
Appendix:459

A Bound Value Difference in Policy Transfer460

In this section, we provide detailed theoretical ground for our policy transfer approach, as a supple-461

ment to Sec. 3. We first define a binary relation for actions to describe the correspondent actions462

behaving equivalently on two MDPs (Definition 1). Building upon the notion of action equivalence,463

we derive the upper bound of value difference between policies on two MDPs (Theorem 1). Fi-464

nally, we reach a proposition for the upper bound of value difference (Proposition 1) to explain that465

minimizing our objective function results in bounding the value difference between the source and466

transferred policy.467

Definition 1. Given two MDPs T (i) = {S,A, p
(i)
, r

(i)
, �, ⇢0} and T (j) = {S,A, p

(j)
, r

(j)
, �, ⇢0}468

with the same state space and action space, for each state s 2 S, we define a binary relation469

Bs 2 A⇥A called action equivalence relation. For any action a
(i) 2 A, a(j) 2 A, if (a(i), a(j)) 2470

Bs (i.e. a(i)Bsa
(j)), the following conditions hold:471

r
(i)(s, a(i)) = r

(j)(s, a(j)) and p
(i)(·|s, a(i)) = p

(j)(·|s, a(j)) (5)

Based on Definition 1, at state s, action a
(i) on T (i) is equivalent to action a

(j) on T (j) if a(i)Bsa
(j).472

Note that the binary relation Bs is defined for each s separately. The action equivalence relation473

might change on varied states. On two MDPs with the same dynamic and reward functions, it is474

trivial to get the equivalent action with identity mapping. However, we are interested in more complex475

cases where the reward and dynamic functions are not identical on two MDPs.476

Ideally, the equivalent action always exists on the target MDP T (i) for any state-action pair on the477

source MDP T (j) and there exists an action translator function H : S ⇥A! A to identify the exact478

equivalent action. Starting from state s, the translated action ã = H(s, a) on the task T (i) generates479

reward and next state distribution the same as action a on the task T (j) (i.e. ãBsa). Then any480

deterministic policy ⇡
(j) on the source task T (j) can be perfectly transferred to the target task T (i)481

with ⇡
(i)(s) = H(s,⇡(j)(s)). The value of the policy ⇡

(j) on the source task T (j) is equal to the482

value of transferred policy ⇡
(i) on the target task T (i).483

Without the assumption of existence of a perfect correspondence for each action, given any484

two deterministic policies ⇡
(j) and ⇡

(i), we prove that the difference in the policy value485

is upper bounded by a scalar d
1�� depending on L1-distance between reward functions486

|r(i)(s,⇡(i)(s))� r
(j)(s,⇡(j)(s))| and total-variation distance between next state distributions487

DTV (p(i)(·|s,⇡(i)(s)), p(j)(·|s,⇡(j)(s))).488

Theorem 1. Let T (i) = {S,A, p
(i)
, r

(i)
, �, ⇢0} and T (j) = {S,A, p

(j)
, r

(j)
, �, ⇢0} be489

two MDPs sampled from the distribution of tasks p(T). ⇡
(i) is a deterministic policy on490

T (i) and ⇡
(j) is a deterministic policy on T (j). Let M = sups2S |V ⇡(i)

(s, T (i))|, d =491

sups2S
⇥
|r(i)(s,⇡(i)(s))� r

(j)(s,⇡(j)(s))|+ 2�MDTV (p(i)(·|s,⇡(i)(s)), p(j)(·|s,⇡(j)(s)))
⇤
. For492

8s 2 S , we have493 ���V ⇡(i)

(s, T (i))� V
⇡(j)

(s, T (j))
��� 

d

1� �
(6)

Proof. Let a(i) = ⇡
(i)(s) and a

(j) = ⇡
(j)(s). s0 denotes the next state following state s. s00 denotes494

the next state following s
0.495

13

We rewrite the value difference as:496

V
⇡(i)

(s, T (i))� V
⇡(j)

(s, T (j)) = r
(i)(s, a(i)) + �

X

s0

p
(i)(s0|s, a(i))V ⇡(i)

(s0, T (i))

� r
(j)(s, a(j))� �

X

s0

p
(j)(s0|s, a(j))V ⇡(j)

(s0, T (j))

= (r(i)(s, a(i))� r
(j)(s, a(j)))

+ �

"
X

s0

p
(i)(s0|s, a(i))V ⇡(i)

(s0, T (i))�
X

s0

p
(j)(s0|s, a(j))V ⇡(j)

(s0, T (j))

#

*minus and plus �
X

s0

p
(j)(s0|s, a(j))V ⇡(i)

(s0, T (i))

= (r(i)(s, a(i))� r
(j)(s, a(j)))

+ �

X

s0

h
p
(i)(s0|s, a(i))� p

(j)(s0|s, a(j))
i
V
⇡(i)

(s0, T (i))

+ �

X

s0

p
(j)(s0|s, a(j))

h
V
⇡(i)

(s0, T (i))� V
⇡(j)

(s0, T (j))
i

Then we consider the absolute value of the value difference:497

���V ⇡(i)

(s, T (i))� V
⇡(j)

(s, T (j))
��� 

���r(i)(s, a(i))� r
(j)(s, a(j))

���

+ �

�����
X

s0

h
p
(i)(s0|s, a(i))� p

(j)(s0|s, a(j))
i
V
⇡(i)

(s0, T (i))

�����

+ �

�����
X

s0

p
(j)(s0|s, a(j))

h
V
⇡(i)

(s0, T (i))� V
⇡(j)

(s0, T (j))
i�����

*property of total variation distance when the set is countable

=
���r(i)(s, a(i))� r

(j)(s, a(j))
���+ 2�MDTV (p

(i)(·|s, a(i)), p(j)(·|s, a(j)))

+ �

�����
X

s0

p
(j)(s0|s, a(j))

h
V
⇡(i)

(s0, T (i))� V
⇡(j)

(s0, T (j))
i�����

 d+ �

�����
X

s0

p
(j)(s0|s, a(j))

h
V
⇡(i)

(s0, T (i))� V
⇡(j)

(s0, T (j))
i�����

 d+ � sup
s0

���V ⇡(i)

(s0, T (i))� V
⇡(j)

(s0, T (j))
���

*by induction

 d+ �


d+ � sup

s00

���V ⇡(i)

(s00, T (i))� V
⇡(j)

(s00, T (j))
���
�

 d+ �d+ �
2 sup

s00

���V ⇡(i)

(s00, T (i))� V
⇡(j)

(s00, T (j))
���

 · · ·

 d+ �d+ �
2
d+ �

3
d+ · · · = d

1� �

498

For a special case where reward function r(s, a, s0) only depends on the current state s and next state499

s
0, the upper bound of policy value difference is only related to the distance in next state distributions.500

501

14

Proposition 1. Let T (i) = {S,A, p
(i)
, r

(i)
, �, ⇢0} and T (j) = {S,A, p

(j)
, r

(j)
, �, ⇢0} be two MDPs502

sampled from the distribution of tasks p(T). ⇡
(i) is a deterministic policy on T (i) and ⇡

(j) is a503

deterministic policy on T (j). Assume the reward function only depends on the state and next state504

r
(i)(s, a(i), s0) = r

(j)(s, a(j), s0) = r(s, s0) . Let M = sups2S,s02S |r(s, s0) + �V
⇡(i)

(s0, T (i))|505

and d = sups2S 2MDTV (p(i)(·|s,⇡(i)(s)), p(j)(·|s,⇡(j)(s))). 8s 2 S , we have506 ���V ⇡(i)

(s, T (i))� V
⇡(j)

(s, T (j))
��� 

d

1� �
(4)

Proof. Let a(i) = ⇡
(i)(s) and a

(j) = ⇡
(j)(s). s0 denotes the next state following state s. s00 denotes507

the next state following s
0. In the special case of r(i)(s, a(i), s0) = r(s, s0), the value of policy is:508

V
⇡(i)

(s, T (i)) = r
(i)(s, a(i)) + �

X

s0

p
(i)(s0|s, a(i))V ⇡(i)

(s0, T (i))

=
X

s0

p
(i)(s0|s, a(i))r(s, s0) + �

X

s0

p
(i)(s0|s, a(i))V ⇡(i)

(s0, T (i))

=
X

s0

p
(i)(s0|s, a(i))

h
r(s, s0) + �V

⇡(i)

(s0, T (i))
i

We can derive the value difference:509

V
⇡(i)

(s, T (i))� V
⇡(j)

(s, T (j))

=
X

s0

p
(i)(s0|s, a(i))

h
r(s, s0) + �V

⇡(i)

(s0, T (i))
i
�
X

s0

p
(j)(s0|s, a(j))

h
r(s, s0) + �V

⇡(j)

(s0, T (j))
i

*minus and plus
X

s0

p
(j)(s0|s, a(j))

h
r(s, s0) + �V

⇡(i)

(s0, T (i))
i

**combine the first two terms, combine the last two terms

=
X

s0

h
p
(i)(s0|s, a(i))� p

(j)(s0|s, a(j))
i h

r(s, s0) + �V
⇡(i)

(s0, T (i))
i

+ �

X

s0

p
(j)(s0|s, a(j))

h
V
⇡(i)

(s0, T (i))� V
⇡(j)

(s0, T (j))
i

Then we take absolute value of the value difference:510

���V ⇡(i)

(s, T (i))� V
⇡(j)

(s, T (j))
���  2MDTV (p

(i)(·|s, a(i)), p(j)(·|s, a(j)))

+ �

�����
X

s0

p
(j)(s0|s, a(j))

h
V
⇡(i)

(s0, T (i))� V
⇡(j)

(s0, T (j))
i�����

 d+ �

�����
X

s0

p
(j)(s0|s, a(j))

h
V
⇡(i)

(s0, T (i))� V
⇡(j)

(s0, T (j))
i�����

 d+ � sup
s0

���V ⇡(i)

(s0, T (i))� V
⇡(j)

(s0, T (j))
���

 d+ �


d+ � sup

s00

���V ⇡(i)

(s00, T (i))� V
⇡(j)

(s00, T (j))
���
�

 d+ �d+ �
2 sup

s00

���V ⇡(i)

(s00, T (i))� V
⇡(j)

(s00, T (j))
���

 · · ·

 d+ �d+ �
2
d+ �

3
d+ · · · = d

1� �

511

15

B Algorithm of MCAT512

Algorithm 1 MCAT combining context-based meta-RL algorithm with policy transfer
1: Initialize critic networks Q✓1 , Q✓2 and actor network ⇡� with random parameters ✓1, ✓2, �
2: Initialize target networks ✓01 ✓1, ✓02 ✓2, �0 �

3: Initialize replay buffer B = B(1) [B(2) [· · · [B(|T |) and B(i) ; for each i.
4: Initialize SIL replay buffer D ;
5: Initialize context encoder C C

, forward model F F
, action translator H H

6: Initialize set of trajectory rewards for shared policy on each task in recent timesteps as R(i) =
;, set of trajectory rewards for transferred policy from T (j) to T (i) in recent timesteps as
R

(j)!(i) = ;. R̄ denotes average episode rewards in the set.
7: for each iteration do
8: // Collect training samples
9: for each task T (i) do

10: if R(i) = ; then
11: use the shared policy in this episode
12: else if there exist j 2 1, 2, · · · , |T | such that R(j)!(i) = ; and R̄

(j)
> R̄

(i) then
13: use transferred policy from source task T (j) to target task T (i) in this episode
14: else if there exist j 2 1, 2, · · · , |T |, such that j = argmaxj0 R̄(j0)!(i) and R̄

(j)!(i)
> R̄

(i)

then
15: use transferred policy from source task T (j) to target task T (i) in this episode
16: else
17: use the shared policy in this episode
18: end if
19: for t = 1 to TaskHorizon do
20: Get context latent variable zt = C C

(⌧t,K)
21: Select the action a based on the transferred policy or shared policy, take the action with

noise at = a+ ✏ where ✏ ⇠ N (0,�), observe reward rt and new state st+1.
22: Update B(i) B(i) [{st, at, rt, st+1, ⌧t,K}
23: end for
24: Compute returns Rt =

P1
k=t �

k�t
rk and update D D [{st, at, rt, st+1, ⌧t,K , Rt} for

every step t in this episode.
25: Update the average reward of shared policy on task T (i) (i.e. R(i)) if we took shared policy

in this episode, or update the average reward of the transferred policy from T (j) to T (i) (i.e.
R

(j)!(i)) if we took the transferred policy.
26: end for
27: // Update the context encoder C C

and forward model F F
with Lforw and Lcont

28: // Update the action translator H H
with Ltrans

29: // Update the critic network Q✓1 , Q✓2 and actor network ⇡� with TD3 and SIL objective
function

30: for step in training steps do
31: Update ✓1, ✓2 for the critic networks to minimize Ltd3 + Lsil (see Algorithm 2)
32: Update � for the actor network with deterministic policy gradient
33: Update the ✓

0
1, ✓02, �0 for target networks with soft assignment

34: end for
35: // Update the trajectory reward for shared policy and transferred policy if necessary
36: for each task T (i) do
37: pop out trajectory rewards in R

(i) which were stored before the last G timesteps
38: pop out trajectory rewards in R

(j)!(i)(8j) which were stored before the last G timesteps
39: end for
40: end for

16

Algorithm 2 Compute critic loss based on TD3 algorithm and SIL algorithm

1: Sample batch data of transitions (st, at, rt, st+1, ⌧t,K) 2 B
2: Get context variable zt = C C

(⌧t,K).
3: Get next action at+1 ⇠ ⇡�0(zt, st+1) + ✏, ✏ ⇠ clip(N (0, �̃),�c, c)
4: Get target value for critic network y = rt + �minl=1,2 Q✓0

l
(zt, st+1, at+1).

5: Compute TD error Ltd3 = minl=1,2(y �Q✓l(zt, st+1, at+1))2

6: Sample batch data of transitions (st, at, ⌧t,K , Rt) 2 D
7: Get context variable zt = C C

(⌧t,K).
8: Compute SIL loss Lsil =

P
l=1,2 max(Rt �Q✓l(zt, st, at), 0)

2

17

C Experiment Details513

In this section, we explain more details for Section 5 and show additional experimental results.514

C.1 Environment515

MuJoCo We use Hopper, HalfCheetah and Ant environments from OpenAI Gym [3] based on the516

MuJoCo physics engine [31]. The goal is to move forward while keeping the control cost minimal.517

• Hopper Hopper agent consists of 5 rigid links with 3 joints. Observation st is an 11-518

dimension vector consisting of root joint’s position (except for x-coordinate) and velocity519

angular position and velocity of all 3 joints. Action at lies in the space [�1.0, 1.0]3, which520

corresponds to the torques applied to 3 joints. Reward rt = vtorso,t � 0.001katk2 + 1.0521

means the forward velocity of the torso vtorso,t minus the control cost for action 0.001katk2522

and plus the survival bonus 1.0 at each step. We modify the size of each rigid part to523

enlarge/contract the body of the agent, so we can create tasks with various dynamics.524

• HalfCheetah Half-cheetah agent consists of of 7 rigid links (1 for torso, 3 for forelimb, and525

3 for hindlimb), connected by 6 joints. State st is a 17-dimension vector consisting of root526

joint’s position (except for x-coordinate) and velocity, angular position and velocity of all 6527

joints. Action at is sampled from the space [�1.0, 1.0]6, representing the torques applied528

to each of the 6 joints. Reward rt = vtorso,t � 0.1katk2 is the forward velocity of the torso529

minus the control cost for action. In order to design multiple tasks with varying dynamics530

on HalfCheetah, we modify the armature value (similarly to [41]) or scale the mass of each531

rigid link by a fixed scale factor (similarly to [12]).532

• Ant Ant agent consists of 13 rigid links connected by 8 joints. Observation st is a 27-533

dimension vector including information about the root joint’s position and velocity, angular534

position and velocity of all 8 joints, and frame orientations. Action at 2 [�1.0, 1.0]8 is the535

torques applied to each of 8 joints. Reward is rt = vtorso,t + 0.05, meaning the velocity536

of moving forward plus the survival bonus 0.05 for each step. To change the environment537

dynamics, we modify the damping of every leg. Specifically, given a scale factor d, we538

modify two legs to have damping multiplied by d, and the other two legs to have damping539

multiplied by 1/d (similarly to [12]). Alternatively, we can cripple one of the agent’s four540

legs to change the dynamics function. The torques applied to two joints on the crippled leg541

(i.e. two correspondent elements in actions) are set as 0. (similarly to [25]).542

MetaWorld Additionally, we consider the tasks of pushing Cylinder, Coffee Mug and Cube. They543

are named as push-v2, coffee-push-v2, and sweep-into-goal-v2 on MetaWorld benchmark [37]544

respectively. The goal is to move the objects from a random initial location to a random goal location.545

The observation is of dimension 14, consisting of the location of the robot hand, the distance between546

two gripper fingers, the location and position of the object, and the target location. The action547

a 2 [�1.0, 1.0]4 controls the movement of the robot hand and opening/closing of the gripper. The548

reward is 1.0 when the object is close to the target location (i.e. distance less than 0.05). Otherwise,549

the environment reward is 0.0. The length of an episode is 500 steps. The tasks of manipulating550

different objects have different dynamics. We change the physics parameters armature and damping551

across tasks to make the policy transfer more challenging.552

C.2 Implementation Details for Policy Transfer with Fixed Dataset & Source Policy553

In Section 5.1, we study the performance of policy transfer with our action translator with a fixed554

dataset and source policy. In this experiment, we demonstrate our proposed policy transfer approach555

trained with fixed datasets and source policy outperforms the baselines. We provide the experimental556

details as follows.557

Source Policy and Dataset558

• MuJoCo On HalfCheetah, the armature value on the source and target task is 0.1 and 0.5559

respectively. On Ant, the leg 0 is crippled on the source task while the leg 3 is crippled on560

the target task. We train well-performing policies on the source tasks as source policies, and561

we also train mediocre policies on both source tasks and target tasks to obtain training data.562

18

Parameter name Value

Start Timesteps 2.5e4
Gaussian exploration noise � 0.1

Batch Size 256
Discount � 0.99

Target network update rate 5e-3
Policy noise �̃ 0.2
Noise clip c 0.5

Policy update frequency 2
Replay buffer size 1e6
Actor learning rate 3e-4
Critic learning rate 3e-4

Optimizer Adam
Actor layers 3

Hidden dimension 256
Table 6: The hyperparameters for TD3 algorithm.

We apply the TD3 algorithm[8] and dense rewards to learn policies. The hyperparameters563

for the TD3 algorithm are listed in Table 6. Specifically, during the start 25K timesteps, the564

TD3 agent collects data by randomly sampling from the action space. After the first 25K565

timesteps, the agent learns an deterministic policy based on the data collected in the replay566

buffer. During training, the agent collects data with actions following the learned policy with567

Gaussian noise, and updates the replay buffer as well. On HalfCheetah environment, we568

use the learned policy at 300K timesteps as good policy, and use the learned policy at 80K569

timesteps as mediocre policy. On Ant environment, the learned policy at 400K timesteps570

and 20K timesteps are used as good policy and mediocre policy respectively.571

With the mediocre policies, we collect 100K transition samples on the source and target572

tasks respectively. During data collection, at each step, we record the following information:573

(a) current state; (b) current action drawn from the mediocre policies; (c) next state; (d)574

historical observations in the past 10 steps; (e) historical actions in the past 10 steps.575

The historical transition information are employed to learn the context model for forward576

dynamics prediction.577

• MetaWorld On source tasks, we keep the default physics parameters. However, on the target578

task,the value of armature and damping for the gripper joints is 0.1 multiplying the default.579

We get the manually designed good policies from official public code2. The performance of580

the good source policy is shown in Tab. 7. By adding Gaussian noise following N (0, 1.0) to581

action drawn from the good policies, we collect 100K transition samples on the source and582

target tasks respectively.583

With the fixed datasets on both source and targe tasks, we can train action translator to transfer the584

fixed source policy. First, we learn the forward dynamics model. Then we learn the action translator585

based on the well-trained forward dynamics model. For fair comparison, we train the baseline [41]586

and our action translator with the same dataset and source policy. The hyperparameters and network587

structures applied in the baseline and our approach are introduced as follows588

Transferred Policy [41] This baseline is implemented using the code provided by Zhang et al.589

[41] 3. The forward dynamics model first encodes the state and action as 128-dimensional vectors590

respectively via a linear layer with ReLU activation. The state embedding and action embedding is591

then concatenated to predict the next state with an MLP with 2 hidden layers of 256 units and ReLU592

activation. We train the forward dynamics model with batch size 32 and decaying learning rate from593

0.001, 0.0003 to 0.0001. In order to optimize the forward dynamics model, the objective function594

is L1-loss between the predicted next state and the actual next state. With these hyper-parameters595

settings, we train the forward modelFand the context modelCfor30 epochs, each epoch with 10K596

steps.597

2https://github.com/rlworkgroup/metaworld/tree/master/metaworld/policies
3https://github.com/sjtuzq/Cycle_Dynamics

19

The action translator first encodes the state and action as 128-dimensional vectors respectively via a598

linear layer with ReLU activation. The state embedding and action embedding are then concatenated599

to generate the translated action via an MLP with 2 hidden layers of 256 units and ReLU activation.600

As for the objective function with three terms: adversarial loss, domain cycle-consistency loss, and601

dynamics cycle-consistency loss, we tune three weights. We train the action translator for 30 epochs.602

After each epoch, the performance of transferred policy with the action translator is evaluated on the603

target task. We average episode rewards in 100 episodes as the epoch performance. Finally, we report604

the best epoch performance over the 30 epochs.605

Setting Source policy
on source task

Source policy
on target task

Transferred policy
[41] on target task

Transferred policy
(Ours) on target task

HalfCheetah 5121.4 2355.0 3017.1(±44.2) 2937.2(±9.5)

Ant 476.8 55.8 97.2(±2.5) 208.1(±8.2)

Cylinder-Mug 317.3 0.0 308.1(±75.3) 395.6(±19.4)

Cylinder-Cube 439.7 0.0 262.4(±48.1) 446.1(±1.1)

Table 7: Performance of source and transferred policy on target task. This is expanding Tab. 1 in the main text.

Transferred Policy (Ours) We encode the context features with K = 10 past transitions. The606

historical state information is postprocessed as state differences between two consecutive states. The607

historical transition at one step is concatenation of past 10 actions and past 10 postprocessed states.608

The historical transition data are fed into an MLP with 3 hidden layers with [256, 128, 64] hidden609

units and Swish activation. The context vector is of dimension 10. The forward dynamics model is610

an MLP with 4 hidden layers of 200 hidden units and ReLU activation, predicting the state difference611

between two consecutive states in the future M=10 steps. The learning rate is 0.001 and the batch size612

is 1024. The objective function is simply Lforw + Lcont (Equation 1 and Equation 2). With these613

hyper-parameters settings, we train the forward model F and the context model C for 30 epochs,614

each epoch with 10K steps.615

The action translator H first encodes state and action as 128-dimensional vectors respectively. Then,616

the state embedding and action embedding is concatenated and fed into an MLP with 3 hidden layers617

of 256 units and ReLU activations. We train the action translator with a decaying learning rate from618

3e-4, 5e-5 to 1e-5, and the batch size is also 1024. With these hyper-parameters settings, we train the619

action translator for 30 epochs, each epoch with 3,000 steps. The objective function is simply Ltrans620

(Equation 3). After each epoch, the performance of the action translator is also evaluated on the target621

task via averaging the episode rewards in 100 episodes. Finally, the best epoch performance over the622

30 epochs is reported.623

Context-conditioned Action Translator We also demonstrate the performance of policy transfer624

on more than two tasks as heatmaps in Fig. 4. The heatmaps demonstrate performance gain when625

comparing our transferred policy against the source policy on the target task. We calculate the626

improvement in the average episode rewards for every pair of source-target tasks sampled from the627

training task set. The tasks in the HalfCheetah environment are T (1) · · · T (5) with different armature628

values, namely {0.1, 0.2, 0.3, 0.4, 0.5}. The tasks in the Ant environment are T (1) · · · T (4) with629

different leg crippled, namely {0, 1, 2, 3}. As mentioned above, we apply the TD3 algorithm[8] and630

dense rewards to learn source policies and mediocre policies for each task in training set. Then we631

collect 100K transition data on each training tasks with the corresponding mediocre policies.632

The architecture of context model C and the forward model F remains the same as above, while the633

learning rate is kept as 5e-4 instead. The architecture of action translator H is expanded to condition634

on the source task embeddings and target task embeddings. As mentioned in Sec. 2.2, in order to get635

the representative task feature for any arbitrary training task, we sample 1024 historical transition636

samples on this task, calculate the their context embedding through context model C and average the637

1024 context embedding to get the task feature as an 10-dimensional context vector. The source target638

feature and target task feature are then encoded as 128-dimensional vectors respectively via a linear639

layer with ReLU activation. Then the state embedding, action embedding, source task embedding640

and target task embedding are concatenated to produce the translated action via an MLP with 3 linear641

layers of 256 hidden units and ReLU activation. The learning rate and batch size for H are 3e-4 and642

1024. With these hyper-parameters settings, we train the action translator with 100 epochs, each with643

20

1,000 steps. We report the percentage gain comparing well-trained transferred policies with source644

policies on each pair of source-target tasks.645

C.3 Policy transfer on tasks sharing a general reward function, differing in dynamics646

As explained in Sec. 3, many real-world sparse-reward tasks fall under the umbrella of Proposition 1.647

Thus, we are mainly interested in policy transfer across tasks with the same reward function r(s, s0)648

but different dynamics. To solve policy transfer across these tasks, our objective function Ltrans can649

be applied so that the transferred policy achieves a value on the target task similar to the source policy650

on the source task. Experiments in Sec. 5 validate the efficacy of Ltrans for learning policy transfer.651

As for a more general case, we further consider tasks with different dynamics that have the same652

state space, action space and reward function, where the general reward function r(s, a, s0)653

cannot be expressed as r(s, s0). Theorem 1 in Appendix A covers this scenario. For source654

task T (j) = {S,A, p
(j)

, r, �, ⇢0} and target task T (i) = {S,A, p
(i)
, r, �, ⇢0}, we can bound the655

value difference between source policy ⇡
(j) and transferred policy ⇡

(i) by minimizing both re-656

ward difference |r(s,⇡(i)(s))� r(s,⇡(j)(s))| and total-variation difference in next state distribution657

DTV (p(i)(·|s,⇡(i)(s)), p(j)(·|s,⇡(j)(s)). Accordingly, we modify transfer loss Ltrans (Equation 3)658

with an additional term of reward difference.659

Formally, Ltrans,r = |r(j)t �R(s(j)t , ã
(i)
, z

(i))|� � logF (s(j)t+1|s
(j)
t , ã

(i)
, z

(i)), where R is a learned660

reward prediction model, � is a hyper-parameter weight of next state distribution loss, and661

ã
(i) = H(s(j)t , a

(j)
t , z

(j)
, z

(i)) is the translated action. This objective function drives the action662

translator H to find an action on the target task leading to a reward and next state, similarly to the663

source action on the source task.664

As explained in Appendix C.1.1, MuJoco environments award the agent considering its velocity of665

moving forward vtorso and the control cost ||a||2, i.e. r = vtorso � c||a||2. If the coefficient c = 0,666

we can simplify this reward function as r(s, s0) because vtorso is calculated only based on the current667

state s and next state s
0. If c > 0, r becomes a general reward function r(s, a, s0). We evaluate our668

action translator trained with Ltrans and Ltrans,r for this general case of reward function. We search669

the hyper-parameter value of � in Ltrans,r and � = 10 performs well across settings.670

Control cost
coefficient

Source policy
on source task

Source policy
on target task

Transferred policy
[41]

on target task

Transferred policy
(ours with Ltrans)

on target task

Transferred policy
(ours with Ltrans,r)
on target task

c=0.001 511.1 54.7 133.27 193.7 203.1
c=0.002 488.4 53.7 129.86 179.3 195.4
c=0.005 475.8 38.9 112.36 148.5 171.8

Table 8: Average episode rewards on Ant environments. We consider the settings with different coefficients for
control cost.

Our action translator with either Ltrans or Ltrans,r performs well for policy transfer. When the671

rewards depend on the action more heavily (i.e. c becomes larger), the advantage of Ltrans,r becomes672

more obvious. However, ours with Ltrans,r requires the extra complexity of learning a reward673

prediction model R. When the reward function is mostly determined by the states and can be674

approximately simplified as r(s, s0), we recommend Ltrans because it is simpler and achieves a675

competitive performance.676

On Hopper and HalfCheetah, the control cost coefficient is c > 0 by default. Our proposed policy677

transfer and MCAT achieve performance superior to the baselines on these environments (Sec. 5).678

This verifies the merits of our objective function Ltrans on tasks with a general reward function679

r(s, a, s0).680

C.4 Implementation Details for Comparison with Context-based Meta-RL Algorithms681

C.4.1 Environment682

We modify the physics parameters in the environments to get multiple tasks with varying dynamics683

functions. We delay the environment rewards to make sparse-reward tasks so that the baseline684

21

methods may struggle in these environments. The episode length is set as 1000 steps. The details of685

the training task set and test task set are shown in Table 9.

Environment Reward Delay Steps Physics Parameter Training Tasks Test Tasks

Hopper 100 Size {0.02, 0.03, 0.04, 0.05, 0.06} {0.01, 0.07}

HalfCheetah 500 Armature {0.2, 0.3, 0.4, 0.5, 0.6} {0.05,0.1,0.7,0.75}
Mass {0.5, 1.0, 1.5, 2.0, 2.5} {0.2, 0.3, 2.7, 2.8}

Ant 500 Damping {1.0, 10.0, 20.0, 30.0} {0.5,35.0}
Crippled Leg { No crippled leg, crippled leg 0, 1, 2} {crippled leg 3}

Table 9: Modified physics parameters used in the experiments.

686

C.4.2 Implementation Details687

In Section 5.2, we compare our proposed method with other context-based meta-RL algorithms on688

environments with sparse rewards. Below we describe the implementation details of each method.689

PEARL[21] We use the implementation provided by the authors4. The PEARL agent consists of690

the context encoder model and the policy model. Following the default setup, the context encoder691

model is an MLP encoder with 3 hidden layers of 200 units each and ReLU activation. We model the692

policy as Gaussian, where the mean and log variance is also parameterized by MLP with 3 hidden693

layers of 300 units and ReLU activation. Same to the default setting, the log variance is clamped694

to [-2, 20]. We mostly use the default hyper-parameters and search the dimension of the context695

vector in {5, 10, 20}. We report the performance of the best hyper-parameter, which achieves highest696

average score on training tasks.697

MQL[5] We use the implementation provided by the authors5. The context encoder is a Gated698

Recurrent Unit model compressing the information in recent historical transitions. The actor network699

conditioning on the context features is an MLP with 2 hidden layers of 300 units each and a ReLU700

activation function. The critic network is of the same architecture as the actor network. We search the701

hyper-parameters: learning rate in {0.0003, 0.0005, 0.001}, history length in {10, 20}, GRU hidden702

units in {20, 30}, TD3 policy noise in {0.1, 0.2}, TD3 exploration noise in {0.1, 0.2}. We report the703

performance of the best set of hyper-parameters, which achieves highest score on training tasks.704

Distral[30] We use the implementation in the MTRL repository6. The Distral framework consists705

of a central policy and several task-specific policies. The actor network of the central policy is706

an MLP with 3 hidden layers of 400 units each and a ReLU activation function. The actor and707

critic networks of the task-specific policies are of the same architecture as the actor network of the708

central policy. As for the hyperparameters, we set ↵ to 0.5 and search � in {1, 10, 100}, where ↵
�709

controls the divergence between central policy and task-specific policies, and 1
� controls the entropy710

of task-specific policies. When optimizing the actor and critic networks, the learning rates are 1e-3.711

We report the performance of the best hyper-parameter, which achieves highest average score on712

training tasks.713

HiP-BMDP[40] We use the implementation in the MTRL repository (same as the Distral baseline714

above). The actor and critic networks are also the same as the ones in Distral above. When optimizing715

the actor and critic network, the learning rates for both of them are at 1e-3. The log variance of the716

policy is bound to [-20, 2]. We search the ⇥ learning error weight ↵ in {0.01, 0.1, 1}, which scales717

their task bisimulation metric loss. We report the performance of the best hyper-parameter, which718

achieves highest average score on training tasks.719

MCAT (Ours) The architectures of the context model C, forward dynamics model F and the720

action translator H are the same as introduced in Appendix C.2. The actor network and critic network721

are both MLPs with 2 hidden layers of 256 units and ReLU activations. As described in Algorithm 1,722

4https://github.com/katerakelly/oyster
5https://github.com/amazon-research/meta-q-learning
6https://github.com/facebookresearch/mtrl

22

at each iteration, we collect 5K transition data from training tasks. Then we train the context model723

C and forward dynamics model F for 10K training steps. We train the action translator H for 1K724

training steps. The actor and critic networks are updated for 5K training steps. In order to monitor725

the performance of transferred and learned policy in recent episodes, we clear the information about726

episode reward in R
(i) and R

(j)!(i) before the last G = 20000 steps.727

The learning rate and batch size of training C, F and H are the same as introduced in “Context-728

conditioned Action Translator" in Appendix C.2. The hyper-parameters of learning the actor and729

critic are the same as listed in Table 6. Besides, we adapt the official implementation7 to maintain730

SIL replay buffer with their default hyper-parameters on MuJoCo environments.731

Even though there are a couple of components, they are trained alternatively not jointly. The dynamics732

model is learned with Lforw to accurately predict the next state. The learned context embeddings for733

different tasks can separate well due to the regularization term Lconst. With the fixed context encoder734

and dynamics model, the action translator can be optimized. Then, with the fixed context encoder, the735

context-conditioned policy learns good behavior from data collected by the transferred policy. These736

components are not moving simultaneously and this fact facilitates the learning process. To run our737

approach on MuJoCo environments, for each job, we need to use one GPU card (NVIDIA GeForce738

GTX TITAN X) for around 4 days. Fig. 6 show the performance of our approach and baselines on739

various environments.740

0.00 0.40 0.80 1.20 1.60 2.00
7imHstHSs

1000

1250

1500

1750

2000

2250

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HRSSHr 6izH (7rain)

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

2000

2500

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah ArmaturH (Train)

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

2000

2500

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah 0ass (Train)

0.00 0.40 0.80 1.20 1.60 2.00
Timesteps

0

200

400

600

800

Av
er

Dg
e

(v
Dl

uD
tiR

n
Re

w
Dr

d

Ant DDmping (TrDin)

0.00 0.40 0.80 1.20 1.60 2.00
Timesteps

−50

0

50

100

150

200

Av
er

ag
e

(v
al

ua
tiR

n
5e

w
ar

d

Ant Cripple (Train)

0.00 0.40 0.80 1.20 1.60 2.00
TLPHstHSs

0

500

1000

1500

2000

Av
Hr

Dg
H

(v
DO

uD
tLR

Q
5H

w
Dr

d

HRSSHr 6LzH (THst)

04L
PHDrO
DLstrDO
HLP-B0DP
0CAT (2urs)

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

2000

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah ArmaturH (THst)

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah 0ass (THst)

0.00 0.40 0.80 1.20 1.60 2.00
Timesteps

0

100

200

300

400

500

600

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d
Ant DDmping (Test)

0.00 0.40 0.80 1.20 1.60 2.00
Timesteps

0

100

200

300

400

Av
er

ag
e

(v
al

ua
tiR

n
Re

w
ar

d

Ant Cripple (Test)

Figure 6: Learning curves of episode rewards on both training and test tasks, averaged over 3 runs. Shadow
areas indicate standard error. This adds the performance on training tasks in comparison to Fig. 5

Furthermore, we present additional experimental results on MetaWorld environment. In Section 5.1,741

we introduced the tasks of moving objects to target locations and the reward is positive only when742

the object is close to the goal. We combine context-based TD3 with policy transfer to learn a policy743

operating multiple objects: drawer, coffee mug, soccer, cube, plate. Then we test whether the policy744

could generalize to moving a large cylinder. In Tab. 10, MCAT agent earns higher success rate than745

the baselines on both training and test tasks after 2M timesteps in the sparse-reward tasks.746

MQL [5] PEARL [21] PCGrad [36] MCAT

Training tasks (reward) 164.8(±23.6) 161.2(±25.3) 44.8(±31.7) 204.1(±43.1)

Test tasks (reward) 0.0(±0.0) 0.0(±0.0) 0.0(±0.0) 10.2(±8.3)

Training tasks (success rate) 40.0%(±0.0%) 33.3%(±5.4%) 10.0%(±7.1%) 53.3%(±5.4%)

Test tasks (success rate) 0.0%(±0.0%) 0.0%(±0.0%) 0.0%(±0.0%) 16.7% (±13.6%)

Table 10: Performance of learned policies at 2M timesteps, averaged over 3 runs.

7https://github.com/junhyukoh/self-imitation-learning

23

D Ablative Study747

D.1 Effect of Policy Transfer748

In Section 5.3, we investigate the effect of policy transfer (PT). In Figure 7 we provide the learning749

curves of MCAT and MCAT w/o PT on both training tasks and test tasks.

0.00 0.20 0.40 0.60 0.80 1.00
TimHstHSs

1000

1200

1400

1600

1800

2000

2200

Av
Hr

ag
H

(v
al

ua
tiR

n
RH

w
ar

d

HRSSHr 6izH (Train)

0.00 0.20 0.40 0.60 0.80 1.00
TimHstHps

−500

0

500

1000

1500

2000

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah ArmaturH (Train)

0.00 0.20 0.40 0.60 0.80 1.00
7imHstHps

−500

−250

0

250

500

750

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah 0ass (7rain)

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

0

100

200

300

Av
er

Dg
e

(v
Dl

uD
tiR

n
Re

w
Dr

d

Ant DDmping (TrDin)

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

0

50

100

150

200

250

Av
er

ag
e

(v
al

ua
tiR

n
5e

w
ar

d

Ant Cripple (Train)

0.00 0.20 0.40 0.60 0.80 1.00
TiPHstHSs

0

500

1000

1500

2000

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HRSSHr 6izH (THst)

0CAT w/R PT
0CAT

0.00 0.20 0.40 0.60 0.80 1.00
TimHstHps

−500

0

500

1000

1500

2000

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah ArmaturH (THst)

0.00 0.20 0.40 0.60 0.80 1.00
TimHstHps

−600

−400

−200

0

Av
Hr

ag
H

(v
al

ua
tiR

n
RH

w
ar

d

HalfChHHtah 0ass (THst)

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

0

50

100

150

200

250

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

Ant DDmping (Test)

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

0

50

100

150

200

250

Av
er

ag
e

(v
al

ua
tiR

n
5e

w
ar

d

Ant Cripple (Test)

Figure 7: Learning curves of the average episode reward, averaged over 3 runs. The average episode reward and
standard error are reported on training tasks and test tasks respectively. This repeats Figure 7 with addition of
learning curves on training tasks.750

D.2 More Sparse Rewards751

In Section 5.3, we report the effect of policy transfer when the rewards become more sparse in the752

environments. On HalfCheetah, we delay the environment rewards for different number of steps 200,753

350, 500. In Figure 8, we show the learning curves on training and test tasks. In Table 4, we report754

the average episode rewards and standard error over 3 runs at 1M timesteps.

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

0

1000

2000

3000

Av
er

Dg
e

(v
Dl

uD
tiR

n
Re

w
Dr

d

ArmDture DelDy 200 (TrDin)

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

0

1000

2000

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

ArmDture DelDy 350 (TrDin)

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

−500

0

500

1000

1500

2000

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

ArmDture DelDy 500 (TrDin)

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

−500

0

500

1000

1500

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

0Dss DelDy 200 (TrDin)

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

−500

0

500

1000

1500

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

0Dss DelDy 350 (TrDin)

0.00 0.20 0.40 0.60 0.80 1.00
7imesteps

−500

−250

0

250

500

750

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

0Dss DelDy 500 (7rDin)

0.00 0.20 0.40 0.60 0.80 1.00
TiPesteps

−500

0

500

1000

1500

2000

2500

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

ArPDture DelDy 200 (Test)

0CAT w/R PT
0CAT

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

−500

0

500

1000

1500

2000

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

ArmDture DelDy 350 (Test)

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

−500

0

500

1000

1500

2000

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

ArmDture DelDy 500 (Test)

0.00 0.20 0.40 0.60 0.80 1.00
7imesteps

−500

−250

0

250

500

750

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

0Dss DelDy 200 (7est)

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

−400

−200

0

200

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

0Dss DelDy 350 (Test)

0.00 0.20 0.40 0.60 0.80 1.00
Timesteps

−600

−400

−200

0

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

0Dss DelDy 500 (Test)

Figure 8: Learning curves of the average episode reward, averaged over 3 runs. The average episode reward and
standard error are reported on training tasks and test tasks respectively.755

D.3 More Diverse Tasks756

We include more settings of training and test tasks where the discrepancy among training tasks varies.757

On HalfCheetah, the environment rewards are delayed for 500 steps. In Table 11, we list the details758

of the settings.759

Physics Parameter Setting Train Test

Armature
Set 1 {0.2, 0.25, 0.3, 0.35, 0.4} {0.05, 0.1, 0.5, 0.55}
Set 2 {0.2, 0.3, 0.4, 0.5, 0.6} {0.2, 0.3, 0.7, 0.75}
Set 3 {0.2, 0.35, 0.5, 0.65, 0.8} {0.2, 0.3, 0.9, 0.95}

Mass
Set 1 {0.5, 0.75, 1.0, 1.25, 1.5} {0.2, 0.3, 1.7, 1.8}
Set 2 {0.5, 1.0, 1.5, 2.0, 2.5} {0.2, 0.3, 2.7, 2.8}
Set 3 {0.5, 1.25, 2.0, 2.75, 3.5} {0.2, 0.3, 3.7, 3.8}

Table 11: Modified physics parameters used in the experiments.

We consider baseline MQL because it performs reasonably well on HalfCheetah among all the760

baselines (Figure 5). Table 12 demonstrates that policy transfer (PT) is generally and consistently761

24

effective. In Figure 9, we show the learning curves on training and test tasks. In Table 12, we report762

the average episode rewards and standard error over 3 runs at 1M timesteps.

Setting Armature
Set 1

Armature
Set 2

Armature
Set 3

Mass
Set 1

Mass
Set 2

Mass
Set 3

Task Train Test Train Test Train Test Train Test Train Test Train Test

MQL -129.3
(±46.7)

-248.0
(±32.0)

-277.2
(±25.2)

-335.0
(±20.8)

-85.0
(±33.5)

-214.7
(±28.9)

-100.8
(±37.8)

-291.3
(±25.8)

-403.7
(±16.1)

-467.8
(±6.5)

-175.3
(±6.2)

-287.9
(±11.7)

MCAT w/o PT 837.6
(±646.5)

785.3
(±733.1)

924.0
(±690.1)

579.1
(±527.1)

452.8
(±386.6)

616.5
(±305.0)

-60.5
(±313.4)

-258.2
(±151.1)

62.5
(±411.0)

-364.3
(±198.5)

-328.1
(±55.8)

-412.4
(±7.7)

MCAT 3372.1
(±186.4)

2821.9
(±137.7)

2207.3
(±697.7)

1776.8
(±680.8)

1622.2
(±402.2)

918.3
(±142.5)

1222.2
(±754.9)

482.4
(±624.2)

763.4
(±377.7)

67.1
(±152.9)

705.7
(±503.4)

-86.2
(±111.8)

Improvement(%) 302.6 259.3 133.9 206.8 258.3 49.0 2120.2 286.8 1121.4 118.4 315.1 79.1
Table 12: The performance of learned policy on various task settings. We modify armature and mass to get 5
training tasks and 4 test tasks in each setting. We compute the improvement of MCAT over MCAT w/o PT.

763

0.00 0.20 0.40 0.60 0.80 1.00
TimesteSs

0

1000

2000

3000

Av
er

ag
e

(v
al

ua
tiR

n
Re

w
ar

d

Armature 6et1 (Train)

0.00 0.20 0.40 0.60 0.80 1.00
TimesteSs

−500

0

500

1000

1500

2000

Av
er

ag
e

(v
al

ua
tiR

n
5e

w
ar

d

Armature 6et2 (Train)

0.00 0.20 0.40 0.60 0.80 1.00
TimesteSs

−500

0

500

1000

1500

Av
er

ag
e

(v
al

ua
tiR

n
5e

w
ar

d

Armature 6et3 (Train)

0.00 0.20 0.40 0.60 0.80 1.00
TimesteSs

−500

0

500

1000

1500

Av
er

ag
e

(v
al

ua
tiR

n
5e

w
ar

d

0ass 6et1 (Train)

0.00 0.20 0.40 0.60 0.80 1.00
7imesteSs

−500

−250

0

250

500

750

Av
er

ag
e

(v
al

ua
tiR

n
5e

w
ar

d

0ass 6et2 (7rain)

0.00 0.20 0.40 0.60 0.80 1.00
7imesteSs

−750

−500

−250

0

250

500

750

Av
er

ag
e

(v
al

ua
tiR

n
5e

w
ar

d

0ass 6et3 (7rain)

0.00 0.20 0.40 0.60 0.80 1.00
TLPesteSs

0

1000

2000

Av
er

ag
e

(v
al

ua
tLR

Q
Re

w
ar

d

ArPature 6et1 (Test)

04/
0CAT w/R PT
0CAT

0.00 0.20 0.40 0.60 0.80 1.00
TimesteSs

−500

0

500

1000

1500

2000

Av
er

ag
e

(v
al

ua
tiR

n
5e

w
ar

d

Armature 6et2 (Test)

0.00 0.20 0.40 0.60 0.80 1.00
TimesteSs

−500

0

500

1000

Av
er

ag
e

(v
al

ua
tiR

n
5e

w
ar

d

Armature 6et3 (Test)

0.00 0.20 0.40 0.60 0.80 1.00
TimesteSs

−600

−400

−200

0

200

400

Av
er

ag
e

(v
al

ua
tiR

n
Re

w
ar

d

0ass 6et1 (Test)

0.00 0.20 0.40 0.60 0.80 1.00
TimesteSs

−600

−400

−200

0

Av
er

ag
e

(v
al

ua
tiR

n
Re

w
ar

d

0ass 6et2 (Test)

0.00 0.20 0.40 0.60 0.80 1.00
TimesteSs

−600

−500

−400

−300

−200

−100

0

Av
er

ag
e

(v
al

ua
tiR

n
5e

w
ar

d

0ass 6et3 (Test)

Figure 9: Learning curves of the average episode reward, averaged over 3 runs. The average episode reward and
standard error are reported on training tasks and test tasks respectively.

D.4 Effect of Self-Imitation Learning764

We run experiments combining baseline methods with self-imitation learning (SIL) [18]. SIL brings765

improvement to baselines but still ours shows significant advantages. In Tab. 13, MCAT w/o SIL766

compares favorably with the baseline methods. MCAT further improves the performance of MCAT767

w/o SIL, and MCAT outperform the variants of baseline methods with SIL.768

Setting Hopper
Size

HalfCheetah
Armature

HalfCheetah
Mass

Ant
Damping

Ant
Cripple

Task Train Test Train Test Train Test Train Test Train Test

MQL[5] 1586.1
(± 321.4)

1607.5
(± 327.5)

-31.4
(± 243.5)

-77.9
(± 214.3)

-243.1
(± 69.8)

-413.9
(± 11.1)

93.8
(± 24.5)

103.1
(± 35.7)

17.4
(± 4.3)

38.2
(± 4.0)

Distral[30] 1364.0
(± 216.3)

1319.8
(± 162.2)

774.7
(± 405.9)

566.9
(± 246.7)

-54.3
(± 14.8)

-29.5
(± 3.0)

123.0
(± 20.0)

90.5
(± 28.4)

-2.5
(± 1.7)

-0.1
(± 0.7)

HiP-BMDP[40] 1590.3
(± 238.7)

1368.3
(± 150.7)

-212.4
(± 52.2)

-102.4
(± 24.9)

-81.3
(± 8.31)

-101.8
(± 29.6)

15.0
(± 5.7)

33.1
(± 6.0)

12.7
(± 5.3)

7.3
(± 2.6)

MCAT w/o SIL 1261.6
(± 55.2)

1165.1
(± 8.6)

1548.8
(± 418.4)

883.8
(± 267.2)

610.6
(± 482.3)

119.0
(± 210.0)

123.3
(± 25.8)

123.8
(± 26.9)

97.3
(± 3.6)

163.1
(± 26.1)

MQL+SIL 1395.5
(± 60.8)

1398.9
(± 85.9)

1399.7
(± 350.2)

743.5
(± 246.1)

617.8
(± 133.1)

-63.3
(± 158.3)

153.0
(± 28.3)

144.3
(± 28.1)

13.9
(± 19.8)

10.2
(± 2.3)

Distral+SIL 1090.2
(± 18.7)

1090.9
(± 7.8)

1014.1
(± 121.4)

970.3
(± 164.2)

809.7
(± 294.2)

746.7
(± 120.5)

174.3
(± 66.1)

122.2
(± 44.5)

107.7
(± 57.7)

9.1
(± 5.0)

HiP-BMDP+SIL 1573.3
(± 32.4)

1589.5
(± 110.3)

954.8
(± 192.3)

713.3
(± 85.4)

953.5
(± 61.2)

506.6
(± 99.0)

653.9
(± 262.6)

523.6
(± 300.8)

170.9
(± 68.7)

215.4
(± 130.3)

MCAT (Ours) 2278.8
(± 426.2)

1914.8
(± 373.2)

2267.2
(± 579.2)

2071.5
(± 447.4)

2226.3
(± 762.6)

1771.1
(± 617.7)

1322.7
(± 57.4)

1014.0
(± 69.9)

110.4
(± 30.5)

281.6
(± 65.6)

Table 13: Mean (± standard error) of episode rewards on the training and test tasks, at 2M timesteps.

On one task, SIL boosts the performance by exploiting the successful past experiences. But on769

multiple tasks, enhancing performance on one task with luckily collected good experiences may770

not benefit the exploration on other tasks. If other tasks have never seen the good performance771

25

before, SIL might even prevent the exploration on these tasks because the shared policy is trained to772

overfit highly-rewarding transitions on the one task with good past trajectories. We observe that after773

combining with SIL, the baselines show even more severe performance imbalance among multiple774

training tasks. Therefore, we believe the idea of policy transfer is complementary to SIL, in that it775

makes each task benefit from good policies on any other tasks.776

D.5 Effect of Contrastive Loss777

To show the contrastive loss indeed helps policy transfer, we compare our method with and without778

the contrastive loss Lcont (Equation 2). In Fig. 10, one can observe that Lcont helps cluster779

the embeddings of samples from the same task and separate the embeddings from different tasks.780

We note that the tasks T (1)
, T (2)

, T (3)
, T (4)

, T (5) have different values of the physics parameter781

armature 0.2, 0.3, 0.4, 0.5, 0.6. As mentioned in Sec. 2.2, the learned context embeddings maintain782

the similarity between tasks. In Fig. 10, the context embeddings of two tasks are closer if their values783

of armature is closer.784

(a) Context embeddings of random samples in MCAT (b) Context embeddings in MCAT without contrastive loss
Figure 10: t-SNE visualization[32] of the context embeddings learned via our method with and without
contrastive loss. Different colors correspond to different training tasks.

MCAT shows superior performance to the variant without the contrastive loss. Here we show the785

learning curves on training and test tasks separately(Fig. 11).

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

2000

2500

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah ArmaturH (Train)

0CAT w/R cRntrastivH
0CAT

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

2000

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah ArmaturH (THst)

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

2000

2500

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah 0ass (Train)

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah 0ass (THst)

Figure 11: Learning curves of the average episode reward, averaged over 3 runs. The average episode reward
and standard error are reported on training tasks and test tasks respectively.786

D.6 Design Choice of Action Translator787

We add this experimental comparison with the action translator by [41]. To learn a shared policy788

solving multiple tasks, we combine the context-based TD3 algorithm, self-imitation learning, and789

policy transfer with their action translator. Using their action translator underperforms ours. The790

main reason is that, with changing datasets and policies, their action translator may be harder to tune791

because there are more moving components (i.e. another action translator, a discriminator) and more792

loss terms to be balanced (i.e. domain cycle-consistency loss, adversarial loss).793

Setting HalfCheetah Armature HalfCheetah Mass

Tasks Training Test Training Test

MCAT 2267.2 (± 579.2) 2071.5 (± 447.4) 2226.3 (± 762.6) 1771.1(± 617.7)

MCAT with [41] action translator 2255.2 (± 644.4) 1664.8 (± 660.8) 1185.8 (± 798.0) 684.7(± 759.0)

Table 14: Mean (± standard error) of episode rewards on training and test tasks at 2M timesteps.

26

E Extension of Policy Transfer794

As clarified in Sec. 2.1, in this work, we mainly focus on tasks with the same state space, action795

space, reward function but varying dynamics. However, we note that our proposed method of learning796

action translator may be extended to tackle the challenge of policy transfer in more general cases,797

such as (1) Tasks differing in reward function, (2) Tasks differing in state space and action space. In798

this section, we establish the theory and method in details to extend our policy transfer approach, as a799

supplement to Sec. 6.800

E.1 Theoretical Analysis801

Intuitively, on two general tasks, we aim to discover correspondent state-action pairs achieving the802

same reward and transiting to correspondent next states. With the state and action correspondence,803

the behavior of good source policy can be “replicated” in the target task and the high value of the804

good source policy can be maintained by the transferred policy on the target task. Inspired by this805

idea, we extend our theory in Sec. 3 and Appendix A.806

We first define a binary relation for states to describe the equivalent states on two MDPs (Definition807

2) and define an invertible function to capture the state equivalence relation (Definition 3). Building808

upon the notion of state equivalence, we derive the upper bound of value difference between policies809

on two MDPs (Theorem 2). Finally, we reach a proposition for the upper bound of value difference810

(Proposition 2) to explain that our objective function in learning action translator can be extended to811

bound the value difference between the source and transferred policy.812

Definition 2. Given two MDPs T (i) = {S(i)
,A(i)

, p
(i)
, r

(i)
, �, ⇢

(i)
0 } and T (j) =813

{S(j)
,A(j)

, p
(j)

, r
(j)

, �, ⇢
(j)
0 }, we define a binary relation B 2 S(i) ⇥ S(j) called state equiva-814

lence relation. Let s0(i) denote the next state following state s
(i), and s

0(j) denote the next state815

following state s
(j). For states s(i) 2 S(i), s(j) 2 S(j), we have (s(i), s(j)) 2 B (i.e. s(i)Bs

(j)) if816

for any a
(i) 2 A(i) there exists a(j) 2 A(j) satisfying the following conditions:817

r
(i)(s(i), a(i)) = r

(j)(s(j), a(j))

8s0(i) 2 S
(i)
, 9s0(j) 2 S(j) s.t. p(i)(s0(i)|s(i), a(i)) = p

(j)(s0(j)|s(i), a(j)) and s
0(i)

Bs
0(j)

We call the state s
(i) and s

(j) are correspondent/equivalent when (s(i), s(j)) 2 B. Also, in this case,818

the action a
(i) for state s(i) on the MDP T (i) is equivalent to the action a

(j) for state s(j) on the MDP819

T (j).820

This definition is related to stochastic bisimulation relation in [6, 39, 40]. Unlike these prior works821

about state bisimulation, we allow the equivalent actions a(j) 6= a
(i). So action a on the task T (i)822

might not be equivalent to a on the task T (j), and hence we need to involve action translator in823

learning of both the state correspondence and action correspondence.824

Drawing upon Definition 2, we define a one-to-one mapping to identify the equivalent state across825

two spaces S(i) and S(j).826

Definition 3. Given two MDPs T (i) = {S(i)
,A(i)

, p
(i)
, r

(i)
, �, ⇢

(i)
0 } and T (j) =827

{S(j)
,A(j)

, p
(j)

, r
(j)

, �, ⇢
(j)
0 } with state equivalence relation B, we consider subsets S(i)

B ⇢ S(i)828

and S(j)
B ⇢ S(j) satisfying: 8s(i) 2 S(i)

B , 9s(j) 2 S(j)
B s.t. (s(i), s(j)) 2 B. We define a invertible829

function G : S(i)
B ! S(j)

B called state translator function, satisfying: (s(i), G(s(i))) 2 B.830

Based on Defintion 2 and 3, given two correspondent states s(i) 2 S
(i)
B and s

(j) 2 S
(j)
B , we can derive831

the upper bound for the value difference between V
⇡(i)

(s(i), T (i)) and V
⇡(j)

(s(j), T (j)).832

Theorem 2. T (i) = {S(i)
,A(j)

, p
(i)
, r

(i)
, �, ⇢

(i)
0 } and T (j) = {S(j)

,A(j)
, p

(j)
, r

(j)
, �, ⇢

(j)
0 }833

are two MDPs sampled from the distribution of tasks p(T). ⇡
(i) is a deterministic pol-834

icy on T (i) and ⇡
(j) is a deterministic policy on T (j). We assume there exist state835

equivalence relation B 2 S(i) ⇥ S(j) and a state translator function G defining a one-836

to-one mapping from S(i)
B to S(j)

B . Let M = sups(i)2S(i) |V ⇡(i)

(s(i), T (i))| and d =837

27

sup
s(i)2S(i)

B

⇥
|r(i)(s(i),⇡(i)(s))� r

(j)(s(j),⇡(j)(s))|+ 2�MDTV (p(i)(·|s(i),⇡(i)(s(i))), p(j)(G(·)|s(j),⇡(j)(s(j))))
⇤
.838

Then 8s(i) 2 S(i)
B , s

(j) = G(s(i)), we have839

���V ⇡(i)

(s(i), T (i))� V
⇡(j)

(s(j), T (j))
��� 

d

1� �

Proof. Let a(i) = ⇡
(i)(s(i)) and a

(j) = ⇡
(j)(s(j)). We rewrite the value difference.840

V
⇡(i)

(s(i), T (i))� V
⇡(j)

(s(j), T (j))

= r
(i)(s(i), a(i)) + �

X

s0(i)2S(i)

p
(i)(s0(i)|s(i), a(i))V ⇡(i)

(s0(i), T (i))

� r
(j)(s(j), a(j))� �

X

s0(j)2S(j)

p
(j)(s0(j)|s(j), a(j))V ⇡(j)

(s0(j), T (j))

= (r(i)(s(i), a(i))� r
(j)(s(j), a(j)))

+ �(
X

s0(i)2S(i)

p
(i)(s0(i)|s(i), a(i))V ⇡(i)

(s0(i), T (i))�
X

s0(j)2S(j)

p
(j)(s0(j)|s(j), a(j))V ⇡(j)

(s0(j), T (j)))

According to Definition 2, since s
(i) 2 S(i)

B , we have s
0(i) 2 S(i)

B . Similarly, s0(j) 2 S(j)
B .841

Then we derive the second term in the right side of the equation above:842

X

s0(i)2S(i)

p
(i)(s0(i)|s(i), a(i))V ⇡(i)

(s0(i), T (i))�
X

s0(j)2S(j)

p
(j)(s0(j)|s(j), a(j))V ⇡(j)

(s0(j), T (j))

*replace S(i) by S(i)
B because s

0(i) 2 S(i)
B , replace S(j) by S(j)

B because s
0(j) 2 S(j)

B

**minus and plus
X

s0(i)2S(i)
B

p
(j)(G(s0(i))|s(j), a(j)))V ⇡(i)

(s0(i), T (i))

=
X

s0(i)2S(i)
B

p
(i)(s0(i)|s(i), a(i))V ⇡(i)

(s0(i), T (i))�
X

s0(i)2S(i)
B

p
(j)(G(s0(i))|s(j), a(j)))V ⇡(i)

(s0(i), T (i))

+
X

s0(i)2S(i)
B

p
(j)(G(s0(i))|s(j), a(j)))V ⇡(i)

(s0(i), T (i))�
X

s0(j)2S(j)
B

p
(j)(s0(j)|s(j), a(j))V ⇡(j)

(s0(j), T (j))

*combine the first two terms, rewrite the third term because G is invertible function

=
X

s0(i)2S(i)
B

h
p
(i)(s0(i)|s(i), a(i))� p

(j)(G(s0(i))|s(j), a(j))
i
V
⇡(i)

(s0(i), T (i))

+
X

s0(j)2S(j)
B

p
(j)(s0(j)|s(j), a(j)))V ⇡(i)

(G�1(s0(j)), T (i))�
X

s0(j)2S(j)
B

p
(j)(s0(j)|s(j), a(j))V ⇡(j)

(s0(j), T (j))

*combine the last two terms
=

X

s0(i)2S(i)
B

h
p
(i)(s0(i)|s(i), a(i))� p

(j)(G(s0(i))|s(j), a(j))
i
V
⇡(i)

(s0(i), T (i))

+
X

s0(j)2S(j)
B

p
(j)(s0(j)|s(j), a(j)))

h
V
⇡(i)

(G�1(s0(j)), T (i))� V
⇡(j)

(s0(j), T (j))
i

Therefore, we can bound the absolute value of the value difference according to the two equation843

arrays above:844

28

���V ⇡(i)

(s(i), T (i))� V
⇡(j)

(s(j), T (j))
���


���r(i)(s(i), a(i))� r

(j)(s(j), a(j))
���

+ �

X

s0(i)2S(i)
B

h
p
(i)(s0(i)|s(i), a(i))� p

(j)(G(s0(i))|s(j), a(j))
i
V
⇡(i)

(s0(i), T (i))

+ �

X

s0(j)2S(j)
B

p
(j)(s0(j)|s(j), a(j)))

h
V
⇡(i)

(G�1(s0(j)), T (i))� V
⇡(j)

(s0(j), T (j))
i


���r(i)(s(i), a(i))� r

(j)(s(j), a(j))
���+ 2�MDTV (p

(i)(·|s(i), a(i)), p(j)(G(·)|s(j), a(j)))

+ � sup
s0(j)2S(j)

B

���V ⇡(i)

(G�1(s0(j)), T (i))� V
⇡(j)

(s0(j), T (j))
���

 d+ � sup
s0(i)2S(i)

B

���V ⇡(i)

(s0(i), T (i))� V
⇡(j)

(G(s0(i)), T (j))
��� 

d

1� �

845

Theorem 2 proves the value difference is upper bounded by a scalar d, depending on the reward differ-846

ence |r(i)(s(i),⇡(i)(s(j)))� r
(j)(s(j),⇡(j)(s(j)))| and DTV (p(i)(·|s(i), a(i)), p(j)(G(·)|s(j), a(j))),847

i.e. the total-variation distance between probability distribution of next state on T (i) and probability848

distribution of correspondent next state on T (j). Indeed, if the state equivalence relation is only true849

for identical states (i.e. G is an identity mapping, s(i)Bs
(j) if and only if s(i) = s

(j)), then Theorem850

2 degenerates into Theorem 1. We note the proof of Theorem 2 is similar to proof of Theorem 1 in851

Appendix A.852

For a special case, where the reward only depends on the current state and next state, we can formulate853

a simpler definition of scalar d. The following Proposition 2 is analogous to Proposition 1 in the854

assumption about reward function.855

Proposition 2. T (i) = {S(i)
,A(i), p(i), r(i), �, ⇢(i)0 } and T (j) = {S(j)

,A(j)
, p

(j)
, r

(j)
, �, ⇢

(j)
0 }856

are two MDPs sampled from the distribution of tasks p(T). ⇡
(i) is a deterministic policy857

on T (i) and ⇡
(j) is a deterministic policy on T (j). We assume there exist state equivalence858

relation B 2 S(i) ⇥ S(j) and a state translator function G defining a one-to-one mapping859

from S(i)
B to S(j)

B . Suppose that the reward function r
(i)(s(i), a(i), s0(i)) = r

(i)(s(i), s0(i))860

and r
(j)(s(j), a(j), s0(j)) = r

(j)(s(j), s0(j)). If s
(j) = G(s(i)) and s

0(j) = G(s0(i)),861

r
(i)(s(i), s0(i)) = r

(j)(s(j), s0(j)). Let M = sups(i)2S(i) |r(i)(s(i), s0(i)) + �V
⇡(i)

(s0(i), T (i))| and862

d = sup
s(i)2S(i)

B

2MDTV (p(i)(·|s(i),⇡(i)(s(i))), p(j)(G(·)|s(j),⇡(j)(s(j)))).863

Then 8s(i) 2 S(i)
B , s

(j) = G(s(i)), we have864

���V ⇡(i)

(s(i), T (i))� V
⇡(j)

(s(j), T (j))
��� 

d

1� �

Proof. Let a(i) = ⇡
(i)(s(i)) and a

(j) = ⇡
(j)(s(j)). s0(i) denotes the next state following state s

(i).865

Because the reward solely depends on the current and next state, we rewrite the value function:866

V
⇡(i)

(s(i), T (i)) = r
(i)(s(i), a(i)) + �

X

s0(i)2S(i)

p
(i)(s0(i)|s(i), a(i))V ⇡(i)

(s0(i), T (i))

=
X

s0(i)2S(i)

p
(i)(s0(i)|s(i), a(i))r(i)(s(i), s0(i)) + �

X

s0(i)2S(i)

p
(i)(s0(i)|s(i), a(i))V ⇡(i)

(s0(i), T (i))

=
X

s0(i)2S(i)

p
(i)(s0(i)|s(i), a(i))

h
r
(i)(s(i), s0(i)) + �V

⇡(i)

(s0(i), T (i))
i

29

Then we derive the value difference:867

V
⇡(i)

(s(i), T (i))� V
⇡(j)

(s(i), T (j))

=
X

s0(i)

p
(i)(s0(i)|s(i), a(i))

h
r
(i)(s(i), s0(i)) + �V

⇡(i)

(s0(i), T (i))
i

�
X

s0(j)

p
(j)(s0(j)|s(j), a(j))

h
r
(j)(s(j), s0(j)) + �V

⇡(j)

(s0(j), T (j))
i

*minus and plus
X

s0(i)

p
(j)(G(s0(i))|s(j), a(j))

h
r
(i)(s(i), s0(i)) + �V

⇡(i)

(s0(i), T (i))
i

=
X

s0(i)

p
(i)(s0(i)|s(i), a(i))

h
r
(i)(s(i), s0(i)) + �V

⇡(i)

(s0(i), T (i))
i

�
X

s0(i)

p
(j)(G(s0(i))|s(j), a(j))

h
r
(i)(s(i), s0(i)) + �V

⇡(i)

(s0(i), T (i))
i

+
X

s0(i)

p
(j)(G(s0(i))|s(j), a(j))

h
r
(i)(s(i), s0(i)) + �V

⇡(i)

(s0(i), T (i))
i

�
X

s0(j)

p
(j)(s0(j)|s(j), a(j))

h
r
(j)(s(j), s0(j)) + �V

⇡(j)

(s0(j), T (j))
i

*combine first two terms, rewrite the third term given invertible function G

=
X

s0(i)

h
p
(i)(s0(i)|s(i), a(i))� p

(j)(G(s0(i))|s(j), a(j))
i h

r
(i)(s(i), s0(i)) + �V

⇡(i)

(s0(i), T (i))
i

+
X

s0(j)

p
(j)(s0(j)|s(j), a(j))

h
r
(i)(G�1(s(j)), G�1(s0(j))) + �V

⇡(i)

(G�1(s0(j)), T (i))
i

�
X

s0(j)

p
(j)(s0(j)|s(j), a(j))

h
r
(j)(s(j), s0(j)) + �V

⇡(j)

(s0(j), T (j))
i

*combine last two terms, note the assumption of reward function

=
X

s0(i)

h
p
(i)(s0(i)|s(i), a(i))� p

(j)(G(s0(i))|s(j), a(j))
i h

r
(i)(s(i), s0(i)) + �V

⇡(i)

(s0(i), T (i))
i

+ �

X

s0(j)

p
(j)(s0(j)|s(j), a(j))

h
V
⇡(i)

(G�1(s0(j)), T (i))� V
⇡(j)

(s0(j), T (j))
i

Therefore, the absolute value of value difference can be upper bounded. The proof is similar to the868

proof of Theorem 2.869

���V ⇡(i)

(s(i), T (i))� V
⇡(j)

(s(j), T (j))
���  2MDTV (p

(i)(·|s(i), a(i)), p(j)(G(·)|s(j), a(j)))

+ � sup
s0(j)2S(j)

B

���V ⇡(i)

(G�1(s0(j)), T (i))� V
⇡(j)

(s0(j), T (j))
���

 d+ � sup
s0(i)2S(i)

B

���V ⇡(i)

(s0(i), T (i))� V
⇡(j)

(G(s0(i)), T (j))
���

 d

1� �

870

Obviously, if the state equivalence relation is only true for identical states (i.e. G is an identity871

mapping, s(i)Bs
(j) if and only if s(i) = s

(j)), then Proposition 2 degenerates into Proposition 1. If872

we optimize the action translator H to minimize d for policy ⇡
(j) and ⇡

(i)(s(i)) = H(s(j),⇡(j)(s(j))),873

30

the policy value for correspondent states s
(i) and s

(j) can be close. Minimizing d means finding874

actions leading to next states remaining correspondent.875

E.2 Method876

According to Proposition 2, we not only learn an action translator H , but also state translators877

G mapping target states s
(i) to the equivalent states on source task T (j) and G

�1 identifying878

correspondent state on target task T (i). We additionally learn a discriminator network D to assist879

learning of state translator.880

Given transition data s
(j) on source task and s

(i) on target task, the adversarial objective is:881

min
G

max
D

Ladv(G,D) = logD(s(j)) + log(1�D(G(s(i))))

.882

G aims to map target state s(i) to the distribution of states on source task, while D tries to distinguish883

translated state G(s(i)) and real states in the source task. To build state equivalence, the translated884

state should be translated back to the source state. We further leverage cycle consistency loss to learn885

the one-to-one mapping on states across tasks:886

Lback = |G�1(G(s(i)))� s
(i)|+ |G(G�1(s(j)))� s

(j)|

Drawn upon Proposition 2, we extend our transfer loss Ltrans to Ltrans,s,a. Formally,887

Ltrans,s,a = � logF (s̃(i)t+1|s̃
(i)
t , ã

(i)
t)

where s̃
(i)
t+1 = G

�1(s(j)t+1), s̃
(i)
t = G

�1(s(j)t), and ã
(i) = H(s(j)t , a

(j)
t). Ltrans,s,a is applied to888

optimize the state translator G�1 and action translator H .889

In this way, given the state s
(j)
t on source task, we first get the correspondent state s̃

(i)
t on target task.890

Then the translated action ã
(i) make transition to next state s̃

(i)
t+1 on target task still correspondent to891

next state s
(j)
t+1 on source task. The objective function Ltrans,s,a drives the next state distribution on892

the target task p
(i)(·|s̃(i)t , ã

(i)) to be close to the distribution of correspondent next state on the source893

task p
(j)(G(·)|s(j)t , a

(j)
t). This is implicitly minimizing d in Proposition 2.894

In practice, we may need the action translator network H or the state translator network G and895

G
�1 reasonably initialized, in order to prevent the joint training collapsing to a trivial solution. The896

implementation details of learning the context model, forward dynamics model and action translator897

are the same as we explained in Appendix C.2. During training of the state translator, the weight898

of Ladv,Lback,Ltrans_s_a is 10, 30, 100 respectively, the same as default hyper-parameters in [41].899

The similar technique of learning state translator and action translator has been mentioned in [41].900

Yet, our theorems shed light on its underlying mechanism and our objective function for learning the901

action translator is simpler.902

E.3 Experiments on Tasks Differing in Reward Function903

When the tasks share the same state space and action space but the reward function varies, we904

combine our action translator with a state translator for policy transfer.905

To investigate this scheme for policy transfer, we conduct experiments on MetaWorld task moving906

the robot arm to a goal location. We set the source and target task with different goal locations and907

hence with different reward functions. Tab. 15 lists the goal locations on the source and target tasks.908

Specifically, on the same state s of the agent’s current location (x, y, z), the reward varies across909

tasks, because it is inversely proportional to the distance from the current location to goal. The initial910

location of robot arm is randomly sampled between [�0.1, 0.6, 0.02] and [0.1, 0.7, 0.02]. The state is911

current location of the robot arm. The action is the moving vector of the robot arm.912

We compare our method and [41] learning both state translator and action translator. We initialize913

the state translator networks by assigning G(s = (x, y, z)) = G
�1(s = (x, y, z)) = (�x, y, z).914

As observed in Tab. 15, ours compares favorably with [41] and achieves satisfactory cumulative915

31

episode reward on the target task. We conclude that, for source and target tasks with different reward916

functions depending on the state and next state, learning state translator and action translator jointly917

is promising for policy transfer.918

Source Task Target Task Source policy
on source task

Source policy
on target task

Transferred policy
[41]

on target task

Transferred policy
(Ours)

on target task

[�0.1, 0.8, 0.2] [0.1, 0.8, 0.2] 4855.7 947.5 1798.2(± 592.4) 3124.3(± 1042.0)

[�0.1, 0.8, 0.2] [0.05, 0.8, 0.2] 4855.7 1470.2 1764.0(± 316.3) 1937.1(± 424.5)

[�0.1, 0.8, 0.2] [0.1, 0.8, 0.05] 4855.7 1040.8 2393.7(± 869.8) 2315.7(± 1061.5)

2-leg 3-leg 5121.4 NA 1957.8(±298.4) 2018.2(±50.8)

Table 15: Mean (± standard error) of episode rewards over 3 runs, comparing source and transferred policy on
target task. This is expanding Tab. 5 in the main text.

E.4 Experiments on Tasks Differing in State and Action Space919

For tasks with different state space and action space, we investigate the proposed idea on MuJoco920

environment HalfCheetah. The HalfCheetah agent by default has 2 legs in the source task and we921

modify the agent to have 3 legs in the target task. Because the agents have different numbers of joints922

in the source and target task, the dimensions of state space and action space also differ, as explained923

in [41]. Again, we compare our method and [41] learning both state translator and action translator.924

We assign a good initialization for the action translator in both methods as [41] introduced. We925

remark that ours with a simpler objective function and fewer components than the baseline method926

can transfer the source policy to perform well on the target task.927

32

