
Flow Factorized Representation Learning
–Supplementary Material–

Yue Song1,2, Andy Keller2, Nicu Sebe1, and Max Welling2

1Department of Information Engineering and Computer Science, University of Trento, Italy
2Amsterdam Machine Learning Lab, University of Amsterdam, the Netherlands

yue.song@unitn.it

A Supplementary Material

A.1 Pseudo codes

1 import torch
2

3 #Randomly sample a transformation at each iteration
4 index = torch.randint(0, potential_number)
5 x_bar = sequence_generation(index)
6

7 #Generating index according to the supervision setting
8 if training_mode = "supervised":
9 index_potential = index

10 elif training_mode = "weakly -supervised":
11 index_potential = q_k(x_bar)
12

13 #initial element of the sequence
14 z, rho_z = flow_vae(x_bar [0])
15

16 #Future elements of the sequence obtained by latent flow
17 for t in range(0,T)
18 PDE_loss , delta_z , delat_rho_z = HJ_PDE(index_potential ,z,t)
19

20 #Updates in the sample and probability space
21 z = z + delta_z
22 rho_z = rho_z + delat_rho_z
23

24 #Inference at every intermediate step
25 hat_xt = flow_vae.inference(z)
26

27 #Loss: PDE loss + reconstrutction loss + KL div
28 loss += PDE_loss + CE(hat_xt ,x_bar[t]) + KL(rho_z , prior_rho_z)
29

30 #KL div for index prediction (weakly -supervised setting)
31 if training_mode = "weakly -supervised":
32 loss += KL(index_potential ,index)
33

34 loss.backward ()
35 optimizer.step()

Figure 1: Pytorch-like pseudo codes for training our flow-factorized VAE.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Fig. 1 displays the Pytorch implementation for training our flow-factorized VAE under different
supervision settings. Here we omit the computation of HJ PDEs for concisity.

A.2 Implementation details

Common settings. During the training stage, we randomly sample one single transformation at each
iteration. The batch size is set to 128 for both datasets. We use Adam optimizer and the learning rate
is set as 1e−4 for all the parameters. The encoder consists of four stacked convolution layers with
the activation function ReLU, while the decoder is comprised of four stacked transposed convolution
layers. For the prior evolution, the diffusion coefficient Dk is initialized with 0 and we set it as a
learnable parameter for distinct k. For MLPs that parameterize the potential u(z, t) and the force
f(z, t), we use the sinusoidal positional embeddings [12] to embed the timestep t, and use linear
layers for embedding the latent code z. Tanh gates are applied as the activation functions of the MLPs.
All the experiments are run on a single NVIDIA Quadro RTX 6000 GPU.

MNIST. The input images are of the size 28×28. The sequence of each transformation contains
9 states of variations. The scaling transformation scales the image from 1.0 up to 1.8 times. The
rotation transformation rotates the object by maximally 80 degrees, and the coloring transformation
adjusts the image hue from 0 to 340 degrees. The model is trained for 90, 000 iterations.

Shapes3D. The input images are resized to 64×64. Each transformation sequence consists of 8
images. The model is also trained for 90, 000 iterations.

Falcol3D and Isaac3D. The input images are in the resolution of 128×128. We use the self-
contained transformations of the datasets, which mainly comprise variations of lighting conditions
and viewpoints in indoor 3D scenes for Falcolr3D, and different robot arm movements in dynamic
environments for Isaac3D.

Weakly-supervised setting. For the Gumbel-Softmax trick, we re-parameterize qγ(k|x̄) by

yi =
e

xi+gi
τ∑

i e
xi+gi

τ

(1)

where xi is the category prediction, gi is the sample drawn from Gumbel distributions, and τ is the
small temperature to make softmax behave like argmax. We take the ‘hard’ binary prediction in
the forward pass and use the straight-through gradient estimator [2] during backpropagation. The
temperature τ is initialized with 1 and is gradually reduced to 0.05 with the annealing rate 3e−5.

Baselines. For the disentanglement methods, we largely enrich the original MNIST dataset by adding
the transformed images of the whole sequence. This makes it possible for both β-VAE and FactorVAE
to learn the given transformations in an unsupervised manner. For tuning the interpolation range, we
start from the initial value zi and traverse till the appropriate bound which is selected from the range
[−5, 5] with the interval of 0.1.

A.3 Disentanglement metrics

There are many traditional disentanglement metrics [7, 5, 4], but they are designed for single-
dimension traversal methods. These metrics assume and require that each latent dimension is
responsible for one semantic and manipulating single dimensions of the latent variable would
involve distinct output transformations. However, for the recent disentanglement methods including
ours [8, 11, 9], there emerges a more realistic disengagement setting: all the latent dimensions
are perturbed by vectors for meaningful output variations. When it comes to these vector-based
disentanglement methods, their scores of disentanglement metrics would drop considerably and
cannot be compared with those single-dimension baselines.

Table 1: VP Scores (%) on MNIST.

Training Set Split Ours PoFlow TVAE FactorVAE β-VAE
10% 95.69 93.05 89.91 85.92 87.31
1% 92.71 91.27 88.15 84.46 85.25

Table 2: VP Scores (%) on Shapes3D.

Training Set Split Ours PoFlow TVAE FactorVAE β-VAE
10% 95.92 91.48 88.27 84.49 85.91
1% 77.03 72.32 68.39 63.83 65.78

Nonetheless, certain disentanglement metrics such as VP scores [13] can be leveraged as they do
not pose any assumptions on the latent space but only require image pairs [x0,xT] of different

2

transformations for evaluation. The VP metric adopts the few-shot learning setting (using 1% or 10%
of the dataset as the training set) and takes a lightweight neural network for learning to classify image
pairs [x0,xT] of different attributes. The generalization ability (i.e., validation accuracy) can be
thus regarded as a reasonable surrogate for the disentanglement ability. Table 1 and 2 present the
VP scores of all the baseline methods on MNIST and Shapes3D. To ensure a fair comparison, for
FactorVAE and β-VAE, we choose the dimensions with the lowest equivariance errors to generate
image pairs of different transformations. Our method outperforms the previous disentanglement
baselines and achieves superior performance on the VP scores. This indicates that our flow-factorized
VAE has better disentanglement ability.

A.4 Ablation studies

Table 3: Equivariance error of different priors.

Prior Scaling Rotation Coloring
SG 190.24±2.18 158.93±3.25 164.18±2.77

MoG 188.23±2.45 157.79±2.86 161.49±2.62
VAMP 192.81±3.67 161.47±4.12 162.97±3.89

Diffusion 185.42±2.35 153.54±3.10 158.57±2.95

Table 4: Equivariance error of different PDEs.

Prior Scaling Rotation Coloring
Heat 223.95±3.38 212.47±3.85 207.66±2.91
FP 211.54±3.17 188.59±3.92 194.73±3.09

OHJ 190.43±2.48 163.87±3.03 162.38±2.86
GHJ 185.42±2.35 153.54±3.10 158.57±2.95

Impact of different priors. We use diffusion equations to model the prior evolution as random parti-
cle movement. It would also be intriguing to choose other priors commonly used in the VAE literature,
such as Standard Gaussian (SG) priors N (0, 1), mixture of Gaussian (MoG) priors

∑
wiN (µi, σ

2
i),

and VAMP priors [10] which average aggregated posterior of N pseudo-inputs as 1/N
∑

n q(zn). Ta-
ble 3 presents the equivariance error of different priors on MNIST. Among these priors, our diffusion
equations achieve the best performance. This meets our assumption that modeling the prior evolution
as a diffusion process suits more the random motion. Nonetheless, we see that the performance gap
between each baseline is narrow, which somehow implies that the impact of different priors is limited.

Impact of different PDEs. We apply the generalized HJ (GHJ) equation as the PINN constraint in
order to achieve dynamic OT. It would be also interesting to try other commonly used PDEs. We
compare our GHJ with the ordinary HJ (OHJ) equation, the Fokker Planck (FP) equation, and the
heat equation. Table 4 compares the equivariance error of PDEs on MNIST. Our GHJ and OHJ
equations achieve the best performance as they both satisfy the condition of dynamic OT. This
empirical evidence indicates that the OT theory can indeed model better latent flow paths. Moreover,
our GHJ outperforms the OHJ by a slight margin. We attribute this advantage to the external driving
force f(z, t) which gives us more flexibility and dynamics in modeling the velocity fields ∇uk.

Table 5: Equivariance error on MNIST of a differ-
ent number of transformations (K).

K Scaling Rotation Coloring
1 185.27±2.59 – –
2 185.78±2.21 154.29±2.87 –
3 185.42±2.45 153.54±3.10 158.57±2.95

Table 6: Equivariance error on MNIST of differ-
ent sequence lengths (T).

Sequnce Length (T) Scaling Rotation
9 185.42±2.35 153.54±3.10

12 214.47±2.59 198.72±2.89

Impact of different K. We conduct an ablation study on the impact of the number of transformations
on MNIST and present the evaluation results in Table 5. As indicated above, in general, the
performance is not affected by the number of transformations being applied. The fluctuation of the
results when K varies can be sufficiently negligible. We expect that this is because the transformations
are learned by distinct potentials (which are implemented as K different MLPs). Each flow evolves
along with the gradient field ∇u on the potential landscape u; having multiple latent flows defined on
different potential landscapes therefore does not interfere with each other.

Impact of different sequence lengths. Regarding the impact of sequence lengths, if the sequence is
longer and has larger variations, generally the equivariance error would be worse. To better illustrate
this point, we perform an ablation study on MNIST and present the results in Table 6. Specifically,
we change the sequence length from 9 to 12, which increases the extent of scaling from maximally
1.8 times to maximally 2.1 times, and increases the rotation angle from maximally 80 degrees to
maximally 110 degrees. As can be observed, the equivariance error gets larger when the sequence

3

becomes longer and the variations are larger. Notice that even for the longer sequence, our method
still outperforms other baselines with shorter sequences.

A.5 HJ equations as dynamic optimal transport

We now turn to introduce why HJ equations could minimize the Wasserstein distance. As stated
in [1], the L2 Wasserstein distance can be re-formulated in the fluid mechanical interpretation as

W 2 = inf

∫
D

∫ 1

0

1

2
ρ(x, t)v(x, t)2 dx dt (2)

where the density satisfies the continuity equation (∂tρ = −∇ · (ρ(x, t)v(x, t)). If we introduce the
momentum m(x, t) = ρ(x, t)v(x, t) and two Lagrange multipliers u and λ, the Lagrangian function
of the Wasserstein distance would be:

L(ρ,m, ϕ) =

∫
D

∫ 1

0

||m||2

2ρ
+ u(∂tρ+∇ ·m)− λ(ρ− s2) (3)

where the second term is the equality constraint, and the third term is an equality constraint with a
slack variable s. Using integration by parts formula, the above equation can be re-written as

L(ρ,m, ϕ) =

∫
D

∫ 1

0

||m||2

2ρ
+

∫
D

uρ|10 −
∫
D

∫ 1

0

(∂tuρ+∇u ·m)− λ(ρ− s2) (4)

Based on the set of Karush–Kuhn–Tucker (KKT) conditions (∂mL = 0, ∂uL = 0, ∂ρL = 0, and
λ ≥ 0), we would have:

∂mL = m
ρ −∇u = v −∇u = 0

∂uL = ∂tρ+∇ ·m = 0

∂ρL = − ||m||2
2ρ2 − ∂tu− λ = − 1

2 ||v||
2 − ∂tu− λ = 0

(5)

where the first condition indicates that the gradient ∇u acts as the velocity field, and the third
condition implies the optimal solution is given by the generalized HJ equation:

∂tu+
1

2
||∇u||2 = −λ ≤ 0 (6)

We thus apply the generalized HJ equation (i.e., ∂tu+ 1
2 ||∇u||2 ≤ 0) as the constraints. We further

use an extra negative force because this would give more dynamics for modeling the posterior flow.

A.6 More visualizations

Fig. 2, 3, and 4 display more visualization results of the latent evolution on MNIST, Shapes3D,
Falcol3D and Isaac3D, respectively. Across all the datasets, our method presents precise control of the
given transformations. Fig. 5 and 6 show more latent evolution results of switching transformations
(top) and combining transformations (bottom) on MNIST and Shapes3D, respectively. Fig. 7 also
visualizes a few examples of superposing and switching transformation on Falcol3D and Isaac3D.
Our latent flows learn to compose or switch different transformations precisely and flexibly.

References
[1] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the monge-

kantorovich mass transfer problem. Numerische Mathematik, 2000.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[3] Chris Burgess and Hyunjik Kim. 3d shapes dataset. https://github.com/deepmind/3dshapes-dataset/, 2018.

[4] Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement
in variational autoencoders. NeurIPS, 2018.

[5] Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of disentangled
representations. In ICLR, 2018.

4

Scaling Rotation Coloring

Figure 2: More visualizations of the learned latent flows on MNIST [6].

Floor Hue Wal Hue Object Hue Scale

Figure 3: More visualizations of the learned latent flows on Shapes3D [3].

[6] Yann LeCun. The mnist database of handwritten digits. 1998. URL http://yann.lecun.com/exdb/
mnist/.

[7] Karl Ridgeway and Michael C Mozer. Learning deep disentangled embeddings with the f-statistic loss.
NeurIPS, 2018.

[8] Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. In CVPR, 2021.

[9] Yue Song, Andy Keller, Nicu Sebe, and Max Welling. Latent traversals in generative models as potential
flows. In ICML. PMLR, 2023.

[10] Jakub Tomczak and Max Welling. Vae with a vampprior. In AISTATS. PMLR, 2018.

[11] Christos Tzelepis, Georgios Tzimiropoulos, and Ioannis Patras. WarpedGANSpace: Finding non-linear rbf
paths in GAN latent space. In ICCV, 2021.

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

[13] Xinqi Zhu, Chang Xu, and Dacheng Tao. Learning disentangled representations with latent variation
predictability. In ECCV, 2020.

5

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Lightning Intensity Camera Y-Pos Camera Z-Pos

Lightning X-Dir Lightning Z-DirCamera X-Pos

Robot X-Move Robot Y-Move

Object Color Lightning Y-DirWall Color

Lightning Intensity

Figure 4: Exemplary visualizations of learned latent flows on Falcol3D (top) and Isaac3D (bottom).

6

Rotation Scaling

Scaling Rotation

RotationColoring

Coloring Rotation

Scaling Rotation

Scaling Coloring

Coloring Scaling

Rotation Coloring

Coloring Rotation

Scaling Coloring

Scaling Rotation

Rotation Scaling

Scaling Coloring

Coloring Rotation

Scaling Rotation

Scaling + Rotation Scaling + ColoringRotation + Coloring

Figure 5: More visualizations of switching and superposing transformations on MNIST [6].

7

Object Hue Wall Hue

Wall Hue Object Hue

Object HueScale

Floor Hue Wall Hue

Scale Object Hue

Floor Hue Scale

Floor Hue Wall Hue

Floor HueWall Hue

Floor Hue Scale

Wall Hue Object Hue

Floor HueWall Hue

Object Hue Scale

Wall HueFloor Hue

Floor Hue Wall Hue

Scale Wall Hue

Scale + Floor Hue Wall Hue + Object Hue Wall Hue + Floor Hue

Floor Hue + Object HueScale + Wall Hue Scale + Object Hue

Figure 6: More visualizations of switching and superposing transformations on Shapes3D [3].

Lightning Intensity + Object Size

Lightning Intensity + Object Color Wall Color + Object Color

Lightning Y-Dir + Object Color

Wall Color + Robot Y-Move

Lightning Y-Dir + Robot X-Move

 Camera Y-Pos Lightning X-Dir

 Camera Y-Pos Camera Z-Pos

Figure 7: Exemplary visualization results of superposing transformations on Isaac3D (left) and
switching transformations on Falcol3D (right).

8

	Supplementary Material
	Pseudo codes
	Implementation details
	Disentanglement metrics
	Ablation studies
	HJ equations as dynamic optimal transport
	More visualizations

