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A More explanation on the training of COMET

The training loss of COMET is

L =
∥∥∥ṡ− ˆ̇s

∥∥∥2 + w1

∥∥∥ṡ0 − ˆ̇s
∥∥∥2 + w2

nc∑
i=1

∥∇ci · ṡ0∥2 . (1)

With the terms above, it seems that the deep learning could cheat the training either by: (1) making
all ci to be constants or (2) getting ∇ci terms to be linearly dependent to each other, thus discovering
fewer constants of motion than intended. However, in practice, we did not find both effects in the
training. In fact, COMET training tends to find the constants of motion such that ∇ci are all linearly
independent although there is no explicit term to encourage linear-dependency of ∇ci in the loss
function.

This is due to the involvement of QR decomposition in computing the term ṡ. For a QR decomposition
of a matrix A, i.e. Q,R = QR(A), the gradient of Ā = ∂L/∂A is

Ā =
[
Q̄+Qcopyltu(M)

]
R−T , (2)

where M = RR̄T − Q̄TQ and copyltu(·) is the operation to copy the lower triangular elements to
the upper triangular of the matrix. If the matrix A contains almost linearly dependent columns, the
matrix R will be ill-conditioned. As the gradient above involves the inverse term of R, the almost
linearly dependent columns of A will produce very high gradient in Ā. This will make it harder to
get the columns of matrix A (and therefore ∇ci) to be completely linearly dependent as it has to go
through the region where the gradient is very high.

As the training of COMET tends to find independent constants of motion, setting the number of
constants of motion higher than it should be would make the training fail. This is what we exploit in
section 6 to give us the indication of the true number of constants of motion.

The last term in the loss function of COMET does not need the information from the dataset.
Moreover, we would like the constraints to be fulfilled for the states outside the ones listed in the
training dataset. Therefore, when training our COMET, the last term of the loss function is calculated
using the states from the training plus some noise, i.e.

L =
∥∥∥ṡ(s)− ˆ̇s

∥∥∥2 + w1

∥∥∥ṡ0(s)− ˆ̇s
∥∥∥2 + w2

nc∑
i=1

∥∇ci(s+ s̃) · ṡ0(s+ s̃)∥2 , (3)

where s̃ ∼ N (0;σ2I) is the Gaussian noise with standard deviation σ = 0.1.

B Experiment details

This section contains the experiment details for cases tested in section 4. In section 4, there are 6
simple experiments performed to demonstrate the capability of COMET: (1) mass-spring, (2) 2D
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pendulum, (3) damped pendulum, (4) two body, (5) nonlinear spring, and (6) Lotka-Volterra. The
cases were selected to represent a wide variety of cases.

For each case, 100 simulations with random initial conditions were generated with 100 sampled time
points each from t = 0 to t = 10. The dataset is split to 70% for training, 10% for validation, and
20% for test. The training was performed with batch size of 32 using a neural network with 3 hidden
layers of 250 elements each using logsigmoid as the activation function to get infinitely differentiable
function. There are ns inputs to the neural network with ns + nc outputs. The first ns elements are
assigned to the initial guess, ṡ0, while the next nc elements are assigned to the constants of motion, c.
The training procedures were performed using Adam optimizer [1] with the learning rate 3× 10−4

until 1,000 epochs, which takes about an hour with an NVIDIA T4 GPU. The regularization weights
are w1 = w2 = 1.0.

The description for each simulation case can be found below.

Case 1: Frictionless mass and spring. This is the simplest case to test COMET’s capability where
an object of mass m = 1 is connected to a stationary point by a spring with constant k = 1. The
states of this system is s = (x, ẋ)T where x is the displacement of the object from its equilibrium
position and ẋ is the velocity of the object. The training data was generated by randomly initializing
the position and velocity with a uniform random distribution between (−0.5, 0.5). In this case, there
is only one independent constant of motion which is energy, E = (x2 + ẋ2)/2.

Case 2: 2D Pendulum. The second case is a 2D pendulum of length l = 1 and mass m = 1 with an
influence of gravity g = 1. The observed states in this case are the pendulum’s x and y coordinate
from the pivot as well as its velocity in x and y coordinate, i.e. s = (x, y, ẋ, ẏ)T , making it redundant.
The training data were generated by randomly initializing the angle and angular velocity with uniform
distribution in the range (−1.0, 1.0). There are three independent constants of motion in this case,
(1) energy: E = (ẋ2 + ẏ2)/2 + y, (2) length: x2 + y2 = 1, and (3) angle: xẋ+ yẏ = 0.

Case 3: 2D damped pendulum. This case is similar to the previous case, except that we introduced
the damping force proportional to the velocity with damping coefficient α = 1, making it an under-
damped system. The training data were generated in a similar way as the previous case. As the energy
is not conserved, only the second and third constants of motion from the previous case are valid.

Case 4: Two body interactions. We considered a case where two bodies of the same masses m = 1
are interacting with gravitational force with constant G = 1 and rotating around their centre of mass.
The training data were generated by initializing it with a distance randomly chosen between (1.0, 3.0)
with perpendicular velocity between 0.7v0 to 1.0v0 where v0 is the velocity to make the orbits circular.
As the motion is planar, we only considered their motion on a 2D plane. Therefore, there are 8 state
variables, s = (x1, y1, x2, y2, ẋ1, ẏ1, ẋ2, ẏ2)

T . As the two-body motion is well-known to be fully
integrable, the number of constants of motion is ns − 1, which equals to 7. Among them are: total
energy, total angular momentum, and total x and y momentum.

Case 5: 2D nonlinear spring. We consider a case of a motion of an object of mass m = 1 in 2D
where it is connected to the origin with a nonlinear spring with force F = −|r|2r where r is the
position of the object in 2D coordinate. The states in this case is s = (x, y, ẋ, ẏ)T . The dataset
was generated by starting the simulation with randomly selected states between (−1.0, 1.0) for all
positions and velocities. The constants of motion of this systems are the energy and the angular
momentum, which makes nc = 2.

Case 6: Lotka-Volterra equation is an ordinary differential equation modelling the population of
predator and prey. It is known to have a symplectic structure [2], therefore it has a constant of motion.
We consider the equations ẋ = x − xy and ẏ = −y + xy where x and y represent the prey and
predator populations respectively. There are only 2 states here, s = (x, y)T with nc = 1. The initial
values of x and y are sampled randomly from uniform distribution within (0.5, 2.0). As there is no
time derivative variable in the states, it does not make sense to apply LNN for this case.

B.1 Learning from pixels

In the learning from pixels in section 7, we generated the data using the dynamics of the two-body
case described above. Each image was generated based on the location of the two-body in the
simulation.
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The neural networks consist of encoder, decoder, and the dynamics learner. The encoder and decoder
are multi-layer perceptron (MLP) with 3 hidden layers where there are 256 hidden elements each.
Each linear layer in the encoder and decoder is followed by log-sigmoid activation function, except
for the last layer. Following [3], the weights in the MLP were initialized to be orthogonal. For the
dynamics learner, we use the different architectures based on each tested method. The details of the
architecture can be found in appendix C.

The training loss in this case was composed of the reconstruction loss and the dynamics loss. As
opposed to [3], we do not have an auxiliary loss to force half of the states to be derivatives of the
other half. If the image pixels are contained in a vector p, the loss can be written as

L = ∥λfdec (fenc (p))− p∥2 + Ldyn (4)

where fdec(·) and fenc(·) are the decoder and encoder functions, respectively, λ is the relative weight
of the reconstruction loss, and Ldyn is the dynamics loss. The dynamics loss for COMET follows the
equation (5). Following the work in [3], we use λ = 10.

C Neural network architectures

In this section, we will explain in more detail about the architecture of the tested methods in section 4
as well as in section 5 in incorporating external forces. We use the same notations as in section 5,
where the state is s ∈ Rns , its time derivative is ṡ ∈ Rns , the external force is x ∈ Rnx , ns is the
number of states, and nx is the number of external forces.

The neural networks for all methods tested here (including COMET) consists of 3 hidden layers with
250 elements each with logsigmoid activation function. The activation function is only applied to
the hidden layers, but not applied to the output layer. However, the number of inputs and outputs
might be different, depending on the needs of each method. The neural network architecture above is
chosen to produce good training results for all methods.

C.1 Neural ODE

With neural ODE [4], the states’ time derivative is directly represented by a neural network that takes
the states, s, as its input, i.e.

ṡ = fNODE(s). (5)
The neural network takes ns inputs, produces ns outputs, with hidden layers and the activation
function follow the description above.

If external forces, x, exist, the neural network is modified to take x as the input as well, i.e.

ṡ = gNODE(s,x). (6)

In this case, the neural network architecture stays the same, but with concatenated s and x as its input,
therefore taking ns + nx inputs.

C.2 Hamiltonian neural network (HNN)

HNN [3] was implemented by having a neural network takes ns input for s and 1 output for the
predicted Hamiltonian, H ,

H = fHNN (s). (7)
For cases with canonical coordinate, the first half of the states represents the position while the last
half of the states represents the canonical momentum. The time derivative of states is calculated by

ṡ =

(
0 I
−I 0

)
∂H

∂s
(8)

The hidden layers and the activation function of the neural network follow the implementation in
other cases.

If there are external forces, then the neural network is modified to take the concatenated s and x as its
input, i.e.

H = gHNN (s,x). (9)
The time derivative of states is still calculated according to equation 8.
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C.3 Neural Symplectic Form (NSF)

NSF [3] was implemented by having 2 neural networks where both take the states s as the input. One
neural network produces one output, H , that represents the Hamiltonian, and the other one produces
ns outputs, Y, for its skew-symmetric matrix. Mathematically, it can be written as

H = fNSF1(s) (10)
Y = fNSF2(s). (11)

Both neural networks have 3 hidden layers with 250 elements each with logsigmoid as their activation
function. This follows the neural network implementation in other cases. Combining both functions
above into a single neural network produces worse training results than having two neural networks.
The time derivative of the states is obtained by calculating

ṡ =

[
∂Y

∂s
−

(
∂Y

∂s

)T
]−1

∂H

∂s
. (12)

Similar to the other methods with external force, the neural networks are modified to take the
concatenated s and x as their inputs, i.e.

H = gNSF1(s,x) (13)
Y = gNSF2(s,x). (14)

The time derivative of the states is still calculated according to equation 12 above.

C.4 Lagrangian neural network (LNN)

The neural network in LNN [5] takes ns inputs (for s) and produces 1 output for the predicted
Lagrangian, L,

L = fLNN (s). (15)

For cases with position and velocity as the states, the states are arranged so that the first half of the
states is the position and the last half is the velocity, i.e. s =

(
qT , q̇T

)T
. The time derivative of the

states is given by ṡ =
(
q̇T , q̈T

)T
where the acceleration q̈ is calculated by

q̈ =

(
∂2L

∂q̇∂q̇

)−1 [(
∂L

∂q

)
−

(
∂2L

∂q∂q̇

)
q̇

]
. (16)

With external force, the neural network takes the concatenated s and x as its input,

L = gLNN (s,x), (17)

where the acceleration still following the equation 16 above.

D Additional experimental results

D.1 Partial number of constants of motion

Although the number of constants of motion can be found with the procedure in section 6, it can
produce a number lower than the true number of constants of motion. Therefore, it is interesting
to see the effect of setting lower number of constants of motion to COMET’s predictions accuracy.
Table 1 shows the error range of the COMET’s predictions with varying number of constants of
motion.

From the table, it can be seen that setting the number of constants of motion at least 1 could give
better worst case predictions than at least one of the other tested methods (NODE, HNN, LNN, and
NSF) in most cases. Increasing the number of constants of motion also decreases the 95th percentile
bound of the prediction error, which means that it can keep the stability of the trajectory better as the
number of constants of motion increases.
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Number of coms 2D pendulum damped pendulum two body nonlinear spring

1 0 .69+7 .8
−0 .60 0 .019+0 .031

−0 .009 0.79+3000
−0.33 0 .37+0 .52

−0 .31

2 1 .3+1 .6
−1 .1 0.007+0.014

−0.005 0.64+0.36
−0.39 0.23+0.40

−0.18

Full 0 .18+0 .17
−0 .14 0.007+0.014

−0.005 0.42+0.48
−0.39 0.23+0.40

−0.18

Table 1: Root mean squared error of 100 randomly initialized simulations for COMET with varying
number of constants of motion. The main number is the median while the range represents the 95%
percentile (i.e. lower and upper bounds are 2.5% and 97.5% percentiles, respectively). The bolded
values are the ones that give the better upper bound compared to all other non-COMET methods
tested in this paper (NODE, HNN, LNN, and NSF), while the italic values are the ones that give the
better upper bound than at least one of other non-COMET methods. “Full” means that it uses the true
number of constants of motion described in section B. Some cases are excluded because they only
have 1 constant of motion.
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