
A DATASET DETAILS

A.1 DATASET ON ARITHMETIC TASKS

Pre-training Dataset. The training dataset for pre-training arithmetic model is created with a
Python script. The dataset includes a variety of arithmetic expressions, encompassing different types
of arithmetic operations such as addition, subtraction, multiplication, division, and exponentiation.
Each expression in the dataset is composed of various types of numbers, including integers, decimals,
fractions, percents, and negative numbers. The training dataset consists of approximately 50 million
arithmetic sequences. To investigate the impact of dataset scale on the arithmetic performance, we
also create multiple datasets of varying sizes, including 1 million, 5 million, 10 million, and 25
million. This diverse representation of numbers ensures that the model can handle a wide range of
numerical formats encountered in real-world arithmetic problems.

To facilitate the learning of underlying calculation rules, the arithmetic expressions are designed to be
more complex than simple two-number calculations. Instead, each expression in the dataset involves
multiple steps of calculations, ranging from 2 to 10 steps. By creating multi-step expressions, the
model is exposed to more intricate mathematical reasoning and is better equipped to handle complex
arithmetic problem-solving. The details of expressions is presented as follows. Table 1 demonstrates
examples from the arithmetic dataset.

• Operations involving integers up to 10,000 that combine addition, subtraction, multiplication,
and division.

• Exponentiation tasks using an integer base up to 10,000 and an integer exponent capped at
100.

• Bracketed expressions that include integers up to 10,000, combined with operations such as
addition, subtraction, multiplication, and division.

• Lengthy arithmetic expressions that incorporate brackets and blend various numerical types,
including integers, decimals, percentages, and negative numbers. These sequences utilize
operations such as addition, subtraction, multiplication, and division.

• Arithmetic expressions involving fractions combined with various operations, including
addition, subtraction, multiplication, and division.

Validation Dataset. Our evaluation dataset, which comprises 9,592 test cases, is generated from
the same distribution as the training dataset, yet remains distinct and is excluded from the training
process. This carefully generated suite of datasets serves as a comprehensive benchmark to evaluate
and quantify MathGLM’s computational prowess across a wide variety of arithmetic tasks.

A.2 VALIDATION DATASET ON MWP

In the field of math word problems (MWP), the performance of MathGLM is measured using the
Ape210K test dataset (Zhao et al., 2020), which contains a collection of 5,000 test math problems.
Additionally, we introduce the K6 dataset, which is designed to cover math word problems suitable
for elementary school students across 6 different grade levels. The primary purpose of the K6 dataset
is to assess the mathematical abilities of LLMs in comprehending and solving general-purpose math
reasoning problems. By evaluating MathGLM on the K6 dataset, we are able to gauge its effectiveness
in handling mathematical word problems of varying complexity and across a range of grade levels.
We collect math word problems from Chinese elementary schools in collaboration with the renowned
educational institution, TAL AI Lab. The dataset consists of math problems for each grade level,
with each grade containing approximately 100 problems. The wide-ranging nature of these math
word problems empowers us to gauge the model’s efficacy across an array of difficulty gradients
and academic grades. To illustrate the diversity and complexity of the K6 dataset, we present some
exemplary math word problems in Table 2. These examples show the range of mathematical concepts
covered and the varying levels of difficulty present in the dataset.
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Table 1: Examples from the arithmetic dataset where “+”, “-”, “*”, “/”, “ˆ” denotes addition,
subtraction, multiplication, division, and exponentiation respectively.

Types Arithmetic Expression

Integre mixing operation

1+8/1*10+2=1+8*10+2=1+80+2=81+2=83
53-2+23+51*56=53-2+23+2856=51+23+2856=74+2856=2930
214-792*509*260*556=214-403128*260*556=214-
104813280*556=214-58276183680=-58276183466
1912*6800*6022-7250-1624=13001600*6022-7250-
1624=78295635200-7250-1624=78295627950-1624=78295626326

Exponentiation
5170ˆ0=1, 1ˆ8756=1
3ˆ9=19683, 93ˆ18=270827695297250208363869180422467849
100ˆ13=100000000000000000000000000

Expression of fractions
((49/24)*-(8/70))/-(34/80)=(+(49/24)*(8/70))/(34/80)=(392/1680)/(34/80)=
(7/30)/(34/80)=(7/30)*(80/34)=(560/1020)=28/51
(9947/9276)+(4411/9276)=14358/9276=2393/1546

Expression with brackets
-7805+(4383/7377)=-7805+0.5941439609597398=-7804.40585603904
8371*(-1945+8878)=8371*(-1945+8878)=8371*6933=58036143

Lengthy arithmetic expressions

(-2090-5457.35697)*73.0=-7547.35697*73.0=-550957.05881
-4457+(-7823/5483%)*-3338=-4457+(-7823/54.83)*-
3338=-4457+(-142.6773664052526)*-3338=-4457+-
142.6773664052526*-3338=-4457+142.6773664052526*3338=-
4457+476257.0490607332=471800.0490607332

Grade Example

K1 李老师买了20颗糖果,送给小丽5颗,送给小刚8颗,还剩多少颗糖果?
K2 一个乘数是4,另一个乘数是7,积是多少?
K3 乐乐家养了36只小鸡,其中1/4是公鸡,母鸡是公鸡的3倍,公鸡和母鸡各有多少只?
K4 公益小组的同学为敬老院的老人们制作香囊(náng ),12个组共制作了864个,每组都

有9人,平均每人制作了几个?
K5 东、西两城相距180千米,甲、乙两车分别从东、西两城同时出发,相向而行,1.2小时后两

车可相遇.实际甲车出发0.4小时后因故障停车,乙车又走了2小时才和甲车相遇,求乙车每
小时行多少千米?

K6 甜甜读一本小说,第一天读了这本书的3/8,正好是180页,第二天又读了这本书的1/6,第2天
读了多少页?

Table 2: Examples from the K6 dataset to demonstrate the diversity and complexity of this dataset.
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B TRAINING DETAILS

B.1 OVERVIEW OF MATHGLM ON ARITHMETIC TASKS

Training Parameters for MathGLM. Table 3 reports an overview of all the models with different
model parameters, including hidden dimensions, the number of attention heads, and the total number
of layers employed in the model. Besides, we offer detailed training steps to facilitate the reproduction
of our MathGLM.

Table 3: Model sizes and architectures of MathGLM.

Model Dimension Heads Layers Parameters Training Steps

MathGLM-10M 256 32 15 10M 120,000
MathGLM-100M 512 32 35 100M 155,000
MathGLM-500M 1024 32 40 500M 135,000

MathGLM-2B 2048 32 40 2B 155,000

Tokenization for Arithmetic Tasks. The arithmetic operations in our MathGLM involve numbers
from 0 to 9, and the calculating signs comprise addition (+), subtraction (-), multiplication (*),
division (/), and exponentiation (ˆ). Symbols that represent forms in the data include the decimal
point (.), percent sign (%), negative sign (-), fraction delimiter (/), brackets such as ’(’ and ’[’, and the
equal sign (=). To achieve a consistent tokenization process, we adopt the unified tokenization tool
icetk proposed in CogView2 (Ding et al., 2022). By leveraging this methodology, we tokenize each
digit as a distinct token. For instance, the numeral “12345” is tokenized into the set {1, 2, 3, 4, 5}. To
allocate singular tokens to the other mentioned symbols, we disengage the continuous representation
symbols within icetk throughout the tokenization procedure.

Table 4 shows some tokenization examples employed in MathGLM. This tokenization approach
ensuers that every element in the arithmetic expression is adequately represented and can be efficiently
processed by the MathGLM, facilitating MathGLM to excute comprehensive arithmetic tasks. Owing
to the variable lengths of arithmetic expressions, it becomes imperative to standardize their lengths
for efficient training of the MathGLM. A straightforward method, like padding each input to a fixed
length, might damage training efficacy. To circumvent this, we adopt a more efficient strategy, where
multiple arithmetic expressions are concatenated until they achieve a predefined fixed length.

Table 4: Some examples of tokenization in MathGLM.

Input Tokenization

12345+345=
[’_’, ’1’, ’2’, ’3’, ’4’, ’5’, ’+’, ’3’, ’4’, ’5’, ’=’]
[20005, 20009, 20010, 20013, 20016, 20015, 20065, 20013, 20016, 20015,
20054]

1234-45678=
[’_’, ’1’, ’2’, ’3’, ’4’, ’-’, ’4’, ’5’, ’6’, ’7’, ’8’, ’=’]
[20005, 20009, 20010, 20013, 20016, 20011, 20016, 20015, 20021, 20025,
20023, 20054]

34*678=
[’_’, ’3’, ’4’, ’*’, ’6’, ’7’, ’8’, ’=’]
[20005, 20013, 20016, 20032, 20021, 20025, 20023, 20054]

1.2/2=
[’_’, ’1’, ’.’, ’2’, ’/’, ’2’, ’=’]
[20005, 20009, 20007, 20010, 20026, 20010, 20054]

(1.2*3%)/2+[(12+3)*5]=

[’_’, ’(’, ’1’, ’.’, ’2’, ’*’, ’3’, ’%’, ’)’, ’/’, ’2’, ’+’, ’[’, ’(’, ’1’, ’2’, ’+’, ’3’, ’)’,
’*’, ’5’, ’]’, ’=’]
[20005, 20020, 20009, 20007, 20010, 20032, 20013, 20040, 20014, 20026,
20010, 20065, 20052, 20020, 20009, 20010, 20065, 20013, 20014, 20032,
20015, 20042, 20054]
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B.2 BACKBONE MODELS

General Language Model (GLM) is a Transformer-based language model that combines autogressive
blank infilling with bidirectional attention mechanisms. Different from decoder-only language models
that primarily rely on unidirectional attention, GLM integrates bidirectional attention on unmasked
contexts. This innovative approach empowers it with heightened proficiency in both comprehension
and generative tasks.

Pre-Training Objectives. To amplify its linguistic understanding and generative abilities, GLM
incorporates a dual pre-training strategy: 1) Autoregressive Blank Infilling involves predicting missing
tokens within spans of corrupted text, wherein segments are arbitrarily supplanted with a [MASK]
token. 2) Multi-Task Pretraining is utilized to endow GLM text generation ability, which aims to
generate longer text by sampling random-length span from document-level or sentence-level text.

Model Sizes. GLM offers a diverse of models with various model parameters, including GLM-Large,
GLM-6B, GLM-10B, GLM2-6B, ChatGLM-6B, and ChatGLM2-6B. Comprehensive specifics
concerning the hyperparameters for each model variant can be found in Table 5. GLM-Large
model is specifically tailored for Chinese language processing tasks equipped with 335M model
parameters, while GLM-10B, GLM-6B, and GLM2-6B are equipped with 10 billion, 6 billion,
and 6 billion parameters, respectively, enabling them to handle a wide range of NLP tasks with
varying complexities. Augmenting the series are bilingual conversational models: ChatGLM-6B and
ChatGLM2-6B, both tailored for Chinese-English bilingual dialogue tasks. The ChatGLM-6B model,
having 6.2 billion parameters, undergoes fine-tuning using Chinese Q&A and dialogue datasets. In
contrast, ChatGLM2-6B emerges as an evolved iteration of ChatGLM-6B, marking enhancements in
performance, extended context handling, optimized inference, and broader applicability.

Table 5: Hyperparameters of the backbone models.

Model Dimension Heads Layers Parameters

GLM-Large 1024 24 16 335M
GLM-10B 4096 64 48 10B
GLM-6B 4096 32 28 6.2B
GLM2-6B 4096 32 28 6.2B

ChatGLM-6B 4096 32 28 6.2B
ChatGLM2-6B 4096 32 28 6.2B

C EVALUATION METRIC

To measure the ability of MathGLM on arithmetic tasks, we adopt the following metrics to evaluate
the outputs.

Accuracy is typically measured by comparing the output of the MathGLM and the ground truth
answer. In our experiments, we adhere to standard rounding rules, constraining the generated answers
to precisely two decimal places. When the correctly rounded answer aligns with the answer generated
by the MathGLM, we classify this outcome as a correct answer.

Relative Error is another important metric used to evaluate the effectiveness of MathGLM, which
quantifies the difference between the output generated by MathGLM and the correct answer. The
relative error (RE) is quantified using the following formula:

RE = | ŷ − y

y
| (1)

where ŷ and y denote the generated answer and the correct answer respectively. For our evaluation
purposes, we utilize a relative error threshold of 1%. This threshold serves as a criterion for
determining the acceptability of the answers generated by the MathGLM, where any relative error
falling within this threshold range is considered an accurate outcome.
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D ADDITIONAL EXERIMENTS ON ARITHMETIC TASKS

D.1 RESULTS ON TEST-100

Table 6: Overall performance compari-
son on various LLMs in term of Accu-
racy.

Model ACC RE

GPT-4 22.22% -
ChatGPT 13.25% -

text-davinci-003 9.79% -
text-davinci-002 4.08% -
Galactica-120b 7.97% -
Galactica-30b 7.02% -
LLaMA-65b 5.02% -
OPT-175B 3.83% -

BLOOM-176B 3.96% -
GLM-130B 3.06% -

MathGLM-10M 64.29% 97.96%
MathGLM-100M 73.47% 98.23%
MathGLM-500M 89.80% 98.82%

MathGLM-2B 94.90% 98.98%

Additionally, we conduct a performance comparison of
arithmetic tasks among different prominent large language
models (LLMs) including GPT-4, ChatGPT, text-davinci-
003, code-davinci-002, Galactica, LLaMA, OPT, BLOOM,
and GLM. For this comparison, we randomly extract a
compact arithmetic dataset Test-100 containing 100 test
cases from the larger dataset discussed earlier. The results
of this comparison arithmetic performance are presented
in Table 6. Upon analyzing the results, it is evident that
MathGLM achieves a high accuracy of 93.03% with 2
billion model parameters, surpassing all other LLMs. In
addition to leading models like GPT-4 and ChatGPT, the
large science model Galactica exhibits better performance
in arithmetic tasks. This can be attributed to Galactica’s
training on a large scientific corpus, enabling it to learn
the languages of science and comprehend the intricacies
of arithmetic tasks. By leveraging the unique character-
istics of this dataset, Galactica is able to enhance its un-
derstanding and handling of arithmetic tasks, resulting in
improved performance. These findings emphasize the sig-
nificance of domain-specific training and leveraging spe-
cialized datasets to enhance model performance. Besides,
a step-by-step solution strategy, which involves decompos-
ing complex arithmetic expressions into individual steps,
has proven to be effective in improving arithmetic performance. The outstanding performance of
MathGLM shows that the language model coupled with a specialized dataset and the step-by-step
solution strategy can achieve remarkable performance in arithmetic tasks.

D.2 GROUPED RESULTS

To clearly evaluate the arithmetic ability of MathGLM among different operations, we design a series
of extended experiments. Specifically, we design small test datasets comprising 100 test cases to
respectively evaluate the arithmetica performance of MathGLM in various arithmetic operations,
including addition, subtraction, multiplication, and division. These datasets encompass different data
formats, such as integers, decimals, percents, fractions and negative numbers. Here, we compare
MathGLM with several well-known chat-type LLMs, such as GPT-4, ChatGPT, ChatGLM, and Bard.
The arithmetic performance comparison among these different language models is demonstrated
in Table 7. Analyzing the results, we can observe that the majority of LLMs exhibit commendable
accuracy levels exceeding 90% across diverse data formats for elementary arithmetic operations
like addition and subtraction. However, as the complexity escalates to operations like multiplication
and division, a divergence in performance manifests across different models. For instance, the
accuracy levels of the most powerful model GPT-4 also show a trend towards zero, especially when
dealing with decimal and percentile data formats. In contrast, MathGLM consistently shows superior
performance in multiplication operations across various data formats, surpassing the capability of
GPT-4. This demonstrates the effectiveness and capabilities of MathGLM in handling complex
arithmetic tasks, even outperforming a prominent model like GPT-4 in specific operations. Notably,
even the smaller variant of MathGLM, MathGLM-10M, with only 10 million training parameters,
also achieves remarkable arithmetic performances, further emphasizing the arithmetic capabilities of
our MathGLM.

D.3 RESULTS ON BIG-BENCH

We also evaluate MathGLM using BIG-bench arithmetic dataset (Srivastava et al., 2022), which is
commonly used to evaluate basic arithmetic capabilities of language models by performing n-digit
addition (ADD), subtraction (SUB), multiplication (MUL), and division (DIV). Table 8 reports
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Task Format GPT-4 ChatGPT ChatGLM Bard MathGLM-10M MathGLM-2B

ADD

Int 100% 100% 94% 96.0% 100% 100%
Dec 100% 98% 76% 87% 96% 100%
Frac 43.33% 17.02% 32.98% 14.2% 60.64% 100%
Perc 100% 90.0% 1% 9.6% 100% 100%
Neg 100% 98% 91% 95% 100% 100%

SUB

Int 100% 97% 89% 91% 98% 100 %
Dec 100% 94% 82% 85% 98% 100%
Frac 52.48% 18.81% 3% 24.24% 68.32% 96.04%
Perc 100% 100% 18% 0% 99% 100%
Neg 100% 97% 44% 78% 100% 100%

MUL

Int 9% 4% 1% 2% 77% 84%
Dec 0% 0% 0% 0% 3% 33%
Frac 5.63% 2.82% 1.41% 1.41% 67.61% 85.92%
Perc 0% 0% 1% 0% 81% 97%
Neg 7% 2% 0% 0% 76% 98%

DIV

Int 92% 91% 24% 68% 99% 100%
Dec 93% 88% 60% 60% 97% 98%
Frac 33.44% 29.69% 7.81% 1.56% 73.44% 96.88%
Perc 97% 80% 19% 15% 88% 100%
Neg 97% 90% 50% 52% 96% 100%

Table 7: Arithmetic comparison between MathGLM and other LLMs among different operations.
Int denotes integers, Dec denotes decimals, Frac denotes fractions, Perc denotes percents, and Neg
denotes negative numbers.

the experimental results of GPT-4 and MathGLM on various arithmetic operations with different
numbers of digits. GPT-4 exhibits near-perfect (100%) accuracy in low-digit arithmetic tasks.
However, as the digits escalate, the performance gradually diminishes, particularly pronounced in
the multiplication task. In contrast, MathGLM consistently maintains high accuracy levels even in
high-digit arithmetic tasks, illustrating its outstanding ability to handle complex arithmetic tasks
effectively. The performance trends of different MathGLM variants reveal a consistent pattern of
improvement as model size increases. For ADD and SUB tasks, the accuracy remains consistently
high across all model sizes with slight variations. There is a tendency for larger models to achieve
higher accuracy compared to smaller models but the differences in performance between different
model sizes are relatively small. In the MUL task, accuracy rises distinctly with larger model sizes.
Smaller models exhibit relatively lower accuracy, while larger counterparts demonstrate enhanced
accuracy, particularly in tasks involving higher digit numbers. A similar tendency can be observed
in the DIV task. Overall, the evaluation results demonstrate that MathGLM outperforms GPT-4 in
high-digit arithmetic tasks, and the performance generally inproves with larger model sizes.

D.4 RESULTS ON MATH 401

Table 9 shows a comprehensive evaluation of the arithmetic performance of MathGLM on the MATH
401 dataset (Yuan et al., 2023). This dataset offers a new set of arithmetic problems, allowing for
a deeper exploration into MathGLM’s proficiency in addressing a wide variety of arithmetic tasks.
By evaluating MathGLM’s performance on this dataset, we observe that MathGLM consistently
outperforms all other large language models with a substantial number of model parameters.

D.5 ANALYSIS ON ARITHMETIC ERRORS

Despite achieving an impressive overall accuracy of 93.03% with its 2 billion model parame-
ters, a thorough analysis is conducted to comprehend instances where MathGLM fails to gen-
erate accurate answers. Consider the example 3468 ∗ 4046/7424, MathGLM generate an an-
swer of 468 ∗ 4046/7424 = 14031528/7424 = 1889.901400862069, while the true answer is
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Table 8: Overall performance comparison on GPT-4 and MathGLM on BIG-bench Arithmetic
sub-task.

Task GPT-4 MathGLM-10M MathGLM-100M MathGLM-500M MathGLM-2B

ADD

1D 100% 84% 100% 100% 100%
2D 100% 97.2% 100% 100% 100%
3D 99.6% 99.3% 100% 100% 100%
4D 98.8% 99.9% 99.9% 100% 100%
5D 94.1% 99.2% 100% 99.6% 99.4%

SUB

1D 100% 92% 100% 100% 100%
2D 100% 98.5% 99.8% 100% 100%
3D 99.2% 98.8% 99.9% 100% 99.9%
4D 98.9% 98.4% 99.6% 99.7% 99.8%
5D 92.4% 98.0% 99.3% 99.5% 98.9%

MUL

1D 100% 91% 100% 99% 100%
2D 99.4% 85.8% 99.7% 99.9% 99.9%
3D 30.3% 77.8% 91.4% 93.7% 98.3%
4D 5.3% 79.7% 80.4% 90.0% 94.9%
5D 0.0% 41.6% 55.6% 59.6% 89.9%

DIV

1D 100% 87.0% 100% 100% 100%
2D 100% 89.5% 100% 100% 100%
3D 94.5% 90.2% 100% 99.6% 99.4%
4D 90.9% 90.5% 99.5% 99.6% 100%
5D 53.4% 82.2% 92.9% 93.6% 94.9%

468 ∗ 4046/7424 = 14031528/7424 = 1890.0226293103. Upon comparing the generated results
with the true answers, it is obviously observed that the multiplication operation for 468 ∗ 4046 is
correct but the division operation for 14031528/7424 is incorrect. One possible reason for this dis-
crepancy is that MathGLM’s pre-training primarily encompasses numbers in the 5-digit range, thereby
causing inaccuracies when tackling division tasks involving 12-digit and 4-digit numbers. Upon
thorough analysis of the errors made by MathGLM, it’s important to highlight that the inaccuracies
in the generated answers are remarkably close to the correct evaluations.

Table 10 provides some examples to analyze the failures of MathGLM on performing arithmetic
tasks. Through careful examination of these examples, we can observe several patterns and trends in
the MathGLM’s errors. Firstly, MathGLM appears to grapple with intricate arithmetic expressions,
particularly those combining several operations and large numbers. For instance, the expression
14031528/742: the division of an 8-digit number by a 4-digit one proves problematic for MathGLM,
leading to miscalculations in the outcome. Secondly, MathGLM tends to encounter difficulties when
dealing with long sequences of numbers and operations. As the expression length increases, the
model’s ability to accurately perform arithmetic calculations diminishes, leading to inaccurate results.
For example, expression involving multiplication among two large numbers like 3626 * 8919 and
calculation with a decimal and large integer number like 1.610311 * 7691. These errors generated by
MathGLM usually have only one calculation result error, indicating that the MathGLM’s mistakes
mainly occur at specific calculation steps rather than affecting the entire expression.

D.6 STEP-BY-STEP ANALYSIS

To delve deeper into the impact of the step-by-step strategy on MathGLM, we conduct extended
experiments that directly calculate the answer of each arithmetic expression without employing the
step-by-step approach. Figure 1 shows performance comparison between employing the step-by-step
strategy and bypassing it for different models. We can observe that a significant improvement in
the peformance of MathGLM when the step-by-step strategy is applied. For instance, in the case of
MathGLM-500M, the accuracy rises from 31.96% to 89.57%, while for MathGLM-2B, it increases
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Table 9: Overall performance comparison on various LLMs in term of Accuracy.

Model ACC

GPT-4 83.54%
GPT-3.5-turbo 75.06%

text-davinci-003 56.61%
text-davinci-002 42.89%
code-davinci-002 21.70%

Galactica-120b 45.14%
Galactica-30b 45.14%
Galactica-6.7b 34.41%

LLaMA-65b 28.43%
LLaMA-30b 30.17%
LLaMA-13b 27.68%
LLaMA-7b 21.96%

OPT-175B 21.70%
OPT-66B 20.70%
OPT-30B 15.96%
OPT-13B 15.21%
OPT-6.7B 14.46%

BLOOM-176B 22.44%
BLOOM-7.1B 7.23%
BLOOM-3B 4.24%

BLOOM-1.7B 5.24%

GLM-130B 25.94%
GLM-10B 14.96%

MathGLM-0.5B 85.48%
MathGLM-2B 89.44%

Table 10: Some failed examples generated by MathGLM.

Input Output Ground Truth

3468*4046/7424= 14031528/7424=1889.901400862069 14031528/7424=1890.0226293103449
(3626*8919)/8861= 32330294/8861=3648.605574991536 32340294/8861=3649.7341157882856
7715/4791*7691-
1968*9155=

1.610311*7691-1968*9155=12384.801801-
1968*9155=12384.801801-18017040=-
18004655.198199

1.610311*7691-1968*9155=12384.9018993-
1968*9155=12384.9018993-18017040=-
18004655.098100606

(4059+7011.8718)-
4038.22*847.15907=

(4059+7011.8718)-
4038.22*847.15907=11070.8718-
4038.22*847.15907=11070.8718-
3420014.6996554=-3408943.8278554

(4059+7011.8718)-
4038.22*847.15907=11070.8718-
4038.22*847.15907=11070.8718-
3421014.6996554=-3409943.8278554003

7499-5747.91007/-5438*-
439=

7499-5747.91007/5438*439=7499-
1.0570081040823832*439=7499-
464.0265576921662=7034.973442307834

7499-5747.91007/5438*439=7499-
1.056989715*439=7499-
464.0184848713=7034.981515128724

3868*6735*5755+3741-
7533=

26050980*5755+3741-
7533=159923389900+3741-
7533=159923393641-7533=159923386108

26050980*5755+3741-
7533=149923389900+3741-
7533=149923393641-7533=149923386108
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from 40.76% to 93.03% for MathGLM-2B, all attributable to the incorporation of the step-by-step
strategy. Similarly, the relative error accuracy exhibits a similar positive trend, escalating from
89.29% to an exceptional 99.41% for MathGLM-500M, and from 94.26% to an outstanding 99.71%
for MathGLM-2B with the implementation of the step-by-step strategy. These results demonstrate
the effectiveness of the step-by-step strategy in enhancing MathGLM’s ability to accurately perform
arithmetic operations. The step-by-step approach enables MathGLM to better understand and solve
intricate arithmetic tasks, leading to significant improvements in accuracy and relative error accuracy
metrics.

MathGLM-2BMathGLM-500MMathGLM-2BMathGLM-500M

Figure 1: Performance comparison of MathGLM with and without the step-by-step solution.

D.7 CASE STUDY

Figure 2 demonstrates examples generated by MathGLM with 2B model parameters on addition,
subtraction, multiplication, division, exponentiation, and mixing operations tasks.

Addition Subtraction
5678+9865=
5678+9865=15543

67548+908653=
67548+908653=976201

8659054861+7564369655=
8659054861+7564369655=16223424516

7878.547+98065.344901=
7878.547+98065.344901=105943.891901

176.67+2.3%=
176.67+2.3%=176.67+0.23=176.9

(13/14)+(18/19)=
(13/14)+(18/19)=247/266+252/266=499/266

Multiplication

Division Exponentiation Mixing Operations

-32+7854=
-32+7854=7822

76869-98654=
76869-98654=-21785

46455762897-9867553=
46455762897-9867553=46445895344

879800.75432-767.427934=
879800.75432-767.427934=879033.326386

-7634-8904=
-7634-8904=-16538

5423%-638.0965=
5423%-638.0965=54.23-638.0965=-583.8665

(3/5)-(12/19)=
(3/5)-(12/19)=57/95-60/95=-3/95

MathGLM-2B

21-(19/21)=
21-(19/21)=21-0.9047619047619048=20.095238095238

1234*7809=
1234*7809=9636306

8757755*907644=
8757755*907644=7948923779220

9765.89755*42653.9773065=
9765.89755*42653.9773065=416554372.4753039

-453*75479=
-453*75479=-34191987

7645%*975301=
7645%*975301=76.45*975301=74561761.45

(123/897)*(6753/16)=
(123/897)*(6753/16)=(830619/14352)=276873/4784

875*(646/67)=
875*(646/67)=875*9.64179104477612=8436.567164179

7862/87=
7862/87=90.36781609195402

6574389173/86532=
6574389173/86532=75976.3922363981

8753.75255/5427.67397=
8753.75255/5427.67397=1.6128000040872018

456%/243=
456%/243=4.56/243=0.01876543209876543

(12/33)/(56/12)=
(12/33)/(56/12)=(12/33)*(12/56)=(144/1848)=6/77

-129/-334=
-129/-334=129/334=0.3862275449101796

12^4=

786^1=

756^0=

457^2=

756^0=1

457^2=208849

786^1=786

12^4=20736

386^5=
386^5=8569125814176

723^10=
723^10=39028600001675809908107504649

61+9104+6129-8755-9978*1335*2454-5404
=61+9104+6129-8755-13320630*2454-5404
=61+9104+6129-8755-32688826020-5404
=9165+6129-8755-32688826020-5404
=15294-8755-32688826020-5404
=6539-32688826020-5404
=-32688819481-5404
=-32688824885

61+9104+6129-8755-9978*1335*2454-5404=

8723%/-632+-169.63=
8723%/-632+-169.63=87.23/-632+-169.63
=-87.23/632-169.63=-0.13802215189873418-169.63
=-169.76802215189873

(-2714.9607*4215%)--7850=
(-2714.9607*4215%)--7850=(-2714.9607*42.15)--7850
=(-114435.593505)--7850=-114435.593505--7850
=-114435.593505+7850=-106585.593505

Figure 2: Examples of MathGLM’s response on a variety of arithmetic tasks.
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E BASELINE MODELS FOR MWP

Here, we leverage a variety of popular LLMs that can address Chinese problems to compare the
mathematical reasoning ability among these LLMs and our MathGLM. The details of each baseline
LLM as follows.

• GPT-4 (OpenAI, 2023) is the most advanced generative language model that developed
by OpenAI, which successfully achieves so many SOTA performances on a variety of
downstream tasks.

• ChatGPT (OpenAI) is the predecessor of GPT4 and is constructed upon the success of
InstructGPT (Ouyang et al., 2022), which is fine-tuned using instruction data with reinforce-
ment learning from human feedback (RLHF), making it a powerful tool for natural language
understanding and conversation.

• MOSS (Sun and Qiu) is an open-source LLM that consists of 16 billion model parameters. It
utilizes 100 billion Chinese tokens and 20 billion English tokens to learn language patterns
and semantic representations.

• Ziya-LLaMA-13B (Zhang et al., 2022) is a language model constructed on LLaMA-13B,
which extends LLaMA-13B’s character set to contain 7,000 Chinese characters and under-
goes continual pre-training on a vast dataset of 110 billion Chinese tokens.

• Chinese-Alpaca-13B (Cui et al., 2023) is a Chinese language model with 13 billion param-
eters that is built upon LLaMA-13B. During the supervised instruction tuning, the Low
Rank Adaptation (LoRA) (Hu et al., 2021) technique is utilized to fine-tune LLaMA-13B
for Chinese language tasks.

• Baichuan-7B (inc.) shares similarities with LLaMA but is pre-trained from scratch on a
massive dataset containing 1.2 trillion Chinese and English tokens.

• ChatGLM-6B (THUDM, a) and its successor ChatGLM2-6B (THUDM, b) are language
models that share a unified transformer architecture named GLM (Du et al., 2021; Zeng
et al., 2022). These models are pre-trained on a diverse dataset containing English and
Chinese data, combined with the supervised instruction tuning, makes them powerful tools
for understanding and generating text in both English and Chinese contexts.

F ADDITIONAL EXPERIMENTS ON MWP

F.1 COMPARISON OF TRAINING STRATEGIES

Here, we evaluate the mathematical reasoning ability of MathGLM with different training strategies:
fine-tuning and continue training. To execute continue training, we amalgamate the Ape210K train
dataset with instruction data released by Chinese-Vicuna (Chenghao Fan and Tian, 2023). We
subsequently continue training MathGLM from the GLM-10B backbone. Table 11 shows the overall
performance comparison of MathGLM employing different training strategies. We observe that
directly fine-tuning on the specific dataset can achieves better performance.

Table 11: Overall performance comparison on various LLMs in term of Accuracy.

Training w/o step-by-step strategy with step-by-step strategy
ArithmeticAcc AnswerAcc ArithmeticAcc AnswerAcc

Fine-tuning 71.38% 41.24% 69.08 % 58.68%
Continue training 70.16% 40.34% 67.02% 56.60%

F.2 SCALING ANALYSIS

To explore the impact of scaling on MathGLM, we conduct a series of experiments encompassing
varying dataset sizes and distinct model parameters. Table 12 demonstrates the results obtained from
varying the dataset sizes within the range of {5K, 10K, 20K, 50K, 100K, 200K}. Furthermore,
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to understand the impact of different model parameters, we incorporate various backbone models
into MathGLM, including GLM-Large (335M), GLM-6B, and GLM-10B. The results consistently
indicate that MathGLM’s performance improves across all backbone models with the increase in
dataset size. Such observation highlights the beneficial effects of enlarging the training data on
bolstering MathGLM’s proficiency in tackling math word problems. By accessing more extensive
datasets, MathGLM is introduced to a wider array of problem types, resulting in better performance.
Additionally, discernible differences in performance emerge among the various backbone models.
Given sufficient dataset size, larger models like MathGLM-GLM-10B often outperform others,
indicating the crucial role of model parameters in addressing intricate math word problems. These
insights emphasize the significance of both dataset and model scaling. By augmenting dataset size
and utilizing larger models, we can markedly boost MathGLM’s capability to generate more accurate
solutions, enhancing its overall efficacy in resolving math word problems.

Table 12: Performance comparison of MathGLM on different training dataset sizes and model
parameters.

Model Scale MathGLM-GLM-Large MathGLM-GLM-6B MathGLM-GLM-10B

5K Problems 4.32% 12.84% 3.68%
10K Problems 7.14% 19.78% 6.36%
20K Problems 10.36% 21.89% 9.62%
50K Problems 18.32% 26.40% 16.78%
100K Problems 25.98% 31.44% 22.20%
200K Problems 35.68% 34.00% 38.10%

F.3 FAILURE ANALYSIS ON MATH WORD PROBLEMS

Figure 3 provides some failed examples generated by MathGLM-GLM-10B on solving math word
problems. We can identify certain challenging scenarios where MathGLM-GLM-10B encounters
difficulties in solving math word problems. One common issue is the misinterpretation of ambiguous
language, leading to incorrect problem-solving approaches. For instance, ambiguous phrases such
as “more than” or “less than” can be interpreted differently by the model, resulting in inaccurate
solutions. Additionally, MathGLM-GLM-10B tends to struggle with problems that involve complex
mathematical operations. As a result, it may provide partially correct arithmetic solutions but fail to
arrive at the final correct answer.

F.4 TRAINING STEPS ANALYSIS.

We explore the impact of training steps on the MathGLM’s performance by analyzing its performance
against varied training steps, as depicted in Figure 4. The results reveal that there is a consistent
uptrend in performance as the number of training steps increases. With more training steps, MathGLM
becomes increasingly adept at comprehending and resolving math word problems, which translates
to a surge in accuracy. However, it is clearly observed that the performance gains of MathGLM
start to plateau after a certain point, indicating potential diminishing returns with extended training.
These findings highlight the significance of finding an optimal balance between training time and
performance gains for MathGLM in solving math word prblems. Additionally, we observe that model
undergoing instruction tuning requires a longer training duration to achieve consistent accuracy on
math word problems.

F.5 CASE STUDY

Here, we present specific cases to demonstrate the solving process of the MathGLM on both arithmetic
tasks and math word problems. As shown in Figure 5, these examples illustrate how the MathGLM
leverages a step-by-step strategy to solve both arithmetic tasks and math word problems accurately.

For arithmetic tasks, the MathGLM breaks down complex calculations into multiple steps rather
than a direct answer. The step-by-step strategy ensures that each intermediate result is accurately
computed, leading to the final correct answer for each arithmetic expression.
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Figure 3: Some failed examples generated by MathGLM-GLM-10B on solving math word problems.
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Figure 4: The impact of training steps on MathGLM with different backbone models. Fine-tuning on
model undergoing instruction tuning requires a longer training steps.
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In math word problems, the MathGLM utilizes LLMs’s language understanding capabilities to
understand the problem statement accurately. The MathGLM then applies the step-by-step strategy to
seperately calculate the generated arithmetic expressions for each math problem, enabling it to obtain
the correct answer for math word problems.
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-7439+(3156+1649%)+(-2307+-1112)= -7439+(3156+16.49)+
(-2307+-1112)=-7439+3172.49+
(-2307+-1112)=-7439+3172.49+
(-2307-1112)=-7439+3172.49+-34
19=-7439+3172.49-3419=-4266.5
1-3419=-7685.51

4392.7*1127/
[(6532+3588)+-1499.90071*-3871.
5083]=4392.7*1127/
[10120+-1499.90071*-3871.5083]=
4392.7*1127/
(10120+1499.90071*3871.5083)=4
392.7*1127/
(10120+5806878.047940893)=439
2.7*1127/5816998.047940893=495
0572.899999999/5816998.047940
893=0.8510528728389893

 511 4392.7*1127/
[(6532--3588)+-1499.90071*-3871.50
83]=

2824/2202-[8553-(156-4493)/
9780*4740]*8637=

2824/2202-
[8553--4337/9780*4740]*8637=28
24/2202-
(8553+4337/9780*4740)*8637=28
24/2202-
(8553+0.4434560327198364*474
0)*8637=2824/2202-
(8553+2101.9815950920245)*863
7=2824/2202-10654.98159509202
5*8637=1.2824699818346957-10
654.981595092025*8637=1.2824
699818346957-92027076.036809
82=-92027074.75433984

1360*5664+8698= 7703040+8698=7711738

Figure 5: Some cases generated by MathGLM on arithmetic tasks and math word problems.
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