
stem kernel size stride padding channels flops params acts top-1 error
∆(M) (M) (M) AdamW SGD

P [16] [16] [0] [384] 58 0.3 0.8 27.7 33.0 5.3
C [3, 3, 3, 3, 1] [2, 2, 2, 2, 1] [1, 1, 1, 1, 0] [48, 96, 192, 384, 384] 435 1.0 1.2 24.0 24.7 0.7
S1 [3, 3, 3, 2, 1] [2, 2, 2, 2, 1] [1, 1, 1, 0, 0] [42, 104, 208, 416, 384] 422 0.8 1.3 24.3 25.1 0.8
S2 [3, 3, 3, 4, 1] [2, 2, 1, 4, 1] [1, 1, 1, 0, 0] [32, 64, 128, 256, 384] 422 0.7 1.1 24.3 25.3 1.0
S3 [3, 3, 3, 8, 1] [2, 1, 1, 8, 1] [1, 1, 1, 0, 0] [17, 34, 68, 136, 384] 458 0.7 1.6 25.1 26.2 1.1
S4 [3, 3, 3, 16, 1] [1, 1, 1, 16, 1] [1, 1, 1, 0, 0] [8, 16, 32, 64, 384] 407 0.6 2.9 26.2 27.9 1.3

Table 3: Stem designs: We compare ViT’s standard patchify stem (P ) and our convolutional stem
(C) to four alternatives (S1 - S4) that each include a patchify layer, i.e., a convolution with kernel
size (> 1) equal to stride (highlighted in blue). Results use 50 epoch training, 4GF model size, and
optimal lr and wd values for all models. We observe that increasing the pixel size of the patchify
layer (S1 - S4) systematically degrades both top-1 error and optimizer stability (∆) relative to C.

model top-1 err.
ViTP -4GF 23.2
ViTP (bn)-4GF 23.3
ViTC -4GF 20.9
ViTC(ln)-4GF 21.1

Table 7: TMP: A

11

Figure 7: Stem normalization and non-linearity: We apply BN and ReLU after the patchify stem
and train ViTP -4GF (left plot), or replace BN with layer norm (LN) in the convolutional stem of
ViTC-4GF (middle plot). EDFs are computed by sampling lr and wd values and training for 50
epochs. The table (right) shows 100 epoch results using best lr and wd values found at 50 epochs. The
minor gap in error in the EDFs and at 100 epochs indicates that these choices are fairly insignificant.

Appendix A: Stem Design Ablation Experiments

ViT’s patchify stem differs from the proposed convolutional stem in the type of convolution used and
the use of normalization and a non-linear activation function. We investigate these factors next.

Stem design. The focus of this paper is studying the large, positive impact of changing ViT’s default
patchify stem to a simple, standard convolutional stem constructed from stacked stride-two 3×3
convolutions. Exploring the stem design space, and more broadly “hybrid ViT” models [13], to
maximize peak performance is an explicit anti-goal because we want to study the impact under
minimal modifications. However, we can gain additional insight by considering alternative stem
designs that fall between the patchify stem (P ) the standard convolutional stem (C). Four alternative
designs (S1 - S4) are presented in Table 3. The stems are designed so that overall model flops remain
comparable. Stem S1 modifies C to include a small 2×2 patchify layer, which slightly worsens
results. Stems S2 - S4 systematically increase the pixel size p of the patchify layer from p = 2 up
to 16, matching the size used in stem P . Increasing p reliably degrades both error and optimizer
stability. Although we selected the C design a priori based on existing best-practices for CNNs, we
see ex post facto that it outperforms four alternative designs that each include one patchify layer.

Stem normalization and non-linearity. We investigate normalization and non-linearity from two
directions: (1) adding BN and ReLU to the default patchify stem of ViT, and (2) changing the
normalization in the proposed convolutional stem. In the first case, we simply apply BN and ReLU
after the patchify stem and train ViTP -4GF (termed ViTP (bn)-4GF) for 50 and 100 epochs. For the
second case, we run four experiments with ViTC-4GF: {50, 100} epochs × {BN, layer norm (LN)}.
As before, we tune lr and wd for each experiment using the 50-epoch schedule and reuse those values
for the 100-epoch schedule. We use AdamW for all experiments. Figure 7 shows the results. From
the EDFs, which use a 50 epoch schedule, we see that the addition of BN and ReLU to the patchify
stem slightly worsens the best top-1 error but does not affect lr and wd stability (left). Replacing BN
with LN in the convolutional stem marginally degrades both best top-1 error and stability (middle).
The table (right) shows 100 epoch results using optimal lr and wd values chosen from the 50 epoch
runs. At 100 epochs the error gap is small indicating that these factors are likely insignificant.
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Figure 8: Deeper models: We increase the depth of ViTP -4GF from 12 to 48 blocks, termed as
ViTP -16GF (48 blocks), and create a counterpart with a convolutional stem, ViTC -16GF (47 blocks);
all models are trained for 50 epochs. Left: The convolutional stem significantly improves error and
stability despite accounting for only ∼2% total flops. Middle, Right: The deeper 16GF ViTs clearly
outperform the shallower 4GF models and achieve similar (slightly worse) error to the shallower and
wider 18GF models. The deeper ViTP also has better lr/wd stability than the shallower ViTP models.
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Figure 9: Complexity measures vs. runtime: We plot the GPU runtime of models versus three
commonly used complexity measures: parameters, flops, and activations. For all models, including
ViT, runtime is most correlated with activations, not flops, as was previously shown for CNNs [12].

Appendix B: Deeper Model Ablation Experiments

Touvron et al. [42] found that deeper ViT models are more unstable, e.g., increasing the number of
transformer blocks from 12 to 36 may cause a ∼10 point drop in top-1 accuracy given a fixed choice
of lr and wd. They demonstrate that stochastic depth and/or their proposed LayerScale can remedy
this training failure. Here, we explore deeper models by looking at EDFs created by sampling lr and
wd. We increase the depth of a ViTP -4GF model from 12 blocks to 48 blocks, termed ViTP -16GF
(48 blocks). We then remove one block and use the convolutional stem from ViTC-4GF, yielding a
counterpart ViTC -16GF (47 blocks) model. Figure 8 shows the EDFs of the two models and shallower
models for comparison, following the setup in §5.3. Despite the convolutional stem accounting for
only 1/48 (∼2%) total flops, it shows solid improvement over its patchify counterpart. We find that
a variety of lr and wd choices allow deeper ViT models to be trained without a large drop in top-1
performance and without additional modifications. In fact, the deeper ViTP -16GF (48 blocks) has
better lr and wd stability than ViTP -4GF and ViTP -18GF over the sampling range (Figure 8, middle).

Appendix C: Larger Model ImageNet-21k Experiments

In Table 2 we reported the peak performance of ViT models on ImageNet-21k up to 36GF. To study
larger models, we construct a 72GF ViTP by using 22 blocks, 1152 hidden size, 18 heads, and 4 MLP
multiplier. For ViTC-72GF, we use the same C-stem design used for ViTC-18GF and ViTC-36GF,
but without removing one transformer block since the flops increase from the C-stem is marginal in
this complexity regime.

Our preliminary explorations into 72GF ViT models directly adopted hyperparameters used for 36GF
ViT models. Under this setting, we observed that the convolutional stem still improves top-1 error,
however, we also found that a new form of instability arises, which causes training error to randomly
spike. Sometimes training may recover within the same epoch, and subsequently the final accuracy
is not impacted; or, it may take several epochs to recover from the error spike, and in this case we
observe suboptimal final accuracy. The first type of error spike is more common for ViTP -72GF,
while the latter type of error spike is more common for ViTC-72GF.



model AdamW SGD
lr wd lr wd

RegNetY-∗ 3.8e-3 0.1 2.54 2.4e-5
ViTP -1GF 2.0e-3 0.20 1.9 1.3e-5
ViTP -4GF 2.0e-3 0.20 1.9 1.3e-5
ViTP -18GF 1.0e-3 0.24 1.1 1.2e-5
ViTC -1GF 2.5e-3 0.19 1.9 1.3e-5
ViTC -4GF 1.0e-3 0.24 1.3 2.2e-5
ViTC -18GF 1.0e-3 0.24 1.1 2.7e-5

model AdamW
lr wd

ViT-∗ (2.5e−4, 8.0e−3) (0.02, 0.8)
RegNetY-∗ (1.25e−3, 4.0e−2) (0.0075, 0.24)

model SGD
lr wd

ViT-∗ (0.1, 3.2) (4.0e−6, 1.2e−4)
RegNetY-∗ (0.25, 8.0) (3.0e−6, 8.0e−5)

Table 4: Learning rate and weight decay used in §5: Left: Per-model lr and wd values used for the
experiments in §5.1 and §5.2, optimized for ImageNet-1k at 50 epochs. Right: Per-model lr and wd
ranges used for the experiments in §5.3. Note that for our final experiments in §6, we constrained the
lr and wd values further, using a single setting for all CNN models, and just two settings for all ViT
models. We recommend using this simplified set of values in §6 when comparing models for fair and
easily reproducible comparisons. All lr values are normalized w.r.t. a minibatch size of 2048 [16].

To mitigate this instability, we adopt two measures: (i) For both models, we lower wd from 0.28
to 0.15 as we found that it significantly reduces the chance of error spikes. (ii) For ViTC-72GF,
we initialize its stem from the ImageNet-21k pre-trained ViTC-36GF and keep it frozen throughout
training. These modifications make training ViT-72GF models on ImageNet-21k feasible. When fine-
tuned on ImageNet-1k, ViTP -72GF reaches 14.2% top-1 error and ViTC -72GF reaches 13.6% top-1
error, showing that ViTC still outperforms its ViTP counterpart. Increasing fine-tuning resolution
from 224 to 384 boosts the performance of ViTC-72GF to 12.6% top-1 error, while significantly
increasing the fine-tuning model complexity from 72GF to 224GF.

Appendix D: Model Complexity and Runtime

In previous sections, we reported error vs. training time. Other commonly used complexity measures
include parameters, flops, and activations. Indeed, it is most typical to report accuracy as a function
of model flops or parameters. However, flops may fail to reflect the bottleneck on modern memory-
bandwidth limited accelerators (e.g., GPUs, TPUs). Likewise, parameters are an even more unreliable
predictor of model runtime. Instead, activations have recently been shown to be a better proxy of
runtime on GPUs (see [12, 31]). We next explore if similar results hold for ViT models.

For CNNs, previous studies [12, 31] defined activations as the total size of all output tensors of the
convolutional layers, while disregarding normalization and non-linear layers (which are typically
paired with convolutions and would only change the activation count by a constant factor). In this
spirit, for transformers, we define activations as the size of output tensors of all matrix multiplications,
and likewise disregard element-wise layers and normalizations. For models that use both types of
operations, we simply measure the output size of all convolutional and vision transformer layers.

Figure 9 shows the runtime as a function of these model complexity measures. The Pearson correlation
coefficient (r) confirms that activations have a much stronger linear correlation with actual runtime
(r = 0.93) than flops (r = 0.75) or parameters (r = 0.71), confirming that the findings of [12] for
CNNs also apply to ViTs. While flops are somewhat predictive of runtime, models with a large ratio
of activations to flops, such as EfficientNet, have much higher runtime than expected based on flops.
Finally, we note that ViTP and ViTC are nearly identical on all complexity measures and runtime.

Timing. Throughout the paper we report normalized training time, as if the model were trained on
a single 8 V100 GPU server, by multiplying the actual training time by the number of GPUs used
and dividing by 8. (Due to different memory requirements of different models, we may be required
to scale up the number of GPUs to accommodate the target minibatch size.) We use the number of
minutes taken to process one ImageNet-1k epoch as a standard unit of measure. We prefer training
time over inference time because inference time depends heavily on the use case (e.g., a streaming,
latency-oriented setting requires a batch size of 1 vs. a throughput-oriented setting that allows for
batch size � 1) and the hardware platform (e.g., smartphone, accelerator, server CPU).
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1]

ViTP -4GF

Auto 3 3 3 3 23.2 20.5 -
Rand 3 3 3 3 3 3 25.4 20.7 -
Rand 3 3 3 3 3 24.9 20.5 -
Rand 3 3 3 3 23.6 20.4 -
Rand 3 3 3 23.5 20.3 -
Auto 3 3 3 23.0 20.3 -

ViTP -18GF

Auto 3 3 3 3 19.9 17.9 -
Rand 3 3 3 3 3 3 22.5 18.6 18.2
Rand 3 3 3 3 3 25.1 19.2 96.6
Rand 3 3 3 3 21.2 19.9 -
Rand 3 3 3 20.9 19.7 -
Auto 3 3 3 20.4 20.0 -
Rand 3 3 3 3 3 - - 22.6
Rand 3 3 3 3 3 - - 95.7
Rand 3 3 3 3 3 3 3 - - 18.1

Table 5: Ablation of data augmentation and regularization: We use the lr and wd from Table 4
(left), except for ViTP -18GF models with RandAugment which benefit from stronger wd (we increase
wd to 0.5). Original DeiT ablation results [41] are copied for reference in gray (last column); these
use a lr/wd of 1e−3/0.05 (lr normalized to minibatch size 2048), which leads to some training
failures (we note our wd is 5-10× higher). Our default training setup (first row in each set) uses
AutoAugment, mixup, CutMix, label smoothing, and model EMA. Compared to the DeiT setup
(second row in each set), we do not use erasing, stochastic depth, or repeating. Although our setup is
equally effective, it is simpler and also converges much faster (see Figure 10).

Appendix E: Additional Experimental Details

Stability experiments. For the experiments in §5.1 and §5.2, we allow each CNN and ViT model to
select a different lr and wd. We find that all CNNs select nearly identical values, so we normalize
them to a single choice as done in [12]. ViT models prefer somewhat more varied choices. Table 4
(left) lists the selected values. For the experiments in §5.3, we use lr and wd intervals shown in
Table 4 (right). These ranges are constructed by (i) obtaining initial good lr and wd choices for each
model family; and then (ii) multiplying them by 1/8 and 4.0 for left and right interval endpoints (we
use an asymmetric interval because models are trainable with smaller but not larger values). Finally
we note that if we were to redo the experiments, the setting used in §5.1/§5.2 could be simplified.

Peak performance on ImageNet-1k. We note that in later experiments we found tuning lr and wd
per model is not necessary to obtain competitive results. Therefore, for our final experiments in §6,
we constrained the lr and wd values further, using a single setting for all CNN models, and just two
settings for all ViT models, as discussed in §6. We recommend using this simplified set of values
when comparing models for fair and easily reproducible comparisons. Finally, for these experiments,
when training is memory constrained (i.e., for EfficientNet-{B4,B5}, RegNetZ-{4,16,32}GF), we
reduce the minibatch size from 2048 and linearly scale the lr according to [16].

Peak performance on ImageNet-21k. For ImageNet-21k, a dataset of 14M images and ∼21k
classes, we pretrain models for 90 (ImageNet-21k) epochs, following [13]. We do not search for the
optimal settings for ImageNet-21k and instead use the identical training recipe (up to minibatch size)
used for ImageNet-1k. To reduce training time, we distribute training over more GPUs and use a
larger minibatch size of 4096 with the lr scaled accordingly. For simplicity and reproducibility, we
use a single label per image, unlike some prior work (e.g., [35, 40]) that uses WordNet [28] to expand
single labels to multiple labels. After pretraining, we fine-tune for 20 epochs on ImageNet-1k and
use a small-scale grid search of lr while keeping wd at 0, similar to [13, 40].

Appendix F: Regularization and Data Augmentation

At this study’s outset, we developed a simplified training setup for ViT models. Our goals were to
design a training setup that is as simple as possible, resembles the setup used for state-of-the-art
CNNs [12], and maintains competitive accuracy with DeiT [41]. Here, we document this exploration
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Figure 10: Impact of training recipes on convergence: We train ViT models using the DeiT recipe
vs. our simplified counterpart. Left and middle: ∆top-1 error of 4GF and 18GF models at 50, 100
and 200 epoch schedules, and asymptotic performance at 400 epochs. Right: Absolute top-1 error of
18GF models. Removing augmentations and using model EMA accelerates convergence for both
ViTP and ViTC models while slightly improving upon our reproduction of DeiT’s top-1 error.
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Figure 11: ImageNet-V2 performance: We take the models from Table 2 and benchmark them on the
ImageNet-V2 test set. Top-1 errors are plotted for the original (OG) ImageNet validation set (x-axis)
and the ImageNet-V2 test set (y-axis). Rankings are mostly preserved up to one standard deviation of
noise (estimated at ∼0.1-0.2%) and the two testing sets exhibit linear correlation (Pearson’s r = 0.99).
Marker size corresponds to model flops.

by considering the baseline ViTP -4GF and ViTP -18GF models. Beyond simplification, we also
observe that our training setup yields faster convergence than the DeiT setup, as discussed below.

Table 5 compares our setup to that of DeiT [41]. Under their lr/wd choice, [41] report failed
training when removing erasing and stochastic depth, as well as significant drop of accuracy when
removing repeating. We find that they can be safely disabled as long as a higher wd is used (our wd
is 5-10× higher). We observe that we can remove model EMA for ViTP -4GF, but that it is essential
for the larger ViTP -18GF model, especially at 400 epochs. Without model EMA, ViTP -18GF can
still be trained effectively, but this requires additional augmentation and regularization (as in DeiT).

Figure 10 shows that our training setup accelerates convergence for both ViTP and ViTC models, as
can be seen by comparing the error deltas (∆top-1) between the DeiT baseline and ours (left and
middle plots). Our training setup also yields slightly better top-1 error than our reproduction of DeiT
(right plot). We conjecture that faster convergence is due to removing repeating augmentation [1, 20],
which was shown in [1] to slow convergence. Under some conditions repeating augmentation may
improve accuracy, however we did not observe such improvements in our experiments.

Appendix G: ImageNet-V2 Evaluation

In the main paper and previous appendix sections we benchmarked all models on the original (OG)
ImageNet validation set [10]. Here we benchmark our models on the ImageNet-V2 [33], a new test
set collected following the original procedure. We take the 400-epoch or ImageNet-21k models from
Table 2, depending on which one is better, and evaluate them on ImageNet-V2 to collect top-1 errors.
Figure 11 shows that rankings are mostly preserved up to one standard deviation of noise (estimated
at ∼0.1-0.2%). The two testing sets exhibit linear correlation, as confirmed by the Pearson correlation
coefficient r = 0.99, despite ImageNet-V2 results showing higher absolute error. The parameters of
the fit line are given by y = 1.31x+ 5.0.




