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ABSTRACT

Estimating uncertainty in text-to-image diffusion models is challenging due to
their large parameter counts (often exceeding 100 million) and operation in com-
plex, high-dimensional spaces with virtually infinite input possibilities. In this
paper, we propose Epistemic Mixture of Experts (EMoE), a novel framework for
efficiently estimating epistemic uncertainty in diffusion models. EMoE leverages
pre-trained networks without requiring additional training, enabling direct uncer-
tainty estimation from a prompt. We introduce a novel latent space within the
diffusion process that captures model uncertainty better during the first denoising
step than existing methods. Experimental results on the COCO dataset demon-
strate EMoE’s effectiveness, showing a strong correlation between uncertainty
and image quality. Additionally, EMoE identifies under-sampled languages and
regions with higher uncertainty, revealing hidden biases related to linguistic rep-
resentation. This capability demonstrates the relevance of EMoE as a tool for
addressing fairness and accountability in Al-generated content.

1 INTRODUCTION

In recent years, text-to-image diffusion models have made remarkable strides, enabling faster image
generation (Song et al.,2020; |Liu et al., 2023;|Y1n et al., 2024), improved image quality (Dhariwal &
Nichol| |2021; Nichol et al.l 2022; Rombach et al.,|2022), and even extending into video generation
(Ho et al.}[2022b; |Khachatryan et al.}[2023; Bar-Tal et al.,[2024])). Diffusion models operate through
a two-phase process: in the forward phase, noise is incrementally added to the data, while in the
reverse phase, the model learns to denoise and reconstruct the image. However, despite their grow-
ing popularity, these models often function as black boxes, providing little transparency into their
decision-making processes or how they handle uncertainty (Berry et al.||2024; [Chan et al.|[2024). To
address these limitations, we introduce Epistemic Mixture of Experts (EMoE), a novel framework
for capturing and quantifying epistemic uncertainty in text-conditioned mixture-of-experts diffusion
models, which are capable of generating high-resolution images (512 x 512 x 3). Epistemic un-
certainty, arising from a model’s lack of knowledge, can be reduced with additional data, whereas
aleatoric uncertainty, stemming from inherent randomness in the data, remains irreducible (Hora,
1996 Der Kiureghian & Ditlevsen, 2009; Hiillermeier & Waegeman, 2021)).

An example of our approach is illustrated in The top row contains images for the prompt,
“A white man holding the office of the US President” with low epistemic uncertainty (0.32), followed
by “A black man holding the office of the US President” with an uncertainty 0.34. The bottom row
displays images for the prompt, “A white woman holding the office of the US President” with an
uncertainty 0.43, followed by “A black woman holding the office of the US President” with high
epistemic uncertainty (0.60). This comparison highlights potential biases in the model’s handling of
demographic diversity across race and gender. To our knowledge, EMOE is the first framework to
effectively capture epistemic uncertainty in text-conditioned diffusion models for image generation.

The EMoE framework is built on two key components. First, it leverages pre-trained mixture-of-
experts (MoE) for zero-shot uncertainty estimation. Notably, the experts in the MoE were not trained
for uncertainty estimation but were independently trained on different datasets. Originally intro-
duced by Jacobs et al.| (1991)), Mixture-of-Experts (MoE) models form ensembles in sub-modules,
where each expert specializes in specific tasks, benefiting from a shared base model to ensure ef-
ficiency while harnessing the collective power of multiple experts (Shazeer et al.,2017). Training
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A white man holding the office of the US President. (A black man holding the office of the US President.)

Uncertainty: 0.32 Uncertainty: 0.34

A white woman holding the office of the US President. (A black woman holding the office of the US President.)

Uncertainty: 0.43 Uncertainty: 0.6

Figure 1: This figure illustrates the uncertainty levels for different demographic prompts related to
the US President. The model demonstrates the lowest uncertainty (0.32) for a white male president,
followed by a black male president (0.34) and a white female president (0.43). The highest uncer-
tainty (0.6) is observed for a black female president, highlighting potential biases in the model’s
handling of demographic diversity in race and sex.

such an ensemble of diffusion models from scratch is computationally expensive, requiring hundreds
of GPU-days on current hardware (e.g. Nvidia A100 GPUs) (Balaji et al.|[2022)). By leveraging pre-
trained ensembles, EMoE achieves substantial computational savings and applies MoE in a novel
context.

The second key component of the EMoE framework is that it estimates uncertainty on a novel latent
space identified by probing the intermediate activations of the diffusion model’s denoiser. This
space enables the model to identify regions in the input space (i.e., prompts) where hallucinations
or incorrect image generation are more likely. By disentangling the expert ensemble components
and measuring variance within this space, EMoE can detect high epistemic uncertainty early in the
denoising process and thereby offer a more proactive assessment than previous methods that evaluate

uncertainty after image generation (Song et al., [2024).

By combining pre-trained experts with a novel latent space for uncertainty estimation, EMoE ad-
dresses the challenge of quantifying epistemic uncertainty in text-conditioned diffusion models. We
evaluate EMoE’s performance on the Common Objects in Context (COCO) dataset|Lin et al.| (2014),
and our contributions are as follows:

* We establish the EMoE framework for text-conditioned diffusion models, leveraging pre-
trained experts and introducing uncertainty estimation within a novel latent space in the

network (Section 3J).

* We demonstrate the effectiveness of EMoE for image generation on the COCO dataset, a
widely used and challenging benchmark, and show that EMoE aligns with expectations of

epistemic uncertainty (Section 4.1)).

* We further evaluate EMoE’s ability to detect novel data by assessing which languages the
model has previously encountered and examining the bias inherent in diffusion models.
This analysis is conducted across 25 different languages (Section 4.2| & [Section 4.3)).

* We justify our design choices by conducting a set of ablation studies (Section 4.4)).

These contributions shed new light on the previously opaque area of epistemic uncertainty in text-
conditioned diffusion models, offering significant implications for risk assessment and decision-
making processes in sensitive domains.
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2 BACKGROUND

Diffusion models construct a Markov chain, where each step involves sampling from a Gaussian dis-
tribution. This setup is well-suited for uncertainty estimation, as probability distributions naturally
lend themselves to uncertainty reasoning (Hiillermeier & Waegeman, |2021). Furthermore, MoE
models are particularly effective at capturing epistemic uncertainty, as they leverage an ensemble of
experts, which can be viewed as a Bayesian approximation (Hoffmann & Elster], 2021)).

2.1 DIFFUSION MODELS

In the context of supervised learning, consider a tuple (z,y), where x represents an image of size
512 x 512 x 3 and y is the prompt associated with the image. The objective is to estimate the
conditional distribution p(z|y), which is challenging due to its high-dimensional, continuous, and
multi-modal nature. In this work, we use latent diffusion models (Rombach et al.;[2022), a powerful
model for arbitrary data distributions which reduces computational costs by operating in a latent
space learned by an autoencoder. The autoencoder consists of an encoder £, which maps images to
their latent representation, and a decoder D, which does the opposite.

Diffusion models use a two-phase approach, consisting of a forward and a reverse process, to gen-
erate realistic images. In the forward phase, an initial image z is encoded to zy and then gradually
corrupted by adding Gaussian noise over 7' steps, resulting in a sequence of noisy latent states
21, 232, .., 27. This process can be expressed as:

T
q(zlz1) = N(z6; V1= Brze1, BT)  qlzrlz0) = [ azelze1), (D

t=1
where §; € (0,1), with 1 < B2 < --- < Bp. This forward process draws inspiration from

non-equilibrium statistical physics (Sohl-Dickstein et al., 2015]).

The reverse phase of the process aims to remove the noise and recover the original image, condi-
tioned on text. This is achieved by estimating the conditional distribution g(z;—1]|z¢,y) through a
model py. The reverse process is defined as:

T

po(zorly) = p(er) [ [ po(zeilzy)  po(zioalz,y) = N(zimai o2, 1,9),50). - (2)
t=1
where pg(2:—1|2t, y) represents the denoising distribution, parameterized by 6, and is modeled as
a Gaussian with mean pg(z¢, t,y) and covariance X;. While 1 is an output of the learned model,
> follows a predefined schedule, such that ¥y < 7 < --- < Y. These forward and reverse
processes together form a Markov chain, driving the image generation.

Given the complexity of directly computing the exact log-likelihood log(pg(zoly)) in the reverse
process, it is common to use the Evidence Lower Bound (ELBO) (Kingma & Welling| [2013) as a
tractable surrogate objective. The ELBO provides a lower bound on the log-likelihood and can be
expressed as:

—log(pe(20ly)) < —log(pe(20ly)) + Dxr(q(z1.7]20) || Po(21:7|20,9))- 3)

where the goal is to balance two terms: maximizing the likelihood of the original image z; and
minimizing the Kullback-Leibler (KL) divergence between the true posterior distribution ¢(z1.7|20)
and the approximate posterior pg(z1.7|20,y). Using properties of diffusion models, this ELBO
formulation leads to a specific loss function that optimizes the noise-prediction model:

Lipm =B, con(o,),t,y [lle — oz, t,9)|13] - “4)

where ¢ is uniformly distributed over 1, ..., T, € ~ N (0,1), and €9 (2, t, y) is the predicted noise for
computing 19 (24, t,y). For details, see|[Ho et al.|(2020).

2.2 U-NETWORKS

U-Nets, a Convolutional Neural Network (CNN) architecture originally developed for biomedical
segmentation, have demonstrated their effectiveness across a range of generative tasks, including
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image synthesis and restoration (Ronneberger et al.l[2015; [Isola et al.;2017). Their encoder-decoder
structure is well-suited for pixel-level predictions, as it captures both global context and fine details.
A U-Net consists of a downsampling path (i.e. down-blocks), an upsampling path (i.e. up-blocks),
and a mid-block. The downsampling path compresses the input z; into a latent representation mfre,
where down(z;) = m}"®, by reducing spatial dimensions and increasing the number of feature
channels. The mid-block refines this latent representation into m?°*, where mid(m}?™®) = mP**".
The up-block then reconstructs the image by upsampling mP°'t to zt — 1, the next latent represen-
tation in the denoising process. This process effectively combines low-level details with high-level
semantic information.

U-Nets are widely used in diffusion-based generative models, where they model €4(2,¢,y), ef-
fectively removing noise while preserving structure. The ability to maintain both local and global
information through skip connections makes U-Nets particularly suited for diffusion models.

To then make our models conditional on a prompt y, we map y through a tokenizer 7y and pass
this intermediate representation within the down-, mid- and up- blocks via a cross-attention layer

Attention(Q, K, V)= softmax ( %) V' (Vaswani et al.,|2017). We mathematically denote this as

follows:

Q=Wqde(z:) K=Wgkre(y) V=WyTg(y). (5)
Here, Wg, Wk, and Wy are learned projection matrices, and ¢g(z;) and 79 (y) represent the en-
coded latent representations of the inputs z; and tokenized input y. The cross-attention output is
then passed through a feed-forward neural network, as in the transformer architecture.

2.3  SPARSE MIXTURE OF EXPERTS

MoE is a widely-used machine learning architecture designed to handle complex tasks by combining
the outputs of several specialized models, or “experts” (Jacobs et al.,|1991;/Shazeer et al., 2017). The
key intuition behind MoE is that different experts can excel at solving specific parts of a problem,
and by dynamically selecting or weighing their contributions, the overall model can perform more
effectively. MoE models are particularly useful in cases where the data is heterogeneous, involving
a variety of sub-tasks or domains that benefit from expert specialization.

MoE combines multiple expert models by forming an ensemble, utilizing cross-attention layers
and feed-forward networks embedded within the U-Net architecture. Let M denote the number of
experts, and let ¢ denote the i-th expert. The cross-attention layer can then be expressed as:

Q' =Whee(z),  K'=Wgmly), V'=Wim(y). (6)

The matrices Wé, Wi, and WY, are learned projection matrices specific to each expert i, allowing
each expert to attend to different aspects of the input information.

A similar process occurs within the feed-forward networks, where each expert processes the data
independently before their results are combined (Lepikhin et al.l [2020). The ensemble created by
this mechanism leads to more robust predictions, as each expert is able to specialize and contribute
uniquely to the final output. In addition to the ensemble created by the cross-attention and feed-
forward layers, the MoE architecture includes a routing or gating network that dynamically selects
which experts to activate. The gating network determines the top n < M experts to use for a given
input, and the final output is computed as a weighted sum of the selected experts’ outputs:

Q=>g(@)Q, K=> g(K)K', V=  gVHv, (7)
i€S i€S i€S
where S is the set of selected experts, g;() is the gating function that assigns a weight to each

expert. This combination of expert specialization and dynamic routing allows MoE models to scale
efficiently by being sparse and only selecting a subset of experts to pass through.

3  EPISTEMIC MIXTURE OF EXPERTS

Epistemic uncertainty is a cornerstone in the machine learning community for evaluating confidence
in a model’s predictions (Gruber et al.| [2023; Wang & Ji,2024). EMOoE leverages ensembles to esti-
mate epistemic uncertainty, following the approach of |Lakshminarayanan et al.[(2017). By utilizing
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Figure 2: EMoE disentangles the expert components in the first cross-attention layer and then pro-
cesses each component as a separate MoE pipeline. Thus after the first U-Net, M separate latent
representations are made. Illustrated is an ensemble with 2 expert components (¥ and H).

multiple models, EMoE captures the variance between model predictions, providing more reliable
uncertainty estimates based on ensemble disagreement.

3.1 DISENTANGLING MOE

~

To estimate uncertainty, the ensemble components Rirst Cross-Attention Layer

must be disentangled. In our framework, this occurs
at the first mixture layer, which is the initial cross-

attention layer in the first down block. Instead of
aggregating the experts’ outputs via a weighted sum,
we create M separate computational paths, each cor- 77
Q' Q?

responding to one expert. Each path independently
processes its own copy of the latent representations.
Subsequent MoE layers in each branch follow the

standard process, using a weighted sum of the latent
representations. This process is illustrated in
[ure 2|and [Figure 3| where Q°, K* and V* denote the 9

K!' V! K?V?

different ensemble components. Note that C' A’ de-
notes the cross-attention output from the ith compo-
nent Attention(Q?, K, V?). This design keeps the \_ Y,
ensemble components distinct throughout the net-

work, enabling effective capture of diversity among Figure 3: First cross-attention layer where
the experts’ predictions. EMoE disentangles the ensemble compo-
nents, after which each C'A* is processed as
it would be in an MoE framework.

Separating the ensemble components early in the
pipeline generates multiple predictions within the la-
tent spaces of the denoising process. This enables the estimation of their disagreement (epistemic
uncertainty) at the initial step of the denoising without requiring a complete forward pass through the
U-Net, offering the advantage of halting the denoising process immediately for uncertain prompts.
Diffusion models carry the drawback of being computationally expensive during image generation.
This limitation has spurred considerable research into accelerating the denoising process (Huang
et al.| 2022 [Wu et al., |2023). The fast computation of epistemic uncertainty in our approach aligns
with ongoing efforts to reduce the environmental impact of large machine learning models (Hender-
son et al., [2020).

3.2 EPISTEMIC UNCERTAINTY ESTIMATION

After creating M distinct outputs from our model, we still need to accurately capture their disagree-
ment. For this we apply two techniques. Firstly, we capture epistemic uncertainty by measuring
the variance among the ensemble components, a common approach in the literature (Ekmekci &
Cetin| 2022} |Chan et al., 2024).. Secondly, we estimate uncertainty after the mid-block in our U-
Net, mSOSt. Note that given that this is a high-dimensional space d,,;q (1280 x 8 x 8) and we

want to reduce epistemic uncertainty to one number, we take the mean across the variance of each
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dimension. Thus our estimate of epistemic uncertainty is,

EU(y) = Eq,,,, [Variear [m5>*']] . ®)

It is important to note that mgOSt takes as input the text prompt, y. Thus EU(y) gives an estimate of

the epistemic uncertainty of our MoE given a prompt y. The intuition behind this choice of epistemic

uncertainty estimator is detailed in

Uncertainty Quantification vs CLIP Score

3.3 BUILDING MOE

—e— EMOE (ours)
31.55 DECU
. . ==+ Mean Clip Score
To build an ensemble that effectively cap- -

tures uncertainty, the ensemble components

must be diverse enough to reflect meaning- 3145
ful disagreement among them. In deep learn-
ing, two primary techniques have been used
to achieve diversity among ensemble compo-
nents: bootstrapping samples during training 3130
and random initialization (Breimanl 2001} Lak-
shminarayanan et al.| [2017). In our approach,

the ensemble components are not trained; in- a1 ) % a
stead, they are sourced from pre-existing mod- Uncertainty Quartile

els available on Hugging Face and Civit Al

This strategy offers the significant advantage Figure 4: CLIP Score across different uncertainty
of enabling the creation of large-scale ensem- quartiles. EMOE accurately attributes prompts
bles, as Hugging Face hosts over 30,000 model that produce images with high CLIP scores with

checkpoints and Civit AT provides thousands of low uncertainty unlike Diffusion Ensembles for
models. Capturing Uncertainty (DECU). The red line indi-

cates the average CLIP score across all quartiles.

CLIP Score
«
N
S

31.35

31.25

The drawback of not controlling the train-

ing process is that ensuring sufficient diversity Table 1: Mean Length of English Prompts by
within the ensemble becomes largely a mat- Quartile of Uncertainty + standard deviation.

ter of chance. Fortunately, the wide array of Quartile Character Count Word Count

models available on Hugging Face and Civit QI 5314 + 13.50 1058 = 2.56
Al includes many trained for SpeCiﬁC tasks, Q2 5238 + 12.94 1047 £ 2.42
which naturally contributes to ensemble diver- Q3 5390 & 12.81 1043 £ 239
sity. In contrast, training such an ensemble Q4 5193 £ 12.32 1034 £2.33

from scratch with these qualities would require
a significant amount of computational resources.

Finally, after assembling the ensemble, a gating module is essential to route the inputs to a subset of
components and weigh their outputs. While the gating module can be trained, it is also possible to
infer it by using inputs that are representative of the datasets each expert was trained or fine-tuned on.
As the focus of our experiments is on generative text-to-image models, these representative inputs
consist of generic positive and negative input text prompts. With these inputs, we can construct
gate vectors using the pre-trained models (e.g. using the activations of their text encoders). When
a new input prompt is presented to the ensemble, the gating module compares the input activations
to the gating module with the precomputed gate vectors, assigning weights to the experts based
on similarity. This approach enables the construction of a MoE model that dynamically selects
and weighs experts without additional training, effectively leveraging the strengths of pre-trained
models to handle diverse tasks, and enabling our uncertainty estimation method. Further details can

be found in[Appendix D]or in[Goddard et al](2024).

4 RESULTS

To validate EMoE, we conducted a series of experiments on the COCO dataset (Lin et al., [2014).
Our codebase is built on the diffusers|and |segmoe|libraries (von Platen et al.| 2022} Yatharth Gupta,
2024])), with modifications to support our method. We used the base MoE in the segmoe library,
the model card for which is contained in For generating COCO prompts in multiple
languages, we utilized the Google Translate API. Our results used the Contrastive Language-Image
Pre-training (CLIP) score as a metric to evaluate how well the model aligns the generated image
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Uncertainty Distribution: Finnish vs. English Prompts

== Table 2: Comparison of CLIP scores and
mean uncertainty + standard deviation be-
tween Finnish and English prompts. Illus-
trating lower image quality and higher un-
S certainty for Finnish prompts.

Density

4
: 3
2
1
0

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Uncertainy Language CLIP Score Uncertainty
Figure 5: Uncertainty distribution for Finnish and Finnish 16.41 048 £0.19
English prompts, showing higher uncertainty for English 31.39 037 +0.14

Finnish prompts compared to English.

with the given prompt (Hessel et al.| 2021). A higher CLIP score indicates a closer semantic match
between the image and the prompt. The code and dataset will be made public upon publication. Note
that when evaluating the CLIP score for images generated from non-English prompts, the English
version of the prompt was used for assessment. This was done to account for the fact that CLIP was
primarily trained on English data.

4.1 ENGLISH PROMPTS

The first experiment assessed EMoE’s ability

to distinguish between in-distribution prompts Taple 3: Mean Length of Finnish Prompts by
that produce higher-quality images. We ran-  Quartile of Uncertainty.

domly sampled 40,000 prompts from the

COCO dataset and calculated their epistemic ~Quartile Character Count Word Count

uncertainty using EMoE. These prompts were Ql 54.94 + 17.04 6.50 +2.16
then divided into four quartiles based on un- Q2 51.26 + 14.40 6.14 + 1.79
certainty: QI, containing the lowest 25% un- Q3 7967 £ 14.23 305 + 1.75
certainty prompts, through Q4, representing the Qf 47.97 = 13.86 577 £ 1.73

highest 25% uncertainty. For each bin, we gen-
erated images and evaluated their quality using
the CLIP score. As shown in there is a clear relationship between lower uncertainty (i.e.,
Q1) and CLIP score, while prompts in Q4 produced a lower CLIP score. These findings confirm
EMOoE’s effectiveness in uncertainty-driven image quality estimation, demonstrating its ability to
perform refined uncertainty estimation on in-distribution samples. Given that each expert has been
trained on all data in the COCO dataset, EMoE’s ability to detect subtle differences in uncertainty
on in-sample data is a notable feature. In contrast, the DECU baseline (Berry et al., [2024) did not
demonstrate this capability.

We further analyzed prompt characteristics across uncertainty quartiles. Prompts in the lower un-
certainty quartiles (i.e., Q1 and Q2) were shorter in both character and word count, as shown in
This aligns with the intuition that longer prompts are more descriptive, providing the model
with clearer objectives. These results further underscore EMoE’s ability to capture uncertainty as
expected, highlighting its robustness in managing in-distribution prompt variations.

4.2 FINNISH PROMPTS

Next, to assess EMoE’s ability to differentiate between

in-distribution and out-of-distribution samples, we trans-  Taple 4: Comparison of the proportion
lated 10,000 English prompts to Finnish. Given Finnish’s  of prompts with “pizza” in Q1 of un-
lower representation in online datasets, we expected certainty between Finnish and English
Finnish prompts to be more likely out-of-distribution, re-  prompts.

sulting in lower image quality. As shown in

the uncertainty distribution for Finnish prompts is skewed Proportion of Prompts
more to the right than for English prompts, demonstrating ~ L-anguage — C.. “pizza” in Q1
EMOE’s capability to distinguish between in- and out- Finnish 46.67%
of-distribution samples. The relationship between CLIP English 21.54%

score and uncertainty is detailed in[Table 2] In line with

we observed that longer prompts are associated
with lower uncertainty, even for out-of-distribution samples, as shown in This suggests that
even in unfamiliar languages, longer prompts give the model more confidence in its output.
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(Neliiin muotoinen pizza, jonka henkilo leikkaa isolla veitsellﬁ) (Héiéikakku on valkoinen ja siini on kukkia.)

A square shaped pizza being cut by a person with a big knife. The wedding cake is white with flowers on it.

Figure 6: Qualitative comparison of image-generation for a Finnish prompt with the word “pizza”
and a random Finnish prompt. Note that the English translation was not provided to the model.

We also leveraged EMOE to detect bias within the model. During our analysis of images generated
from Finnish prompts, prompts containing the word “pizza” consistently produced more text-aligned
images as opposed to random prompts, as illustrated in[Figure 6] Results from EMOoE also supported
this relationship, with 46.67% of Finnish “pizza” prompts falling into the lowest uncertainty quartile
(Q1), compared to only 21.54% for English prompts, as seen in[Table 4]

4.3 MULTI-LINGUAL PROMPTS

To further GXPIOI'C the behav- 32 . Uncertainty vs CLIP Score for Different Languages

ior of EMoE, we translated @ — Line of Bost Fit (R=-0.79)
1,000 prompts into an addi- %

tional 23 languages via Google 28 french

Translate. We applied EMoE 2 e o

to these translations and calcu-
lated each language’s respective

@ portuguese

corsican

CLIP Score

. luxembourgish
CLIP score. As shown in 2 © inionesian. | = e danish
ure 7, there is a strong nega- » - * norwegian
°

tive correlation (r = —0.79) be- basaie i crontian
tween uncertainty (as measured 18 tsongar - e
by EMoE) and CLIP score, con- 16 T somal omian
sistent with the expected re- 038 0.0 012 04 016 0.8

i i ; Uncertaint
lationship between uncertainty ncertainty

di lity. Additionally, . . . . .
?ﬁle gr;e;gzé]l;ég p ointl ;;)ln Figure 7: Negative correlation between uncertainty and image

fare 7]is proportional to the num- quality across prompts translated iqto 25 diffe.rent languages.
ber of native speakers for each EMOoE demonstr?ltes a strong negative cgrrelatlon (r = —0.79)
language. One can also observe between uncertainty and CLIP score, with languages. having
a relationship between the num-  MOT€ native spf;akers gengral}y p.roducmg lgwer.uncer'tamty and
ber of native speakers with both h1gher—quahty images, highlighting potential biases in text-to-
CLIP score and uncertainty of 1Ma&€ models favoring more commonly spoken languages.

any given language. European

languages generally performed better than non-European languages, which further underscores the
potential bias in favor of European languages in text-to-image models and EMoE’s ability to capture
language related model bias. This section and [Section 4.2]illustrate the model’s bias toward certain
languages and reveal its unfairness toward non-European languages. This demonstrates how EMoE
can be utilized to detect biases and identify the data necessary for training to mitigate these issues.

4.4  ABLATION

We conducted 4 ablation experiments to determine the optimal number of ensemble components,
the effect of the denoising step for estimating uncertainty, the most suitable latent space for uncer-
tainty estimation, and we evaluated EMoE on another MoE model to validate the robustness of our
approach. All ablation studies were performed on a dataset of 40,000 English prompts.
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Uncertainty Quantification vs Ensemble Size Uncertainty Quantification vs Denoising Step
—_ —e— Ensemble Size 4 (EMoE) —e— Step 1 (EMoE)
31.55 Ensemble Size 3 31.6 Step 5
—e— Ensemble Size 2 —e— Step 10
—e— Step 15
31.50 —e— Step 20

315
—e— Step 25

31.45

CLIP Score
®
N
3
CLIP Score
@
IS

31.35

2
w

31.30

31.2
31.25

31.20

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q1
Uncertainty Quartile Uncertainty Quartile
(a) Ablation on ensemble size. (b) Ablation on denoising steps.
Uncertainty Quantification vs Latent Space 2075 Uncertainty Quantification Runway ML MoE

—e— EMOE (ours) —e— EMOoE (ours)
~e— DECU
~=- Mean Clip Score

31.55 —e— Var(m§") 30.70

—eo— Var(z;)

31.50 30.65

31.45 30.60

/

30.55
31.40

30.50

CLIP Score
CLIP Score

31.35
30.45
31.30
30.40

31.25
30.35

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Uncertainty Quartile Uncertainty Quartile
(c) Ablation on other latent spaces. (d) Runway ML MoE.

Figure 8: Ablation studies validating EMoE hyperparameters: ensemble size (a), denoising step (b),
and latent space (c). Additionally, (d) shows the robustness of EMoE using Runway MoE.

To identify the optimal number of ensemble components, we examined ensemble sizes of 2 and 3,
using all possible permutations from the 4 components. We averaged the results for ensembles of 2
and 3 components (Figure 8a). The results indicate that ensemble sizes of 2 and 3 are sub-optimal
to an ensemble size of 4, as the first quantile (Q1) yields a lower CLIP score than the second (Q2).

We investigated the effect of the denoising step on uncertainty quantification, as shown in[Figure 8b}
A consistent decrease in CLIP scores across uncertainty quantiles at each step confirmed EMoE’s
robustness in estimating epistemic uncertainty. For practical reasons, we selected the first step, as it
offers the earliest opportunity to halt the costly denoising process for high-uncertainty prompts.

We also explored different latent spaces in which to estimate epistemic uncertainty, testing both
Var(mb") and Var(z1). The results, shown in [Figure 8¢} indicate that Var(z;) is sub-optimal,
aligning with previous findings from DECU. We observed that Var(mh") performed similarly to
Var(mb°™"). We chose Var(mh®*") because the mid-block is intended to refine the latent space,

though Var(m§"™) could serve as an acceptable alternative.

Finally, to further validate the robustness of EMoE, we ran an additional experiment using Runway
MoE (Figure 8d)). The results confirm that EMOE is versatile and can effectively handle different
MOoE models. Additionally, this demonstrates that EMoE can detect uncertainty even within the
context of very similar models as each expert component is a version of Runway ML stable diffusion.

5 RELATED WORKS

Building ensembles of diffusion models for advanced image generation is challenging due to the
large number of parameters, often exceeding hundreds of millions (Saharia et all, 2022} [Nichol
et all 2022} [Ramesh et al, 2022). Despite this, methods like eDiff-I have emerged, using ensem-
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ble techniques to enhance image fidelity, though not for epistemic uncertainty estimation, requiring
approximately 2 million training iterations (Balaji et al.,|2022)). In contrast, DECU was specifically
developed for uncertainty estimation, with a training duration of 7 days (Berry et al.,2024]), and fo-
cuses on estimating epistemic uncertainty for class label image generation. Our approach, however,
leverages pre-trained experts for epistemic uncertainty estimation, thereby reducing the computa-
tional burden to zero. Moreover, EMoE addresses a more complex challenge—estimating epistemic
uncertainty in text-based generation, rather than in a discrete input like a class label.

Previous research has addressed epistemic uncertainty estimation in neural networks, particularly
for image classification tasks, by employing Bayesian approximations (Gal et al.,[2017; Kendall &
Gal, 2017} Kirsch et al.| [2019). These works focus on discrete output spaces, which are significantly
simpler than image generation. However, another approach to estimating epistemic uncertainty is the
use of ensembles (Lakshminarayanan et al., 2017} |Choi et al., 2018} [Chua et al. [2018), commonly
applied in regression tasks (Depeweg et al., 2018 |Postels et al.,|2020; Berry & Meger,2023aib). For
example, |Postels et al.[(2020) and Berry & Meger (2023b)) developed efficient ensemble generative
models based on Normalizing Flows (NF) to capture epistemic uncertainty. Berry & Meger|(2023a)
further advanced these methods by using Pairwise Difference Estimators to estimate uncertainty in
a 257-dimensional output space with normalizing flows. Our work builds on this foundation by
extending these techniques to higher-dimensional outputs (786,432 dimensions) in large diffusion
models and considering the more complex input space of text.

With the rise of large generative models and the growing importance of uncertainty estimation, nu-
merous methods have been developed to estimate uncertainty in both image and text generation
models (Malinin & Gales|[2020; Berry et al., {2024} Chan et al.,|2024; [Liu et al.,|2024). For instance,
Chan et al.| (2024) trained hyper-networks to estimate uncertainty in diffusion models for weather
prediction. In contrast, EMoE generates uncertainty estimates from pre-trained expert networks,
which are widely available online, such as on platforms like Hugging Face| and Civit Al. Addition-
ally, some researchers have proposed using epistemic uncertainty to detect hallucinated responses
from large language models (Verma et al.| [2023). In this context, EMoE could be employed for
hallucination detection in vision-language models, although the definition of hallucinated responses
varies across the literature (Xu et al., 2024} [Duan et al.| 2024; Sky et al., 2024). Further, while
previous methods have integrated uncertainty into model pipelines using MoE (Zheng et al.| [2019;
Luttner}, [2023f |Zhang et al.| [2024)), these approaches neither address epistemic uncertainty nor con-
sider text-to-image generation tasks and are not applicable in a zero-shot manner.

6 CONCLUSIONS

In this paper, we introduced the Epistemic Mixture of Experts (EMoE) framework for estimating
uncertainty in text-to-image diffusion models. EMOoE leverages pre-trained experts to provide com-
putationally efficient uncertainty estimates without the need for additional training. By incorporat-
ing a novel latent space for uncertainty estimation within the diffusion process, EMoE can identify
biases and regions of heightened uncertainty early in the image generation process.

Limitations. EMoE relies on the availability of pre-trained expert networks, which, although abun-
dant, may not always provide sufficient diversity for optimal uncertainty estimation in all scenarios.
The framework’s performance is closely linked to the quality and diversity of the pre-trained mod-
els it uses, which introduces potential unpredictability when handling novel or specialized inputs.
Furthermore, while EMoE does not require additional training, it does require sufficient memory
resources to load and run the ensemble of experts effectively.

Our experimental results show that EMoE not only improves the detection of epistemic uncertainty
but also sheds light on underrepresented linguistic biases in diffusion models. By utilizing readily
available pre-trained models, we demonstrated that EMoE scales efficiently while delivering reli-
able uncertainty estimates across a variety of input prompts. These capabilities have significant
implications for fairness, accountability, and the robustness of Al-generated content.

As large generative models continue to expand in use, the ability to quantify and interpret uncertainty
will be increasingly important, particularly in applications like autonomous systems. Future work
may explore ways to address the limitations discussed and further optimize EMoE for more complex
tasks and environments.
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A COMPUTE DETAILS

We used the same set of hyperpa-

rameters as in the Stable Diffusion Figure 9: Computational requirements.

model described by

@. Minor changes were made to Dataset Run Time Storage
both the Segmoe and Diffusers code- English 40k Prompts 200 gpu hrs 6TB
bases to disentangle the MoE, with Finnish 10k Prompts 50 gpuhrs 1.5TB

specific modifications to incorporate  ~Other Languages 1k Prompts 5 gpu hrs 150 GB
EMOoE. Our infrastructure included

an AMD Milan 7413 CPU running
at 2.65 GHz, with a 128M L3 cache,
and an NVIDIA A100 GPU with 40 Figure 10: Generation times for baseline (Segmoe) and two
GB of memory. The wall clock time variants of EMoE. Reported times are p1 + 0.

required to collect each dataset and

the memory usage are provided in Model Generation Time
The parameter count for the Segmoe 3.58 £ 0.54 secs
Segmoe model is 1.63 billion param- EMOoE 12.32 4+ 4.6 secs
eters, while a single model contains Fast EMoE 5.5 £ 0.15 secs

1.07 billion parameters. This high-
lights the efficiency of using a sparse
MoE approach compared to creating 4 distinct models, as the Segmoe model is only 153% the size
of a single model, rather than 400%. When running the SegMoE model in its standard mode, gen-
erating an image from one prompt takes an average of 3.58 seconds. In comparison, using EMoE
typically requires an average of 12.32 seconds to generate four images from a single prompt. How-
ever, for scenarios where only one image per prompt is needed, EMoE’s output can be optimized by
estimating epistemic uncertainty during the initial diffusion step, followed by standard MoE-based
image generation. This optimized version of EMoE, Fast EMoE, achieves an average generation
time of 5.5 seconds. [Figure 10| provides further details. Note that uncertainty reported across all
experiments is calculated as v/dpmidsize X EU(y), Where dpidsize = 1280 x 8 X 8.

Algorithm 1 Epistemic Mixture of Experts (EMoE)

1: Input: Initial noise zp ~ N(0,I), total steps T', pre-trained experts F = {ej,e2,...,en},
prompt y

2: fort =T to1do

3: ift =T then

4: Disentangle Experts:

5 for each expert e; € E do

6 Pass zp and prompt y through e;’s first cross-attention layer to arrive at M distinct

generations (Figure 3).

7: Extract the mid-block latent representation m}°*"".

8: end for

9: Compute epistemic uncertainty EU(y) as defined in[Equation 8]
10: Output M different zi_,, one for each expert.
11:  else
12: Mixture of Experts Rollout:
13: fori e {1,...,M} do
14: Update latent variable for each expert:

2z ~ p(24_1|24, )

15: Pass z! and y through our MoE without disentangling, as shown in in and M.
16: end for
17:  endif
18: end for

19: Output: M reconstructed latent variables z{, and EU(y).
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B BiAs IN CLIP SCORE

The CLIP score, despite its known biases (Chinchure

et all 2023), remains a widely-used method for evalu- Tgple 5: SSIM on each uncertainty
ating the alignment between text prompts and generated quartile, using EMOE, in the English
images, alongside FID (Shi et al., [2020; |Kumari et al., 40k dataset.

2023). Both metrics, however, rely on auxiliary models

(CLIP and Inception, respectively), making them suscep- Quartile SSIM
tible to inherent biases. While FID requires a large num- Ql 0.234
ber of samples for reliable estimation, the CLIP score fa- Q2 0.231
cilitates a more direct assessment of text-to-image align- Q3 0.228
ment with fewer samples (Kawar et al., 2023} Ho et al., Q4 0226

2022a). Considering these trade-offs, we prioritized the
CLIP score due to its relevance to our research objectives
and its broad acceptance in related studies.

To further validate our findings and address any potential concerns related to metric biases, we
conducted an additional experiment using the Structural Similarity Index (SSIM) as the evaluation
metric. Unlike CLIP or FID, SSIM does not depend on any auxiliary models for its calculation,
thereby mitigating the risk of bias. We computed SSIM between generated images and correspond-
ing ground-truth images from the COCO dataset and analyzed the results for each uncertainty quar-
tile. As shown in EMOE effectively categorized prompts into the appropriate uncertainty
quartiles based on model performance. This provides further evidence of EMoE’s efficacy in esti-
mating uncertainty for MoE text-to-image models, highlighting its robustness across different eval-
uation metrics.

C INTUITION BEHIND OUR ESTIMATOR FOR EPISTEMIC UNCERTAINTY

Here is an intuitive explanation for our choice of estimator for epistemic uncertainty using the theory
of Gaussian Processes. Each expert can be viewed as a sample from the posterior distribution of
functions given an input y, denoted as p(f(y)|y). By calculating the variance across these experts,
we obtain the variance o2 of p( f(y)|y), which serves as an estimate of epistemic uncertainty within
the Gaussian Process framework. In general, other works have used the difference among ensemble
components to denote epistemic uncertainty (Gal et al.|[2017; Depeweg et al., 2018} Berry & Meger,
2023b).

When estimating the epistemic uncertainty for a prompt y, we weight each ensemble component
equally. Therefore, let F = {fp, }¥, denote an ensemble of N neural networks, where each model
fo, + Y — Ris parameterized by 6;, sampled from a parameter distribution p(6). Then the prediction
from our ensemble is:

1
—y 2t
where y € Y is an input from the input space ).

A Gaussian Process (GP) is defined as a collection of random variables, any finite subset of which
follows a joint Gaussian distribution. Formally, a Gaussian Process f(y) ~ GP(u(y), k(y,y’)) is
characterized by its mean function p(y) and covariance function k(y, y'):

w(y) =E[f(y)], ky,y) =E[(f(y) — p) (@) —ny))

Proposition 1: Let 7 = {fy,}}¥, be an ensemble of neural networks with parameter samples
0; ~ p(#). As N — oo and under the assumption that the neural network weights are drawn i.i.d.

from a distribution with zero mean and finite variance, the ensemble predictor f (y) converges in
distribution to a Gaussian Process:

Fly) % GP(u(y) k(y, ),

where p(y) is the expected value of the ensemble output, and k(y,y’) is the covariance function
defined by the variance of the ensemble.
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Proof:

To prove this, we proceed in two main steps:

STEP 1: CONVERGENCE OF MEAN FUNCTION

Consider the mean function u(y) of the ensemble predictor:
1(y) = Eopo)[fo(y)]-

As N — o0, by the law of large numbers, the empirical mean of the ensemble f (y) converges to the
expected mean:

Nlinmﬁzfe

STEP 2: CONVERGENCE OF COVARIANCE FUNCTION

The covariance function k(y,y’) of the Gaussian Process can be defined as:

N
1
k V= lim — (y) — () — uly").
(y.y) = Jim Zl (fo.(9) = 1)) (o, (') = nly')
Under the assumption that fp, (y) are i.i.d. samples with finite variance, by the Central Limit
Theorem (CLT), the ensemble prediction f(y) converges in distribution to a Gaussian Process

GP (), Ky, y'))-

In the context of an ensemble of neural networks, epistemic uncertainty arises from the uncer-
tainty over the model parameters 6. This uncertainty is captured by the variance of the ensemble

predictions:
1N
2
Var[f =~ Z F(y))?2.
As N — oo, this variance converges to the posterior variance of the Gaussian Process:
Jim Var(f(y)] = k(y.y).
—00

where k(y, y) is the marginal variance of the Gaussian Process and directly represents the epistemic
uncertainty.

yj
D GATES WITHOUT TRAINING

Each expert is associated with a positive and a neg-  pegi —» Pé
ative descriptor, Des® = (Posl, N egl), which rep-

resent what the expert excels at and struggles with
modeling, respectively. These descriptors are pro-
cessed through a pre-trained text model, pg, to create
gate vectors, g*. When a new positive and negative
prompt, 37 = (posj neg’ ) is provided to generate w]
an image, these prompts are compared against g° and
assigned a weight, w; based on the dot product. This

process is illustrated in and described in oo i
Goddard et al (2024). Figure 11: This pictures depicts how to have

accurate gates without training.

E MODEL CARDS

Below are the model parameters for the base Segmoe MoE used in the experiments. We increased the
number of experts from 2 to 4 to incorporate more ensemble components. Generally, having a low
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number of ensemble components (2-10) is sufficient in deep learning to capture model disagreement
(Osband et al.l 2016} [Chua et al., 2018}, [Fujimoto et al., 2018). In addition to the Segmoe base
MoE, we also tested EMoE on another MoE model, referred to as Runway ML, where each expert
component is a Runway model. The corresponding model card can be found below. This experiment
demonstrates the robustness of EMoE across different MoE architectures, showing that EMoE is
effective even when components are trained on similar data with similarly initialized weights, as
each Runway ML component was fine-tuned on new data from similar initial conditions.
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Segmoe MoE

base_model: SG161222/Realistic_Vision_V6.0_Bl_noVAE
num_experts: 4

moe_layers: all

num_experts_per_tok: 2

type: sd
experts:
— source_model: SG161222/Realistic_Vision_V6.0_Bl_noVAE
positive_prompt: "cinematic, portrait, photograph, instagram,
fashion, movie, macro shot, 8K, RAW, hyperrealistic, ultra
realistic,"

negative_prompt: " (deformed iris, deformed pupils, semi-

realistic, cgi, 3d, render, sketch, cartoon, drawing,
anime), text, cropped, out of frame, worst quality, low
quality, jpeg artifacts, ugly, duplicate, morbid,
mutilated, extra fingers, mutated hands, poorly drawn
hands, poorly drawn face, mutation, deformed, blurry,
dehydrated, bad anatomy, bad proportions, extra limbs,
cloned face, disfigured, gross proportions, malformed
limbs, missing arms, missing legs, extra arms, extra legs,
fused fingers, too many fingers, long neck"
— source_model: dreamlike-art/dreamlike—-anime-1.0
positive_prompt: "photo anime, masterpiece, high quality,
absurdres, 1lgirl, 1lboy, waifu, chibi"
negative_prompt: "simple background, duplicate, retro style,
low quality, lowest quality, 1980s, 1990s, 2000s, 2005
2006 2007 2008 2009 2010 2011 2012 2013, bad anatomy, bad
proportions, extra digits, lowres, username, artist name,
error, duplicate, watermark, signature, text, extra digit,
fewer digits, worst quality, jpeg artifacts, blurry"
- source_model: Lykon/dreamshaper-8
positive_prompt: "bokeh, intricate, elegant, sharp focus, soft
lighting, vibrant colors, dreamlike, fantasy, artstation,
concept art"
negative_prompt: "low quality, lowres, jpeg artifacts,
signature, bad anatomy, extra legs, extra arms, extra
fingers, poorly drawn hands, poorly drawn feet, disfigured
, out of frame, tiling, bad art, deformed, mutated, blurry
, fuzzy, misshaped, mutant, gross, disgusting, ugly,
watermark, watermarks"
— source_model: dreamlike-—-art/dreamlike-diffusion-1.0
positive_prompt: "dreamlikeart, a grungy woman with rainbow
hair, travelling between dimensions, dynamic pose, happy,
soft eyes and narrow chin, extreme bokeh, dainty figure,
long hair straight down, torn kawaii shirt and baggy Jjeans
, In style of by Jordan Grimmer and greg rutkowski, crisp
lines and color, complex background, particles, lines,
wind, concept art, sharp focus, vivid colors"
negative_prompt: "nude, naked, low quality, lowres, Jjpeg
artifacts, signature, bad anatomy, extra legs, extra arms,
extra fingers, poorly drawn hands, poorly drawn feet,
disfigured, out of frame"
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Runway ML MoE

base_model: runwayml/stable-diffusion-v1-5
num_experts: 4

moe_layers: all

num_experts_per_tok: 4

type: sd
experts:
- source_model: runwayml/stable-diffusion-v1-5
positive_prompt: "ultra realistic, photos, cartoon characters,
high quality, anime"
negative_prompt: "faces, limbs, facial features, in frame,

worst quality, hands, drawings, proportions"
- source_model: CompVis/stable-diffusion-v1-4

positive_prompt: "ultra realistic, photos, cartoon characters,
high quality, anime"
negative_prompt: "faces, limbs, facial features, in frame,

worst quality, hands, drawings, proportions"
- source_model: CompVis/stable-diffusion-v1-3

positive_prompt: "ultra realistic, photos, cartoon characters,
high quality, anime"
negative_prompt: "faces, limbs, facial features, in frame,

worst quality, hands, drawings, proportions"
- source_model: CompVis/stable-diffusion-v1-2

positive_prompt: "ultra realistic, photos, cartoon characters,
high quality, anime"
negative_prompt: "faces, limbs, facial features, in frame,

worst quality, hands, drawings, proportions"

F QUALITATIVE RESULTS

—r
" ! _ .

Low Epistemic Uncertainty (High Epistemic Uncertainty)

Figure 12: EMoE’s uncertainty across different prompts: Each row represents a distinct prompt,
while the columns denote the output of each component. The left panel displays low uncertainty,
while the right panel shows higher uncertainty, indicating more ambiguous or less familiar prompts.
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CKﬁsin heitetty pizza ritililli muiden kanssa.) CNuori poika istun piydiissd sydmsssd vihresisti kulhosta)

Hand tossed pizza on a rack with others. A young boy sitting at table eating from a green bowl.

Figure 13: Qualitative comparison of image-generation for a Finnish prompt with the word “pizza”
and a random Finnish prompt. Note that the English translation was not provided to the model.

In addition to the examples provided in the main paper, we have included additional qualitative re-
sults of our MoE model. [Figure 12]shows two sets of images: low uncertainty images on the left and
high uncertainty images on the right. Each row corresponds to a single prompt, while the columns
display the outputs from different ensemble components. The low uncertainty prompts exhibit less
variation across ensemble outputs, whereas the high uncertainty prompts show greater diversity, in-
dicating the model’s difficulty in capturing the semantic meaning of the prompt in the generated
images. Here, we present another example of models showing bias towards Finnish prompts con-

taining “pizza”, as illustrated in
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