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Appendix:

A Bound Value Difference in Policy Transfer

In this section, we provide detailed theoretical ground for our policy transfer approach, as a supple-
ment to Sec. 3. We first define a binary relation for actions to describe the correspondent actions
behaving equivalently on two MDPs (Definition 1). Building upon the notion of action equivalence,
we derive the upper bound of value difference between policies on two MDPs (Theorem 1). Fi-
nally, we reach a proposition for the upper bound of value difference (Proposition 1) to explain that
minimizing our objective function results in bounding the value difference between the source and
transferred policy.

Definition 1. Given two MDPs T = {S, A,pD 7"~ po} and T = {S, A,p9D, 7 ~, po}
with the same state space and action space, for each state s E S we deﬁne a binary relanon

B, € A x A called action equivalence relation. For any action o) € A, a\9) € A, if (a™V,a9)) €
B (i.e. a¥ B,aW)), {hefollqwxng conditions hold: _ ‘
r(z)(s’a(ﬂ) rU )(S a(])) and p* ( s, a )) :p(J)(.|57a(J)) (5)

Based on Definition 1, at state s, action a(*) on 7(*) is equivalent to action a¥) on 7 if a(®) B,a().
Note that the binary relation By is defined for each s separately. The action equivalence relation
might change on varied states. On two MDPs with the same dynamic and reward functions, it is
trivial to get the equivalent action with identity mapping. However, we are interested in more complex
cases where the reward and dynamic functions are not identical on two MDPs.

Ideally, the equivalent action always exists on the target MDP 7 () for any state-action pair on the
source MDP 7)) and there exists an action translator function H : S x A — A to 1dent1fy the exact
equivalent action. Starting from state s, the translated action & = H (s, a) on the task 7(*) generates
reward and next state distribution the same as action a on the task 7) (i.e. aBsa). Then any
deterministic policy (/) on the source task 7 ) can be perfectly transferred to the target task 7 ()
with () (s) = H(s,77)(s)). The value of the policy 7(/) on the source task 77 is equal to the
value of transferred pohcy 7() on the target task 7 ().

Without the assumption of existence of a perfect correspondence for each action, given any

two deterministic policies 7(/) and 7(*), we prove that the difference in the policy value

is upper bounded by a scalar % depending on L1-distance between reward functions

r() (s, 7r( )(s)) — r(j)(s,zr(j)(s))[and total-variation distance between next state distributions
Dry (p9(-[s, 7D (s)),pP (|5, 719 (s))).

Theorem 1. Let T = {S, A p®,r® ~ po} and TV = {S, A, pP) r0) ~ po} be
two MDPs sampled from the distribution of tasks p(T). 7 is a deterministic policy on
T@ and 79 is a deterministic policy on TW. Let M = sup,cg |V’T(l) (5, 7|, d =
supyes [[7 (5,70 () = 79 (5,79 ()| + 2yM Dy (p© (-]s, 70 (s)), p9 (-], 7) (5)))]. For
Vs € S, we have p

(s, 7)) <1 (6)

(4) )

VT (s, TOY = VT

Proof. Let a') = 71()(s) and aU) = wU)(s). s’ denotes the next state following state s. s” denotes
the next state following s’.
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496 We rewrite the value difference as:
(z)( T( )) (j)(S,T(j)) — +,yzp |S ol W(i)(SI,T(i))

— rU)(s,al) ,,yzpj) (s'|s,aM V=" (s, T

s/

= (rD(s,a) —r0)(s,a))

+ W[Zp“)(sws,aw s, T®) Zp (s']s, )V (s’ T<J>>]

ry

*minus and plus y Zp(ﬂ) |5, )V “ (s, 7))

= (rD(s,a?) —r0)(s,a))
v [P0 15 a) = 9O (s, o) v (s, TO)

+ Y P (s s,a®) [V TO) - v (T
497 Then we consider the absolute value of the value difference:

V”(”(S,T“))—V”“)(S,TU))‘ < ‘r(i)(&a(i))—r(j)(&a(j))‘

+ 9> [PVl a) = (s'ls,a) v (s, TO)
s/
+ Zp(j)(8/|8,a(j)) [Vw(i)(sl77'(i)) _ Vﬂm(sl, 7'(3'))}
3/
*property of total variation distance when the set is countable
- ‘Tu)(& a®) = 70 (s, a<j>)‘ + 2yM Dy (p@ (|5, a®), p@ (-]5, a))
+ () (5|5, a)) [V’T(i)(s’,T(“) —v (s, 7-(.7'))}
< At 3 pls ) [V““ (s, TO) =V (s, TV ‘
< U TO) v (s, T
*by induction
< d+ v l:d + ~vsup Vﬂ-(i) (SH, T(z)) _ Vv-n-(f)(sll7 T(j))”
< d+~yd+~+*sup v (s", TW) - V”m( " T(j))’
<
2 3 d
S d+7d+7 d+’}/ d+ = ﬁ
498 O

ag9  For a special case where reward function r (s, a, s") only depends on the current state s and next state
s00 ', the upper bound of policy value difference is only related to the distance in next state distributions.
501

o
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so2  Proposition 1. Ler T = {S, A, p® r® . po} and TU) = {S, A, p),r0) ~, py} be two MDPs
503 sampled from the distribution of tasks p(T). 71 is a deterministic policy on T and 79 is a
504 deterministic policy on T9). Assume the reward function only depends on the state and next state
so5 (s, s) = rW)(s,al9),s") = r(s,s'). Let M = SUPses sres |T(5,8) + 'yV”(i)(S’,T(i)N
so6 and d = sup,e g 2M Dpy (pt ( s, () (s)), (j)(~|5,7r(j)(s))). Vs € S, we have

<) (i) e ) d
(5, T0) = V7, T < 2 @

507 Proof. Let a'? = 7()(s) and a¥) = 7)(s). s’ denotes the next state following state s. s” denotes
so8 the next state following . In the special case of r(*)(s,a(¥), s') = r(s, s), the value of policy is:

Vi (s, TO) = rD(s,a?) 4 5 > (s, Dy (', T

s/

S D(s's,a)r(s, ) + 4> p (|, a@)y (5, TO)

s’/

> 005 ]s,0) [r(s, o) + V™ (s, TO)]

s’/

509 We can derive the value difference:

ﬂ.(i)( T(l)) o 7r<j) (57 T(]))
= Zp( s|s,a®) |r(s,s') + ’Yvw(i) (5177—(1‘))] _ Zp(j)(s/\s,a(j)) {T(S’S/) +AVT

s/

*minus and plus Zp(j) (s'|s,a'?) {7‘(5, s') + ryV“m (s, T(i))}

(€2

(8/’7'@‘))]

**combine the first two terms, combine the last two terms

= 3 [P0, a®) = V(' 5,0 D) [r(s, )+ v (s, T

s/

+ AP s a) [V T — v

()

(s' 7—(3))}

st0  Then we take absolute value of the value difference:

Ve s, 7O = v s, T < 2M Dy (0 (s, a9),p (s, a))

i (j)(8/|s’a(j)) [Vﬂu)(S/’T(i)) _ (s, T(j))} |
< a4y |0 s ) v ) = v s, T )}‘
< O, T0) v (o, 70|
O (1 @y _ D (g )
< d+v d+'ysupV (8", Ty =Vv™(s",TY)
< dtyd+ysup v (s Ty - v (s T
<
2 3 d
S d+"/d+’7 d+’Y d"‘:m
511 O
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sz B Algorithm of MCAT

Algorithm 1 MCAT combining context-based meta-RL algorithm with policy transfer

1: Initialize critic networks Qg, , Qg, and actor network 74 with random parameters ¢, 02, ¢
Initialize target networks 0] < 01, 05 + 65, ¢' < ¢
Initialize replay buffer B = B U B@ U ... UBITD and B® « § for each i.

Initialize SIL replay buffer D < ()
Initialize context encoder Cly,,, forward model F,., action translator Hy,,,
Initialize set of trajectory rewards for shared policy on each task in recent timesteps as R() =
(), set of trajectory rewards for transferred policy from 7) to 7" in recent timesteps as
RU)=() = . R denotes average episode rewards in the set.

7: for each iteration do

8:  // Collect training samples

9:  for each task 7V do
10: if R = () then

AN AN

11: use the shared policy in this episode

12: else if there exist j € 1,2,--- |7 such that RV~ = () and RY) > R(® then

13: use transferred policy from source task 7 /) to target task 7*) in this episode

14: else if there exist j € 1,2, - - -, |7, such that j = arg max; RU) = and RO=() > RO
then

15: use transferred policy from source task 77) to target task 7*) in this episode

16: else

17: use the shared policy in this episode

18: end if

19: for ¢t = 1 to TaskHorizon do

20: Get context latent variable z, = Cy (7¢ k)

21: Select the action a based on the transferred policy or shared policy, take the action with

noise a; = a + € where € ~ N'(0, o), observe reward r; and new state s, 1.

22: Update 8(7') — B(l) U {St7at,’l"t,8t+1,7’t’[{}

23: end for

24: Compute returns R; = > p, v*~'ry, and update D < D U {s¢, az, 7+, St41, Tt k¢, R } for
every step ¢ in this episode.

25: Update the average reward of shared policy on task 7% (i.e. R®) if we took shared policy

in this episode, or update the average reward of the transferred policy from 7) to 7() (i.e.
RU)=() if we took the transferred policy.

26:  end for

27:  // Update the context encoder Cy,, and forward model Fy,,. with £ ¢4y and Leons

28:  // Update the action translator Hy,,, with Li;qns

29:  // Update the critic network Qy,, Qy, and actor network 74 with TD3 and SIL objective

function
30:  for step in training steps do
31: Update 61, 6> for the critic networks to minimize L;43 + Lg;; (see Algorithm 2)
32: Update ¢ for the actor network with deterministic policy gradient
33: Update the 67, 05, ¢’ for target networks with soft assignment
34:  end for

35:  // Update the trajectory reward for shared policy and transferred policy if necessary
36:  for each task 7(*) do

37: pop out trajectory rewards in R(Y) which were stored before the last G timesteps

38: pop out trajectory rewards in R() () (V4) which were stored before the last G timesteps
39:  end for

40: end for

16



Algorithm 2 Compute critic loss based on TD3 algorithm and SIL algorithm

A o

Sample batch data of transitions (s, a;, 7, Se+1, Te.x) € B
Get context variable z; = Cy, (74, i ).

Get next action a1 ~ g (2t, St+1) + € € ~ clip(N (0, )
Get target value for critic network y = 7, + v min;—q o Qg;

, —C C)

(Zt; St41, at+1)~
Compute TD error Lyq3 = min—1 2(y — Qa, (24, St41, ar+1))>

Sample batch data of transitions (s, a;, 74, i, Rt) € D

Get context variable z; = Cy (7¢,x ).

Compute SIL loss Lot = Yy o max(Ry — Qp, (21, 8¢, ax), 0)2

17
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C Experiment Details

In this section, we explain more details for Section 5 and show additional experimental results.

C.1 Environment

MuJoCo We use Hopper, HalfCheetah and Ant environments from OpenAl Gym [3] based on the
MulJoCo physics engine [31]. The goal is to move forward while keeping the control cost minimal.

* Hopper Hopper agent consists of 5 rigid links with 3 joints. Observation s; is an 11-
dimension vector consisting of root joint’s position (except for x-coordinate) and velocity
angular position and velocity of all 3 joints. Action a; lies in the space [—1.0, 1.0]3, which
corresponds to the torques applied to 3 joints. Reward 7, = ¥iors0,4 — 0.001]a¢[|? + 1.0
means the forward velocity of the torso vso+ minus the control cost for action 0.001]a¢ ||2
and plus the survival bonus 1.0 at each step. We modify the size of each rigid part to
enlarge/contract the body of the agent, so we can create tasks with various dynamics.

HalfCheetah Half-cheetah agent consists of of 7 rigid links (1 for torso, 3 for forelimb, and
3 for hindlimb), connected by 6 joints. State s; is a 17-dimension vector consisting of root
joint’s position (except for x-coordinate) and velocity, angular position and velocity of all 6
joints. Action a; is sampled from the space [—1.0, 1.0]%, representing the torques applied
to each of the 6 joints. Reward r; = viorso,+ — 0.1]|a;||? is the forward velocity of the torso
minus the control cost for action. In order to design multiple tasks with varying dynamics
on HalfCheetah, we modify the armature value (similarly to [41]) or scale the mass of each
rigid link by a fixed scale factor (similarly to [12]).

* Ant Ant agent consists of 13 rigid links connected by 8 joints. Observation s; is a 27-
dimension vector including information about the root joint’s position and velocity, angular
position and velocity of all 8 joints, and frame orientations. Action a; € [—1.0,1.0]® is the
torques applied to each of 8 joints. Reward is 7y = jors0,¢ + 0.05, meaning the velocity
of moving forward plus the survival bonus 0.05 for each step. To change the environment
dynamics, we modify the damping of every leg. Specifically, given a scale factor d, we
modify two legs to have damping multiplied by d, and the other two legs to have damping
multiplied by 1/d (similarly to [12]). Alternatively, we can cripple one of the agent’s four
legs to change the dynamics function. The torques applied to two joints on the crippled leg
(i.e. two correspondent elements in actions) are set as 0. (similarly to [25]).

MetaWorld Additionally, we consider the tasks of pushing Cylinder, Coffee Mug and Cube. They
are named as push-v2, coffee-push-v2, and sweep-into-goal-v2 on MetaWorld benchmark [37]
respectively. The goal is to move the objects from a random initial location to a random goal location.
The observation is of dimension 14, consisting of the location of the robot hand, the distance between
two gripper fingers, the location and position of the object, and the target location. The action
a € [~1.0,1.0]* controls the movement of the robot hand and opening/closing of the gripper. The
reward is 1.0 when the object is close to the target location (i.e. distance less than 0.05). Otherwise,
the environment reward is 0.0. The length of an episode is 500 steps. The tasks of manipulating
different objects have different dynamics. We change the physics parameters armature and damping
across tasks to make the policy transfer more challenging.

C.2 Implementation Details for Policy Transfer with Fixed Dataset & Source Policy

In Section 5.1, we study the performance of policy transfer with our action translator with a fixed
dataset and source policy. In this experiment, we demonstrate our proposed policy transfer approach
trained with fixed datasets and source policy outperforms the baselines. We provide the experimental
details as follows.

Source Policy and Dataset

* MuJoCo On HalfCheetah, the armature value on the source and target task is 0.1 and 0.5
respectively. On Ant, the leg O is crippled on the source task while the leg 3 is crippled on
the target task. We train well-performing policies on the source tasks as source policies, and
we also train mediocre policies on both source tasks and target tasks to obtain training data.
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Parameter name \Value

Start Timesteps 2.5¢4
Gaussian exploration noise o| 0.1
Batch Size 256
Discount v 0.99
Target network update rate | Se-3
Policy noise & 0.2
Noise clip ¢ 0.5
Policy update frequency 2
Replay buffer size le6
Actor learning rate 3e-4
Critic learning rate 3e-4
Optimizer Adam
Actor layers 3
Hidden dimension 256

Table 6: The hyperparameters for TD3 algorithm.

We apply the TD3 algorithm[8] and dense rewards to learn policies. The hyperparameters
for the TD3 algorithm are listed in Table 6. Specifically, during the start 25K timesteps, the
TD3 agent collects data by randomly sampling from the action space. After the first 25K
timesteps, the agent learns an deterministic policy based on the data collected in the replay
buffer. During training, the agent collects data with actions following the learned policy with
Gaussian noise, and updates the replay buffer as well. On HalfCheetah environment, we
use the learned policy at 300K timesteps as good policy, and use the learned policy at 80K
timesteps as mediocre policy. On Ant environment, the learned policy at 400K timesteps
and 20K timesteps are used as good policy and mediocre policy respectively.

With the mediocre policies, we collect 100K transition samples on the source and target
tasks respectively. During data collection, at each step, we record the following information:
(a) current state; (b) current action drawn from the mediocre policies; (c) next state; (d)
historical observations in the past 10 steps; (e) historical actions in the past 10 steps.
The historical transition information are employed to learn the context model for forward
dynamics prediction.

* MetaWorld On source tasks, we keep the default physics parameters. However, on the target
task,the value of armature and damping for the gripper joints is 0.1 multiplying the default.
We get the manually designed good policies from official public code®. The performance of
the good source policy is shown in Tab. 7. By adding Gaussian noise following N (0, 1.0) to
action drawn from the good policies, we collect 100K transition samples on the source and
target tasks respectively.

With the fixed datasets on both source and targe tasks, we can train action translator to transfer the
fixed source policy. First, we learn the forward dynamics model. Then we learn the action translator
based on the well-trained forward dynamics model. For fair comparison, we train the baseline [4 1]
and our action translator with the same dataset and source policy. The hyperparameters and network
structures applied in the baseline and our approach are introduced as follows

Transferred Policy [41] This baseline is implemented using the code provided by Zhang et al.
[41] 3. The forward dynamics model first encodes the state and action as 128-dimensional vectors
respectively via a linear layer with ReLLU activation. The state embedding and action embedding is
then concatenated to predict the next state with an MLP with 2 hidden layers of 256 units and ReLU
activation. We train the forward dynamics model with batch size 32 and decaying learning rate from
0.001, 0.0003 to 0.0001. In order to optimize the forward dynamics model, the objective function
is L1-loss between the predicted next state and the actual next state. With these hyper-parameters
settings, we train the forward modelFand the context modelCfor30 epochs, each epoch with 10K
steps.

Zhttps://github.com/rlworkgroup/metaworld/tree/master/metaworld/policies
3https://github.com/sjtuzq/Cycle_Dynamics
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The action translator first encodes the state and action as 128-dimensional vectors respectively via a
linear layer with ReLU activation. The state embedding and action embedding are then concatenated
to generate the translated action via an MLP with 2 hidden layers of 256 units and ReLLU activation.
As for the objective function with three terms: adversarial loss, domain cycle-consistency loss, and
dynamics cycle-consistency loss, we tune three weights. We train the action translator for 30 epochs.
After each epoch, the performance of transferred policy with the action translator is evaluated on the
target task. We average episode rewards in 100 episodes as the epoch performance. Finally, we report
the best epoch performance over the 30 epochs.

Settin Source policy | Source policy Transferred policy — Transferred policy
& on source task | on target task [41] on target task (Ours) on target task
HalfCheetah 51214 2355.0 3017.1(+442) 2937.2(+9.5)
Ant 476.8 55.8 97.2(+2.5) 208.1(+s8.2)
Cylinder-Mug 317.3 0.0 308.1(£75.3) 395.6(+19.4)
Cylinder-Cube 439.7 0.0 262.4(+48.1) 446.1+1.1

Table 7: Performance of source and transferred policy on target task. This is expanding Tab. 1 in the main text.

Transferred Policy (Ours) We encode the context features with K = 10 past transitions. The
historical state information is postprocessed as state differences between two consecutive states. The
historical transition at one step is concatenation of past 10 actions and past 10 postprocessed states.
The historical transition data are fed into an MLP with 3 hidden layers with [256, 128, 64] hidden
units and Swish activation. The context vector is of dimension 10. The forward dynamics model is
an MLP with 4 hidden layers of 200 hidden units and ReLU activation, predicting the state difference
between two consecutive states in the future M=10 steps. The learning rate is 0.001 and the batch size
is 1024. The objective function is simply £ forw + Lcont (Equation 1 and Equation 2). With these
hyper-parameters settings, we train the forward model F' and the context model C' for 30 epochs,
each epoch with 10K steps.

The action translator H first encodes state and action as 128-dimensional vectors respectively. Then,
the state embedding and action embedding is concatenated and fed into an MLP with 3 hidden layers
of 256 units and ReLU activations. We train the action translator with a decaying learning rate from
3e-4, Se-5 to le-5, and the batch size is also 1024. With these hyper-parameters settings, we train the
action translator for 30 epochs, each epoch with 3,000 steps. The objective function is simply L¢qns
(Equation 3). After each epoch, the performance of the action translator is also evaluated on the target
task via averaging the episode rewards in 100 episodes. Finally, the best epoch performance over the
30 epochs is reported.

Context-conditioned Action Translator We also demonstrate the performance of policy transfer
on more than two tasks as heatmaps in Fig. 4. The heatmaps demonstrate performance gain when
comparing our transferred policy against the source policy on the target task. We calculate the
improvement in the average episode rewards for every pair of source-target tasks sampled from the
training task set. The tasks in the HalfCheetah environment are 71 - . . 7() with different armature
values, namely {0.1, 0.2, 0.3, 0.4, 0.5}. The tasks in the Ant environment are T . TW with
different leg crippled, namely {0, 1, 2, 3}. As mentioned above, we apply the TD3 algorithm[&] and
dense rewards to learn source policies and mediocre policies for each task in training set. Then we
collect 100K transition data on each training tasks with the corresponding mediocre policies.

The architecture of context model C' and the forward model I’ remains the same as above, while the
learning rate is kept as Se-4 instead. The architecture of action translator H is expanded to condition
on the source task embeddings and target task embeddings. As mentioned in Sec. 2.2, in order to get
the representative task feature for any arbitrary training task, we sample 1024 historical transition
samples on this task, calculate the their context embedding through context model C' and average the
1024 context embedding to get the task feature as an 10-dimensional context vector. The source target
feature and target task feature are then encoded as 128-dimensional vectors respectively via a linear
layer with ReLU activation. Then the state embedding, action embedding, source task embedding
and target task embedding are concatenated to produce the translated action via an MLP with 3 linear
layers of 256 hidden units and ReLU activation. The learning rate and batch size for H are 3e-4 and
1024. With these hyper-parameters settings, we train the action translator with 100 epochs, each with
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1,000 steps. We report the percentage gain comparing well-trained transferred policies with source
policies on each pair of source-target tasks.

C.3 Policy transfer on tasks sharing a general reward function, differing in dynamics

As explained in Sec. 3, many real-world sparse-reward tasks fall under the umbrella of Proposition 1.
Thus, we are mainly interested in policy transfer across tasks with the same reward function r (s, s)
but different dynamics. To solve policy transfer across these tasks, our objective function L¢;.4,,s can
be applied so that the transferred policy achieves a value on the target task similar to the source policy
on the source task. Experiments in Sec. 5 validate the efficacy of Ly, for learning policy transfer.

As for a more general case, we further consider tasks with different dynamics that have the same
state space, action space and reward function, where the general reward function (s, a, s’)
cannot be expressed as r(s,s’). Theorem 1 in A})g)endix A covers this scenario. For source
task 7U) = {S, A,p9) r v, po} and target task T = {S, A, p?) v, po}, we can bound the
value difference between source policy 7U) and transferred policy 7(*) by minimizing both re-
ward difference |r(s, 7" (s)) — ris, 7(7)(s))| and total-variation difference in next state distribution
Dry (p@ (s, 7D (s)), pl) (-|s, 7 (s)). Accordingly, we modify transfer 10ss Ly,qns (Equation 3)
with an additional term of reward difference.

Formally, Ltrans,r = |rt(j) — R(sy), a® zD)| = Alog F(sgi)1|s§3), a™, 2()), where R is a learned
reward prediction model, A\ is a hyper-parameter weight of next state distribution loss, and
a®) = H(sy” a2\, 2()) is the translated action. This objective function drives the action
translator H to find an action on the target task leading to a reward and next state, similarly to the
source action on the source task.

As explained in Appendix C.1.1, MuJoco environments award the agent considering its velocity of
moving forward v;,,.s, and the control cost ||a||?, i.e. 7 = Viorso — c||a||?. If the coefficient ¢ = 0,
we can simplify this reward function as r (s, ") because v¢o-5, is calculated only based on the current
state s and next state s’. If ¢ > 0, r becomes a general reward function r(s, a, s’). We evaluate our
action translator trained with L,4ys and Lirqns,- for this general case of reward function. We search
the hyper-parameter value of A in L¢qns,» and A = 10 performs well across settings.

Control cost| Source policy | Source policy Transferred policy Transfe.rred policy Transfq‘red policy
coefficient |on source task | on target task [41] (ours ith Lirans) (ours with Lirans,r)
on target task on target task  on target task
¢=0.001 511.1 54.7 133.27 193.7 203.1
¢=0.002 488.4 53.7 129.86 179.3 1954
¢=0.005 475.8 389 112.36 148.5 171.8

Table 8: Average episode rewards on Ant environments. We consider the settings with different coefficients for
control cost.

Our action translator with either L¢yqns O Lirans,» performs well for policy transfer. When the
rewards depend on the action more heavily (i.e. ¢ becomes larger), the advantage of Ly, » becomes
more obvious. However, ours with Lyyqns,» requires the extra complexity of learning a reward
prediction model R. When the reward function is mostly determined by the states and can be
approximately simplified as r(s, s’), we recommend Ly,.4,,s because it is simpler and achieves a
competitive performance.

On Hopper and HalfCheetah, the control cost coefficient is ¢ > 0 by default. Our proposed policy
transfer and MCAT achieve performance superior to the baselines on these environments (Sec. 5).
This verifies the merits of our objective function L;,..,s on tasks with a general reward function
r(s,a,s’).

C.4 Implementation Details for Comparison with Context-based Meta-RL Algorithms

C.4.1 Environment

We modify the physics parameters in the environments to get multiple tasks with varying dynamics
functions. We delay the environment rewards to make sparse-reward tasks so that the baseline
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685 methods may struggle in these environments. The episode length is set as 1000 steps. The details of
the training task set and test task set are shown in Table 9.

Environment Reward Delay Steps Physics Parameter Training Tasks Test Tasks
Hopper 100 Size {0.02, 0.03, 0.04, 0.05, 0.06} {0.01, 0.07}
Armature {0.2,0.3,0.4,0.5, 0.6} {0.05,0.1,0.7,0.75}
HalfCheetah >00 Mass {0.5,1.0,15,2.0,2.5} {0.2,0.3,2.7,2.8}
Ant 500 Damping {1.0, 10.0, 20.0, 30.0} {0.5,35.0}

Crippled Leg  { No crippled leg, crippled leg 0, 1,2}  {crippled leg 3}

Table 9: Modified physics parameters used in the experiments.
686

es7 C.4.2 Implementation Details

688 In Section 5.2, we compare our proposed method with other context-based meta-RL algorithms on
689 environments with sparse rewards. Below we describe the implementation details of each method.

600 PEARL[21] We use the implementation provided by the authors*. The PEARL agent consists of
691 the context encoder model and the policy model. Following the default setup, the context encoder
692 model is an MLP encoder with 3 hidden layers of 200 units each and ReLU activation. We model the
693 policy as Gaussian, where the mean and log variance is also parameterized by MLP with 3 hidden
694 layers of 300 units and ReLU activation. Same to the default setting, the log variance is clamped
695 to [-2, 20]. We mostly use the default hyper-parameters and search the dimension of the context
ee6  vector in {5, 10, 20}. We report the performance of the best hyper-parameter, which achieves highest
697 average score on training tasks.

s0s  MQL[5] We use the implementation provided by the authors®. The context encoder is a Gated
699 Recurrent Unit model compressing the information in recent historical transitions. The actor network
700 conditioning on the context features is an MLP with 2 hidden layers of 300 units each and a ReLU
701 activation function. The critic network is of the same architecture as the actor network. We search the
702 hyper-parameters: learning rate in {0.0003, 0.0005, 0.001}, history length in {10, 20}, GRU hidden
703 units in {20, 30}, TD3 policy noise in {0.1, 0.2}, TD3 exploration noise in {0.1,0.2}. We report the
704 performance of the best set of hyper-parameters, which achieves highest score on training tasks.

705 Distral[30] We use the implementation in the MTRL repository®. The Distral framework consists
706 of a central policy and several task-specific policies. The actor network of the central policy is
707 an MLP with 3 hidden layers of 400 units each and a ReLU activation function. The actor and
708 critic networks of the task-specific policies are of the same architecture as the actor network of the
709 central policy. As for the hyperparameters, we set « to 0.5 and search § in {1, 10,100}, where %
710 controls the divergence between central policy and task-specific policies, and 3 controls the entropy
711 of task-specific policies. When optimizing the actor and critic networks, the learning rates are le-3.
712 We report the performance of the best hyper-parameter, which achieves highest average score on
713 training tasks.

714  HiP-BMDP[40] We use the implementation in the MTRL repository (same as the Distral baseline
715 above). The actor and critic networks are also the same as the ones in Distral above. When optimizing
716 the actor and critic network, the learning rates for both of them are at le-3. The log variance of the
717 policy is bound to [-20, 2]. We search the © learning error weight cv, in {0.01, 0.1, 1}, which scales
718 their task bisimulation metric loss. We report the performance of the best hyper-parameter, which
719 achieves highest average score on training tasks.

720 MCAT (Ours) The architectures of the context model C, forward dynamics model F' and the
721 action translator H are the same as introduced in Appendix C.2. The actor network and critic network
722 are both MLPs with 2 hidden layers of 256 units and ReL.U activations. As described in Algorithm 1,

*https://github.com/katerakelly/oyster
Shttps://github.com/amazon-research/meta-q-learning
Shttps://github.com/facebookresearch/mtrl
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at each iteration, we collect 5K transition data from training tasks. Then we train the context model
C and forward dynamics model F' for 10K training steps. We train the action translator H for 1K
training steps. The actor and critic networks are updated for 5K training steps. In order to monitor
the performance of transferred and learned policy in recent episodes, we clear the information about
episode reward in R and R~ before the last G = 20000 steps.

The learning rate and batch size of training C, F' and H are the same as introduced in “Context-
conditioned Action Translator" in Appendix C.2. The hyper-parameters of learning the actor and
critic are the same as listed in Table 6. Besides, we adapt the official implementation7 to maintain
SIL replay buffer with their default hyper-parameters on MuJoCo environments.

Even though there are a couple of components, they are trained alternatively not jointly. The dynamics
model is learned with £ ¢, to accurately predict the next state. The learned context embeddings for
different tasks can separate well due to the regularization term L., ;. With the fixed context encoder
and dynamics model, the action translator can be optimized. Then, with the fixed context encoder, the
context-conditioned policy learns good behavior from data collected by the transferred policy. These
components are not moving simultaneously and this fact facilitates the learning process. To run our
approach on MuJoCo environments, for each job, we need to use one GPU card (NVIDIA GeForce
GTX TITAN X) for around 4 days. Fig. 6 show the performance of our approach and baselines on
various environments.
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Figure 6: Learning curves of episode rewards on both training and test tasks, averaged over 3 runs. Shadow
areas indicate standard error. This adds the performance on training tasks in comparison to Fig. 5

Furthermore, we present additional experimental results on MetaWorld environment. In Section 5.1,
we introduced the tasks of moving objects to target locations and the reward is positive only when
the object is close to the goal. We combine context-based TD3 with policy transfer to learn a policy
operating multiple objects: drawer, coffee mug, soccer, cube, plate. Then we test whether the policy
could generalize to moving a large cylinder. In Tab. 10, MCAT agent earns higher success rate than
the baselines on both training and test tasks after 2M timesteps in the sparse-reward tasks.

‘ MQL [5] PEARL [21]  PCGrad [36] MCAT
Training tasks (reward) 164.8(+23.6) 161.2(+25.3) 44.8(+31.7) 204.1(+43.1)
Test tasks (reward) 0.0¢+0.0) 0.0(+0.0) 0.0¢+0.0) 10.2(+8.3)
Training tasks (success rate) | 40.0%+0.0%  33.3%+5.4%)  10.0%(£7.1%) 53.3% (+5.4%)
Test tasks (success rate) 0.0%(£0.0%) 0.0%(40.0%) 0.0%+0.0%)  16.7% (+13.6%)

Table 10: Performance of learned policies at 2M timesteps, averaged over 3 runs.

https://github.com/junhyukoh/self-imitation-learning
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D Ablative Study

D.1 Effect of Policy Transfer

In Section 5.3, we investigate the effect of policy transfer (PT). In Figure 7 we provide the learning
curves of MCAT and MCAT w/o PT on both training tasks and test tasks.
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Figure 7: Learning curves of the average episode reward, averaged over 3 runs. The average episode reward and
standard error are reported on training tasks and test tasks respectively. This repeats Figure 7 with addition of
learning curves on training tasks.

D.2 More Sparse Rewards

In Section 5.3, we report the effect of policy transfer when the rewards become more sparse in the
environments. On HalfCheetah, we delay the environment rewards for different number of steps 200,
350, 500. In Figure 8, we show the learning curves on training and test tasks. In Table 4, we report
the average episode rewards and standard error over 3 runs at 1M timesteps.
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Figure 8: Learning curves of the average episode reward, averaged over 3 runs. The average episode reward and
standard error are reported on training tasks and test tasks respectively.

D.3 More Diverse Tasks

We include more settings of training and test tasks where the discrepancy among training tasks varies.
On HalfCheetah, the environment rewards are delayed for 500 steps. In Table 11, we list the details
of the settings.

Physics Parameter ~ Setting Train Test

Set1  {0.2,0.25,03,0.35 04} {0.05,0.1,0.5,0.55}
Armature Set2  {0.2,03,04,05,0.6} {02, 03,0.7,0.75}
Set3  {0.2,0.35,0.5,0.65 0.8}  {0.2,0.3,0.9,0.95}
Setl  {05,0.75,1.0,1.25, 1.5} {02,023, 1.7, 1.8}
Mass Set2  {0.5,1.0,1.5,2.0,2.5} {0.2,0.3,2.7,2.8}
Set3  {0.5,1.25,2.0,2.75,35}  {0.2,03,3.7,3.8}

Table 11: Modified physics parameters used in the experiments.

We consider baseline MQL because it performs reasonably well on HalfCheetah among all the
baselines (Figure 5). Table 12 demonstrates that policy transfer (PT) is generally and consistently
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762 effective. In Figure 9, we show the learning curves on training and test tasks. In Table 12, we report
the average episode rewards and standard error over 3 runs at 1M timesteps.

Setti Armature Armature Armature Mass Mass Mass
cting Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Task ‘ Train Test Train Test Train Test ‘ Train Test Train Test Train Test

-129.3 -248.0 -277.2 -335.0 -85.0 -214.7|-100.8 -291.3 -403.7 -467.8 -175.3 -287.9
(£46.7)  (£32.0) (£252) (£208) (£33.5) (£289) | (£37.8) (£25.8) (£16.1) (£65) (£62) (£1L.7)

837.6 7853 924.0 579.1 4528 616.5| -60.5 -258.2 62.5 -364.3 -328.1 -412.4
MCAT w/o PT (£646.5) (£733.1) (£690.1) (£527.1) (£386.6) (£305.0)| (£313.4) (£151.1) (£411.0) (£198.5) (£55.8) (£7.7)

MCAT 3372.1 2821.9 2207.3 1776.8 1622.2 918.3 |1222.2 4824 763.4 67.1 7057 -86.2
(£186.4) (£137.7) (£697.7) (£680.8) (£402.2) (+142.5)| (£754.9) (£624.2) (£377.7) (£152.9) (£503.4) (+111.8)

Improvement(%)| 302.6 259.3 133.9 206.8 2583 49.0 |2120.2 286.8 1121.4 118.4 315.1 79.1

Table 12: The performance of learned policy on various task settings. We modify armature and mass to get 5
training tasks and 4 test tasks in each setting. We compute the improvement of MCAT over MCAT w/o PT.

MQL
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Figure 9: Learning curves of the average episode reward, averaged over 3 runs. The average episode reward and
standard error are reported on training tasks and test tasks respectively.

764 D.4 Effect of Self-Imitation Learning

765 We run experiments combining baseline methods with self-imitation learning (SIL) [18]. SIL brings
766 improvement to baselines but still ours shows significant advantages. In Tab. 13, MCAT w/o SIL
767 compares favorably with the baseline methods. MCAT further improves the performance of MCAT
768 w/o SIL, and MCAT outperform the variants of baseline methods with SIL.

Setti Hopper HalfCheetah  HalfCheetah Ant Ant
cting Size Armature Mass Damping Cripple
Task \ Train Test Train Test Train Test Train Test Train Test

MQL[5] 1586.1 1607.5 -31.4 -77.9 -243.1 -413.9 93.8 103.1 174 382
(£3214) (£327.5) (£2435) (£2143) (£69.8) (£ 111) (£245) (£357) (£43) (£40)

Distral[30] 1364.0 1319.8 7747 5669 -543 -295 1230 905 -25 -0.1
(42163) (4 1622) (£4059) (£246.7) (+14.8) (£3.0) (£200) (£284) (£17) (+07)

: 1590.3 1368.3 -212.4 -102.4 -81.3 -101.8 150 33.1 127 173
HiP-BMDP[40] (£2387) (£1507) (£522) (£249) (£831) (£296) (£57) (£60) (£53) (£26)

1261.6 1165.1 1548.8 883.8 610.6 1190 1233 123.8 97.3 163.1
MCAT wi/o SIL (£552) (£86) (£4184) (£267.2) (+482.3) (£210.0) (£258) (£269) (£3.6) (£26.1)

1395.5 1398.9 1399.7 7435 617.8 -63.3 153.0 1443 139 102
MQL+SIL (£60.8) (£859) (£3502) (£246.1) (£133.1) (£1583) (£283) (£28.1) (£19.8) (£23)

Distral+SIL 1090.2 10909 1014.1 970.3 809.7 746.7 1743 1222 107.7 9.1
(£187) (£7.8) (& 1214) (£ 1642) (£2942) (£120.5) (£66.1) (£445) (£57.7) (£50)

p 1573.3 1589.5 954.8 713.3 953.5 506.6 653.9 523.6 170.9 2154

HiP-BMDP+SIL (£324) (£ 1103) (£ 1923) (£854) (£61.2) (£99.0) (262.6) (& 300.8) (& 68.7) (& 1303)

2278.8 1914.8 2267.2 2071.5 2226.3 1771.1 1322.7 1014.0 110.4 2816
MCAT (Ours) (£426.2) (£373.2) (£579.2) (£4474) (£762.6) (£617.7) (£574) (£69.9) (F30.5) (&£ 65.6)

Table 13: Mean (= standard error) of episode rewards on the training and test tasks, at 2M timesteps.

769 On one task, SIL boosts the performance by exploiting the successful past experiences. But on
770 multiple tasks, enhancing performance on one task with luckily collected good experiences may
771 not benefit the exploration on other tasks. If other tasks have never seen the good performance
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before, SIL might even prevent the exploration on these tasks because the shared policy is trained to
overfit highly-rewarding transitions on the one task with good past trajectories. We observe that after
combining with SIL, the baselines show even more severe performance imbalance among multiple
training tasks. Therefore, we believe the idea of policy transfer is complementary to SIL, in that it
makes each task benefit from good policies on any other tasks.

D.5 Effect of Contrastive Loss

To show the contrastive loss indeed helps policy transfer, we compare our method with and without
the contrastive loss L.,,: ( Equation 2). In Fig. 10, one can observe that L.,,; helps cluster
the embeddings of samples from the same task and separate the embeddings from different tasks.
We note that the tasks 71, 7 7G) 74 70) have different values of the physics parameter
armature 0.2,0.3,0.4,0.5,0.6. As mentioned in Sec. 2.2, the learned context embeddings maintain
the similarity between tasks. In Fig. 10, the context embeddings of two tasks are closer if their values
of armature is closer.

7O T2 76 76 7@ 7Q)
(a) Context embeddings of random samples in MCAT  (b) Context embeddings in MCAT without contrastive loss
Figure 10: t-SNE visualization[32] of the context embeddings learned via our method with and without

contrastive loss. Different colors correspond to different training tasks.

MCAT shows superior performance to the variant without the contrastive loss. Here we show the
learning curves on training and test tasks separately(Fig. 11).
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Figure 11: Learning curves of the average episode reward, averaged over 3 runs. The average episode reward
and standard error are reported on training tasks and test tasks respectively.

D.6 Design Choice of Action Translator

We add this experimental comparison with the action translator by [41]. To learn a shared policy
solving multiple tasks, we combine the context-based TD3 algorithm, self-imitation learning, and
policy transfer with their action translator. Using their action translator underperforms ours. The
main reason is that, with changing datasets and policies, their action translator may be harder to tune
because there are more moving components (i.e. another action translator, a discriminator) and more
loss terms to be balanced (i.e. domain cycle-consistency loss, adversarial loss).

Setting ‘ HalfCheetah Armature ‘ HalfCheetah Mass
Tasks |  Training Test |  Training Test
MCAT | 2267.2 5192 20715 zaar4) | 2226.3 £7626) 1771L1x617.7)

MCAT with [41] action translator \ 2255.2 (£ 6444y  1664.8 (£ 660.8) \ 1185.8 (79800  684.7(+ 759.0)
Table 14: Mean (& standard error) of episode rewards on training and test tasks at 2M timesteps.
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E Extension of Policy Transfer

As clarified in Sec. 2.1, in this work, we mainly focus on tasks with the same state space, action
space, reward function but varying dynamics. However, we note that our proposed method of learning
action translator may be extended to tackle the challenge of policy transfer in more general cases,
such as (1) Tasks differing in reward function, (2) Tasks differing in state space and action space. In
this section, we establish the theory and method in details to extend our policy transfer approach, as a
supplement to Sec. 6.

E.1 Theoretical Analysis

Intuitively, on two general tasks, we aim to discover correspondent state-action pairs achieving the
same reward and transiting to correspondent next states. With the state and action correspondence,
the behavior of good source policy can be “replicated” in the target task and the high value of the
good source policy can be maintained by the transferred policy on the target task. Inspired by this
idea, we extend our theory in Sec. 3 and Appendix A.

We first define a binary relation for states to describe the equivalent states on two MDPs (Definition
2) and define an invertible function to capture the state equivalence relation (Definition 3). Building
upon the notion of state equivalence, we derive the upper bound of value difference between policies
on two MDPs (Theorem 2). Finally, we reach a proposition for the upper bound of value difference
(Proposition 2) to explain that our objective function in learning action translator can be extended to
bound the value difference between the source and transferred policy.

Definition 2. Given two MDPs T = {80 AW p®) »@) v,poi} and TW =
{SW), AW pl0) () ~, p } we define a binary relation B € 8% x SU) called state equiva-

lence relation. Let s/( i) denote the next state {ollowmg state s, and s/ () denote the next state
following state s\9). For states s € S, € 8Y), we have (3( i, s0) ) € B (ie. s )Bs()) if

for any a9 € AW there exists a9 € AY) sansfymg the following condmons.

r@ (50 q@) = p@)(50) gy

s € S0 350) ¢ SO g1 pD (D[, D) = p@) (05D q0)) and 5@ Bs'0)

We call the state s(9 and s\ are correspondent/equlvalent when (s, s0)) € B. Also, in this case,
th((a action a(?) for state s() on the MDP T (%) is equivalent to the action a( 7) for state sU/) on the MDP
T,

This definition is related to stochastic bisimulation relation in [6, 39, 40]. Unlike these prior works
about state bisimulation, we allow the equivalent actions a (/) 7é a?. So action a on the task 7(*)
might not be equivalent to a on the task 7, and hence we need to involve action translator in
learning of both the state correspondence and action correspondence.

Drawing upon Definition 2, we define a one-to-one mapping to identify the equivalent state across
two spaces S(*) and SO,

Definition 3. Given two MDPs T® = (SO AW p®) () 5 p(()i)} and TU) =
{SG), A p@) p() pm} with state equivalence relation B, we consider subsets Sg) c 8O
and SB]) c SY) satisfying: Vs € Sg), 350 € Sg) s.t. (s, 50)) € B. We define a invertible
function G : 8W — 8 called state translator function, satisfying: (s, G(s"))) € B.

Based on Defintion 2 and 3, given two correspondent states s() € Sy () and s € SY ), we can derive
the upper bound for the value difference between V™'~ (s, 7@) and v (s, TU )).

Theorem 2. 7() = {S(i),A(j),p(i),r(i)777péi)} and TW = {SU), AG) pl0) (@) ~, ,007)}
are two MDPs sampled from the distribution of tasks p(T). 7 is a deterministic pol-
icy on T and 79 is a deterministic policy on TU). We assume there exist state
equivalence relation B € S x SU) and a state translator function G defining a one-

fo-one mapping from Sg) to S](gj). Let M = supgu @ (D, T and d =
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88 SUD (i) g0 Hr(i)(s(i),ﬁ(i)(s)) — @ (s9), 7 ()| + 29yM Dy (pD (-5, (D) (S(i)))’p(j)(g(.)|8(j)7W(j)(s(j))))].
sao  Then Vs € Sg), sU) = G(s), we have

D@, T < 2

2O () TGy _pm
‘V (5D, 70y — v -

sa0  Proof. LetalV) = 7()(s()) and aV) = 70)(504)). We rewrite the value difference.

v (s, 70—y (s0) 70))
= OO a0y 4y 3 pO (5@ 5D gy (4@ T
/() es()
— (D, =y 3T PO (5D, D)y
$'()esW)
- (r(i)(s(i)7 a(i)) _ r(j)(s(j)7 a(j)))
+ Z p@ (/@[5 @D yy? (3@ )y _ Z P (s[5 gDy (51D 7))
OERO) /(N eSS

)

(s/(j)7 7'(3’))

g4t According to Definition 2, since s(*) € Sg), we have s'(9) Sg). Similarly, s') € Sg).
s42 Then we derive the second term in the right side of the equation above:
S PO (@)@, ON T PUOR OIS 3 pD(s9)|s0), a@yy= (/0 7))
NOPEIO! s eSH)
sreplace S by SU because s/ € S, replace SU) by Y because 5'V) € S
*#*minus and plus Z pI(G(s'D)[sWD), a(j)))V”(i) (5", T@)

s’('i)esg)
= Z pD (5D |50, g@D)yy=? (/) 7@y _ Z P (G(s'D)|s@), )V (50, T D)
s/(”esg) s/ esW)
+ Z PG D)D), D)V (5D, TO) — Z P (s/0)[s), gy (/G) 7))
s@est) s'(Hesy

*combine the first two terms, rewrite the third term because G is invertible function
= Z [p(i)(s/(i)|s(i),a(i)) — P9 (G (s D)), a(j))} v (s, T0)

s/(i)es(Bi)
+ Z pU) (/@) |s0) gy (G (s W)Y, T — Z pU) (/) |sW), DYy (51G) 7))
s’(j)esg) s'(j)esg)

*combine the last two terms
- Z [p(i)(s/(i)|s(i),a(i)) — P9 (G (s D)), a(i))} v (s, T0)
s'est
+ Z p) (/@) |s0) qU))) [ (G=1(s')), 7)) —V“(j)(s’(j),T(j))}
s esy)

843 Therefore, we can bound the absolute value of the value difference according to the two equation
44  arrays above:
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‘V” (50, 70y — = (50), T(j))‘

< ‘r@)(s( ), a®W) = @) (50, am)‘

+ o Y [p(i)(s/(i”s(i),a(i))—p(j)(G(sl(i)ﬂs(j),a(j))} v (¢ 70y
Sl(i)es(i)

o X PO, [V @ ), TO) v (9, TO)
/(y>e5§57>

< ‘r(i)(s(i),a(i)) _ T(j)(s(j)va(j))‘ + 27MDTV(p(i)(-|s(i),a(i)),p(j)(G(~)|s(j),a(j)))

+ oy osup (VRGNS TO) - VW)(S/@)’T(;‘))‘
5’(1)681(;)
< d+y swp |VUEOTO) v (G 0), T <
s/(i)esg) 1—7x
845 0

s46 Theorem 2 proves the value difference is u;))per bounded by a scalar d, depending on the reward differ-
847 ence |r(z)(3<z> 7@ (56))) — ) (50D, 70)(50)))| and DTv(p(’)( ‘3(1) a®), p(ﬁ( ()]s, a9))y),

gs¢ 1.e. the total-variation distance between probablhty distribution of next state on 7(*) and probability
sa0  distribution of correspondent next state on 7). Indeed, if the state equivalence relation is only true
g0 for identical states (i.e. G is an identity mapping, s() Bs(9) if and only if s() = s5(9)), then Theorem
851 2 degenerates into Theorem 1. We note the proof of Theorem 2 is similar to proof of Theorem 1 in
852 Appendix A.

853 For a special case, where the reward only depends on the current state and next state, we can formulate
854 a simpler definition of scalar d. The following Proposition 2 is analogous to Proposition 1 in the
855 assumption about reward function.

sss Proposition 2. 7@ = {SO A(i),p® r@) ~ oD} and TG = (SO, AD pW) p(0) 4, sy
857 are two MDPs sampled from the distribution of tasks p(T). 7 is a deterministic policy

g8 on T and () is a deterministic policy on T, We assume there exist state equivalence
5o relation B € SW x SU) and a state translator function G defining a one-to-one mapping

seo from S](Bi) to Sg). Suppose that the reward function r® (s o &) = @) (500 5/
w1 and 1O (s0), a0, g@)) = p@(s0), g0, 50 G(Su‘)) and Sm — G,

gz 1) (s s’ D) = pU)(s0) §'U)). Let M = sup,

( )+ V" ( '@ T@D)| and
3)

w3 d =sup g0 2MDry (p¥(|s, 79 (s0)), pO(G ( )\5 (J)(S(”)))
gsa  Then Vs € S](Bi), sU) = G(s), we have
e d

v (s, 7Oy — v (s0) 70| < —

-
g5 Proof. Let a'Y) = 71()(5()) and o) = 70)(50)). s'()) denotes the next state following state s(*).

ses Because the reward solely depends on the current and next state, we rewrite the value function:

v (5@, T0) = 05D g0 4 D p@ (s D50 gy (4/6) D)
/() €S
= 3 PO, D) O (50 D) 4y T pO (5@ |5, ¢y (4O )
s/(1) ¢S (i) s/(1) ¢S (%)
= Y PO, a) {,n D) (50, @) 4 Ay (’@),T(i))}

/() eSH)
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868
869

870

871
872
873

Then we derive the value difference:

v (s, 7Oy — yr (50 7))
7 7 % () 7 7

3 p (5O, ){ @ (50, /@) £ 4V (S’()7T())}

s/(1)

3P (/D5 o) {Mj)(s(jg §' D) Ay (510) Tm)}

s/(3)

*minus and plus Zp(j)(G(s’(i))\s(j), a) [r(i)(s(i), ') 4 AV (50, T(i))}

s/(i)

3 P[5, a) [rm (5D, sD) Ay (50, T“))}

s/(3)

3 P (G(s' )]s, a) [r<i>(3<i)78/(z’>) +7Vn<”(8/(i>7¢<i>)}

s/(%)

3 PG D)), al) [r@)(s(i),s’(i)) +Ww<”(8/<i>,7<i>)}

s/(3)

3P (s[5, D) {r(j)(s(j), §'@) Ay

s/(d)

(€2

(5", T(j))}

*combine first two terms, rewrite the third term given invertible function G
3 [pm(smz‘) 159, ) — p)(G(s'D) |5, am)} [Tu)(&.(i)? §'O) 4 Ay (50, T“))]
s/(3)
3 P (/D5 o) [T(w (G~ 1(sD), G=L(s'DY) + V™ (G (50, T“))]
s/(d)
3P (/D5 o) {r<j>(s(j>7 §' D) Ay (510) Tm)}
s/(d)

*combine last two terms, note the assumption of reward function

i )6 i i YRC i 7@ 16 i
Z[p<>(5/<>|5<>7a<>)7p<a>( (5'D)[s), q a>)} [ @ (), 'O 4 AV (S«),T())]

s/(3)

v S p9(s ) a) [VM (G, TOY — v

s/(d)

)

(s, T(j))]

Therefore, the absolute value of value difference can be upper bounded. The proof is similar to the
proof of Theorem 2.

Vﬂ“)(s(i)ﬂ—(i))_Vn<f>(8<j>77<j>) < 2MDry (D (|sD,a®), p9(G(-)sD, a)))

+ 4 sup V’T(i)(G_l(s’(j)),’T(i))—V’T(j)(s'(j),T(j))‘
s/ esy
< d+~ sup y (/(z T(i))_Vﬂ—(j)(G(s/(i))’T(j))’
s’(i)ESg)
d
<
= 15
O

Obviously, if the state equivalence relation is only true for identical states (i.e. G is an identity
mapping, s Bs() if and only if s() = s(/)), then Proposition 2 degenerates into Proposition 1. If
we optimize the action translator F to minimize d for policy 77(/) and 7() (s(V) = H(s0) 70 (5))),
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the policy value for correspondent states s() and s() can be close. Minimizing d means finding
actions leading to next states remaining correspondent.

E.2 Method

According to Proposition 2, we not only learn an action translator H, but also state translators
G mapping target states s() to the equivalent states on source task 7) and G~! identifying
correspondent state on target task 7 (). We additionally learn a discriminator network D to assist
learning of state translator.

Given transition data s¢) on source task and s(*) on target task, the adversarial objective is:
min max Logy (G, D) = log D(s9)) +log(1 — D(G(s™)))

G aims to map target state s(*) to the distribution of states on source task, while D tries to distinguish
translated state G(s(")) and real states in the source task. To build state equivalence, the translated
state should be translated back to the source state. We further leverage cycle consistency loss to learn
the one-to-one mapping on states across tasks:

Liack = |GHG(sD)) = sD| + |GG (sW))) — sV

Drawn upon Proposition 2, we extend our transfer 10SS Lirgns t0 Lirans,s,q. Formally,

ﬁtrans,s,a - logF(5t+1|Stl)a Q' ))

where § st+1 =G~ (sgﬂr)l) 59 = g1(sV), and a® = H(s,a). Lirans,s,a is applied to
optimize the state translator G and action translator H.
=(9)

In this way, given the state s( 2 on source task, we first get the correspondent state 5, ° on target task.
Then the translated action &*) make transition to next state sg le on target task still correspondent to
next state sg +)1 on source task The objective function L¢yqns,s,q drives the next state distribution on
the tar§et task p( RIC |s(t Ry @) to be close to the distribution of correspondent next state on the source
task p/ J )) This is implicitly minimizing d in Proposition 2.

In practice, we may need the action translator network H or the state translator network G and
G~ reasonably initialized, in order to prevent the joint training collapsing to a trivial solution. The
implementation details of learning the context model, forward dynamics model and action translator
are the same as we explained in Appendix C.2. During training of the state translator, the weight
of Ladvs Loacks Lirans_s_a 18 10, 30, 100 respectively, the same as default hyper-parameters in [41].
The similar technique of learning state translator and action translator has been mentioned in [41].
Yet, our theorems shed light on its underlying mechanism and our objective function for learning the
action translator is simpler.

E.3 Experiments on Tasks Differing in Reward Function

When the tasks share the same state space and action space but the reward function varies, we
combine our action translator with a state translator for policy transfer.

To investigate this scheme for policy transfer, we conduct experiments on MetaWorld task moving
the robot arm to a goal location. We set the source and target task with different goal locations and
hence with different reward functions. Tab. 15 lists the goal locations on the source and target tasks.
Specifically, on the same state s of the agent’s current location (z, y, z), the reward varies across
tasks, because it is inversely proportional to the distance from the current location to goal. The initial
location of robot arm is randomly sampled between [—0.1,0.6,0.02] and [0.1, 0.7, 0.02]. The state is
current location of the robot arm. The action is the moving vector of the robot arm.

We compare our method and [4 1] learning both state translator and action translator. We initialize
the state translator networks by assigning G(s = (z,y,2)) = G~ 1(s = (z,9,2)) = (—2,y, 2).
As observed in Tab. 15, ours compares favorably with [41] and achieves satisfactory cumulative
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920
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episode reward on the target task. We conclude that, for source and target tasks with different reward
functions depending on the state and next state, learning state translator and action translator jointly
is promising for policy transfer.

S li S i Transferred policy Transferred policy
Source Task Target Task ource policy | source policy [41] (Ours)
on source task | on target task
on target task on target task
[-0.1,0.8,0.2]| [0.1,0.8,0.2] 4855.7 947.5 179825924  3124.3(+ 10420
[-0.1,0.8,0.2]|[0.05,0.8,0.2] 4855.7 1470.2 1764.0¢+ 316.3) 1937.1(+ 4245
[-0.1,0.8,0.2]|[0.1,0.8,0.05] 4855.7 1040.8 2393. 7t 869.8)  2315.7(+ 1061.5)

-le -le . .8(£+298.4) .2(£50.8)
2-leg 3-leg 5121.4 NA 1957.8 2018.2

Table 15: Mean (= standard error) of episode rewards over 3 runs, comparing source and transferred policy on
target task. This is expanding Tab. 5 in the main text.

E.4 Experiments on Tasks Differing in State and Action Space

For tasks with different state space and action space, we investigate the proposed idea on MuJoco
environment HalfCheetah. The HalfCheetah agent by default has 2 legs in the source task and we
modify the agent to have 3 legs in the target task. Because the agents have different numbers of joints
in the source and target task, the dimensions of state space and action space also differ, as explained
in [41]. Again, we compare our method and [4 ] learning both state translator and action translator.
We assign a good initialization for the action translator in both methods as [41] introduced. We
remark that ours with a simpler objective function and fewer components than the baseline method
can transfer the source policy to perform well on the target task.

32



