + ρ < 1
n−k with561

Lemma D.2 we see562

B(1, Tend) ≤
2k

1− 4k(n− k)(γ + ρ)
2

[
1

η
+ 2(n− k)(γ + ρ)

(
1

η

)]
+O(n)

≤ n

10η
.

Here we also use that ℓ(0,xi) ≤ 1 +mλw = 1 +O(η) for all i.563

Combining these inequalities it follows that564

yf(Tend,x) ≥
0.99

1.03
· n− k

2
(γ − ρ)− n

10
(γ + ρ) +O(η)

≥ n

3
− 3n

25
+O(η) > 0,

again using 100k < n, η sufficiently small, and γ + ρ < 1
n−k .565

D.6 Proof of Theorem 3.1566

Theorem D.14 (Theorem 3.1). Let Assumption 1 hold. With probability at least 1 − δ over the567

randomness of the dataset and network initialization the following hold.568

1. The training process terminates at an iteration Tend ≤ Cn
η .569

2. For all i ∈ [2n] ℓ(Tend,xi) = 0.570

3. The generalization error satisfies571

P(sgn(f(Tend,x)) ̸= y) ≤ C exp

(
−dγ2

32

)
.

Proof. Under Assumption 2 Statement 1 and 2 are derived from Lemma D.12. The bound in statement572

1 comes from Lemma D.2 applied from iteration 0 to iteration Tend, using 4k(n− k)(γ+ ρ)2 < 4/99573

and ℓ(0,xi) = 1 + O(η) for all i ∈ [2n]. Statement 3 comes from Lemma D.13. Finally, under574

Assumption 1 then by Lemma D.1 Assumption 2 holds probability at least 1− δ.575

E Non-benign overfitting576

Assumption 3. Let δ ∈ (0, 1). For the non-benign overfitting setting we assume the following577

conditions on the data and model hyperparameters.578

1. γ ≤ 1
6
√
dn

579
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2. η ≤ 1
2mn ,580

3. λw ≤ min{nγ/10, η/4},581

4. m ≥ log2(
4n
δ )582

5. d ≥ max
{
6, 3ρ−2 ln

(
4n2

δ

)}
where ρ ≤ min{ 1−γ

4n , 1
3n − γ}.583

For convenience, in our analysis we will make two additional assumptions.584

Assumption 4. In addition to the conditions detailed in Assumption 4, assume the following two585

conditions hold.586

1. For all i ∈ [2n] there exists a j ∈ [2m] such that (−1)
j
= yi and i ∈ A(0)

j .587

2. For all i, l ∈ [2n], i ̸= l |⟨ni,nl⟩| ≤ ρ
1−γ .588

As demonstrated in the following Lemma, these additional two conditions hold with high probability589

over the randomness of the initialization and training set.590

Lemma E.1. The additional conditions of Assumption 4 hold with probability at least 1− δ.591

Proof. The additional conditions of Assumption 4 over Assumption 3 are as follows.592

1. For all i ∈ [2n] there exists a j ∈ [2m] such that (−1)
j
= yi and i ∈ A(0)

j .593

2. For all i, l ∈ [2n], i ̸= l |⟨ni,nl⟩| ≤ ρ
1−γ .594

Using Lemma B.5, then as long as m ≥ log2(
4n
δ ) the probability the first condition does not hold is595

at most δ/2. Using Lemma B.1, and observing ρ
1−γ > ρ, then as long as596

d ≥ max

{
6, 3ρ−2 ln

(
4n2

δ

)}
the probability that the second condition does not hold is also at most δ/2. Using the union bound we597

conclude that both properties hold with probability at least δ.598

E.1 Proof of Lemma 3.7599

Lemma E.2 (Lemma 3.7). Assume Assumption4 and that ℓ(t0,xi) ≤ a for all i. Then600

T (t0, t) ≤
2n

1− (2n− 1)(γ + ρ)

(
a

η
+ 3m

)
.

Proof. From Lemma C.5, ϕ(ρ− γ) ≤ ρ+ γ, and the assumption on a,601

Ti(t0, t) ≤
a

η
+ 3m+ (γ + ρ)T (i)(t0, t).

If we sum over i, we get602

T (t0, t) ≤
2na

η
+ 6mn+ (2n− 1)(γ + ρ)T (t0, t),

from which the result follows.603

E.2 Additional lemmas604

Lemma E.3. If Assumption 4 holds, then the training process converges to zero loss.605
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Proof. By Lemma E.2, there is an upper bound on the number of updates independent of epoch. This606

can only happen if there is some epoch after which we make no updates. In turn, this can only happen607

if every point is either at zero loss or activates no neurons. We prove by induction that every point608

activates a neuron each epoch t = 0. Fix a point i.609

At t = 0 this is true by initialization. Now suppose it is true at epoch t. There are two cases to610

consider to show this for epoch t+ 1:611

1. If ℓ(t,xi) > 0, then let j be such that ϕ(⟨w(t)
j ,xi⟩) > 0. We can bound612

ϕ(⟨w(t+1)
j ,xi⟩) ≥ ϕ(⟨w(t)

j ,xi⟩) + η − η(γ + ρ)H
(i)
j (t, t+ 1)

≥ ϕ(⟨w(t)
j ,xi⟩) + η[1− (γ + ρ)(2n− 1)]

> 0,

since γ + ρ < 1
2n−1 (Assumption 4).613

2. If ℓ(t,xi) = 0, then614

yif(t,xi) = yi

2m∑
j=1

(−1)
j
ϕ(⟨w(t)

j ,xi⟩)

≤
∑

j : (−1)j=yi

ϕ(⟨w(t)
j ,xi⟩)

is bounded below by 1. This means that there is some j such that ϕ(⟨w(t)
j ,xi⟩) ≥ 1

m . We615

bound616

ϕ(⟨w(t+1)
j ,xi⟩) ≥ ϕ(⟨w(t)

j ,xi⟩)− η(γ + ρ)H
(i)
j (t, t+ 1)

≥ 1

m
− η(γ + ρ)(2n− 1)

> 0

since η < 1
2mn (Assumption 4).617

Lemma E.4. Suppose that at epoch τ every point is at zero loss. Then we can bound618

ηT (0, τ) ≥ n+O(η).

Proof. If ℓ(τ,xi) = 0 for all i, then yif(τ,xi) ≥ 1 for all i as well. We bound619

yif(τ,xi) ≤
∑

j : (−1)j=yi

(ϕ(⟨w(τ)
j ,xi⟩)− ϕ(⟨w(0)

j ,xi⟩)) +O(η)

≤
∑

j : (−1)j=yi

η[Tij(0, τ) + (γ + ρ)H
(i)
j (0, τ)] +O(η)

≤ ηTi(0, τ) + η(γ + ρ)T (i)(0, τ) +O(η).

If we sum over i, we see that620

2n ≤ η[1 + (2n− 1)(γ + ρ)]T (0, τ) ≤ 2ηT (0, τ) +O(η),

from which the desired result follows.621

Lemma E.5. Let y ∈ {−1, 1} chosen uniformly and x := (y
√
γv,

√
1− γn), where n ∼622

Uniform(Sd−1 ∩ span{v}⊥). If Assumption 4 holds, then623

P(yf(Tend,x) < 0) ≥ 1

8
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Proof. Let y ∼ U({−1, 1}) and consider a clean test point x = y(
√
γv +

√
1− γn), where624

n ∼ U(Sd\ spanv). Observe by symmetry of the distributions of both y and n that −x is identically625

distributed to x and furthermore that the labels of x and −x are opposite. As a result, if y(f(Tend,x)−626

f(Tend,−x)) < 0 then at least one of y(f(Tend,x) < 0 or −y(f(Tend,−x) < 0, in turn implying at627

least one of them is misclassified. By construction, ⟨w(t)
j ,x⟩ > 0 iff ⟨w(t)

j ,−x⟩ < 0, therefore628

y(f(Tend,x)− f(Tend,−x)) = y

2m∑
j=1

(−1)j
(
ϕ(⟨w(Tend)

j ,x⟩)− ϕ(⟨w(Tend)
j ,−xi⟩)

)

=

2m∑
j=1

y(−1)j⟨w(Tend)
j ,x⟩.

Unwinding the GD update to a neuron we have629

w
(Tend)
j = w

(0)
j + η

2n∑
i=1

Tij(0, Tend)(−1)i+jxi.

Furthermore, as630

⟨xi,x⟩ = y(−1)i(γ + (1− γ)β(i)⟨ni,n⟩))
then631

2m∑
j=1

y(−1)j⟨w(Tend)
j ,x⟩ =

2m∑
j=1

y(−1)j⟨w(0)
j ,x⟩+ η

2m∑
j=1

2n∑
i=1

y(−1)jTij(0, Tend)(−1)i+j⟨xi,x⟩

≤ 2mλw + η

2n∑
i=1

Ti(0, Tend)(γ + (1− γ)β(i)⟨ni,n⟩))

= 2mλw + η

(
T (0, Tend)γ +

〈
n, (1− γ)

2n∑
i=1

Ti(0, Tend)β(i)ni

〉)
d
= 2mλw + η (T (0, Tend)γ − ∥z∥ (1− γ) ⟨n,u⟩) ,

where the final equality follows from symmetry of the noise distribution, z :=
∑2n

i=1 Ti(0, Tend)ni632

and u = z
∥z∥ . Observe633

∥z∥2 =

2n∑
i,l=1

Ti(0, Tend)Tℓ(0, Tend)⟨ni,nℓ⟩

≥
2n∑
i

T 2
i (0, Tend)−

ρ

1− γ

∑
i ̸=ℓ

Ti(0, Tend)Tℓ(0, Tend)

=
1− γ + ρ

1− γ

2n∑
i

T 2
i (0, Tend)−

ρ

1− γ
T 2(0, Tend)

≥
(

1

2n
− ρ

1− γ

)
T 2(0, Tend).

where the final inequality follows from Jensen’s inequality. By assumption 4nρ < 1 − γ, and634

10mλw ≤ nγ ≤
√
n

6
√
d

, furthermore trivially (1 − γ) > 0.8. Conditioning on the event ⟨n,u⟩ > 0,635

which holds with probability 1/2, these inequalities in combination with Lemma E.4 give636

2m∑
j=1

y(−1)j⟨w(Tend)
j ,x⟩ ≤ 2mλw + nγ −

√
n

2
(1− γ) ⟨n,u⟩

≤ 1

5

√
n

d
− 4

10

√
n⟨n,u⟩.
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Therefore, if ⟨n,u⟩ > 0 then the condition637

⟨
√
dn,u⟩ ≥ 1

2
(8)

implies at least one of x or −x is misclassified. Suppose n ∼ U(Sd∩span(v)⊥) is such that (8) holds.638

Then as y ∼ U({−1, 1}) it follows given n then either x or −x are sampled with equal probability639

and thus the chance of misclassifying is at least 1/2. As a result the probability of misclassification is640

at least641

1

4
P
(
⟨
√
dn,u⟩ ≥ 1

2

)
≥ 1

8

as claimed.642

E.3 Proof of Theorem 3.6643

Theorem E.6 (Theorem 3.6). Assume Assumption 3 holds. With probability at least 1− δ over the644

randomness of the dataset and network initialization the following hold.645

1. The training process terminates at an iteration Tend ≤ Cn
η .646

2. For all i ∈ [2n] ℓ(Tend,xi) = 0.647

3. The generalization error satisfies648

P(sgn(f(Tend,x)) ̸= y) ≥ 1

8
.

Proof. Under Assumption 4 Statement 1 and 2 come from Lemma E.3. The bound on Tend comes649

from Lemma E.2 applied between epoches 0 and Tend, using ℓ(0,xi) = 1 + O(η) for all i ∈ [2n]650

and (γ + ρ)(2n− 1) < 2
3 . Statement 3 comes from Lemma E.5. We conclude by observing under651

Assumption 3 that Assumption 4 holds with probability at least 1− δ.652

F Non-overfitting653

Assumption 5. Let δ ∈ (0, 1). With n ≥ C and η ≤ c then for no overfitting we assume the following654

conditions on the data and model hyperparameters.655

1. k < n
100 ,656

2. 3
n < γ < 1

36 min{k−1, 1},657

3. λw ≤ ηγ
4658

4. m ≥ C ln
(
2n
δ

)
,659

5. d ≥ 3ρ−2 ln
(

4n2

δ

)
where ρ ≤ γ

2 .660

We remark that under these assumptions ρ as given above satisfies the inequality ρ <661

min
{

γ(n−3k)−2
n+k , γ

5 ,
n
11

}
. For convenience, we will also make two additional assumptions.662

Assumption 6. In addition to the assumptions detailed in Assumption 5, assume the following663

conditions hold.664

1. Γ = [2m].665

2. For all i, l ∈ [2n] such that i ̸= l then |⟨ni,nl⟩| ≤ ρ
1−γ .666

As shown in the following lemma, these two additional conditions hold with high probability over667

the randomness of the initialization and training set.668

Lemma F.1. The extra conditions of Assumption 6 hold with probability at least 1− δ669
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Proof. Recall the additional conditions of Assumption 6 over Assumption 5 are as follows,670

1. Γ = [2m],671

2. for all i, l ∈ [2n], i ̸= l |⟨ni,nl⟩| ≤ ρ
1−γ .672

Using Lemma B.3, then for sufficiently large n there exists a constant c such that the probability the673

first condition does not hold is at most m exp(−cn). Alternatively, setting δ ≥ 2m exp(−cn) and674

rearranging, as long as m ≥ C ln
(
2n
δ

)
then the probability the first condition does not hold is at most675

δ/2.676

Using Lemma B.1, observing ρ
1−γ > ρ and under the conditions of the lemma that 3ρ−2 ln

(
4n2)

)
>677

6, then as long as678

d ≥ 3ρ−2 ln

(
4n2

δ

)
the probability that the second condition does not hold is also at most δ/2. Using the union bound we679

therefore conclude that both properties hold with probability at least δ.680

F.1 Proof of Lemma 3.9681

Lemma F.2 (Lemma 3.9). Suppose Assumption 6 holds. Consider an arbitrary j ∈ [2m] and682

iteration t satisfying 2 ≤ t < T0. Then i ∈ A(t)
j iff i ∼ j.683

Proof. First we establish at iteration t = 1 that for all i ∈ ST , i ∈ A(t)
j iff i ∼ j. The argument684

here is similar to that of Lemma D.3. Suppose i ∼ j and i ∈ ST . Recall from definition of Γp that685

G
(i)
j (0, 1)(γ − ρ)−B

(i)
j (0, 1)(γ + ρ) ≥ 2λw

η . By Assumption 6, all neurons are in Γ. Using Lemma686

C.2687

⟨w(1)
j ,xi⟩ ≥ ⟨w(0)

j ,xi⟩+ η
(
Tij(0, 1) +G

(i)
j (0, 1)(γ − ρ)−B

(i)
j (0, 1)(γ + ρ)

)
> ⟨w(0)

j ,xi⟩+ η (Gj(0, 1)(γ − ρ)−Bj(0, 1)(γ + ρ))

≥ ⟨w(0)
j ,xi⟩+ 2λw

> λw.

On the other hand, if i ̸∼ j then again from Lemma C.2688

⟨w(1)
j ,xi⟩ ≤ ⟨w(0)

j ,xi⟩ − η
(
Tij(0, 1) +G

(i)
j (0, 1)(γ − ρ)−B

(i)
j (0, 1)(γ + ρ)

)
≤ ⟨w(0)

j ,xi⟩ − η (Gj(0, 1)(γ − ρ)−Bj(0, 1)(γ + ρ))

≤ −λw.

Now we consider t = 2. If i ∈ ST and i ∼ j then689

⟨w(2)
j ,xi⟩ ≥ ⟨w(1)

j ,xi⟩+ η
(
Tij(1, 2) +G

(i)
j (1, 2)(γ − ρ)−B

(i)
j (1, 2)(γ + ρ)

)
> η (1 + (n− k − 1)(γ − ρ)− 2k(γ + ρ))

whereas if i ∈ ST and i ̸∼ j then690

⟨w(2)
j ,xi⟩ ≤ ⟨w(1)

j ,xi⟩ − η
(
Tij(1, 2) +G

(i)
j (1, 2)(γ − ρ)−B

(i)
j (1, 2)(γ + ρ)

)
≤ −η((n− k)(γ − ρ)− 2k(γ + ρ)).

By assumption γ > 2+(n+k)ρ
n−3k > (n+k)ρ

n−3k and therefore for i ∈ ST then i ∈ A(2)
j iff i ∼ j. Again691

using Lemma C.2, for i ∈ SF and i ∼ j692

⟨w(1)
j ,xi⟩ ≥ ⟨w(0)

j ,xi⟩ − η
(
Tij(0, 1)−G

(i)
j (0, 1)(γ − ρ) +B

(i)
j (0, 1)(γ + ρ)

)
> −λw − η

(
1− 2λw

η

)
> −η,
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and for i ∈ SF and i ̸∼ j693

⟨w(1)
j ,xi⟩ ≤ ⟨w(0)

j ,xi⟩+ η
(
Tij(0, 1)−G

(i)
j (0, 1)(γ − ρ) +B

(i)
j (0, 1)(γ + ρ)

)
< λw + η

(
1− 2λw

η

)
< η.

Therefore, as γ > 2+(n+k)ρ
n−3k then for i ∈ SF and i ∼ j694

⟨w(2)
j ,xi⟩ ≥ ⟨w(1)

j ,xi⟩ − η
(
Tij(1, 2)−G

(i)
j (1, 2)(γ − ρ) +B

(i)
j (1, 2)(γ + ρ)

)
> −η + η ((n− k)(γ − ρ)− 2k(γ + ρ)− 1)

> 0

and for i ∈ SF and i ̸∼ j695

⟨w(2)
j ,xi⟩ ≤ ⟨w(1)

j ,xi⟩+ η
(
Tij(1, 2)−G

(i)
j (1, 2)(γ − ρ) +B

(i)
j (1, 2)(γ + ρ)

)
< η − η ((n− k)(γ − ρ)− 2k(γ + ρ)− 1)

< 0.

With the base case established we proceed by induction to prove if i ∈ A(t−1)
j iff i ∼ j then i ∈ A(t)

j696

iff i ∼ j. By the assumptions on γ, the induction hypothesis and again using Lemma C.2, then for697

i ∼ j698

⟨w(t)
j ,xi⟩ ≥ ⟨w(t−1)

j ,xi⟩ − η
(
Tij(t− 1, t)−G

(i)
j (t− 1, t)(γ − ρ) +B

(i)
j (t− 1, t)(γ + ρ)

)
> η ((n− k)(γ − ρ)− k(γ + ρ)− 1)

> 0

and for i ̸∼ j699

⟨w(t)
j ,xi⟩ ≤ ⟨w(t−1)

j ,xi⟩+ η
(
Tij(t− 1, t)−G

(i)
j (t− 1, t)(γ − ρ) +B

(i)
j (t− 1, t)(γ + ρ)

)
< −η((n− k)(γ − ρ)− k(γ + ρ)− 1)

< 0.

Therefore for an epoch t satisfying 2 ≤ t ≤ T1 i ∈ A(t−1)
j iff i ∼ j .700

F.2 Proof of Lemma 3.10701

Lemma F.3 (Lemma 3.10). Assume Assumption 6. Then there is an epoch T1 < T0 such that702

⟨w(T1)
j ,xi⟩ ≤

γ(n− 2k) + ρn− 1 + (γ − ρ)

m(1 + γ(n− 2k) + ρn− (γ − ρ))
+O(η) if i ∈ SF , i ∼ j

⟨w(T1)
j ,xi⟩ ≥

1 + γ(n− 2k)− ρn− (γ − ρ)

m(1 + γ(n− 2k) + ρn− (γ − ρ))
+O(η) if i ∈ ST , i ∼ j

⟨w(T1)
j ,xi⟩ ≤ − γ(n− 2k)− ρn

m(1 + γ(n− 2k) + ρn− (γ − ρ))
+O(η) if i ̸∼ j

and for i ∈ ST703

ℓ(T1,xi) ≤
2ρn

1 + γ(n− 2k) + ρn− (γ − ρ)
+O(η).

Furthermore,704

T1 =
1

ηm(1 + γ(n− 2k) + ρn− (γ − ρ))
+O(1).
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Proof. Let t < T0. By Lemma F.2 and Lemma C.2 we can bound, for i ∈ SF and i ∼ j,705

⟨w(t)
j ,xi⟩ ≤ ⟨w(2)

j ,xi⟩ − ηTij(2, t)− η(γ − ρ)B
(i)
j (2, t) + η(γ + ρ)Gj(2, t)

= ηt((γ + ρ)(n− k)− (γ − ρ)(k − 1)− 1) +O(η)

= ηt(γ(n− 2k) + ρn− 1 + (γ − ρ)) +O(η).

Similarly, for i ∈ SF , i ̸∼ j,706

⟨w(t)
j ,xi⟩ ≤ ⟨w(2)

j ,xi⟩+ ηTij(2, t) + η(γ + ρ)B
(i)
j (2, t)− η(γ − ρ)Gj(2, t)

= −ηt((γ − ρ)(n− k)− (γ + ρ)k) +O(η)

= −ηt(γ(n− 2k)− ρn) +O(η).

For i ∈ ST , i ∼ j,707

⟨w(t)
j ,xi⟩ ≤ ⟨w(2)

j ,xi⟩+ ηTij(2, t) + η(γ + ρ)G
(i)
j (2, t)− η(γ − ρ)Gj(2, t)

= ηt(1 + (γ + ρ)(n− k − 1)− (γ − ρ)k) +O(η)

= ηt(1 + γ(n− 2k) + ρn− (γ + ρ)) +O(η)

and708

⟨w(t)
j ,xi⟩ ≥ ⟨w(2)

j ,xi⟩+ ηTij(2, t) + η(γ − ρ)G
(i)
j (2, t)− η(γ + ρ)Gj(2, t)

= ηt(1 + (γ − ρ)(n− k − 1)− (γ + ρ)k) +O(η)

= ηt(1 + γ(n− 2k)− ρn− (γ − ρ)) +O(η).

Lastly, for i ∈ ST , i ̸∼ j,709

⟨w(t)
j ,xi⟩ ≤ ⟨w(2)

j ,xi⟩+ ηTij(2, t)− η(γ − ρ)G
(i)
j (2, t) + η(γ + ρ)Gj(2, t)

= −ηt((γ − ρ)(n− k)− (γ + ρ)k) +O(η)

= −ηt(γ(n− 2k)− ρn) +O(η)

Therefore, for i ∈ ST ,710

f(t,xi) = yi

2m∑
j=1

(−1)
j
ϕ(⟨w(t)

j ,xi⟩)

=
∑
j∼i

⟨w(t)
j ,xi⟩

from which we conclude711

ηmt(1+γ(n−2k)−ρn−(γ−ρ))+O(η) ≤ f(t,xi) ≤ ηmt(1+γ(n−2k)+ρn−(γ−ρ))+O(η).

Therefore, as long as712

ηmt(1 + γ(n− 2k) + ρn− (γ − ρ)) +O(η) < 1, (9)

then ℓ(t,xi) > 0. Let T1 be the largest value of t satisfying (9) and t < T0. We see that713

T1 =
1

ηm(1 + γ(n− 2k) + ρn− (γ − ρ))
+O(1).

From this, the desired bounds follow.714

F.3 Proof of Lemma 3.11715

Lemma F.4 (Lemma 3.11). Let Assumption 6 hold. Suppose there is a time t0 so that:716

a. ℓ(t0,xi) ≤ a for all i ∈ ST ,717

b. ϕ(⟨w(t0)
j ,xi⟩) ≤ b for all i ∈ SF and i ∼ j,718

c. For all iterations τ satisfying t0 ≤ τ ≤ t it holds that i ∈ A(τ)
j only if i ∼ j,719
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d. For all iterations τ satisfying t0 ≤ τ ≤ t, i ∈ A(τ)
j if i ∼ j and i ∈ ST .720

We can bound721

Bj(t0, τ) ≤ k

(
3b

2η
+

2a

ηm

)
∑
j∼s

Gj(t0, t) ≤
1

γ

(
3a

2η
+

mb

η

)
.

Proof. Fix a neuron j. Using Lemma C.3 and assumption (b) we bound for t < τ ≤ t, i ∈ SF , and722

i ∼ j723

ϕ(⟨w(τ−1)
j ,xi⟩) ≤ b− η(Tij(t0, τ − 1)− (γ + ρ)Gj(t0, τ − 1)− 1).

There are two possibilities. If this bound is negative, then Tij(t0, τ) = Tij(t0, τ − 1). Otherwise,724

Tij(t0, τ) ≤ Tij(t0, τ − 1) + 1

≤ b

η
+ (γ + ρ)Gj(t0, τ − 1) + 2

≤ b

η
+ (γ + ρ)Gj(t0, τ) + 2

This yields, by induction,725

Tij(t0, τ) ≤
b

η
+ (γ + ρ)Gj(t0, τ) + 2.

We then sum over all i ∈ SF such that i ∼ j. By assumption (c),726 ∑
i∈SF
i∼j

Tij(t0, τ) = Bj(t0, τ).

This yields727

Bj(t0, τ) ≤
kb

η
+ k(γ + ρ)Bj(t0, τ) + 2k

which, by our assumption, is equivalent to728

Bj(t0, τ) ≤
kb

η
+

k(γ + ρ)

m

∑
ℓ∼j

Gℓ(t0, t) (10)

since the number of clean updates on two neurons ℓ and j with ℓ ∼ j is the same by assumption (c)729

and (d).730

Fix s ∈ [2m]. We now bound
∑

j∼s Gj(t0, t). This time, we use Lemma C.2 to bound for i ∈ ST731

and i ∼ j732

⟨w(τ−1)
j ,xi⟩ ≥ ⟨w(t)

j ,xi⟩+ η(Tij(t0, τ − 1) + (γ − ρ)G
(i)
j (t0, τ − 1)− (γ + ρ)Bj(t0, τ − 1)).

Using assumption (c) and (d),733

yif(τ − 1,xi) =
∑
j∼i

ϕ(⟨w(τ−1)
j ,xi⟩)

≥
∑
j∼i

(
⟨w(t0)

j ,xi⟩+ ηTij(t0, τ − 1)

+ η(γ − ρ)G
(i)
j (t0, τ − 1)− η(γ + ρ)Bj(t0, τ − 1)

)
≥ (1− a) + η(1− (γ − ρ))Ti(t0, τ − 1)

+

∑
j∼i

((γ − ρ)Gj(t0, τ − 1)− (γ + ρ)Bj(t0, τ − 1))

 .
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Either Ti(t0, τ) = Ti(t0, τ − 1) or ℓ(τ,xi) > 0. If the latter holds, then734

η((1− (γ − ρ))Ti(t0, τ − 1) +
∑
j∼i

((γ − ρ)Gj(t0, τ − 1)− (γ + ρ)Bj(t0, τ − 1))) < a.

Suppose τ ′ ≤ τ is the first iteration before τ such that Gj(τ
′, τ) = 0. Let i ∈ ST , i ∼ s be a point735

that makes an update at iteration τ ′ − 1. Using the above bound, we see736

η((1− (γ − ρ))Ti(t0, τ
′ − 1) +

∑
j∼i

((γ − ρ)Gj(t0, τ
′ − 1)− (γ + ρ)Bj(t0, τ

′ − 1))) < a.

which implies737 ∑
j∼i

((γ − ρ)Gj(t0, τ
′ − 1)− (γ + ρ)Bj(t0, τ

′ − 1)) <
a

η

and738 ∑
j∼s

((γ − ρ)Gj(t0, τ
′)− (γ + ρ)Bj(t0, τ

′)) <
a

η
− 2(n− k)(γ − ρ).

By definition of τ ′, we conclude739 ∑
j∼s

((γ − ρ)Gj(t0, τ)− (γ + ρ)Bj(t0, τ)) <
a

η
− 2(n− k)(γ − ρ).

From this we get the bound740

∑
j∼s

Gj(t0, t) ≤
1

γ − ρ

a

η
+ (γ + ρ)

∑
j∼s

Bj(t0, t)

+O(1). (11)

We combine (10) with (11) summed over j ∼ s to see741

∑
j∼s

Gj(t0, t) ≤
1

γ − ρ

a

η
+ (γ + ρ)

kmb

η
+ k(γ + ρ)

∑
j∼s

Gj(t0, t)

+O(1)

≤ 1

γ − ρ− k(γ + ρ)2

(
a

η
+

kmb(γ + ρ)

η

)
+O(1)

and742

Bj(t0, τ) ≤
kb

η
+

k(γ + ρ)

m(γ − ρ− k(γ + ρ)2)

(
a

η
+

kmb(γ + ρ)

η

)
+O(1).

Using ρ ≤ γ
5 , η sufficiently small, and γ ≤ 1

36k (Assumption 6) these bounds simplify to743

Bj(t0, τ) ≤ k

(
3b

2η
+

2a

ηm

)
∑
j∼s

Gj(t0, t) ≤
1

γ

(
3a

2η
+

mb

η

)
.

F.4 Late training744

Lemma F.5. Under Assumption 6, the training process terminates at an iteration Tend satisfying745

ℓ(Tend,xi) = 0

for all i ∈ ST and746

ϕ(⟨w(Tend)
j ,xi⟩) = 0

for all i ∈ SF and j ∈ [2m].747
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Proof. By Lemma F.3 and Lemma F.4, we converge provided that the assumptions of the lemmas are748

satisfied. Since Lemma F.3 requires only Assumption 6, we turn our attention towards Lemma F.4.749

This has more delicate conditions. Let t0 = T1. We first see that the conditions on a and b are750

satisfied if we take751

a =
2ρn

1 + γ(n− 2k) + ρn− (γ − ρ)
+O(η)

b =
γ(n− 2k) + ρn− 1 + (γ − ρ)

m(1 + γ(n− 2k) + ρn− (γ − ρ))
+O(η).

using Lemma F.3. Next, using Lemma C.2 we see by induction on t ≥ T1 that if752

Bj(T1, t) <
γ(n− 2k)− ρn

ηm(γ + ρ)(1 + γ(n− 2k) + ρn− (γ − ρ))
+O(1)

then for i ̸∼ j and T1 ≤ τ ≤ t,753

⟨w(τ)
j ,xi⟩ ≤ ⟨w(T1)

j ,xi⟩+ η(γ + ρ)Bj(T1, τ)

≤ ⟨w(T1)
j ,xi⟩+ η(γ + ρ)Bj(T1, t)

< 0

and for i ∈ ST , i ∼ j, and T1 ≤ τ ≤ t,754

⟨w(τ)
j ,xi⟩ ≥ ⟨w(T1)

j ,xi⟩ − η(γ + ρ)Bj(T1, τ)

≥ ⟨w(T1)
j ,xi⟩ − η(γ + ρ)Bj(T1, t)

≥ 1− (γ − ρ)

m(1 + γ(n− 2k) + ρn− (γ − ρ))
+O(η)

> 0

for η sufficiently small. So we converge to the desired steady state so long as755

k

(
3b

2η
+

2a

ηm

)
<

γ(n− 2k)− ρn

ηm(γ + ρ)(1 + γ(n− 2k) + ρn− (γ − ρ))
+O(1)

which is equivalent to756

k(γ + ρ)

(
3

2
(γ(n− 2k)− 1 + (γ − ρ)) +

11

2
ρn

)
< γ(n− 2k)− ρn+O(η).

This is true by Assumption 6, as757

k(γ + ρ)

(
3

2
(γ(n− 2k)− 1 + (γ − ρ)) +

11

2
ρn

)
≤ 1

30

(
3

2
γ(n− 2k)− 3

2
+

1

36
+

1

2

)
≤ 1

20
γ(n− 2k)− 1

2
< γ(n− 2k)− ρn

using γ ≤ min
{

1
36k ,

1
36

}
and ρ ≤ min

{
γ
5 ,

n
11

}
.758

Lemma F.6. Assume Assumption 6 holds. Let y ∈ {−1, 1} chosen uniformly and x :=759

(y
√
γv,

√
1− γn), where n ∼ Uniform(Sd−1 ∩ span{v}⊥). Suppose that |⟨n,nℓ⟩| < ρ

1−γ for760

all l ∈ [2n], then yf(Tend,x) > 0.761

Proof. We proceed similarly to Lemma D.13.762

Following the same steps as in (5) for any j ∈ [2m]763

⟨w(Tend)
j ,x⟩ = ⟨w(2)

j ,xi⟩+ (−1)jη

2n∑
ℓ=1

Tℓj(1, Tend)yℓ⟨xℓ,xi⟩

= ⟨w(2)
j ,xi⟩+ (−1)jyη

2n∑
ℓ=1

Tℓj(2, t)(−1)ℓyβ(ℓ)⟨xℓ,x⟩

= ⟨w(2)
j ,xi⟩+ (−1)jyη

2n∑
ℓ=1

Tℓj(2, t)λ
′
iℓ,

37



where λ′
ℓ := (−1)lyβ(ℓ)⟨xℓ,x⟩ = β(ℓ)γ + (1− γ)⟨nℓ,n⟩. Then as in Lemma C.1764

γ − ρ ≤λ′
ℓ ≤ γ + ρ, if i ∈ ST ,

−(γ + ρ) ≤λ′
ℓ ≤ −(γ − ρ), if i ∈ SF ,.

Recall, from Lemma F.2 for any j ∈ [2m] then Gj(2, Tend) ≥ Gj(2, T1) = (T1 − 2)(n− k). As a765

consequence, for j ∈ Γp we have766

⟨w(Tend)
j ,x⟩ ≥ ⟨w(2)

j ,xi⟩+ ηGj(2, Tend)(γ − ρ)− ηBj(2, Tend)(γ + ρ)

≥ O(η) + T1(n− k)(γ − ρ)− ηBj(2, Tend)(γ + ρ).

For j such that (−1)j = y then767

ϕ(⟨w(Tend)
j ,x⟩) ≤ ϕ(⟨w(2)

j ,xi⟩ − ηGj(2, Tend)(γ − ρ) + ηBj(2, Tend)(γ + ρ))

≤ O(η) + ηBj(2, Tend)(γ + ρ).

As a result768

yf(Tend,x) =
∑

j∈[2m]

ϕ(⟨w(Tend)
j ,x⟩)

≥
∑

j : (−1)j=y

⟨w(Tend)
j ,x⟩ −

∑
j : (−1)j ̸=y

ϕ(⟨w(Tend)
j ,x⟩)

≥ η
∑

j : (−1)j=y

(T1 − 2)(n− k)(γ − ρ)− η
∑

j∈[2n]

Bj(2, Tend)(γ + ρ) +O(η)

≥ ηmT1(n− k)(γ − ρ)− ηB(2, Tend)(γ + ρ)) +O(η)

We decompose B(2, Tend) = B(2, T1) +B(T1, Tend). From Lemma F.2,769

B(2, T1) = 2km(T1 − 2) = 2kmT1 +O(1).

From Lemma F.3 and Lemma F.4, using the assumptions ρ ≤ n
11 , η sufficiently small, and γ ≤770

min{ k
36 ,

1
36},771

B(T1, Tend) ≤ 2mk

(
3b

2η
+

2a

ηm

)
≤ 2mkT1

(
3(γ(n− 2k) + ρn− 1 + (γ − ρ))

2
+ 4ρn

)
+O(1)

≤ 2mT1
(
n− 2k

24
+

1

22
− 1

2
+

1

72
+

4

11

)
+O(1)

≤ mT1(n− k)

12
.

Using the assumption that k ≤ n
100 and η is sufficiently small we see that772

B(2, Tend) ≤
mT1(n− k)

9
.

Since773

yf(Tend,x) ≥ ηmT1(n− k)((γ − ρ)− (γ + ρ)/9) +O(η),

yf(Tend,x) is positive provided (γ − ρ)− (γ + ρ)/9 is positive and η is sufficiently small. Both are774

guaranteed by Assumption 6, so the point is correctly classified.775

F.5 Proof of Theorem 3.8776

Theorem F.7 (Theorem 3.8). Assume Assumption 5 holds. With probability at least 1− δ over the777

randomness of the dataset and network initialization we have the following.778

1. The training process terminates at an iteration Tend ≤ Cn
η .779
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2. For all i ∈ ST then ℓ(Tend,xi) = 0 while for all i ∈ SF ℓ(Tend,xi) = 1.780

3. The generalization error satisfies781

P(sgn(f(Tend,x)) ̸= y) ≤ C exp

(
− d

2n2

)
.

Proof. Under Assumption 6, statements (1) and (2) follow from Lemma F.5. The bound on Tend782

follows from Lemma F.4 applied at t0 = 2:783

B(2, Tend) ≤ k

(
4

ηm

)
+O(η)

B(2, Tend) ≤
2

γ

(
3

2η

)
+O(η)

with γ > 3
n . Statement (3) is derived from Lemma F.6. Finally, Lemma F.1 implies that under784

Assumption 5 then Assumption 6 holds with probability at least 1− δ.785

G Numerical simulations786

Reproducibility statement: the code used to generate the following figures can be found at https:787

//anonymous.4open.science/r/benign_overfitting-4A4C/BO_experiments.ipynb.788

To investigate our theory we train two-layer neural networks with ReLU activations using full-batch789

gradient descent and a fixed step size. We train on the synthetic binary classification dataset, detailed790

in Section B.2, that we have studied throughout the paper. Finally we train using both hinge and791

logistic loss.792

Figure 1: From left to right, the first row shows the clean, corrupt, and test losses as a function
of epoch. The second row shows the fraction of clean, corrupt, and test points that are classified
correctly. These plots were generated for n = 100, d = 800, k/n = 0.1, m = 100, γ = 0.015, and
using gradient descent with a step size of 0.01.

In Figure 1 we call attention to the difference in the training dynamics of hinge loss versus logistic793

loss. Perhaps the key difference between hinge loss and logistic loss is that the contributions from any794

given point do not get smaller as the point approaches 0 loss. Furthermore, unlike with the logistic795

loss points can actually attain zero hinge loss after a finite number of epochs. Once they do attain zero796

loss, they cease to contribute to the update of the network parameters. If the remaining active points797

push the parameters in such a way as to increase the loss on a given point then it will reactivate. As a798

result points close to zero hinge loss periodically activate and deactivate giving rise to the chaotic799
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Figure 2: In the top row we show the loss on the clean training points and the corrupt training points
after training. In the bottom row we show the total loss after training, along with the test loss on
10000 random generated points after training. For each plot we set d = 1000,m = 30, η = 0.005
and train for 5000 iterations of gradient descent using hinge loss. In each plot we vary γ and n and
hold the fraction of corrupt points constant at 0.05. In the bottom right plot we also graph c/n for
c ≈ 0.6

behavior observed as the training loss approaches zero. We note that managing this behavior required800

a careful analysis that is distinct from the analysis for logistic loss.801

In Figure 2 we call particular attention to the bottom right plot. Our theory predicts a phase transition802

between benign overfitting and non-benign overfitting when γ ≈ c/n: the phase transition we observe803

empirically in the bottom-right heatmap suggests this estimate is reasonable. With regard to the hinge804

loss over the corrupt points, displayed in the top-right heatmap, we observe another phase transition,805

this time between overfitting and non-overfitting. The top and bottom heatmaps of the left-hand806

column display the hinge loss over the clean training set and total training set respectively, these807

appear very similar due to the fact that clean points make up 95% of the training set. The clean points808

fail to achieve zero, or close to zero, hinge loss only when γ is small and n is large. As stated in the809

caption, in these experiments d is fixed and thus as n increases the near-orthogonality condition we810

require on the noise components in order to prove convergence to zero clean loss is compromised. As811

a result, when γ is small and the correlations between noise vectors is potentially large it is possible812

for pairs of points with opposite labels to be significantly correlated.813
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