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A Corrections to the main paper

In the course of preparing the supplementary materials we identified the following two mistakes.

1. First we found a mistake in one of the proofs for a lemma describing the conditions at
initialization. We have fixed this issue in the supplementary and highlight below the two
errors this has caused in the main paper.

* An entry in the Table 1 needs to be updated to reflect these changes: in particular the
dependence on n is % not n > 1 for Theorem 3.1. Aside from this one entry Table 1 is
correct. For the convenience of the reader we provide the full, corrected table below.

Table 1: Comparison of results up to constants, note in all cases d > Cn? log(n/d), k < % where C'
is an appropriatly chosen constant.

Frei et al.|(2022) |Xu & Gu[(2023) Theorem 3.1 Theorem 3.6 Theorem 3.8

1 m 1 m
> (. Z g — =
n>C 10g<5> log(d) 5 1 10g(5)
n n n n
> C. = = = =
m2C ! log(a) log(5> 1°g<5) IOg(é)
< 1 1 1 1 1 1
= C n n n vnd k
n2
yse L o) o) 1
vnd nd d n
Result Beniglﬂ Benign Benign Non-benign No overfit

* The same mistake also means that the sentence starting on line 188 “Comparing
specifically the results on benign overfitting, we observe a better dependency on n in
particular compared with Xu & Gu (2023)..." is incorrect and indeed their work has
better dependence on n.

2. On line 262 we made a mistake in the explanation of our results: instead of C'e(1 + ny) it

Ceny
should read CICEDE
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B Problem setup

B.1 Notation

In order to provide a convenient reference for the reader, we summarize our notation as follows.

» For n € Z> then [n] := {1,2,3...n}. Furthermore we let [n]. := {i € [n] : iiseven}
and [n], := {i € [n] : iis odd}.

* For two iterations ¢, t; with £; > ¢, we define the following counting functions.

1. T;i(to, t1) == Ztrl:_ti 1(¢ € AgT) N F(7)) is the number of times the i-th data point
updates the j-th neuron between iterations ¢y and ¢;.

2. Ti(to,t1) = Eje[zm} T;;(to,t1) is the total number of updates from the i-th data
point to the entire network between iterations ¢y and ¢;.

3. Gj(to, t1) == > ics, Tij(to, 1) and Bj(to,'tl) =D iese Tij.(to, t1) are the number
of clean and corrupt updates applied to the j-th neuron respectively between iterations
to and t;. We further define Gy) (to,t1) = Gj(to,t1) — 1(¢ € Sr)T;;(to,t1) and
Bj(l) (t()7 tl) = .Bj(t()7 tl) — ]].(Z S SF)Ej(t(h tl).

4. HJ@ (to,t1) = 34z Tej(to, t1) is the number of times any data point except the i-th
updates the j-th neuron between iterations ¢g and ¢;.

5. G(t(),tl) = ZjE[Zm] Gj(t(htl) and B(to,tl) = ZjE[Zm] Bj(to,tl) are the total
number of clean and corrupt updates applied to the entire network between iterations
to and t1. We similarly define G(i)(to,tl) = G(t(),tl) — ]].(’L S ST)/T,L'(t(),tl) and
B® (to,tl) = B(to,tl) — ]].(Z € SF)TL‘(t(),tl)

6. T(to,t1) = >, Te(to,t1) is the total number of updates from all points applied
to the entire network between iterations to and t;. We also define 7 (tg,t;) =
T(to,t1) — T;(to, t1), the number of updates excluding those from point i.

7. Si(to,t1) = Zt;;ti 1(3j e 2m]: i€ AET) N F(™)) is the number of iterations
between ty and t; 1n which the :th data point participates. We say a data point

participates during an iteration if it contributes to the update of at least one neuron at
said iteration.

* We extend each of these definitions to the case ty = ¢; by letting the empty sum be zero.
* The signal alignment of the j-th neuron is defined as C](t) = <w§t), (—1)7v).

» We use the notation O(n) to denote a quantity f(») such that

limn sup |f(n)
n—0 n

<0

Likewise, f(n) = O(1) if
lim sup | f(n)| < oo,

n—0
f(m) =Q(n) if
lim inf M > 0,
n—0 n

and f(n) = Q1) if
liminf | f(n)| > 0.
n—0
Here the limit is taken as 7 and \,, go to zero while the other parameters of the model and
data remain fixed. We will always choose \,, such that A, = O(n).
» Denote 7Ty be the first iteration ¢ where F(*) #£ [2n)].

* Weuse C > 1and ¢ < 1 to generically represent sufficiently large and small constants
respectively. Furthermore, we reuse both C' and ¢ from one line to another: for example,
2Cx = Cz and 0.5cx = cz.
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* Finally, in much of our analysis for particular variables, notably -, the constants involved
matter and as such we work with explicit constants. For other variables, in particular m and
n, then typically as long as they are sufficiently large the explicit constants involved are not
important. As such we typically resort to using a generically large enough constant C'.

B.2 Data model

For the reader’s convenience we recap the data model studied in this work. We consider a training sam-
ple of 2n pairs of points and their labels (x;,y;)2", where (x;,y;) € R? x {—1, +1}. Furthermore,
we identify two disjoint subsets Sp C [2n] and Sp C [2n], where S USF = [2n], which correspond
to the clean and corrupt points in our sample respectively. The categorization of a point as clean or
corrupted is determined by its label: for all i € [2n] we assume y; = B(i)(—1)* where 3(i) = —1
iff i € Sp and (i) = 1 otherwise. In addition, we assume |Sp N [2n].| = |SF N [2n],| = k and
|ST N [2n).| = |St N [2n],| = n — k. We remark that this assumption simplifies the exposition of
our results but is not actually integral to our analysis. Each data point is assumed to have the form

x; = (=1)'(vAv + 1 = 78(i)n,). (1)

Here v € R? satisfies ||v|| = 1. We refer to v as the signal component as the alignment of a
clean point with v determines its sign. Indeed, sign({x;,v)) = (—1)* = y; for i € Sy whereas
sign({x;,v)) = —y; for i € Sp. Thus we may view the labels of corrupt point as flipped from their
clean state. The random vectors (n;)?", are mutually independent and identically distributed (i.i.d.)
drawn from the uniform distribution over S¥~! Nspan{v}+, which we denote U (S~ Nspan{v}~+).
This distribution is symmetric, mean zero and for any n ~ U(S?~! Nspan{v}+) it holds thatn | v
and ||n|| = 1. We refer to these vectors as noise components due to the fact that they are independent
of the labels of their respective points. We also remark that as the noise distribution is symmetric then
clean and corrupt points are identically distributed. Indeed, the multiplication of the noise component
by S(i) results in the following expression which will prove convenient.

YiX; = 6(z)ﬁv + \/ 1-— ;. (2)

This expression entails that the only difference between clean and corrupt points during training is
that they push neurons in opposite directions along the signal vector. Finally, the real, scalar quantity
v € [0,1] controls the strength of the signal versus noise, furthermore the clean margin, i.e., the
distance from any clean point to the max margin classifier, is /7 by construction. Thus far we have
discussed only the data in the training sample. We assume test data are drawn mutually i.i.d. from the
same distribution as the points in the training sample but with the added proviso that they are always
clean: to be clear, at test time a label is sampled as y ~ U({—1, 1}) and the corresponding data point

has the form
x =y(/v ++1-n), 3)

where again n ~ U(S%~! Nspan{v}+).

B.3 Network architecture, optimization and initialization

Here we also recap the network architecture and optimization and initialization setting. We consider
a densely connected, single layer feedforward neural network f : R?™*4 x R? — R? with the
following forward pass map,

2m

f(WvX) = Z(—l)j(b((Wj,X)).

j=1

Here ¢ := max{0, z} denotes the ReLU activation function, w; the jth row of W and w. the
element of W on row j € [m] and column ¢ € [d]. We remark that only the weights of the
hidden layer, which we also refer to as the weights of the network, are trainable and the outer
weights remain frozen throughout training. The network weights are optimized using full batch
gradient descent (GD) with step size 7 > 0 to minimize the hinge loss over a training sample
(x5, )22, C (R¥x{—1,1})?" as described in Section After ¢’ > 0 iterations this optimization

. . ’ .
process generates a sequence of weight matrices (W(t))ﬁzo. For convenience we overload our
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notation for the forward pass map of the network by letting f(¢,x) := f(W(), x). We denote the
hinge loss on the ¢-th point at iteration ¢ as

£(t,4) == max{0,1 —y; f(¢,x;)},

the hinge loss over the entire training sample at iteration ¢ is therefore defined as
2n
L(t) =Y _(t,0).
i=1
Let ) := {i € [2n] : £(t,x;) < 1} be the set of points that have nonzero loss at iteration ¢, and

.Agt) ={i € 2n]: (wgt), x;) > 0} the set of points which activate the jth neuron at iteration ¢.
Combining (2) with

awjr (t)

i) _ fo. (wi x;) <0,
_(—1)]%3’}1‘“ <Wj 7Xi> >0

gives that the GD update rul for the neuron weights for any iteration ¢ > 0,

2n
wit = w4 (—1)7 3" 10 € AP N FO)yex,. )
(=1

In regard to the initialization of the network weights, for convenience we assume each neuron’s
weight vector is drawn mutually i.i.d. uniform from the centered sphere with radius A,, > 0. We
remark that results analogous to the ones presented trivially hold if the weights are instead initialized

2

mutually i.i.d. as wj(-g) ~ N(0,02) as long as o2 is sufficiently small.

B.4 Properties of the data and network at initialization

For each of our results to hold we require certain properties on both the network weights and training
sample to hold at initialization. Here we bound the probabilities of each of these events in isolation
and later will combine them using the union bound.

First, and in order to prove convergence, we require the noise components of the training sample to
be approximately orthogonal to one another. A training sample whose noise components satisfy this
approximate orthogonality condition we refer to as “good".

Lemma B.1. Let p,§ € (0,1). Given a sequence (n;)?"; of mutually i.i.d. random vectors with
n; ~ U(S* ! Nspan(v)L), then assuming d > max {6, 3p 2In (%)}

P ({lmine) <p} | =106
i£l

Proof. For any pairs of mutually i.i.d. random vectors n,n’ ~ U(S?~! N span(v)*) and u,u’ ~
U(S?2) observe
(1) £ (u, ).

Due to independence of u, u’ and the rotational invariance of U (S%~2)

(u, ) £ (u,e),

where here e; = [1,0..0]7. Let Cap(ey, p) := {z € S¥"2 : (e1,z) > p} denote the spherical cap
of S%=2 centered on e;. As d > 6 then from Ball| (1997)[Lemma 2.2] it follows that

P(|(n, 1) 2 p) = P(u € Cap(ey, p)) < exp (—(d‘j)’)) < oxp (—dg) |

2 Although the derivative of ReLU clearly does not exist at zero, we follow the routine procedure of defining
an update rule that extends the gradient update to cover this event.
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Applying the union bound then

P N {min)l<py|=1-P U {lming] =0}

i,0€[2n],i£L i,0€[2n],i#£L
> 1—2n°P (|(n;, ng)

| = p)
2
>1 —2n? exp (_dg) .

2
Setting 6 > 2n? exp (—%) and rearranging we arrive at the result claimed. O

In addition to requiring the approximate orthogonality property on the training data, our approach
also requires at least a large proportion of the neurons at initialization to satisfy certain conditions.
To this end, we introduce the following notation, where p € {—1,1}.

e LetT,:={j : (-1 =p, G;(0,1)(y —p) — B;(0,1)(v + p) > 2’\7“’} denote the set
of neurons with output weight (—1)? which have more clean points activating them than
corrupt ones at initialization. We will show that these sets of neurons have a predictable
behavior early during training before any clean points achieve zero loss. LetI' =T'; UT'_;.

e LetO, :={j~T, : Gj(0,1)(v+p) —Bj(0,1)(y —p) <1—~+p} CT) Wewill
show that neurons in this subset are able to carry corrupt points through training, eventually,
at least in the overfitting setting, enabling them to achieve zero loss.. Let © = ©; U©_;.

Our goals are two-fold: first show I', accounts for a significant proportion of the neurons with output
label sign matching p, second, and of particular importance for our result on benign overfitting, ensure
each corrupt point activates a neuron in ©, where p matches its label. To this end we first provide the
following result.

Lemma B.2. Define p := f—fk and assume k € (0, 1) satisfies k > u. Given an arbitrary neuron

w; ~ U(S%1), we say that a collection of training points is (¢, k)-good iff both T;(0,1) > 1 and
B;(0,1) < kT};(0, 1) with probability at least 1 — € over the randomness of the neuron. Define

(n+k)(/<cu)2>’

0 :=2exp ( 16

then with probability at least 1 — g the training sample is (g, k)-good.

Proof. First we establish the notation for what follows: we say a point x is positive iff (x,v) > 0
and is negative iff (x,v) < 0. We use ST and S~ to denote these sets of points respectively. Note
by construction, see (I), clean and corrupt points of the same sign are mutually i.i.d. As here we
only ever consider the activations at initialization, we also drop both the subscript j as well as the
argument parentheses on the counting functions. We also use & superscripts to denote the subsets
corresponding to activations from positive and negative points respectively: as indicative examples of
this notation, 7' is therefore used as shorthand for the total number of activations, B+ is the number
corrupt positive activations and G~ is the number of clean negative activations.

By the symmetry of the distribution of w, P((w,v) > 0) = P((w,v) < 0) = 3. As a result
1
P(B<kT)N(T >0)) = 5IE”((B <KT)N(T >0) | (w,v) >0)
1
+ §IP’((B <KT)N(T >0) | (w,v) <0).

As the analysis and results derived under either condition will prove identical under reversal of the
signs involved, without loss of generality we let (w, v) > 0. Using the union bound

P(B<sT)N(T>0)|(w,v)>0)>1-P(T=0]|(w,v)>0)—P(B>xrT|{(w,v)>0),

therefore it suffices to upper bound the two probabilities on the right-hand-side.
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Observe if (w,v) > 0 then for x € ST P({(x,w)) > 1/2 and for x € S~ P((x,w)) < 1/2. By
the mutual independence of the preactivations ((x, w;)):", then P(T =0 | (w,v) > 0) < (1/2)".
To upper bound the other probability of interest we further condition on the following two events:
there are no negative clean activations and all corrupt points are positive. Conditioning on these
three events, which we denote for convenience A, then 7+ = T and furthermore the event B < kT
is equivalent to BT < xTF. Again as the preactivations are mutually independent the number
of positive activations can be lower bounded using a binomial distribution with probability 1/2.
Applying a Chernoff bound

+k n+k
p(rt>" A)>1-— — .

Furthermore, sampling positive points which activate w; is equivalent to uniformly sampling without
replacement T+ points from S*. Let Z, = 1 iff the ¢-th element sampled from S is corrupt and is
0 otherwise. Using a variant of Hoeffding’s bound for sampling without replacement (see Proposition
1.2 of Bardenet & Maillard (2015)) for example)

1 I

P(B* > kT* ’A) =P FZZ@—,UZKJ—,U Sexp(—2T+(ﬁ—u)2).
=1

Therefore

P((B < kT) N (T > 0) | {w,v) > 0)
>1-PT=0|(w,v)>0)—P(B>rT|(w,v)>0)

T*znik,A)P<T+z”Zk ‘A)

(n+k)(r — p)?
)

>1-(1/2)" —P <B+ > kTT

zla/m“«mp<
>1-0.

Now if instead (x, w) < 0 then swapping the roles of the negative and positive points in the argument
above gives the same answer. As a result

P((B < «kT)N(T >0)) >1—4.
For convenience let X := (x;)?"; and
Xe = 1X :Pu((B>wT)U(T =0)) > €}

Note here that the subscript w indicates randomness over the neuron alone and in addition clearly by
construction
]P’((BZKT)U(Tzo) | XEX;’E) > €.

Furthermore, as
§>P((B=kT)U(T=0)>P((B=ksT)U(T=0)|XeX: )P(Xexg,),

then it follows that P (X eX 2,5) < g. As a result we conclude that the probability of drawing a
(K, €)-good training sample is at least 1 — g. O

Based on Lemma|B.2} the following lemma bounds the probability that I',, is sufficiently large for our
purposes. In particular, for our result on non-overfitting we require |I',| = m, while for our benign
overfitting result only that |I',,| > (1 — «)m for some constant « € (0, 1).

Lemma B.3. Suppose n > 15k, 2)\,, < n(y — p), v > 2p and p € {—1,1}. Then for sufficiently
large n there exists a constant ¢ > 0 such that the following are true.

1. P(ITp| =m) =1— mexp(—cn).
2. With « € (0,1) a constant such that am € [m), then
BTyl > (1 - a)m) > 1 — exp(—en).



210
211
212

213

214

215

216
217
218

219
220

221

222

223

224

225

226

227

228

229
230

231

Proof. As here we only ever consider the activations at initialization, for convenience we drop the
argument parentheses “(0,1)" on the counting functions: in particular we write 7} (0, 1) as T; and
B;(0,1) as B;. Suppose (j)~! = p, under the assumption \,, < 1(y — p) then if

2w

U]
we may conclude j € I',. Rearranging this expression, equivalently j € I'j, if

(1+Bj)y < (v = p)Tj.

As a result, membership to I',, is guaranteed as long as T; > 0 and B; < VQ—;”Tj. Note by the
assumptions of the lemma p := nQ—fk < % and 72—_7” > i. Conditioning on the event we draw a (&, i)-
good training sample then the probability that j ¢ I', is at most € by Lemma Furthermore, with
the training sample fixed the activations of each neuron are mutually independent. Let X = (x;)I* ,

denote the draw of the training sample and

Xr,e = {X : ]Pw((B > HT) U (T = 0)) < 6}

Gi(y=p) = Bj(v+p)>(y—p) >

the set of (&, 1)-good training samples. Let € = exp(—cn), where ¢ in what follows is a sufficiently
small constant. By the assumptions of the lemma

) n
>1—->1- _ >1— — .
P(X € X >1 E_1 Qexp< 1024+cn)_1 2exp (—cn)

For the first result, using the union bound
]P)(‘].—‘p| S m) 2 P (|Fp| =m | X e X1/476) P (X € X1/475)
> (1 —mexp(—cn)) (1 — 2exp (—cn))
>1—mexp(—cn)
as claimed. For the second result observe

P(Tpl<(I—a)m|X € Xy/4) =P3T C2m]p,|T|=am:j ¢TI, Vje T | X € Xup)

- \am
€ee\ am
()
o
As « is a constant again there is a sufficiently small constant ¢ such that

% =exp(—cn + 1+ log(l/a)) < exp(—cn).

Therefore, there exists a sufficiently small constant ¢ such that
P(|Tp > (1 =a)m) > P (T > (1 —a)m | X € Xy/4) P(X € Xy)4.)
> (1 —exp (—emna)) (1 — 2exp (—cn))
> 1 —exp(—cn)

as claimed. O
Lemma B.4. Assume v+ p < m, n—k >2x10% |Tp| > 0.99m forp € {—1,1} and
m > C'log(n) for a sufficiently large constant C. Then with probability at least 1 — %for alli € Sp

there exists a j € ©,, such that i € .,45»0).

Proof. For convenience in what follows we use G; and B; for G;(0, 1) and B, (0, 1) respectively.
For a neuron to be in ©,, it must satisfy the following condition,
Gi(v+p) = Bi(y—p) <1=7+p,
or alternatively
l=y+p_ L _a=p
P Ytp ytp

Gj<
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By our assumptions this is in turn implied by the following condition G; < 1.02(n — k) — 1 or
G; < 1.01(n — k) for n — k > 100.

Let P(i,1) be the probability that an arbitrary random neuron is active on points ¢ and [. Consider
independently drawing two points from the distribution over points with either positive or negative
signal sign component, and let p be the probability that an arbitrary random neuron is active on both
points. Similarly let ¢ be the probability that an arbitrary neuron is active on two points which are
drawn with opposite signal signs. By rotational invariance of the weight distribution the probability a
random neuron activates on a point is 1/2, therefore E(G;) = n — k and furthermore P(i,i) = 1/2.
In addition, by writing G; as a sum of indicator functions, expanding, and using the linearity of
expectation we have

1
E(G?) = > P(i,l) = 52(n—k)+2(nfk)2q+2(nfk)(nfkf Dp.
(i,0)€[n—k]x[n—kK]

Recall 7 and [ index over the clean points. Observe by construction that for i +¢ [ then —x; 4 X;. As
a result, using an abuse of notation where the index —j indicates the point —x;, then for ¢ ~ [ £ j
we have P(i,j) = P(i,—1). If a neuron activates on x; iff it does not activate on —x;, therefore
P(i,l)+ P(i,—1) = P(i,4) = 1/2 and hence we conclude p + ¢ = 1/2. As a result

E(G3) = (n—k) +2(n— k) ((n — k)g+ (n — k)p — p)
= (n—k)+2(n—Fk) (;(n—k)—p)

<(n—k)+(n—k)~%
AsE(G;) = n — k, it follows that G; has variance n — k. Therefore by Chebyshev’s inequality

PG, > 1.01(n — K)) < -2
; .01(n — .
7= “n—k
Therefore a given random neuron j satisfies the condition G; < 1.01(n — k) with failure probability
at most %. Applying Markov’s inequality
2 2m 106
P 1(G; >1.01(n—k)> — | < ——~
j; (G 2 L0l = k) 2 305 | < 56—
and therefore
2m 106
P 1(G; <1.01(n—k)) > 1.998 >1— —

Now by a Chernoff bound, there exists a small constant ¢ > 0 such that with probability at least
1—exp(—cm), a fixed training point is activated by at least 1/3 of the neurons of each sign. Therefore,
using the union bound every training point is activated by at least m /3 of the neurons with probability
atleast 1 — nexp(—cm) > 1 — exp(—cm) using that logn < O(m).

Let A := {j € [2m] : G; < 1.01(n — k)} and observe that if j € T'y, and j € A then j € ©O,.
Condition on two further events in addition to |T',| > 0.99m for p € {—1,1}: |A| > 1.998m and for
all i € Sp then |Z;(0) N {j : (—1)? = y;}| > m/3 and for any p € {—1,1} . Then with probability
one we have for all 7 € Sp that there exists a j € ©,, such that 7 € A§-O). The probability that these
two conditions hold is at least

1— = — exp(—cm).
n exp(—cm)

Supposing that m > C'log(n) for a sufficiently large constant C' then this probability can in turn be
lower bounded as
C
1- 2
n
as claimed.
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The final lemma we provide here states, under mild conditions on the network width, that with high
probability every point in the training sample activates a neuron whose output weight matches its
label in sign. We will use this to prove our result on non-benign overfitting, which is discussed in
Section[E]

Lemma B.5. Let § € (0,1), then if m > log,(22) the probability that for all i € [2n] there exists a
j € [2m] such that (—1)) = y; and i € .Aé is at least 1 — 4.

Proof. Observe by the rotational symmetry of the weight distribution that
P(<Wj,xi> > 0) = ]P((Wj,61> > 0) = 1/2.

By construction, for each element in the training sample (x;,y;) there are m neurons whose output
weight has the same sign as y;. As the preactivations of x; with each neuron are mutually independent
from one another, then using the union bound it follows that

2n 2n
P (ﬂ{aj €2m]:(-1) =y, i€ ,45‘”}) =1-P (U{/Ej €m]: (=1 =y, i € A§°>}>

i=1 i=1
>1—2nP((w;,x;) > 0)
=1-2n2""
Setting § > 2n2~™ and rearranging we arrive at the stated result. O

C Supporting Lemmas

C.1 Bounds on activations and preactivations

For any pair of iterations ¢, ¢ satisfying ¢ > to, unrolling the GD update rule (@) gives

2n

S
/=1

Using (I)) and the fact that n; L v, then for any i € [2n]

2n
(Wi xi) = (Wi )+ (1) > Tyt e (xe, %)
=1
= (W), x;) + (1) ZT@ to, t)(=1)“+ B(0) (xe, %) 5)
= <W§‘t0)vxz> JJﬂﬂ ZT€] t07 Ma

where we define \;y := (—1)3(i)3(£) (x¢, x;). Towards the goal of bounding the activation of a
neuron with a data point we provide the following results.

Lemma C.1. Assume |(n;,ng)| < 12 foralli, 0 € [2n] such that i # L.
1. Ifi="{then iy = 1.
2. Ifi#4L i€ Sp,and l € Sp, then —(y + p) < Xir < —(v — p).
3. Ifi#C i€ Sp,andl € St, then —(v+ p) < Xie < — (v — p).
4. Ifi#£Llandi,l € Sy, theny —p < Xiy < v+ p.
S. Ifi# L andi,l € Sp,theny —p < X\jp < v+ p.

Proof. Observe by the data model, described in Section [B.2] that
(xi,xe) = (1) (v + (1 = 1)B(0) B(0) (ni, me)) .

10



287 Therefore
Aie = B()B(0)y + (1 —v)(n;,ny)

288 from which the results claimed follow. O

289 Lemma C.2. Assume |(x;,x;)| < 2= for all i, ¢ € [2n] such that i # L. Then for any j € [2m] the
290 following are true.

291 1. Ifi € St, i~ j then
Wi xi) = (wii™) )+ (T (to, ) + G (10, 1) (7 = p) = BY (to,)(7 + )
i xi) < (Wi x3) 4 (T (to, ) + G (to, ) + p) = BY (to, )7 = ) ) -
292 2. Ifi € Sp, i o j then
i i) = (Wi ) = (Tis ko, 1) + G (1o, D) + ) = B (to,)(7 = )
Wi i) < (wii*) ) = (T ko, 1) + G (to, 1)y = p) = BY (to, (7 + ) ).
293 3. Ifi € Sp, i ~ j then
i i) = (Wi ) = (Tis(to, 1) = G (to, D) (7 = p) + B (to,)(7 + ) )
Wi xi) < (Wi xi) = (T (to, 1) = G (to, )y + ) + B (to, (7 = ) ) -
294 4. Ifi € Sp, i o j then
i xi) = (Wi x:) 4 (T (to, 1) = G (to, )y + ) + B (1o, (7 = )
i xi) < (Wi x3) 4 (T (to, 1) = G (to, )y = p) + B (to, )( + p)

)
)

295 Proof. Considering (3)) we can further separate the summation term as follows,

(w gt),XJ = <W§-t0),xi> + (=17 B(i)n | Ty (to, t) E Tij(to, t) it + E Toj(to, t) Aie
LeST LeSp
T i

206 Note, withi € Sy and i ~ j, ori € Spandi ¢ j, then (—1)773(i) = 1. On the other hand, with
207 1€ Srandi £ j,ori € Spandi ~ j,then (—1)77°3(i) = —1. Substituting the relevant bounds

298 on \; provided in Lemma , and observing by definition that Gy) (to,t) =2, €S ki Ty;(to, t)
299 and Bj(»i) (to:t) = X-sesy ozi Lej(to, ), one arrives at the results claimed. O

300 We will often make use of the following similar but more pessimistic bounds on the activations.
so1  Recall that ¢ is the ReLU function: ¢(a) = max{a, 0}.

sz Lemma C.3. Forany j € [2m] and iterations ty, t with tg < t the following hold:
s03 1. Ifi € Sp,i~ jthen
oW x:)) > o((w™), x:)) + 0Ty (to, t) — n(y + p) Bj(to, t) — nd(p — )G (to, )
p((w,x:)) < p((w “°> xi)) + 0T (to, t) + n(y + )G (o, t) + nd(p — 7) B (1o, ).
2. Ifi € Sp,i o j then
s((wi) x;)) > o (W) %)) = 0T (to, 1) — (v + )G (to, 1) — nd(p — 7) B(to. )
s((w, %)) < ¢<<w§-t°>,xi>> — Ty (to, t) +1(y + p) Bj(to, t) + n(p — 1)GY (to, 1) +n.

3

=}
=
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308
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311
312

314

316

317

318

319
320

321

3. Ifi € Sp,i~ jthen
s((wi) x;)) > o((W'™) %)) — 0Ty (to, 1) — n(v + p) BY (to, £) — né(p — 7) G (to, 1)
p((wi,x:)) < p((w! “0> xi)) = 135 (to, 1) + 0y + p)Gj(to, t) + né(p — ¥) B (to, £) + 1.

4. Ifi € Sp,i o j then

p((wi,x;)) > ol((w
p((wi x;)) < o((w

10) %))+ 1T3; (to, t) — n( + )G (to, t) — né(p — 1) B (to, )
10) %:)) + nTi;(to,t) +n(y + p) B (to, t) +nd(p — 7)Gj (to, t).

The 1 term in the upper bound for cases 2 and 3 is only necessary if T;;(to,t) > 0.

We remark that we will often use this result in a setting where p < . In these cases, the terms that
involve ¢(p — «y) are zero and will be dropped.

Proof. For each of these results, we make use of Lemma|C.2} a < ¢(a) forall a € R, and
0< G;i)(to,tl) < Gj(to,t1)
0 < B (to,t1) < Bj(to, t1)

for all 4, j, to, t1. We will only prove the inequalities for ¢ € St here, as the inequalities for i € Sp
are analogous: statement 4 is just statement 1 with the roles of G(to,t) and B;(to,t) switched,
while statement 3 is the same for statement 2.

For the first inequality in statement 1 we claim it suffices to show

S((w xi)) > 6((w'T x:)) +0T5 (r, 7 +1) (v +p) By (1, 7+ 1) —np(p— )G (7, 7+ 1)

(6)
Indeed, if (6) is true then the result desired follows as
T+1 T
o) (e ) = 3 (o)) — ol )
T=to

t—1
zz(nnjwu) 0+ VB (.7 + 1)

T=to

Cnblp—ED (o 1>)

= nT;j(to, t) — n(y + p)Bj(to, t) — nd(p — W)G()(to,t)

In order to prove () we bound

oW x;))

Y

T+1
(Wi x;)

> (wi i) 0Ty (7,7 1) =0y + p) By (7,7 + 1)
—¢(p -GV (1,7 +1).
. . . . e (1)
This follows from statement 1 in Lemma From here, we consider two cases: first, if (w;", x;) >

0 then (w ( o X;) = qi)(( ( o x;)) and so (6) clearly holds. Alternatively, if (w; (r) ,X;) < 0 then

Tii(r, 7+ 1) =0, (b(( ; x1>) = 0 and as a result the right-hand-side of (6)) is non-positive while
the left is non-negative. As such (6) holds trivially.

For the second equality in statement 1 we bound
Wi xi) < Wi xi) 4 (Tis(to, ) + G (1o, (3 + p) = BY (to,)(7 = 1))

< o((wW, %)) + 1T (to, ) + n(y + p)GS (1o, 1) + nd(p — 7)Bj(to, ).

12
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Since the right-hand side is non-negative, this inequality is true even if we replace the left-hand side
by ¢((w}”, xi)).

We now proceed to statement 2. For the first inequality, notice that if ¢((w (o) x;)) = 0 then the
right-hand 51de 1s non-positive and therefore the inequality trivially holds. Ot erw1se it must be the

case that ¢(< fo) , X)) = ( §-t°), x;). Using statement 2 from Lemma we obtain the bound
¢<<w§-”,xi>> > (wi,x;)
> (wi!*) ) = (T (to, 1) + G (to, ) + p) = BY (to, 1) (7 — )

> o((wi, %)) — nTij(to, t) — n(y + p)GS (to,t) — np(p — ) B;(to, t).

We now turn to the second inequality in statement 2. The corresponding statement from Lemma |[C.2)]
yields

(wil) i) < (Wi i) = 0Ty (t0, ) + (3 + p)B; (0, ) + nd(p — )G} (to, 1)
< ¢((w! (o) i))7nTij(to,t)JrTI(’Yer)Bj(tOvt)+77¢(p77)G§'i)(t0’t) 7
< o((w! <t0> x;)) — nTij(to, t) +n(y + p)Bj(to, t) + no(p — V)Gﬁ-i)(to,t) +1,

we remark that the reason for the addition of 7 to the right-hand-side will soon become apparent.
The desired inequality holds as long as the right-hand-side is non-negative, we therefore proceed by
induction to prove

S((W), %)) — 1T (to, 7) + 0y + p)Bj(to, 7) + nd(p — )G\ (to,t) + 1> 0

for 7 > ty. The base case 7 = t is trivial, assume then that the induction hypothesis holds

IA

for some 7 > ty. For iteration 7 + 1 there are two cases to consider: first, if <W§-T), x;) < 0 then

T;j(to, 7+1) = Ti;(to, 7). In addition, as B; (to, 7) < B (to, 7+1) and G (to, 7) < G (tg, 7+1)
then

0 < oW %)) — 0Ty (to, ) +1(y + p)Bj(to, ™) + nélp — )G (to, 7) +1
< o((w! o ,%i)) — 1T (to, 7+ 1) + (v + p) By (to, 7 + 1) + n(p — 7)GS (to, 7 + 1) +1

by the induction hypothesis. Alternatively, if instead ( (r)

inequality from (7)) to conclude that
0< (wy” xi) < S((w}') i) = 0Ty (to, ) + 0y + p)Bj (b0, 7) + 1 (p — 7)G; (to, 7).
In addition, as ﬂj (to, ™+ 1) <T;;(to, 7) + 1 it follows that
0< 6((wy'xi)) = 0Tis(to, ) + 0y + p)B; (to. ) + 16 (p = 7)G; (to. 7)

< S((wi') i) = 0Ty (to, 7+ 1) + 0y + p) By (to, 7+ 1) + 19(p — V)G (b0, 7+ 1) 41
which completes the induction.

,X;) > 0 one may use the second

Lastly, we consider the final remark in the statement of the lemma. If T;;(¢9, t) = O then the right
hand side of the second line in (7) is non-negative trivially, so we do not need the additional 7
term. O

C.2 Useful convergence lemmas
Lemma C.4. For any iteartions t, tq satisfying t > t,
1. ifi € St then
yif (t,xi) > yi f (to, ;) + n(Ti(to,t) — (v + p) Blto, t) — (p — 7)GP (to, t) — m),
2. ifi € Sp then
yif (t,xi) > yi f (to, ;) + n(Ti(to,t) — (v + p)Glto, 1) — d(p — 7) B (to,t) — m).

13



347 Proof. Both statements follow from the bounds provided in Lemma|[C.3] For Statement 1

Fltxi) =D o((wi %) = >~ p((wl”

i jobi
>3 ( wil™) x:)) + 0Ty (to, 1) = 0 + p) B (to, £) = n6(p — )G (to, ) )
jr~i

_Z( wi) %)) = 1T (o, £) + 1y + p) By (to, ) + 16 (p — 7)Y (to, ¢ H”)
Joi

= yif (to,x:) + n(Ti(to,t) — (v + p)B(to, t) — d(p — 7)GW(to,t) — m).

348 For Statement 2

Fltx) =D oWl %) = >~ o((wl”

Jobi grvi
=5 ( Wi %)) + 1T (t0,8) = 1y + )G (to, 1) = mé(p = )BY (to.1))
Jri
= 3 (Wi x0)) = T (t0,8) +ly + p)G (to,8) +nélp = 1) B (to. 1) + 1)
Ji
>y f(to, x;) + n(Ti(to, t) — (v + p)G(to, t) — ¢(p — ¥) BV (to, t) — m). O
349 Lemma C.5. Lett > tg. Fori € S,
Titto,t) < %) | (4 ) B(to,6) + 6o — )G (10, £) + 3m.

30 Fori € Sp,

L(to,x;)

Ti(to, 1) < + (7 + p)Glto.t) + ¢(p —7) B (to, 1) + 3m.

351 Proof. We will show this for i € Sp; the i € Sp case is similar. We proceed by induction on t.
352 If t = ¢ this holds trivially because the left-hand side is zero and the right-hand side is positive.
53 Otherwise, assume the desired inequality holds at iteration ¢. By Lemma|[C.4]and our assumption on
a4 L(to,X;),

yif (£,%5) > yif (to, xi) + n(Ti(to, t) — (v + p)B(to,t) — d(p — )G (to, ) — m)
> (1= a) +n(Ti(to, t) — (v + p)Bto, t) — ¢(p — 7)GV(to, t) — m).
355 We consider two cases:

356 1. Ifn(Ti(to, t) — (y+p)Blto, t) — p(p—~)G (to,t) —m) > athen we see that £(t, x;) = 0.
357 Therefore,

Tz(tht+ 1) Tz(tht)
a
<% (4 )Blto,t) + 3m

n
a
< p + (v +p)B(to,t +1) + 3m
358 2. Otherwise, T;(to, ) < 7 4 (v + p)B(to, 1) + ¢(p — )G (tg, ) +m. Since there are only

359 2m neurons, we bound

E(to,t + ].) = Ti(to,t) + 2m

(n (7 + ) Blto ) + 60 — )G (to, 1) +m> +om

IN

IN

%+ (v + p)Blto,t + 1) + ¢(p — 7)GD(to, t) + 3m.

360 O
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D Benign overfitting

Assumption 1. Ler 6 € (0,1). Withn > C/§ and 1) < c then for benign overfitting we assume the
following conditions on the other data and model hyperparameters.

L k< {55

2. 5y/2log(2en?/0)/d < v < %
30 A <A

4. m > Clog(n)
5.d>3p%In (%) where p < &

We remark that under these conditions then for sufficiently large n, p as defined above clearly

satisfies the inequalities p < mm{’;fk v, m} and v+ p < mm{1 /m7 — 5ok’ W}

In addition to the assumptions detailed in Assumption [I] for convenience we assume three further
conditions hold.

Assumption 2. In addition to the assumptions detailed in Assumption |l| assume the following
conditions hold.

1. [Tp| > 0.99m forp € {~1,1}.
2. Foralli € Sp thereis j € Iy, such that i € A§-O).

3. Foralli,l € [2n], i # 1 [(n;,n)| < 75
As shown in the following lemma, these two additional conditions hold with high probability over
the randomness of the initialization and training set.

Lemma D.1. The extra conditions of Assumption[2| hold with probability at least 1 — 6.

Proof. Using Lemma|B.3] then for sufficiently large n there exists a constant ¢ such that the proba-
bility the first condition does not hold is at most exp(—cn). Alternatively, setting 6 > 3 exp(—cn)
and rearranging, as long asn > C'In (%) then the probability the first condition does not hold is at
most §/3. Using Lemma then the probability condition two does not hold is at most C'/n for
some large constant C, therefore as long as n > C'/delta then the probability the second condition
does not hold is at most 6/3. Using Lemma observing ﬁ > p and under the conditions of the

lemma that 3p=2In (6n%)) > 6, then as long as

2
d>3p2In <6§>

the probability that the third condition does not hold is also at most 6/3. Using the union bound we
therefore conclude that all three properties hold with probability at least J. O

D.1 Proof of Lemma[3.2]

Lemma D.2 (Lemma[3.2). Assume Assumption[2|holds. Suppose further that at some epoch t, the
loss of every clean point is bounded above by a € R>q, while the loss of every corrupted point is
bounded above by b € R>¢. Then the total number of updates which occurs after this epoch is upper
bounded as follows,

2(n — k) a . 9 .
G(tonf)é1_416(71_@(%%)2 <n+3 +2k(7+p)<n+3 ))
2k b a
B(to,t) < 1—4k(n—k)(7+p)2 <n+3m+2(n—/€)(’y+p) <n+3m>>

forallt > tg.
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Proof. From Lemmal|C.3} p <+, and the assumption on a and b,

Glto.t) = 3 Tltot) <200~ 8) (%4 (24 )Blto.t) +3m).
iE€ST

B(to,t) e Z Ti(to,t) <2k <7l; + (’Y + p)G(to,t) + 3m> .
i€ESE

Substituting these bounds into each other, and as v + p < (4(n — k)k)~'/? (Assumption , we
arrive at the epoch independent bound on the number of updates as claimed in the statement of the
theorem. u

D.2 Early training and proof of Lemma[3.3

Lemma D.3. Assuming Assumption then fori € St and j € T it follows that (wg-l)7 x;) > 0 iff
i~ j. Fori € Sp, j € ©p, andi + j it follows that <w§1),xi) > 0ifi € Ago)'

Proof. Suppose j € I', i ~ 4,4 € Sp. Recall from definition of I', that G’g-i)(()7 Dy —p) —
(9 22w . '
B;7(0,1)(v+p) > == Using Lemma

wi i) = (Wi xi) + 0 (T4 (0,1) + G (0, 1) (7 = p) = B (0,1)(7 + )
> (wi” %) +1(G(0,1)(y — p) — Bj(0,1)(y + p))
> <Wj('0), Xi) + 2y
> Ay

On the other hand, if 7 ¢ j then again from Lemma|C.2
Vi) = (T50.1) + G (0,17 = p) = B 0.1)(3 + )

Y, xi) =1 (G3(0,1)(y = p) = B;(0,1)(y + p))

Now consider i € Sp, i o j,and i € .Ag»o). By Lemma and the definition of ©,

J

> (1 —v+4p) +n(B;(0,1)(y — p) — G;(0,1)(y + p))
> 0. O

it xi) = (Wi x4+ (T450,1) + B (0,17 = p) = G5 (0, 1)y + )

Lemma D.4 (Lemma @ Suppose Assumption@holds. Let j € I'y. Let 0 < t < 7To. A point
1€ .A;t) if one of the following conditions hold:

1. i€Srandi~j
2. i€ Sp it andie A

Furthermore, if one of the following conditions hold, then i ¢ .A;t):
1. ieSrandifj

2. i€ Sp it andig AP

Proof. We proceed by induction. For ¢t = 1, the i € Sy case was shown in Lemma [D.3]and the
1 € Sp, i 7 j case is clear. Now, suppose the lemma holds for iteration ¢ and consider iteration ¢ + 1.
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Firstleti € Sp, i 2 j. If i € A\ then

Wi xi) = (Wi i) o (T (1,64 1) = G (6t + 1) (3 + p) + B (1t + 1)(7 = p)
>n(1=(n—Fk)(y+p)
> 0.

Here the first line is Lemma|[C.2] the second line comes from the inductive hypothesis, and the third
line comes from (7 + p) < —L- (Assumption . Ifi ¢ Agl) then

<n(=(n—Fk)(y—p)+2k(y+p))
= —n((n —3k)y — (n+k)p)
<0.

Wi xi) < (Wi xi) (T (1, 64+ 1) = G (61 +1)(y = p) + Bkt + 17+ p)

Again, the first line is Lemma|C.2] the second line uses the inductive hypothesis, and the fourth line
uses p < “=3E~ (Assumption 2).
Now, let i € Sp. We again use, in order, Lemma the inductive hypothesis, and p < Z‘—ﬁf’y. If
i ~ j then

(Wi xi) = (Wi i) - (T (1,8 41) + G (8t +1)(y = p) = B (k8 + 17+ )

>n(1+p—7)+n((n—k)(v—p)—2k(y+p))
> 0.

If i o4 j then

IN

Wi xi) < (Wi xi) = (T (1,6 4+ 1) + G4t + 1)y = p) = BO(tt+ (7 + )

—n((n —k)(v = p) = 2k(y + p))
= —n((n —3k)y — (n+k)p)
<0. O

A

Lemma D.5. Suppose Assumption2|holds. For all ty < t; < Ty,

1
G(to,t1) < (n—k)(t1 —to +2) + —

Proof. First we claim that for all i € Sp, j 7 4, and t < 7Ty,

(vvg-t)7 xi) < Aw + 20k(y + p).

We prove the claim by induction. The base case ¢ = 0 follows because <w§0),xi> < Aw. Now
suppose it is true at iteration ¢. If (wgt), x;) > 0 then by Lemma

(Wi x) < (W xi) =0Tyt 4+ 1) +n(y + p) By (6, + 1)
< (Wi x;) — (1 — 2k(5 + p))
S <W_§t)7xl>

using v + p < i From this, the claim follows. Otherwise,

(Wi i) < (wif) ) = Ty (8t + 1)+ + ) B (1t + 1)
< 2nk(y + p).

We now turn to the statement of the lemma, again proceeding by induction. The base case t; = g is
clear. Otherwise, we consider two cases:

17



431 L. If Gj(to, t1) > L2kt —to+DOHP) then forall i € Sy and j £ 4, by Lemma

T—p
(1)

(Wi 3) < (wit™) i) = (T (to,t0) + G (b, 1) (7 = p) = B (20, 1) (v + )
< (W) x;) = (G5 (to. 1) (v = p) = By(to, 1) (7 + p))
< (Aw + 20k(y + p)) + 2nk(t1 — to) (v + p) — nG;(to, t1)(y — p)
<0
432 by the claim and \,, < 77 (Assumption[2). Therefore, G (to, 1 +1) < G;(to, t1) + (n— k).
433 2. If G(to, t1) < 1+2k(t1_t0+1)(7+p), then

=P
14 2k(ty —to + 1) (v + p)

Gj(to,t1+1) < po— +2(n — k)
1 2]€(t1 — 1o+ 1)(n — k)
< 2n —
_’y—p+ 5% +2(n —k)
1
<7—|—(t1—t0+3)(n—k‘) D

TP
s34 Lemma D.6. Suppose Assumption[2|holds. For allt < T, i € Sp, and i ~ j,

(Wi, x1) < (O + 20k(y — p)) + 20(y + p)(n — k) + W

435 Proof. Consider t < 7y. We consider three cases

436 1. If t = 0 then
(wi? %) < Ay
437 2. If (wg.t*l), x;) < 0 then by Lemma

(Wi x;) < (wi Y x;)

— (Tt =10 =GP = 1,0y +p) + B (t = 1.0y - p))

< 2nk(y — p).
438 3. If <w§t71), x;) > 0 then let ¢’ < ¢ be the smallest iteration such that (w;T),xi> > 0 for all
439 t' <7<t By Lemma Lemma and the previous two cases above,

(wi i) < (wi' i) (T (#,6) = P0G+ ) + B (03 = 0)
< (Aw + 2nk(y = p))

_n([l—(7+p)(n—k)](t—t’)—2(v+ﬂ)(”—k)_m>'

440 Byy+p< ¢ (Assumption we conclude

n(y +p)
(w§-t),xi> < (Aw +20k(y—p)) +2n(v+ p)(n—k) + (’yp O
441 D.3 Proof of Lemma[3.4]
42 Lemma D.7 (Lemma [3.4). Suppose Assumption 2| holds. There is an iteration T < Tq during
443 training and expressions C1, Cs, and C3 where the following hold:
444 1. Forallpe {-1,1}, j €T, i~j andi € Sr,
3

Im

J
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445 2. Forallp e {-1,1}, j €T, i j,andi € Sy,

3n
<w§ﬂ), ) < Tn;y
446 3. Foralli € S,
LT1,xi) < %
447 Furthermore, )

T +0(1)

T L03m(I+ (Y +p)(n— k)
48 Proof. Fix i € Sp. At every iteration 1 < t < 7, we bound
0t x;) — 0t +1,%;) = g [f(t+ 1, %) — f(t,%3)]

= > D)Mo(wy Y xi)) = o ((wi xi))]

= > CDTe(wY x) — o((wl xi)]
JET (_yyita
<n Y Tyt t+ 1)+ (v +p)G (¢t + 1)
JET _yyitr

= Y Tutt+1)++pGY 1)

JEL (i

0 | STyt t+1) + (v+ )GVt +1)
Jjgr
<n0.99m[1 + (v + p)(n — k)] + 0.02nm[1 + 2(y + p)(n — k)],
a4s  where we use in order: ¢ < 7o, the definition of f(¢,x), Lemma[D.4} Lemma|C.3] I'_; N Ty = 0,

450 and Lemma again. We also use |I',| > 0.99m (Assumption . We further simplify this bound to
451 conclude

0t +1,%:) — £(t,x:) < 1.03pm[1 + (v + p)(n — k)]
452 Additionally, we bound

2m

=1-3 (=) o((wy”x))
>1-Y o((wi,xi))

i~
>1 -3 [o((w” ) +nT35(0,1) +n(y + p)GS (0, 1)]
i~
>1—m[A +n+2n(y+p)(n— k).
453 Therefore as long as

1 —m[Ay +1+2n(y + p)(n — k)] _ 1
STl G+ —R] t= LO3pm[1+ (v + p)(n— k)] o)
454  then
0t %) = £(1,%) + YL +1,%;) = £t x;)
> 1= mldy + 1+ 20y + p)(n — k)] = LO3( — Dym[1 + (3 + p)(m — B)]

> 0.
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455 Notice that this does not depend on i or p. Therefore we can let 77 be the largest integer satisfying
456 this bound for ¢ and bound ¢(77,x,) > 0 for all | € Sp. To verify that 7; < 7T, consider i € Sg:

2m

yif(tx:) = > —(=1)"o((wl x;))
j=1
=Y 16w, x:)) — (Wi, %)) + o((w”, x))]

g

< Z (Tu 0 t ’7 + P)Bj('i)(ov t) + )‘w)
ity
< nmit[l +2(y + p)k] + mA,

457 This is less than 1 for all ¢ < 77 since k < % (Assumption.
458 Now, fix i € Sy again. For i ~ j, we then can use Lemma|C.2]and Lemma[D.4}

Wi xi) > (wi i)+ (T(L ) + (7= GO (LT = (4 9) B (1L,T)
>0+ =2) 1+ (n—k=1)(y—p) —2k(y+p))

_l4+(m—k-1)(y—p) = 2k(y+p)
T Lomit (o rpm-k] o)
2p(n — k) —2k(y + p) — (v +p) — 2k(y + p)

1
20 w1+ G+ ) ) Hou
_% 1/6+4/£:3+1/100+O(n)
3
> 2
~4dm’

459 using p < 6(n1 7y» 1 is sufficiently small, and y + p < min {565 165} (Assumptlon. Now assume
460 1 ¢ j. Using Lemma|C.2Jand Lemma[D.4]we can bound

(Wi x;) < (wi x;) — 1 (nj(l,ﬂ)+ (v =G (1, T) — (v +p)BY (1, T1))
<0—n(T1 —2)((n = k)(v — p) — 2k(y + p))
(n—k)(v = p) = 2k(y +p)
C1.03m[1+ (v + p)(n — k)] +0)
(n—3k)y —(n+k)p
- 1.03m +0()
0.9Tny — %n

= 1.03m
_3ny

IN

+O(n)

4m
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461 using 7 is sufficiently small and k£ < 0 and p < % (Assumption . Likewise, for 1 <t < Ty,
0t x;) —L(t+1,%;) = w[f(t+ 1,%x;) — f(£,%x5)]

2m

Z z+] §,t+1),xi>) - ¢(<Wj(t)’xz>>}

= > DTl xi) — otw) xa))]

Elpyit
1
= Y (W x) - (Wi x,)]
jGF(fl)i

o | D DM (WY xa)) — o((wl xi))]

J¢r

>0l D Tilte,t) + GV (to, (v — p) — B (to, 1) (v + p)
JEL (i

+n | D Tyt t+1) = (y+p)Bj(t,t+1)
Jjgr
>0.99m[1+ (v —p)(n—k —1) = 2(y + p)k] — 0.04nm(v + p)k
>0.99m[l+ (v — p)(n — k —1)] — 2.02nm(y + p)k
ss2  In the first six lines we use: ¢ < 7o, the definition of f (¢, x), Lemma|D.4] Lemma|C.2|and Lemma|C.3]
463 Lemma[D.4|again, and |T',| > 0.99m (Assumption[2), respectively.
464  We also bound

0(1,x;) =1 -y f(1,x)

2m

= 1—2(— D) o((wit x;))
< 1‘1‘2@5 (1)

inkj

<1+ ) [o( = 11T35(0, 1) +n(y + p) B;(0,1) + 1]
ity
<14+ m[Aw + 1+ 2n(y + p)k].

465 Combining these two bounds we see that

0T, %) < (1, %) = n(Ty = 1)(0.99m(1 + (v = p)(n — k — 1)) — 2.02m(y + p)k)
0.99m[l + (v — p)(n — k —1)] —2.02m(y + p)k

<1- +0
- 1.03m(1 + (v + p)(n — k)) ()
0.99((v + p) + 2p(n — k — 1)) +0.08 + 4:24 o)
- 103m( +(+p)n—k)
0.99(155 + & + 0.08 + £04)
< 100 19)
< T3 +0()
1
< -
-3
a66  at this iteration, as desired. Here we use (v + p) < min {ﬁ, ﬁ, ﬁ }, 7 is sufficiently small, and
w7 p< ( 7y (Assumption | O
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469
470

471

472

473
474

475

476

477

478
479
480

481
482

483

484

485

486
487

D.4 Late training

Lemma D.8. Suppose Assumption|2|holds. Fix € > 0. We will say a neuron is aligned (at iteration t)
if

(1) sgn(w; ", x;) = y;
foralli € Sp. Fort > Ty, if

than at least (1 — €)m neurons in each I, will be aligned.

Proof. Let p € {—1,1} and t be such that em different neurons in Iy, are unaligned at iteration ¢.
For any neuron index j € ', and i € Sy, we can use Lemma@to bound

(1) (wi %) > (~1)" (Wl T ) T3 (T2, 1)
+ (v — p)GV(Ti,t) — 0y + p)BY (T1,t)

. 3 3Iny
mm{4m, 4m} n(y + p)B;(T1,t)

3ny
2= n(y + p)B;j(Ti,t).

Since ny < 1 (Assumptio?, we see that min{;3-, 3"} = 387 {f the lower bound above is
t

J
(using p < ¢ from Assumption . If there are em unaligned neurons, then

positive then (—1)7 sgn(w
3ny 5n
Anm(y+p) = 8nm

,X;) = y;. Therefore, if a neuron j is unaligned then B;(7;,t) >

2m

oen
B(Tl,w:ZBj(ﬂ,t)zQ. 0
Jj=1
Denote the first iteration after 7; where more than em neurons in one of the I',, are unaligned as 7T°.
If no such iteration exists, let 7° = co. We will eventually show that indeed 7¢ = oo, by showing
that the training process reaches zero loss before such an iteration can happen.

Lemma D.9. Assume Assumption@holds and also v+ p < %. There is an iteration Ty > Tq

so that for all iterations t satisfying To <t < T¢ and all i € Sr,
0(t,x;) < dn(y + p)km.
Furthermore, we can choose T5 so that
1

=TS g 00— — o)

Proof. Fixi € Sy andt < T¢ — 1. Suppose £(t,x;) > 0. Using Lemma|C.3|and ¢ < T,

2

3

yif (t+1,%:) — yif(txi) = > (1) (6wl %)) — o (Wl x:)))

Y

N¢ERNG

n(Tij(t,t +1) = (v + p)Bj(t,t + 1))

99(1 — e)m — dnmk(y + p).

vV
= e
S

Therefore,
0t +1,%x;) < min{l(t,x;) —nm(0.99(1 — ¢) — 4k), 0}.

By Lemma the loss of each clean point at 77 is at most %, so each clean point reaches zero loss
in at most

1
{377771(0.99(1 —e) —4k(y+ p))—‘
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488

489

490
491

492
493

494

495

496

497

498

500

502

iterations.

Now suppose £(t,x;) = 0. We similarly argue

2

3

yif (4 1,%x:) — yif (txi) = > (=1 (6wl %)) — o (Wl x:)))

INgERINg

v

n(Tij(t;t + ].) - Bj(t,t + 1))

<
I
—

> —4dnmk.

This implies £(t + 1,x;) < 4nmk. By induction, we see that if ¢ < 7¢ and (¢, x;) < 4nmk, then
0t +1,%x;) < dnpmk. O

Lemma D.10. Assume Assumption E| holds and v + p < %ﬁ.

ty <to <TCandie€ Sr,

For all t1,t5 satisfying To <

Aty —t1)(y + p)k + 4k + 3
0.99(1 —¢) '

Si(t1,t2) <
Proof. Recall Lemmal|C.3|(restated in this setting, using Lemma [D.9):

dnmk
Ti(ty,t2) < % + (v + p)B(tr, t2) + 3m.

Using t < 7° we bound

0.99(1 — E)msi(tl,tg) S Ti(tl,tg)
dnmk
< % + (v + p)B(t1, t2) + 3m

< dmk +4(ty — t1)(y + p)mk 4 3m.

From this, the desired inequality follows. O

Lemma D.11. Assume AssumptiothDlds and v+ p < min { 0‘99&75) Y Oé?g(_llz)? } Leti € Sp.
Suppose there is j o4 i such that

2(n—k)(y +p)(4k +3)

) .
{wj ™ xi) >m 0.99(1 — &)

Then for all t satisfying To <t < TE, (ng), x;) > 0 for some neuron j' depending on t.

Proof. Let g > Ty be the first iteration after 75 where £(¢, x;) = 0. We will show by induction that
for all ¢ satisfying 72 < t < 7p that (W§t), x;) > 0. The case t = 75 follows immediately by the

assumption of the lemma. Otherwise, assume (wg»t/)7 x;) > 0forall 73 < ¢ < t. By Lemma

23



503 and Lemma|[D.10]
(Wi ) > (Wi x;)
1 (T (T2t +1) = G (ot + 1)y + p) + BY (Ta, 1+ 1)y = p))

> (Wi x) +pt+1-T) =ty +p) Y Si(Ta.t+1)
1EST
> (Wi x)) 4t +1—Ta)

—n2(n—k)(y + p) (4(t+ 1 _75)(7+P)k+4k+3>

0.99(1 — <)
=t +1-To) (1 - 8("0f92)(f(j$p) ) + (W™ )

2(n—k)(v + p)(4k + 3)
0.99(1 — &)

> 0.

504 We now continue the induction past 79. If £(¢,x;) = 0, then point 4 clearly activates some neuron.
sos  Let 7y be the first iteration after 7o where £(¢,x;) > 0. By Lemma|C.3]

2m

yif (%) = yif (= Lxi) = > = (=1 (@((wi™ x:) — o((w{™ 7, x2)))

=1

> ZU(Ti]‘(t,ﬁ) —G,(t,1 — 1))

> —4nm(n — k).

s06 This means ‘
ST (1 o((wi xi)) > yif (r,xi) > 1~ dgm(n — k)
j'bi
s07 and there is some j satisfying
2(n — k)(v + p)(4k + 3)
0.99(1 —¢) ’

1

(Wi xi)) = — —dn(n — k) > 1

s08 assuming 7 is sufficiently small (Assumption [2). We can run the original induction argument with
so9 71 replacing 72 and 72 = min{t > 7 : {(t,x;) = 0} replacing 7 to verify the conclusion for
sto 11 <t < 9. By switching back and forth between these two arguments, we can show that point ¢
511 activates some neuron for all 75 <t < T°¢. O

sz Lemma D.12. If Assumption 2| holds, the training process reaches loss.

513 Proof. In this proof, let ¢ = % The conditions of Lemma Lemma , and Lemma hold
5

514 because v + p < min { 0'9,?/ Y 22'(?1‘2) }

55 By Lemma [D.2] there is a finite bound on the number of updates, independent of the number of
516 iterations spent training. If we carry out the training procedure for infinitely many iterations, there
517 must be some iteration where we make no updates. Since the training procedure is deterministic, we
518 will not make any updates after this point, and we will have converged. It remains to show that this
519 convergence results in zero training loss. The only way for a point to not update any neurons is for
520 that point’s loss to be zero or for that point to activate no neurons.

521 Lemma|D.8]and Lemma [D.TT]say, under certain conditions, that every clean point and every corrupted
522 point activates some neuron for each iteration ¢ < 7°. We need only to verify that these conditions
s23 hold and that B(77,t) remains below the limitation set in LemmaD.8]
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524
525

526

527

528

529
530

531

532

533

534

535

536

537
538

539
540

541
542

We apply Lemma starting at to = 7;. By Lemma|D.7| ¢(77,x;) < % forall i € Sy. Using
Lemmal[D.6] fori € Sr,

2m

UTi, %) <1y Y (1 o((wi™ x;))

j=1
<14 Z¢ {7
jrvi
<14 0(n).
With these bounds, Lemma[D.2]shows that for all ¢ > 77,
2k 1 1
Ti. <+2n—k: ’y+p>+01
B(h.) < 1—4k(n—k)(v+p)* \1 (=0 >377 W

< 2R+ (2/3)(n = K)(y + p))
n(1—4k(n = k)(v+ p)*)
2k(5/3)

< S 4j99) +0(1)

10n

using v + p < min{ -1 — 99k} n sufficiently small, and k < {5 (Assumption . By Lemma

TE =o0if m < 56” , which is clearly true for ¢ = %

0(1)

<

We now show that every training point ¢ activates at least one neuron each iteration. By Lemma@

this is true if i € Sy. By Lemma|[D.T1] this is true for ¢ € S if there is a neuron j ¢ i such that

s 2n—k 4k+3
(w 52)7 x;) > & 0?9(;’;’?6() +3) Fix i € Sp.

First, assume that £(t, x;) > 0 for all ¢ < T3. By Assumption[2]and Lemma[D.3] we know there is
j €Ty, suchthati € A(-l). Using Lemma@and Lemma|D
T1)
(i xi) > (it xi) 40T (LT =0y + p) G (L) + iy = ) B (1L Th)
> 71(1 —(r+p=k)(T -1

we can bound

and
(Wi x) > (Wi i) 0Ty (T2, To) = 0y + 9)GY (T2 ) + 0y = ) B (T, Ta).

By induction on ¢ we see that

G,(Tit) < _max (<n_k><t+1 - wp)ﬂ’fﬂ)

Ti<t/ <t )
for t > 77. The base case t = 77 + 1 is clear. Suppose the inequality holds for ¢. Either G;(71,t)
increases by at most n — k or there is some i’ € Sy N .A D with if 4 j. By Lemma and

Lemma[D.7}

0< <W(.t), X )

j <W§‘Tl)vxi/> —n(y = p)G(Ti,t+ 1) +n(y+ p)B;(T1,t)

(v = p)G;(Tu, ) + (v + p) Bj (T, 1)
from which the inequality follows. Since w <3k({t' —T1) < (n—k)(# — T1) (using
p < %andk < 355 from Assumptlon , this maximum occurs at 7 = 7. This yields
r
(Wi xi) 2 (1= (v + p)(n = K)(Te + 1= Dy — p) B} (1. To)
0l = (v +p)(n—k))7T2

We want to show this bound is larger than a quantity that is O(n). This happens when both of the
following hold:

<
<

O(1) < (1= (y+p)(n—k))Ta,
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543

544
545

546
547

548

549

550

551
552
553

554

555

556
557

558

which holds when 7 is sufficiently small.

Now suppose ¢(7,x;) = 0 for some iteration 7 < 7. By Lemma T1 < 7. In this case, we see
that

vif (Ta,xi) = yi f (T2, %) Z D e((wiT x,)) — o((wi™, x:))]

>1 —77(7+p)G 7,7’2)
2(n — k)
1 —4k(n — k) (v + p)

2 12 1
>1-—— (= =
= 1-4/99 <3+99)+O() 4

where in the third line we use Lemma and the fourth line we use v + p < min{ -1 "R 9 k} and
sufficiently small (Assumption. Sinet is is positive, there is some neuron j with ¢ »¢ j such that

¢(<W§T2) ;) is at least - this bound. This is an (1) lower bound. Since the required condition is

(72)
<Wj : )

>1—(y+p) 2[;+2k(7+p)]+0(n)

x;) > O(n), this can be achieved by taking 7 sufficiently small. O

D.5 Proof of Lemma[3.3]

Lemma D.13 (Lemma . Assume Assumptionholds. Let y € {—1,1} chosen uniformly and
= (yyv, VI =7n), where n ~ Uniform(S*~* N span{v}+). Suppose that |(n,ng)| < ﬁ
for alll € [2n), then yf(Tona, x) > 0.

Proof. Following the same steps as in (3)) for any j € [2m)]

<W§7€nd)’x> _ <W§1) ZT@ a)Ye(Xe, X;)
= (wgtO) ynZTeJ (t0, ) (1) yB(£) (x¢, %)
= <w§t°) ynZT@ to: 1) Nigs

where N := (—1)'yB(¢)(x¢,x) = B(£)y + (1 — v)(ng, n). Then as in Lemma
v —p <N, <y +p, ifi € Sr,

Recall, from Lemma [D.4] for any j € T, then G;(1,7ena) > G;(1,T1) = Ti(n — k). Asa
consequence, for j € I', we have

<W(7;nd) , X>

i <W§-1),Xi> +1G(1, Tena) (v — p) — 1B; (1, Tend) (v + )

>
>O0(n) + Ti(n — k)(v — p) — nB;(1, end)(vﬂ))

For j such that (—1)7 = y then

o((wiT™ %)) < S x:) = 0G5(1, Tena)(r = ) + 1B (1, Tena) (7 + )
< O() +nB;j(1, Tena) (v + p)-
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560

561
562

563

564

565

566

567
568

569

570

571

572

574
575

576

577
578

579

As a result

y endy Z Qb (7;“‘1) >)

JE[2m]
> Z <W§7;nd)7x> _ Z ¢(<W§7§nd)7x>)
JETp 3 (=1)7#y
>0 Y Tiln—k)(v=p)—n Y. B, Tena)(y + p) + O(n)
jer, j€[2n]

> 0.99nmTi(n — k) = nB(1, Tena) (v + p)) + O(n)
using |T'p| > 0.99 (Assumption[2). From Lemma|[D.7]

1
1.03nm[1 + (v + p)(n — k)]

T = +0(1),

furthermore, combining the assumptions 100k < n, n sufficiently small, and v + p < = with
Lemmal|D.2lwe see

B(1, Tows) 2 L 2n- 0+ (1 )] + o)

1—4k(n —k)(v+p)? Ln
n

< —.

— 109

Here we also use that £(0,x;) < 1+ mA, =1+ O(n) for all ..

Combining these inequalities it follows that

099 n—k
nd, X) 2 - —pP)— 75
Yy (Tena, %) 2 155 —5— (1 = 1) 10(v+p)+0( )
n 3n
>
23" 5 +O(n) > 0,
again using 100k < n, n sufficiently small, and v + p < ﬁ O

D.6 Proof of Theorem 3.1]

Theorem D.14 (Theorem [3.1). Ler Assumption [I| hold. With probability at least 1 — & over the
randomness of the dataset and network initialization the following hold.

1. The training process terminates at an iteration Topy < %

2. Foralli € 2n) £(Tona,x;) = 0.

3. The generalization error satisfies

2
P(sen(f (Tow. X)) # ) < Cexp ( = )

Proof. Under AssumptlonQStatement 1 and 2 are derived from Lemma@ The bound in statement
1 comes from Lemma applied from iteration 0 to iteration Teng, using 4k(n — k fy +p)? < 4/99
and £(0,x;,) =1+ O 77 for all ¢ € [2n]. Statement 3 comes from Lemma 3| Finally, under
Assumption 1] then by Lemma [D.1] Assumption 2] holds probability at least 1 — 4. O

E Non-benign overfitting

Assumption 3. Let § € (0,1). For the non-benign overfitting setting we assume the following
conditions on the data and model hyperparameters.

1
Lys s
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581

583

584

585
586

587

588

589

590

591

592

593

594

595
596

598

599

600

601

602

603

604

605

1
2. nﬁm,

3. A < min{nvy/10,n/4},

4. m > logy(42)
5. d > max {6, 3p 2In (%)} where p < min{{;—nﬂy7 % -7}

For convenience, in our analysis we will make two additional assumptions.

Assumption 4. In addition to the conditions detailed in Assumption|4} assume the following two
conditions hold.

1. Foralli € [2n] there exists a j € [2m) such that (—1)” = y; and i € A;-O).
2. Foralli,l € 2n], i # 1 [(n;,m)| < £

As demonstrated in the following Lemma, these additional two conditions hold with high probability
over the randomness of the initialization and training set.

Lemma E.1. The additional conditions of Assumption | hold with probability at least 1 — 0.
Proof. The additional conditions of Assumption 4{over Assumption [3|are as follows.

1. Forall i € [2n] there exists a j € [2m] such that (—1)” = y; and i € A;O).

2. Foralli,l € [2n], i # | |(ni, ny)| < 5.

Using Lemma , then as long as m > logQ(%") the probability the first condition does not hold is

at most /2. Using Lemma and observing 12 > p, then as long as

2
d > max {6,3/)2111 (42)}

the probability that the second condition does not hold is also at most § /2. Using the union bound we
conclude that both properties hold with probability at least 4. O

E.1 Proof of Lemma[3.7]

Lemma E.2 (Lemma[3.7). Assume Assumptiod|and that ((to,x;) < a for all i. Then

2n a
o) < T =1y 1) (77 *3’”) '

Proof. From Lemmal|C.3] ¢(p — ) < p + 7, and the assumption on a,
a .

Tifto, ) < o+ 3m+ (7 + p) T (to, ).

If we sum over ¢, we get
2na
T(to,t) < B +6mn + (2n — 1)(y + p)T'(to, 1),

from which the result follows. O
E.2 Additional lemmas

Lemma E.3. If Assumption | holds, then the training process converges to zero loss.
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618

619

620

621

622
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Proof. By Lemmal|E.2] there is an upper bound on the number of updates independent of epoch. This
can only happen if there is some epoch after which we make no updates. In turn, this can only happen
if every point is either at zero loss or activates no neurons. We prove by induction that every point

activates a neuron each epoch ¢ = 0. Fix

a point s.

At t = 0 this is true by initialization. Now suppose it is true at epoch ¢. There are two cases to

consider to show this for epoch ¢ + 1:

1. If £(¢,x;) > 0, then let j be such that ¢(<w§-t), x;)) > 0. We can bound

¢(<W§t+l)7 X)) > ¢(<W§-t), x)) +n—nly+ p)Hj@ (t,t+1)

> o((wi, %)) + [l — (v + p)(2n — 1)]
> 0,

since Y+ p < 5-—

2. If £(t,x;) = 0, then

L_ (Assumption EI)

2m

yif(t,xi) = yi Z (—1)j¢(<w§t),xi>)

is bounded below by 1. This means that there is some j such that (i)((wj(-t), X)) >

bound

S((wi ™ x;))

1

since n < 5. —

(Assumption @)

<

S e(w, %)

Ji(=1)=y;

|-

Y
<

(Wi xi)) = n(y + p)H (8,8 +1)

Y

-~y + p)en 1)
>0

Lemma E.4. Suppose that at epoch T every point is at zero loss. Then we can bound

nT(0,7) > n+ O(n).

Proof. If ¢(1,%;) = 0 for all 4, then y; f (7,%;) > 1 for all 7 as well. We bound

by

i (=1 =y;

>

Ji(=1)I=y;

yif(1,%;) <

<

(B((wi™ %)) — o(wi”, %)) + O(n)

(T30, 7) + (v + p)H”(0,7)] + O(n)

<nTi(0,7) +n(y + p)TD(0,7) + O(n).

If we sum over 7, we see that

2n <[l + (2n —1)(v + p)IT(0,7) < 20T(0,7) + O(n),

from which the desired result follows.

Lemma E.5. Let y € {—1,1} chosen uniformly and x :

O

(yvv,v/1—m), where n ~

Uniform(S9=1 Nspan{v}+). If Assumption 4| holds, then

Py f(Tena, x) < 0) =

ool =
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624 Proof. Let y ~ U({—1,1}) and consider a clean test point x = y(\/7v + /1 —yn), where

625 n ~ U(S?\ spanv). Observe by symmetry of the distributions of both y and n that —x is identically
e26 distributed to x and furthermore that the labels of x and —x are opposite. As a result, if y(f(Tena, X) —
627 f(Tend, —X)) < O then at least one of y( f(Tena, X) < 0 or —y(f(Tend, —X) < 0, in turn implying at

628 least one of them is misclassified. By construction, <W§t), x) > 0iff <w§t), —x) < 0, therefore

y(f (Tead: %) = f (Teaa, — —yz P (oltwi™,3)) = o((wi™), =)

Ten
_ Z y(— ( d) x).
620 Unwinding the GD update to a neuron we have
7;]1 0
W§ Q) _ o, (0) +1 Z T;;(0 )z-l-]x

630 Furthermore, as

(xi,x) = y(=1)"(7 + (1 = 7)B(i)(n;, n)))

631 then
om 2m 2n
Zy end) ,x) = Zy( 1) +nZZy ]TU Tena) (—1)" 1 (x4, %)
j=1 Jj=11i=1

2n

< 2mAy +nZT Tena) (v + (1 — ) B(i)(n;,n)))

=1

2n
- 2m)\w + n <T(07 7;nd)’7 + <Il, (]— - ’Y) Z E(Oa %nd)ﬁ(l)nl>>
i=1

2mAw + 1 (T(0, Tena)y = Izl (1 =) (n, 0)),

632 where the ﬁnal equality follows from symmetry of the noise distribution, z := Z2n T (0, Tena) 124
633 and u = H I Observe

2n
2] = >~ T:(0, Tena) Te(0, Tena) (mi, 1)

il=1
2n
Z Z TE(O, 7;nd) - L Z Ti(oa ﬁnd)TE(Oa ’End)

_1_7+p 2n
_7177

RNV P
> (57~ 725 ) 20T

634« where the final inequality follows from Jensen’s inequality. By assumption 4np < 1 — +, and
635 10mA, < ny < 0 furthermore trivially (1 — ) > 0.8. Conditioning on the event (n,u) > 0,
636 which holds with probability 1/2, these inequalities in combination with Lemma give

2m ] \/ﬁ
Dy (W, x) < 2my + 0y = (1= 9) ()
j=1
1 /n 4
< —oyf=—— .
<o\/5 - Vi
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659

660

661

662

663
664

665

666

667
668

669

Therefore, if (n, u) > 0 then the condition

(Vdn,u) > % ®)

implies at least one of x or —x is misclassified. Suppose n ~ U (S%Nspan(v)~) is such that (§) holds.
Then as y ~ U({—1, 1}) it follows given n then either x or —x are sampled with equal probability
and thus the chance of misclassifying is at least 1/2. As a result the probability of misclassification is
at least

iIP ((\/3H7u> > 1) > %

as claimed. O
E.3 Proof of Theorem 3.6

Theorem E.6 (Theorem [3.6). Assume Assumption[3|holds. With probability at least 1 — & over the
randomness of the dataset and network initialization the following hold.

1. The training process terminates at an iteration To,g < %
2. Foralli € [2n] £(Tena, %;) = 0.
3. The generalization error satisfies

P(sgn(f(Tena, X)) # y) =

OO\*—‘

Proof. Under Assumption ] Statement 1 and 2 come from Lemma|[E.3] The bound on 7¢pq comes
from LemmaEapphed between epoches 0 and Tenq, using £(0 xz) =1+ O(n) for all i € [2n]
and (y + p)(2n — 1) < 2. Statement 3 comes from LemmaE.5| We conclude by observing under

Assumption 3| that Assumption 4] holds with probability at least 1 — 4. O

F Non-overfitting

Assumption 5. Let § € (0,1). Withn > C and n < c then for no overfitting we assume the following
conditions on the data and model hyperparameters.

1 k< {2,

2. 3 <y < Lmin{k™, 1},

3 Ay <2

4 mZCln(%”),

5.d>3p%2In (%) where p < 7.

We remark that under these assumptions p as given above satisfies the inequality p <

. —3k)—2
min {%, g7 T } For convenience, we will also make two additional assumptions.

Assumption 6. In addition to the assumptions detailed in Assumption [3] assume the following
conditions hold.

1. T =[2m).
2. Foralli,l € [2n] such that i # | then |(n;,n;)| < 7£-.

As shown in the following lemma, these two additional conditions hold with high probability over
the randomness of the initialization and training set.

Lemma F.1. The extra conditions of Assumption[6] hold with probability at least 1 — &
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Proof. Recall the additional conditions of Assumption [6]over Assumption [5]are as follows,

1. I' = [2m],

2. forall,l € [2n], i # | [(n;, my)| < 5.

Using Lemma [B.3] then for sufficiently large n there exists a constant ¢ such that the probability the
first condition does not hold is at most m exp(—cn). Alternatively, setting § > 2m exp(—cn) and
rearranging, as long as m > C'ln (27”) then the probability the first condition does not hold is at most

5/2.

Using Lemma observing
6, then as long as

> p and under the conditions of the lemma that 3p~2 In (4n2)) >

2
d>3p2In <4§>

the probability that the second condition does not hold is also at most § /2. Using the union bound we
therefore conclude that both properties hold with probability at least §. O

.
1—y

F.1 Proof of Lemma[3.9]

Lemma F.2 (Lemma . Suppose Assumption @ holds. Consider an arbitrary j € [2m] and
iteration t satisfying 2 <t < To. Theni € .Agt) iffi~ 7.

Proof. First we establish at iteration t = 1 that for all i € Sp, 7 € A;t) iff i ~ j. The argument
here is similar to that of Lemma|[D.3] Suppose i ~ j and i € S7. Recall from definition of T',, that
G;l)(O7 (y—p)— BJ(-Z)(O, D(v+p) > 2/\7“’ By Assumption@ all neurons are in I'. Using Lemma
C2 | ‘

witx) > (wixi) 4 (T5(0,1) + G 0.1 = p) = BP0, 1) + )

> (Wi, x;) +1(G;(0,1)(y — p) — B;(0,1)(7 + p))
(

> (wi” %) + 2\

> Ay
On the other hand, if ¢ 7¢ j then again from Lemma|[C.2]
(wit i) < (wi¥xi) = (T35 (0,1) + G (0,1)( = p) = B (0,1)(7 + )

(Wi x;) = (G;(0,1)(y — p) — B;(0,1)(7 + p))

—Aw-

Now we consider t = 2. If i € Sp and ¢ ~ j then

wi i) = (witxi) 0 (T5(1,2) + G (1,2)(r = p) = B (1,2)(7 + )
>n(1+(n—k=1)—p) —2k(y+p)

whereas if ¢ € Sy and i ¢ j then

wi i) < (witxi) = (T5(1,2) + G (1,2)(r = p) = B (1,2)(7 + )

< =n((n —k)(v = p) — 2k(y + p))-

By assumption v > 2+,,$7_LJ§,]:)‘7 > (Ztgl)f

using Lemmal[C.2] for i € Sp and i ~ j
i xi) = (Wi xi) = (T45(0,1) = G0, 1)y = p) + B (0,1)(7 + )

2w
> =Xy — 1 (1 — )
n

> =,

IN N

and therefore for i € Sy then ¢ € .A;Q) iff i ~ j. Again

32



693 andfori € Spandi 4 j

wi i) < (Wi xi) + 0 (T4 (0,1) = G (0, 1)y = p) + B (0,1)(7 + p)

2w
<)\w+n(1—)
n

694 Therefore, as v > 2("7%)” then fori € Sp and i ~ j

wi? i) = (wixi) = (T45(1,2) = G (1L,2)(r = p) + B (1,2) (7 + )

>-—n+n((n—Fk)(y—p)—2k(y+p)—1)
>0

695 andfori € Spandi 4 j

wi? ) < (witxi) 0 (T5(1,2) = G (1,2)(r = p) + B (1,2)(7 + )
<n—n((n—Fk)(y—p)—2k(y+p) - 1)
<0.

696 With the base case established we proceed by induction to prove if ¢ € .A ) iff i ~ jthent € AW
697 iff 2 ~ 5. By the assumptions on +, the induction hypothesis and again usmg Lemma@ then for
698 1~ J

i xi) = (D xi) = (Tt = 1,8) = G = 1,6)(y = p) + B (£ = 1,5)(7 + p))

>n((n—=k)(y—p) —k(y+p) —1)
>0

699 and fori oL j
(i x) < (i ) 4 (T (= 1,0) = Gt = 1.0 = p) + B (= 1.0)(7 + )
)

—n((n—k)(y = p) = k(y+p) -1
0.

ANVAY

700 Therefore for an epoch ¢ satisfying 2 <t <7y i € .Agt_l) iffi ~ 7. O

701 F.2  Proof of Lemma|3.10)
702 Lemma F.3 (Lemma[3.10). Assume Assumption[6] Then there is an epoch T1 < To such that

Y(n—2k)+pn—1+(y—p)
m(1+v(n—2k) +pn— (v —p))
(T) ) > 1+v(n—2k) —pn— (v —p)
T m(l 4 y(n = 2k) + pn— (v = p))
<W(-T1) x;) < — v(n —2k) —

7T (L4 y(n = 2k) + pn — (v = p))

+O(n)ifiecSryi~j

O(n) ifij

703 and fori € Sp

2pn
) <
T, %) < 1+~(n—2k)+pn— (v —p)

+ O(n).

704 Furthermore,
1

m(1+y(n —2k) + pn — (v — p))

T = +0(1).
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705 Proof. Lett < Ty. By Lemma[F2]and Lemma[C.2 we can bound, for i € Sp and i ~ j,

(wi xi) < (W xi) = nTy5(2,8) — (v — p) B (2,1) + n(y + p)G(2,1)
=nt((y+p)(n—k)—(v—p)(k—1) = 1)+ O(n)
=nt(y(n —2k) + pn — 14 (v —p)) + O(n).
706 Similarly, fori € Sp, i # j,

(Wi xi) < (W xq) + 0T (2,1) + 0y + p) B (2,1) — n(y — p)Gy(2,1)

=—nt((y—p)(n—k) — (v + p)k) + O(n)
= —nt(y(n — 2k) — pn) + O(n).

707 Fori € Sy, i~ j,

(Wi x;) < (Wi, x0) +0T3(2,0) + 0y + p) GV (2,8) — 1y — p)G(2.1)
=nt(l+(y+p)n—k—1)—(y—pk)+0(n)
=nt(1+~(n —2k) + pn — (v +p)) + O(n)
708 and
(Wi x;) > (Wi, x0) +0T3(2,0) + n(y — p)G(2,8) — 1y + p)Gy(2,1)

t)
+(y=p)n—k—=1)—=(v+p)k)+O(n)
+7(n —2k) — pn— (v —p)) + O(n).

t
t

nt(1
nt(1

709 Lastly, fori € Sr, i # j,

(Wi x;) < (Wi, x) +0Ti(2,0) — n(y — p)GY(2,8) + 0y + p)Gy(2.1)

=-—nt((v—p)(n—k)—(y+p)k)+O(n)
= —nt(y(n — 2k) — pn) + O(n)

710 Therefore, for ¢ € St,

711 from which we conclude
nmt(1+vy(n—2k)—pn—(v—p))+0(n) < f(t,x;) < nmt(1+y(n—2k)+pn—(y—p))+0(n).

712 Therefore, as long as

nmt(1+y(n —2k) + pn— (v = p)) + O(n) <1, 9)
713 then (¢,x;) > 0. Let 77 be the largest value of ¢ satisfying (9) and ¢ < 7. We see that
1
= +O(1).
=2 -G O
714 From this, the desired bounds follow. O]

715 F.3  Proof of Lemma 3.11]

716 Lemma F.4 (Lemma[3.11). Let Assumption[6hold. Suppose there is a time t so that:

77 a. (to,x;) < aforalliec Sr,
718 b ¢((w"),x;)) < bforalli € Sp andi ~ j,
719 c. For all iterations T satisfying to < 7 < t it holds that i € A§T) only if i ~ j,
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720

721

722
723

724

725

726

727

728

729
730

731
732

733

d. For all iterations T satisfying to <17 <t, 1 € Ag-T) ifi~jandi € Sr.

Bj(to,T) S k <3b + 2a>

2n  nm

2n

irs

We can bound

Proof. Fix a neuron j. Using Lemma@and assumption (b) we bound fort < 7 <t,i € Sp, and
1~
S((wi ™V, x:)) <b—n(Tis(te, 7 — 1) = (v + )Gy {to, 7 — 1) — 1)
There are two possibilities. If this bound is negative, then T;; (to, 7) = Tj; (to, 7 — 1). Otherwise,
T;j(to, 7) < Tij(to, 7 — 1)+ 1

b
< 5+(7+P)Gj(t077—1)+2

b
< ot (v +p)Gj(to,7) +2
This yields, by induction,
b
Ej(to,T) S % + (’Y + p)Gj(to,T) + 2.

We then sum over all ¢ € Sp such that i ~ j. By assumption (c),

> Ti(to,7) = Bj(to, 7).

lESF
i~j

This yields
kb
Bj(to,7) < P k(v + p)Bj(to, ) + 2k
which, by our assumption, is equivalent to
kb E(y+
Bj(to, )S*‘FMZGe (to, 1) (10)

l~j

since the number of clean updates on two neurons ¢ and j with £ ~ j is the same by assumption (c)
and (d).

Fix s € [2m]. We now bound .
and¢ ~ j

(Wi ) > (w0 + (T (o, 7 = 1) + (v = )G (to, 7 = 1) = (v + p) By (to, 7 — 1))

Using assumption (c) and (d),

yif(r=1,x) =Y o((wi ™V xi))

Jr~i

>3 ( 7))+ Ty (to, ™ — 1)

Jo~i

G (to,t). This time, we use Lemmato bound for ¢ € Sy

jr~s

+0(y = p)GV (to, T — 1) — n(y + p)Bj(to, 7 — 1))

> (1—a)+n(l—(v—p)Ti(te, 7 — 1)

+ [ D (v = p)Gilto, T — 1) = (v + p)Bj(to, 7 — 1))

grvi
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734

735
736

737

738

739

740

741

742

743

744

745

746

747

Either T;(to, 7) = T;(to, 7 — 1) or £(7,x;) > 0. If the latter holds, then
n((L= (v = p)Tilto, ™ = 1) + > _ (v = p)Gj(to, 7 — 1) = (v + p) B;(to, 7 — 1)) < a.
jrvi

Suppose 7 < 7 is the first iteration before 7 such that G;(7/,7) = 0. Let i € Sp, i ~ s be a point
that makes an update at iteration 7’ — 1. Using the above bound, we see

n((1 = (v = p))Ti(to, 7 — 1) + Z (v = p)Gj(to, ™ = 1) = (v + p)Bj(to, 7" = 1))) < a.
which implies
> (v = )Gt ™ — 1) = (7 + p)Bj(to, 7' — 1)) < 5

jri
and

, a
> (v = p)Gi(to, ™) = (v + p)Bj(to, 7)) < o~ 2n =k ).
jr~s
By definition of 7/, we conclude

a

> (v = p)Gj(to,7) = (v + p)Bj(to, 7)) < ,~2n=R0=p).
jr~s

From this we get the bound

1
3 Gt t) < —— [ Z 4+ (v +0) Y] Bito,0) | +0(1). (11)
= Y=p \ 7 yron

We combine with summed over j ~ s to see

S Gittant) < —— | S+ (1) | T2 4 k40 Y Gl ) | | +00)

oo y=p \n =~
1 a kmb(’y+p))
< -+ 2T 400
¥ —p—k(y+p)? (77 n M)
and
kb k(v +p) (a kmb(y + p))

Bi(tg,7) < — + -+ +O(1).
j(fo,7) n o mly—p—Fk(y+p)?) \n @)

Using p < 1, i sufficiently small, and y < ﬁ (Assumption@) these bounds simplify to

3b 2a
Bi(to.7) < k(2 4+ 2%
it 7) < (2n+nm>

1 /3a mb
G,(to,t) < — +). O
"Gyt ) 7(277 .

js
F.4 Late training
Lemma F.5. Under Assumption[6] the training process terminates at an iteration Tenq satisfying

U(Tena, xi) =0

foralli € Sy and
(w7 ;) = 0
foralli € Sp and j € [2m).
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748
749
750
751

752

753

754

755

757

759
760

761

762

763

Proof. By Lemma[F3|and Lemma[F.4] we converge provided that the assumptions of the lemmas are
satisfied. Since Lemma [F.3|requires only Assumption[6] we turn our attention towards Lemma [F.4]
This has more delicate conditions. Let tg = 7;. We first see that the conditions on ¢ and b are
satisfied if we take
2pn
a= +0(n)
L+ y(n—2k)+pn—(y—p)
_ _An=2k)+pm—1+(y—p)

m(1+~y(n —2k) 4+ pn — (v —p))

using Lemma[F3] Next, using Lemma|[C.2] we see by induction on ¢ > 7; that if

v(n —2k) —
B;(T1,t) < +0(1
i(T.1) m(y + p)(1+~(n—2k) + pn— (v — p)) M
then fori 4 jand T < 7 <,

_5'7—) ) Xz>

+ O(n).

IN

(Wi %) + (v + p) B (Ti, 7)

(wi™ i)+ (v + p) By (Ti, )
<0
and fori € Sy, i~ j,and 71 <7 <'t,
(wi” xi) = (w™ i) = n(y + p)B(Ti, 7)
T
> (Wi xi) = n(y + p)B;(Ti. 1)
1—(v—p)
> +0(
A —2k) +pn— (=) T O
>0
for n sufficiently small. So we converge to the desired steady state so long as
b 2 —2k) —
k<3 “>< y(n = 2k) — pn +0(1)

2 nm m(y+p)(1 +~(n —2k) + pn— (v = p))
which is equivalent to

(w

IN

-+ (5 (0 =200 = 1 (= )+ ) <5 = 26) =+ O

This is true by Assumption[f] as

kr-4) (5 =20~ 1+ =) + o) < 5 (3o - 200 - 54 5+ 3)

IN

30 36
1 1
< — — 2k
S g2 =g
<(n—2k) -
usmgfy<mua{:,)ﬁk,%}andp<nr11n{5,11 O

Lemma F.6. Assume Assumption @ holds. Lety € {—1,1} chosen uniformly and x :=
(y7v, /T =7m), where n ~ Uniform(S*~' N span{v}+). Suppose that |(n,n,)| < ﬁfor
alll € [2n], then yf(Tona,x) > 0.

Proof. We proceed similarly to Lemma[D.13]

Following the same steps as in (3) for any j € [2m]

0 = )+ (190 3T 0 %)
= 52) ynZT@ 1) yB(0) (x¢, %)
) 2n
= (Wi ) + (=1)yn > Tii (2,6 X,
(=1
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765
766

767

768

769

770
771

772

773

774
775

776

777
778

779

where ), := (—1)'yB(£)(x¢,x) = B(¢)y + (1 — 7)(ng, n). Then as in Lemma|C.1|
¥ —p <N <y +p, ifie Sy,
—(v+p) SN < —(v—p), ifi € Sp..
Recall, from Lemma[F.2|for any j € [2m] then G;(2, Tena) > G;(2,71) = (T1 — 2)(n — k). Asa
consequence, for j € I';, we have
(wy ™)) 2 (w3 i)+ 1G5 (2, Tena) (4 = p) = 0B (2, Tena) (1 + )
> 0m) +Tiln = k)(v = p) = 1B;j(2, Tena) (v + p)-
For j such that (—1)7 = y then

oW, %)) < (W' x3) = 1G5 (2, Tena) (v — p) + 1B;(2, Tena) (7 + p))
< O(n) +nB;(2, 7;nd)('7 +p).

As a result
end; Z ¢ )
JE[2m]
%nd ﬁnd

> > wx- Y ¢<< 7o) %))

Jj:i(=1)i=y Ji(=1)i#

>n > (==K =p)—n Y Bi(2 Taa)(y+p)+ 0
Jji(=1)i=y Jj€[2n]

> nmTi(n = k)(y = p) = nB(2, Tena) (v + p)) + O(n)
We decompose B(2, Tena) = B(2,71) + B(T1, Tena)- From Lemma
B(2,T7) = 2km(T; — 2) = 2kmT; + O(1).

From LemmaE [F.3]and Lemma [F4] using the assumptions p <

min{ 5 367 36 5 )

11, n sufficiently small, and v <

BT, Tons) < 2mik (3b 2“)
2n  nm

< omkT: (3(7(71 —2k)+pn—1+(y—p)

5 —|—4pn) +0(1)

-2k 1 1 4
<2 — — =4 = o(1
m7'1< 51 T 33 +72+ )-I— (1)
< mTi(n — k) .
- 12
Using the assumption that k < {5 and 7 is sufficiently small we see that
-k
B(2a %nd) S %

Since
Yf (Tend, x) > nmTi(n — k)((v — p) — (v +p)/9) + O(n),

yf (Tena, X) is positive provided (v — p) — (v + p)/9 is positive and 7 is sufficiently small. Both are
guaranteed by Assumption [f] so the point is correctly classified. O

F.5 Proof of Theorem 3.8

Theorem F.7 (Theorem [3.8). Assume Assumption[3]holds. With probability at least 1 — § over the
randomness of the dataset and network initialization we have the following.

1. The training process terminates at an iteration To,g < %
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2. Foralli € St then (Topa,x;) = 0 while for all i € S {(Tena, i) = 1.

3. The generalization error satisfies

Mﬁﬁ@mﬂ#w<0m(vg)

Proof. Under Assumption [f] statements (1) and (2) follow from Lemma|[F3] The bound on Teng
follows from Lemma [F.4]applied at t, = 2:

B(2, Tena) < k (nfn) +O(n)

B@zm<3<;)+mm

with v > % Statement (3) is derived from Lemma Finally, Lemma implies that under
Assumption 3] then Assumption [f]holds with probability at least 1 — 4. O

G Numerical simulations

Reproducibility statement: the code used to generate the following figures can be found at https:
//anonymous .4open.science/r/benign_overfitting-4A4C/B0_experiments.ipynb.

To investigate our theory we train two-layer neural networks with ReLU activations using full-batch
gradient descent and a fixed step size. We train on the synthetic binary classification dataset, detailed
in Section[B.2] that we have studied throughout the paper. Finally we train using both hinge and
logistic loss.

Clean Loss Corrupt Loss Test Loss.
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Hinge Loss
Hinge Loss
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@

— hinge s — hinge
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Figure 1: From left to right, the first row shows the clean, corrupt, and test losses as a function
of epoch. The second row shows the fraction of clean, corrupt, and test points that are classified
correctly. These plots were generated for n = 100, d = 800, k/n = 0.1, m = 100, v = 0.015, and
using gradient descent with a step size of 0.01.

In Figure[I]we call attention to the difference in the training dynamics of hinge loss versus logistic
loss. Perhaps the key difference between hinge loss and logistic loss is that the contributions from any
given point do not get smaller as the point approaches 0 loss. Furthermore, unlike with the logistic
loss points can actually attain zero hinge loss after a finite number of epochs. Once they do attain zero
loss, they cease to contribute to the update of the network parameters. If the remaining active points
push the parameters in such a way as to increase the loss on a given point then it will reactivate. As a
result points close to zero hinge loss periodically activate and deactivate giving rise to the chaotic
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Figure 2: In the top row we show the loss on the clean training points and the corrupt training points
after training. In the bottom row we show the total loss after training, along with the test loss on
10000 random generated points after training. For each plot we set d = 1000, m = 30,1 = 0.005
and train for 5000 iterations of gradient descent using hinge loss. In each plot we vary -y and n and
hold the fraction of corrupt points constant at 0.05. In the bottom right plot we also graph c¢/n for
c~ 0.6

behavior observed as the training loss approaches zero. We note that managing this behavior required
a careful analysis that is distinct from the analysis for logistic loss.

In Figure 2] we call particular attention to the bottom right plot. Our theory predicts a phase transition
between benign overfitting and non-benign overfitting when «y & ¢/n: the phase transition we observe
empirically in the bottom-right heatmap suggests this estimate is reasonable. With regard to the hinge
loss over the corrupt points, displayed in the top-right heatmap, we observe another phase transition,
this time between overfitting and non-overfitting. The top and bottom heatmaps of the left-hand
column display the hinge loss over the clean training set and total training set respectively, these
appear very similar due to the fact that clean points make up 95% of the training set. The clean points
fail to achieve zero, or close to zero, hinge loss only when v is small and n is large. As stated in the
caption, in these experiments d is fixed and thus as n increases the near-orthogonality condition we
require on the noise components in order to prove convergence to zero clean loss is compromised. As
a result, when -y is small and the correlations between noise vectors is potentially large it is possible
for pairs of points with opposite labels to be significantly correlated.
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