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ABSTRACT

Generalized principal-agent problems, including Stackelberg games, contract de-
sign, and Bayesian persuasion, are a class of economic problems where an agent
best responds to a principal’s committed strategy. We study repeated generalized
principal-agent problems under the assumption that the principal does not have
commitment power and the agent uses algorithms to learn to respond to the prin-
cipal. We reduce this problem to a one-shot generalized principal-agent problem
where the agent approximately best responds. Using this reduction, we show that:
(1) if the agent uses contextual no-regret learning algorithms with regret Reg(T ),

then the principal can guarantee utility at least U∗−Θ
(√Reg(T )

T

)
, where U∗ is the

principal’s optimal utility in the classic model with a best-responding agent. (2)
If the agent uses contextual no-swap-regret learning algorithms with swap-regret
SReg(T ), then the principal cannot obtain utility more than U∗ + O(SReg(T)

T ).
But (3) if the agent uses mean-based learning algorithms (which can be no-regret
but not no-swap-regret), then the principal can sometimes do significantly better
than U∗. These results not only refine previous results in Stackelberg games and
contract design, but also lead to new results for Bayesian persuasion with a learn-
ing agent and all generalized principal-agent problems where the agent does not
have private information.

1 INTRODUCTION

Classic economic models of principal-agent interactions, including auction design, contract design,
and Bayesian persuasion, often assume that the agent is able to best respond to the strategy com-
mitted by the principal. For example, in Bayesian persuasion, the agent (receiver) needs to compute
the posterior belief about the state of the world after receiving some information from the principal
(sender) and take an optimal action based on the posterior belief; this requires the receiver accurately
knowing the prior of the state as well as the signaling scheme used by the sender. In contract design,
where a principal specifies an outcome-dependent payment scheme to incentivize the agent to take
certain actions, the agent has to know the action-dependent outcome distribution in order to best
respond to the contract. Requiring strong rationality assumptions, the best-responding behavior is
often observed to be violated in practice (Camerer, 1998; Benjamin, 2019).

In this work, using Bayesian persuasion as the main example, we study general principal-agent
problems under an alternative behavioral model for the agent: learning. The use of learning as
a behavioral model dates back to early economic literature on learning in games (Brown, 1951;
Fudenberg & Levine, 1998) and has been actively studied by computer scientists in recent years
(e.g., Nekipelov et al. (2015); Braverman et al. (2018); Deng et al. (2019); Mansour et al. (2022);
Cai et al. (2024); Guruganesh et al. (2024)). A learning agent no longer has perfect knowledge of
the parameter of the game or the principal’s strategy. Instead of best responding, which is no longer
possible or well-defined, the agent chooses his action based on past interactions with the principal.
We focus on no-regret learning, which requires the agent to not suffer a large average regret at the
end of repeated interactions with the principal, for not taking the optimal action at hindsight. This
is a mild requirement satisfied by many natural learning algorithms (e.g., ε-greedy, MWU, UCB,
EXP-3) and can reasonably serve as a possible behavioral assumption for real-world agents.
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Can the principal achieve a better outcome with a learning agent than with a best-responding agent?
Previous works (Deng et al., 2019; Guruganesh et al., 2024) have shown that, in Stackelberg games
and contract design, the leader/principal can obtain utility U∗ − o(1) against a no-regret learning
follower/agent, where U∗ is the Stackelberg value, defined to be the principal’s optimal utility in
the classic model with a best-responding agent. On the other hand, if the agent does a stronger
version of no-regret learning, called no-swap-regret learning (Hart & Mas-Colell, 2000; Blum &
Mansour, 2007), then the principal cannot obtain utility more than the Stackelberg value U∗ + o(1).
Interestingly, the conclusion that no-swap-regret learning can cap the principal’s utility at U∗+o(1)
does not hold when the agent has private information, such as in auctions (Braverman et al., 2018)
and Bayesian Stackelberg games (Mansour et al., 2022): the principal can sometimes exploit a no-
swap-regret learning agent with private information to do much better than U∗ in those games.

Three natural questions then arise: (1) What is the largest class of principal-agent problems under
which the agent’s no-swap-regret learning can cap the principal’s utility at the Stackelberg value
U∗ + o(1)? (2) In cases where the principal’s optimal utility against a learning agent is bounded
by [U∗ − o(1), U∗ + o(1)], what is the exact magnitude of the o(1) terms? (3) Instead of analyzing
games like Stackelberg games and contract design separately, can we analyze all principal-agent
problems with learning agents in a unified way?

Our contributions. Our work defines a general model of principal-agent problems with a learning
agent, answering all questions (1) - (3). For (1), we show that the principal’s utility is bounded
around U∗ in all generalized principal-agent problems where the agent does not have private infor-
mation but the principal can be privately informed. In particular, this includes complete-information
games like Stackelberg games and contract design, as well as Bayesian persuasion where the
sender/principal privately observes the state of the world.

For (2) and (3), we provide a unified analytical framework to derive tight bounds on the principal’s
achievable utility against a no-regret or no-swap-regret learning agent in all generalized principal-
agent problems where the agent does not have private information. Specifically, we explicitly char-
acterize the o(1) difference between the principal’s utility and U∗ in terms of the agent’s regret.

Result 1 (from Theorems 3.1, 4.1, 4.2). Against a no-regret learning agent with regret Reg(T ) in

T periods, the principal can obtain an average utility of at least U∗ −O
(√Reg(T )

T

)
.

Result 2 (from Theorems 3.4, 4.1, 4.2). Against a no-swap-regret learning agent with swap-regret
SReg(T ) in T periods, the principal cannot obtain average utility larger than U∗ +O

(SReg(T )
T

)
.

Interestingly, the squared root bound U∗ − O
(√Reg(T )

T

)
in Result 1 and the linear bound U∗ +

O
(SReg(T )

T

)
in Result 2 are not symmetric. We show that such an asymmetry is intrinsic: there exist

cases where the principal cannot achieve better than U∗ −O
(√Reg(T )

T

)
utility.

Result 3 (from Theorem 3.3 and Example 4.1). There is a Bayesian persuasion instance where, for
any strategy of the principal, there is a no-swap-regret learning algorithm for the agent under which

the principal’s utility is at most U∗ − Ω
(√SReg(T )

T

)
. The same holds for no-regret algorithms.

Results 1, 2, 3 together characterize the range of utility achievable by the principal against a no-

swap-regret learning agent: [U∗ − Θ(
√

SReg(T )
T ), U∗ + O(SReg(T )

T )]. For no-regret but not neces-

sarily no-swap-regret algorithms, the upper bound U∗ +O(Reg(T )
T ) does not hold:

Result 4 (Theorem 3.5). We construct a Bayesian persuasion instance where, against a no-regret
but not no-swap-regret learning agent (in particular, mean-based learning agent), the principal can
do significantly better than the Stackelberg value U∗.

In summary, our Results 1, 2, 3 not only refine previous works on playing against learning agents in
specific games by characterizing the principal’s utility exactly, but also generalize to all principal-
agent problems where the agent does not have private information. In particular, when applied
to Bayesian persuasion, our results imply that the sender cannot exploit a no-swap-regret learning
receiver even if the sender possesses informational advantage over the receiver.
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Some intuition. What is the intuition behind the asymmetry between the worst-case utility

U∗ −Θ(
√

SReg(T )
T ) and the best-case utility U∗ +O(SReg(T )

T ) that the principal can obtain against
a no-swap-regret learning agent? At a high level, a no-swap-regret learning agent is approximately
best responding to the principal’s average strategy over all T periods, with the degree of approxi-
mate best response measured by the average regret SReg(T )

T = δ. However, because no-swap-regret
learning algorithms are randomized, they correspond to randomized approximately best responding
strategies of the agent that are worse than the best responding strategy by a margin of δ in expecta-
tion. This means that the agent might take

√
δ-sub-optimal actions with probability

√
δ, which can

cause a loss of 1 to the principal’s utility with probability
√
δ. So, the principal’s expected utility can

be decreased to U∗−Ω(
√
δ) = U∗−Ω(

√
SReg(T )

T ) in the worst case. On the other hand, when con-
sidering the principal’s best-case utility, we care about the δ-approximately-best-responding strategy
of the agent that maximizes the principal’s utility. That strategy turns out to be equivalent to a deter-
ministic strategy that gives the principal a utility of at most U∗ + O(δ) = U∗ + O(SReg(T )

T ). This
explains the asymmetry between the worst-case and best-case bounds.

2 GENERALIZED PRINCIPAL-AGENT PROBLEM WITH A LEARNING AGENT

This section defines our model, generalized principal-agent problem with a learning agent. This
model includes Stackelberg games, contract design, and Bayesian persuasion with learning agents.

2.1 GENERALIZED PRINCIPAL-AGENT PROBLEM

Generalized principal-agent problem, proposed by Myerson (1982); Gan et al. (2024), is a general
model that includes auction design, contract design, Stackelberg games, and Bayesian persuasion.
While Myerson (1982) and Gan et al. (2024) allow the agent to have private information, our model
assumes an agent with no private information. There are two players in a generalized principal-agent
problem: a principal and an agent. The principal has a convex, compact decision space X and the
agent has a finite action set A. The principal and the agent have utility functions u, v : X ×A → R.
We assume that u(x, a), v(x, a) are linear in x ∈ X , which is satisfied by all the examples of gener-
alized principal-agent problems we will consider (Bayesian persuasion, Stackelberg games, contract
design). There is a signal/message set S. Signals are usually interpreted as recommendations of
actions for the agent, where S = A, but we allow any signal set of size |S| ≥ |A|. A strategy of the
principal is a distribution π ∈ ∆(X×S) over pairs of decision and signal. When the utility functions
u, v are linear, it is without loss of generality to assume that the principal does not randomize over
multiple decisions for one signal (Gan et al., 2024), namely, the principal chooses a distribution over
signals and a unique decision xs associated with each signal s ∈ S. So, we can write a principal
strategy as π = {(πs, xs)}s∈S where πs ≥ 0 is the probability of signal s ∈ S,

∑
s∈S πs = 1, and

xs ∈ X . There are two variants of generalized principal-agent problems:

• Unconstrained (Myerson, 1982): there is no restriction on the principal’s strategy π.
• Constrained (Gan et al., 2024): the principal’s strategy π has to satisfy constraint∑

s∈S πsxs ∈ C where C ⊆ X is some convex set.

Unconstrained generalized principal-agent problems include contract design and Stackelberg games.
Constrained generalized principal-agent problems include Bayesian persuasion (see Section 2.3).

In a one-shot generalized principal-agent problem where the principal has commitment power, the
principal first commits to a strategy π = {(πs, xs)}s∈S , then nature draws a signal s ∈ S accord-
ing to the distribution {πs}s∈S and sends s to the agent (note: due to the commitment assump-
tion, this is equivalent to revealing the pair (s, xs) to the agent), then the agent takes an action
as ∈ argmaxa∈A v(xs, a) that maximizes its utility, and the principal obtains utility u(xs, as). The
principal aims to maximize its expected utility Es∼π[u(xs, as)] by choosing the strategy π.

2.2 LEARNING AGENT

Now we define the model of generalized principal-agent problem with a learning agent. The game is
repeated for T rounds. Unlike the static model above, the principal here does not commit. The agent
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does not know the strategy πt or the decision xt of the principal at each round. Instead, the agent
uses some adaptive algorithm to learn which action to take in response to each possible signal.

Generalized Principal-Agent Problem with a Learning Agent
In each round t = 1, . . . , T :

(1) Using some algorithm that learns from history (including signals, actions, and utility feedback
in the past, described in details later), the agent chooses a strategy ρt : S → ∆(A) that maps
each possible signal s ∈ S to a distribution over actions ρt(s) ∈ ∆(A).

(2) The principal chooses a strategy πt = {(πt
s, x

t
s)}s∈S , which is a distribution over signals S

and a decision xt
s ∈ X associated with each signal.

(3) Nature draws signal st ∼ πt and reveals it. The principal makes decision xt = xt
st . The

agent draws action at ∼ ρt(st).
(4) The principal and the agent obtain utility ut = u(xt, at) and vt = v(xt, at). The agent

observes some feedback (e.g., vt(xt, at) or xt).

We assume that the principal knows the utility functions u and v, has some knowledge about the
agent’s learning algorithm, and aims to maximize the expected average utility 1

T E
[∑T

t=1 u(x
t, at)

]
.

Agent’s learning problem. The agent’s learning problem can be regarded as a contextual multi-
armed bandit problem (Tyler Lu et al., 2010) where A is the set of arms, and a signal st ∈ S serves
as a context that affects the utility of each arm a ∈ A. The agent picks an arm to pull based on the
current context st and the historical information about each arm under different contexts, adjusting
its strategy over time based on the feedback collected after each round.

What feedback can the agent observe after each round? One may assume that the agent sees the
principal’s decision xt after each round (this is call full-information feedback in the multi-armed
bandit literature), or the utility vt = v(xt, at) obtained in that round (this is called bandit feedback),
or some unbiased estimate of v(xt, at). We do not make specific assumptions on the feedback. All
we need is that the feedback is sufficient for the agent to achieve contextual no-regret or contextual
no-swap-regret, which are defined below:
Definition 2.1. The agent’s learning algorithm is said to satisfy:

• contextual no-regret if: there is a function CReg(T ) = o(T ) such that, for any strategy of the
principal, for any deviation function d : S → A, the regret of the agent not deviating according
to d is at most CReg(T ): E

[∑T
t=1

(
v(xt, d(st))− v(xt, at)

)]
≤ CReg(T ).

• contextual no-swap-regret if: there is a function CSReg(T ) = o(T ) such that, for any strategy of
the principal, for any deviation function d : S ×A → A, the regret of the receiver not deviating
according to d is at most CSReg(T ): E

[∑T
t=1

(
v(xt, d(st, at))− v(xt, at)

)]
≤ CSReg(T ).

We call CReg(T ) and CSReg(T ) the contextual regret and contextual swap-regret of the agent.

Contextual no-regret is implied by contextual no-swap-regret because the latter has a larger set of
deviation functions. Contextual no-(swap-)regret algorithms with O(|A|

√
|S|T ) contextual (swap-

)regret are known to exist under bandit feedback. In fact, they can be easily constructed by running
an ordinary no-(swap-)regret algorithm for each context independently. See Appendix B for details.

2.3 SPECIAL CASE: BAYESIAN PERSUASION WITH A LEARNING AGENT

We show that Bayesian persuasion (Kamenica & Gentzkow, 2011) is a special case of constrained
generalized principal-agent problems. We will also show that Bayesian persuasion is in fact equiva-
lent to cheap talk (Crawford & Sobel, 1982) under our learning agent model.

Bayesian persuasion as a generalized principal-agent problem. There are two players in
Bayesian persuasion: a sender (principal) and a receiver (agent). There are a finite set Ω of states
of the world, a signal set S, an action set A, a prior distribution µ0 ∈ ∆(Ω) over the states, and
utility functions u, v : Ω×A → R for the sender and the receiver. When the state is ω ∈ Ω and the
receiver takes action a ∈ A, the sender and the receiver obtain utility u(ω, a), v(ω, a), respectively.
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Both players know µ0, but only the sender has access to the realized state ω ∼ µ0. The sender
commits to some signaling scheme π : Ω → ∆(S), mapping any state to a probability distribution
over signals, to partially reveal information about the state w to the receiver. In the classic model,
after receiving a signal s ∈ S, the receiver will form the posterior belief µs ∈ ∆(Ω) about the state:
µs(ω) =

µ0(ω)π(s|ω)
πs

, where πs =
∑

ω∈Ω µ0(ω)π(s|ω) is the total probability that signal s is sent,
and take an optimal action with respect to µs, i.e., as ∈ argmaxa∈A

∑
ω∈Ω µs(ω)v(ω, a). The

sender aims to find a signaling scheme to maximizde its expected utility E[u(ω, as)].

It is well-known (Kamenica & Gentzkow, 2011) that a signaling scheme π : Ω → ∆(S) decomposes
the prior µ0 into a distribution over posteriors whose average is equal to the prior µ0:∑

s∈S

πsµs = µ0 ∈ {µ0} =: C,
∑
s∈S

πs = 1. (1)

Equation (1) is called the Bayes plausibility condition. Conversely, any distribution over posteriors
{(ps, µs)}s∈S satisfying Bayes plausibility

∑
s∈S psµs = µ0 can be converted into a signaling

scheme that sends signal s with probability ps. Thus, we can use a distribution over posteriors
{(πs, µs)}s∈S satisfying Bayes plausibility to represent a signaling scheme. Then, let’s equate the
posterior belief µs in Bayesian persuasion to the principal’s decision xs in the generalized principal-
agent problem, so the principal/sender’s decision space becomes X = ∆(Ω). The Bayes plausibility
condition (1) becomes the constraint in the constrained generalized principal-agent problem. When
the agent/receiver takes action a, the principal/sender’s (expected) utility under decision/posterior
xs = µs is u(xs, a) = Eω∼µsu(ω, a) =

∑
ω∈Ω µs(ω)u(ω, a). Suppose the agent takes action as

given signal s ∈ S. Then we see that the sender’s utility of using signaling scheme π in Bayesian
persuasion (left) is equal to the principal’s utility of using strategy π in the generalized principal-
agent problem (right):∑
ω∈Ω

µ0(ω)
∑
s∈S

π(s|ω)u(ω, as) =
∑
s∈S

πs

∑
ω∈Ω

µs(ω)u(ω, as) =
∑
s∈S

πsu(xs, as) = Es∼π[u(xs, a)].

Similarly, the agent/receiver’s utilities in the two problems are equal. The utility functions u(x, a),
v(x, a) are linear in the principal’s decision x ∈ X , satisfying our assumption.

Persuasion (or cheap talk) with a learning agent When specialized to Bayesian persuasion, the
generalized principal-agent problem with a learning agent becomes the following:

Persuasion (or Cheap Talk) with a Learning Receiver
In each round t = 1, . . . , T , the following events happen:

(1) Using some algorithm that learns from history, the receiver chooses a strategy ρt : S → ∆(A)
that maps each signal s ∈ S to a distribution over actions ρt(s) ∈ ∆(A).

(2) The sender chooses a signaling scheme πt : Ω → ∆(S).
(3) A state of the world ωt ∼ µ0 is realized, observed by the sender but not the receiver. The

sender sends signal st ∼ πt(ωt) to the receiver. The receiver draws action at ∼ ρt(s).
(4) The sender obtains utility ut = u(ωt, at) and the receiver obtains utility vt = v(ωt, at).a

aThe definition of utility here, u(ωt, at), v(ωt, at), is different from the definition in the general model,
which was the expected utility on decision/posterior xt, u(xt, at), v(xt, at). Because we only care about the
sender’s expected utility and the receiver’s expected regret, this difference does not matter.

In the above model, the receiver does not need to know the prior µ0 or the sender’s signaling scheme
because his multi-armed bandit learning algorithm does not need such information. This makes
the receiver’s and the sender’s decisions simultaneous, which corresponds to the cheap talk model
(Crawford & Sobel, 1982) where the sender does commit to the signaling scheme. So, our “persua-
sion with a learning receiver” model is equivalent to “cheap talk with a learning receiver”.

3 REDUCTION FROM LEARNING TO APPROXIMATE BEST RESPONSE

In this section, we reduce the generalized principal-agent problem with a learning agent to the
problem with an approximately-best-responding agent. We show that, if the agent uses contex-
tual no-regret learning algorithms, then the principal can obtain an average utility that is at least the
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“maxmin” approximate-best-response objective OBJR
(
CReg(T )/T

)
(to be defined below). On

the other hand, if the agent does contextual no-swap-regret learning, then the principal cannot do
better than the “maxmax” approximate-best-response objective OBJ

R(
CSReg(T )/T

)
. In addition,

if the agent uses some learning algorithms that are no-regret but not no-swap-regret, the principal
can sometimes do better than the “maxmax” objective OBJ

R(
CSReg(T )/T

)
.

3.1 GENERALIZED PRINCIPAL-AGENT PROBLEM WITH APPROXIMATE BEST RESPONSE

We first define the generalized principal-agent problem with an approximately-best-responding
agent. The classic generalized principal-agent problem (Section 2.1) assumes that, after receiv-
ing a signal s ∈ S (and observing the principal’s decision xs ∈ X ), the agent will take an optimal
action with respect to xs. This means that the agent uses a strategy ρ∗ that best responds to the
principal’s strategy π:

ρ∗(s) ∈ argmax
a∈A

v(xs, a), ∀s ∈ S =⇒ ρ∗ ∈ argmax
ρ:S→∆(A)

V (π, ρ). (2)

Here, V (π, ρ) =
∑

s∈S πs

∑
a∈A ρ(a|s)v(xs, a) denotes the expected utility of the agent when the

principal uses strategy π and the agent uses (randomized) strategy ρ : S → ∆(A).

Here, we allow the agent to approximately best respond. Let δ ≥ 0 be a parameter. We define two
types of δ-best-responding strategies for the agent: deterministic and randomized.

• A deterministic strategy ρ: for each signal s ∈ S, the agent takes an action a that is δ-optimal
for xs. Denote this set of strategies by Dδ(π):

Dδ(π) =
{
ρ : S → A | v(xs, ρ(s)) ≥ v(xs, a

′)− δ, ∀a′ ∈ A
}
. (3)

• A randomized strategy ρ: for each signals s, the agent can take a randomized action. The
expected utility of ρ is at most δ-worst than the best strategy ρ∗.

Rδ(π) =
{
ρ : S → ∆(A) | V (π, ρ) ≥ V (π, ρ∗)− δ

}
. (4)

Equivalently, Rδ(π) =
{
ρ : S → ∆(A) | V (π, ρ) ≥ V (π, ρ′)− δ, ∀ρ′ : S → A

}
.

Our model of approximately-best-responding agent includes, for example, two other models in the
Bayesian persuasion literature that also relax the agent’s Bayesian rationality assumption: the quan-
tal response model (proposed by (McKelvey & Palfrey, 1995) in normal-form games and studied by
(Feng et al., 2024) in Bayesian persuasion) and a model where the agent makes mistakes in Bayesian
update (de Clippel & Zhang, 2022). See Appendix C for details.

Principal’s objectives. With an approximately-best-responding agent, we will study two types of
objectives for the principal. The first type is the maximal utility that the principal can obtain if the
agent approximately best responds in the worst way for the principal: for X ∈ {D,R}, define

OBJX(δ) = sup
π

min
ρ∈Xδ(π)

U(π, ρ), (5)

where U(π, ρ) =
∑

s∈S πs

∑
a∈A ρ(a|s)u(xs, a) is the principal’s expected utility when the princi-

pal uses strategy π and the agent uses strategy ρ. We used “sup” in (5) because the maximizer does
not necessarily exist. OBJX(δ) is a “maxmin” objective and can be regarded as the objective of a
“robust generalized principal-agent problem”.

The second type of objectives is the maximal utility that the principal can obtain if the agent approx-
imately best responds in the best way:

OBJ
X
(δ) = max

π
max

ρ∈Xδ(π)
U(π, ρ). (6)

This is a “maxmax” objective that quantifies the maximal extent to which the principal can exploit
the agent’s irrational behavior.

Clearly, OBJX(δ) ≤ OBJX(0) ≤ OBJ
X
(0) ≤ OBJ

X
(δ). And we note that OBJ

X
(0) = OBJ(0)

is independent of X and equal to the optimal utility of the principal in the classic generalized
principal-agent problem, which we denote by U∗:

U∗ = OBJ(0) = max
π

max
ρ: best-response to π

U(π, ρ). (7)
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Finally, we note that, because D0(π) ⊆ Dδ(π) ⊆ Rδ(π), the chain of inequalities OBJR(δ) ≤
OBJD(δ) ≤ U∗ ≤ OBJ

D
(δ) ≤ OBJ

R
(δ) hold.

3.2 AGENT’S NO-REGRET LEARNING: LOWER BOUND ON PRINCIPAL’S UTILITY

Theorem 3.1. Suppose the agent uses a contextual no-regret learning algorithm with a contextual
regret upper bounded by CReg(T ). The principal knows CReg(T ) but not the exact learning algo-
rithm of the agent. By using some fixed strategy πt = π in all T rounds, the principal can obtain an
average utility 1

T E
[∑T

t=1 u(x
t, at)

]
that is arbitrarily close to OBJR

(CReg(T )
T ).

To prove Theorem 3.1, we provide a lemma (with proof in Appendix E.1) to relate the agent’s regret
and the principal’s utility in the learning model to those in the static model. We define some nota-
tions. Let the principal use some fixed strategy πt = π and the agent use some learning algorithm.
Let pta|s = Pr[at = a | st = s] be the probability that the agent’s algorithm chooses action a condi-
tioning on signal s being sent in round t. Let ρ : S → ∆(A) be a randomized agent strategy that,

given signal s, chooses each action a ∈ A with probability ρ(a|s) =
∑T

t=1 pt
a|s

T .

Lemma 3.2. When the principal uses a fixed strategy πt = π in all T rounds, the regret of the
agent not deviating according to d : S → A is equal to 1

T E
[∑T

t=1

(
v(xt, d(st)) − v(xt, at)

)]
=

V (π, d)−V (π, ρ), and the average utility of the principal 1
T E

[∑T
t=1 u(x

t, at)
]

is equal to U(π, ρ).

Proof of Theorem 3.1. By Lemma 3.2 and the no-regret condition that the agent’s regret
E
[∑T

t=1

(
v(xt, d(st))− v(xt, at)

)]
≤ CReg(T ), we have

V (π, d)− V (π, ρ) =
1

T
E
[ T∑

t=1

(
v(xt, d(st))− v(xt, at)

)]
≤ CReg(T )

T
, ∀d : S → A.

This means that the agent’s randomized strategy ρ is a δ = CReg(T )
T -best-response to the principal’s

fixed signaling scheme π, ρ ∈ R
δ=

CReg(T )
T

(π). This holds for any π. In particular, if for any ε > 0

the principal uses a signaling scheme πε that obtains an objective that is ε-close to OBJR(δ) =
supπ minρ∈Rδ(π) U(π, ρ), then the principal obtains an expected utility of, by Lemma 3.2,

1

T
E
[ T∑

t=1

u(at, ωt)
]
= U(πε, ρ) ≥ min

ρ∈Rδ(πε)
U(πε, ρ) ≥ OBJR

(
δ =

CReg(T )

T

)
− ε

in the learning model. Letting ε → 0 proves the theorem.

We then show that the result in Theorem 3.1 is tight: there exist cases where the principal cannot do
better than OBJR

(CReg(T )
2T ) even using adaptive strategies (see Appendix E.2 for the proof):

Theorem 3.3. For any adaptive strategy of the principal, there exists a contextual no-regret learning
algorithm for the agent under which the principal’s average utility is no more than OBJR

(CReg(T )
2T ).

There also exists a contextual no-swap-regret learning algorithm for the agent under which the
principal’s average utility is no more than OBJR

(CSReg(T )
2T ).

3.3 AGENT’S NO-SWAP-REGRET LEARNING: UPPER BOUND ON PRINCIPAL’S UTILITY

Theorem 3.4. Against a contextual no-swap-regret learning agent, the principal cannot obtain
utility more than 1

T E
[∑T

t=1 u(x
t, at)

]
≤ OBJ

R(CSReg(T )
T

)
even using adaptive strategies.

The key idea to prove this theorem is to think of the signal st ∼ πt from the principal and the action
at ∼ ρt(st) recommended by the agent’s learning algorithm together as a joint signal (st, at) from
some hypothetical signaling scheme π′. The agent takes the recommended action at, namely using
the mapping (st, at) 7→ at as his strategy, in response to π′. A no-swap-regret algorithm guarantees
that the agent is at most CSReg(T )

T worse compared to the best-responding strategy d∗ : S×A → A.
So, the agent’s overall strategy is a CSReg(T )

T -approximate best response to π′, which limits the

principal’s overall utility to be at most OBJ
R(CSReg(T )

T

)
. See details in Apendix E.3.
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3.4 AGENT’S MEAN-BASED LEARNING: EXPLOITABLE BY THE PRINCIPAL

Many no-regret (but not no-swap-regret) learning algorithms (e.g., MWU, FTPL, EXP-3) satisfy the
following contextual mean-based property:

Definition 3.1 (Braverman et al. (2018)). Let σt
s(a) =

∑
j∈[t]:sj=s v(ω

j , a) be the sum of historical
utilities of the receiver in the first t rounds if he takes action a when the signal/context is s. An algo-
rithm is called γ-mean-based if: whenever ∃a′ such that σt−1

s (a) < σt−1
s (a′)− γT , the probability

that the algorithm chooses action a at round t if the context is s is Pr[at = a|st = s] < γ, with
γ = o(1).

Theorem 3.5. There exists a Bayesian persuasion instance where, as long as the receiver does
γ-mean-based learning, the sender can obtain a utility significantly larger than OBJ

R
(γ) and U∗.

The proof of this theorem is in Appendix E.4.

4 GENERALIZED PRINCIPAL-AGENT PROBLEMS WITH APPROXIMATE BEST
RESPONSE

After presenting the reduction from learning to approximate best response, we now study general-
ized principal-agent problems with approximate best response. We will show that both the maxmin
objectives OBJD(δ), OBJR(δ) and the maxmax objectives OBJ

D
(δ), OBJ

R
(δ) are close to the

optimal principal objective U∗ in the best-response model when the degree δ of the agent’s approx-
imate best response is small, under some natural assumptions described below.

Assumptions and notations. We make some innocuous assumptions. First, the agent has no
weakly dominated action:

Assumption 1 (No Dominated Action). An action a0 ∈ A of the agent is weakly dominated if there
exists a mixed action α′ ∈ ∆(A \ {a0}) such that v(x, α′) = Ea∼α′ [v(x, a)] ≥ v(x, a0) for all
x ∈ X . We assume that the agent has no weakly dominated action.

Claim 1. Assumption 1 implies: there exists a constant G > 0 such that, for any agent action a ∈ A,
there exists a principal decision x ∈ X such that v(x, a)− v(x, a′) ≥ G for every a′ ∈ A \ {a}.

The proof of this claim is in Appendix F.1. The constant G > 0 in Claim 1 is analogous to the
concept of “inducibility gap” in Stackelberg games (Von Stengel & Zamir, 2004; Gan et al., 2023). In
fact, Gan et al. (2023) show that, if the inducibility gap G > δ, then the maximin approximate-best-
response objective satisfies OBJD(δ) ≥ U∗− δ

G in Stackelberg games. Our results will significantly
generalize theirs to any generalized principal-agent problem, to randomized agent strategies, and to
the maximax objectives OBJ

D
(δ), OBJ

R
(δ).

To present our results, we need to introduce a few more notions and assumptions. Let diam(X ; ∥ ·
∥) = maxx1,x2∈X ∥x1 − x2∥ be the diameter of the space X , where ∥ · ∥ is some norm. For
convenience we assume X ⊆ Rd and use the ℓ1-norm ∥x∥1 =

∑d
i=1 |x(i)| or the ℓ∞-norm ∥x∥∞ =

maxdi=1 |x(i)|. For a generalized principal-agent problem with constraint
∑

s∈S πsxs ∈ C, let ∂X
be the boundary of X and let dist(C, ∂X ) = minc∈C,x∈∂X ∥c − x∥ be the distance from C to the
boundary of X . We assume that C is away from the boundary of X :

Assumption 2 (C is in the interior of X ). dist(C, ∂X ) > 0.

Assumption 3 (Bounded and Lipschitz utility). The principal’s utility function is bounded:
|u(x, a)| ≤ B, and L-Lipschitz in x ∈ X : |u(x1, a)− u(x2, a)| ≤ L∥x1 − x2∥.

Main results. We now present the main results of this section: lower bounds on OBJX(δ) and
upper bounds on OBJ

X
(δ) in generalized principal-agent problems without and with constraints.

Theorem 4.1 (Without constraint). For an unconstrained generalized principal-agent problem, un-
der Assumptions 1 and 3, for 0 ≤ δ < G, we have

• OBJD(δ) ≥ U∗ − diam(X )L δ
G .
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• OBJR(δ) ≥ U∗ − 2
√

2BL
G diam(X )δ for δ < diam(X )GL

2B .

• OBJ
D
(δ) ≤ OBJ

R
(δ) ≤ U∗ + diam(X )L δ

G .
Theorem 4.2 (With constraint). For a generalized principal-agent problem with the constraint∑

s∈S πsxs ∈ C, under Assumptions 1, 2 and 3, for 0 ≤ δ < Gdist(C,∂X )
diam(X ) , we have

• OBJD(δ) ≥ U∗ −
(
diam(X )L+ 2B diam(X )

dist(C,∂X )

)
δ
G .

• OBJR(δ) ≥ U∗ − 2
√

2B
G

(
diam(X )L+ 2B diam(X )

dist(C,∂X )

)
δ.

• OBJ
D
(δ) ≤ OBJ

R
(δ) ≤ U∗ +

(
diam(X )L+ 2B diam(X )

dist(C,∂X )

)
δ
G .

The expression “ diam(X )
dist(C,∂X )δ” suggests that 1

dist(C,∂X ) is similar to a “condition number” (Renegar,
1994) that quantifies the “stability” of the principal-agent problem against the agent’s approximate-
best-responding behavior. When dist(C, ∂X ) is larger (C is further away from the boundary of
X ), the condition number is smaller, the problem is more stable, and the δ-best-response objectives
OBJX(δ) and OBJ

X
(δ) are closer to the best-response objective U∗.

High-level idea: perturbation. The high level idea to prove Theorems 4.1 and 4.2 is a perturba-
tion argument. Consider proving the upper bounds on OBJ

D
(δ) for example. Let (π, ρ) be any pair

of principal’s strategy and agent’s δ-best-responding strategy. We perturb the principal’s strategy π
slightly to be a strategy π′ to which ρ is exactly best-responding (such a perturbation is possible due
to Assumption 1). Since ρ is best-responding to π′, the pair (π′, ρ) cannot give the principal a higher
utility than U∗ (which is the optimal principal utility under the best-response model). This means
that the original pair (π, ρ) cannot give the principal a utility much higher than U∗, thus implying
an upper bound on OBJ

D
(δ). Extra care is needed when dealing with randomized strategies of the

agent. See details in Appendix F.3.

The bound OBJR(δ) ≥ U∗−O(
√
δ) is tight. We note that, in Theorems 4.1 and 4.2, the maxmin

objective with randomized agent strategies is bounded by OBJR(δ) ≥ U∗ − O(
√
δ), while the

objective with deterministic agent strategies is bounded by OBJD(δ) ≥ U∗ − O(δ). This is not
because our analysis is not tight. In fact, the squared root bound U∗ − Θ(

√
δ) for OBJR(δ) is

tight. We prove this by giving an example where OBJR(δ) ≤ U∗−Ω(
√
δ). Consider the following

classical Bayesian persuasion example:
Example 4.1. There are 2 states Ω = {Good,Bad}, 2 actions A = {a, b}, with utility matrices

sender a b receiver a b
Good 1 0 Good 1 0
Bad 1 0 Bad −1 0

The prior probability of Good state is µ0 < 1
2 , so the receiver takes action b by default. In this

example, for δ < µ0

2 , OBJR(δ) ≤ U∗−2
√
2µ0δ+ δ = U∗−Ω(

√
δ). See Appendix F.2 for a proof.

5 APPLICATIONS TO SPECIFIC PRINCIPAL-AGENT PROBLEMS

We apply the general results in Section 3 and 4 to derive concrete results for three specific principal-
agent problems: Bayesian persuasion, Stackelberg games, and contract design.

Bayesian persuasion. As noted in Section 2, Bayesian persuasion is a generalized principal-agent
problem with constraint

∑
s∈S πsxs ∈ C = {µ0} where each xs = µs = (µs(ω))ω∈Ω ∈ X =

∆(Ω) is a posterior belief. Suppose the principal’s utility is bounded: |u(ω, a)| ≤ B. Then, the
principal’s utility function u(µs, a) =

∑
ω∈Ω µs(ω)u(ω, a) is (L = B)-Lipschitz in µs (under ℓ1-

norm), so Assumption 3 is satisfied. Suppose the prior µ0 has positive probability for every ω ∈ Ω,
and let p0 = minω∈Ω µ0(ω) > 0. Then, we have the distance

dist(C, ∂X) = min
{
∥µ0 − µ∥1 : µ ∈ ∆(Ω) s.t. µ(ω) = 0 for some ω ∈ Ω

}
≥ p0 > 0,
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so Assumption 2 is satisfied. The diameter satisfies diam(X ; ℓ1) = maxµ1,µ2∈∆(Ω) ∥µ1−µ2∥1 ≤ 2.
Finally, we assume Assumption 1 (no dominated action for the agent). Then, Theorem 4.2 gives
bounds on the approximate-best-response objectives in Bayesian persuasion:

Corollary 5.1 (Bayesian persuasion with approximate best response). For 0 ≤ δ < Gp0

2 ,

• OBJD(δ) ≥ U∗ − 2B(1 + 2
p0
) δ
G , and OBJR(δ) ≥ U∗ − 4B

√
(1 + 2

p0
) δ
G .

• OBJ
D
(δ) ≤ OBJ

R
(δ) ≤ U∗ + 2B(1 + 2

p0
) δ
G .

Further applying Theorem 3.1 and 3.4, we obtain the central result for our motivating problem,
persuasion with a learning agent:

Corollary 5.2 (Persuasion with a learning agent). Suppose T is sufficiently large such that
CReg(T )

T < Gp0

2 and CSReg(T )
T < Gp0

2 , then

• with a contextual no-regret learning agent, the principal can obtain utility at least

1

T
E
[ T∑
t=1

u(xt, at)
]
≥ OBJR

(CReg(T )
T

)
≥ U∗ − 4B

√
(1 + 2

p0
) 1
G

√
CReg(T )

T (8)

using a fixed signaling schemes in all rounds.

• with a contextual no-swap-regret learning agent, the principal’s obtainable utility is at most

1

T
E
[ T∑
t=1

u(xt, at)
]
≤ OBJ

D(CSReg(T )
T

)
≤ U∗ + 2B(1 + 2

p0
) 1
G

CSReg(T )
T (9)

even using adaptive signaling schemes.

Result (9) is particularly interesting. First, it shows that the principal cannot exploit a no-swap-
regret learning agent beyond U∗ + o(1) even if the principal has informational advantage (knowing
the state ω). Second, this result still holds even if we allow the principal to see the agent’s strategy
ρt before choosing the signaling scheme πt. The principal still cannot exploit the agent in this case.

Stackelberg games and contract design. When applied to Stackelberg games and contract de-

sign, our results show that the principal can obtain U∗−O(
√

CReg(T )
T ) against a no-regret agent and

no more than U∗ +O(CSReg(T )
T ) against a no-swap-regret agent. These results refine the U∗ + o(1)

and U∗ − o(1) bounds in Deng et al. (2019); Guruganesh et al. (2024). See Appendix D for details.
This demonstrates the generality and usefulness of our framework.

6 DISCUSSION

In summary, our work provides an explicit characterization of the principal’s achievable utility in
generalized principal-agent problems with a contextual no-swap-regret learning agent. It is an asym-

metric range
[
U∗ − O(

√
CSReg(T )

T ), U∗ + O(CSReg(T )
T )

]
. We show that this conclusion holds in

all generalized principal-agent problems where the agent does not have private information, in par-
ticular including Bayesian persuasion where the principal is privately informed. As we mentioned
in the Introduction, the upper bound U∗ + O(CSReg(T )

T ) does not hold when the agent has private
information or does certain types of no-regret but not no-swap-regret learning. Deriving the exact
upper bound in the latter cases is an interesting direction for future work.

Other directions for future work include, for example, relaxing the assumption that the principal has
perfect knowledge of the environment – what if both principal and agent are learning players? And
what if the environment is non-stationary, like a Markovian environment (Jain & Perchet, 2024)
or an adversarial dynamic environment (Camara et al., 2020)? In unknown or non-stationary en-
vironments, the benchmark U∗ needs to be redefined, and a joint design of both players’ learning
algorithms might be interesting.
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A ADDITIONAL RELATED WORKS

Learning agents have been studied in principal-agent problems like auctions (Braverman et al., 2018;
Cai et al., 2024; Rubinstein & Zhao, 2024; Kumar et al., 2024), bimatrix Stackelberg games (Deng
et al., 2019; Mansour et al., 2022; Arunachaleswaran et al., 2024), contract design (Guruganesh
et al., 2024; Scheid et al., 2024), and Bayesian persuasion (Lin et al., 2023; Jain & Perchet, 2024).
These problems belong to the class of generalized principal-agent problems (Myerson, 1982; Gan
et al., 2024). We thus propose a general framework of generalized principal-agent problem with a
learning agent, which encompasses several previous models, refines previous results, and provides
new results.

Camara et al. (2020) also propose a general framework of principal-agent problems with learning
players, but has two key differences with ours: (1) They drop the common prior assumption while
we still keep it. This assumption allows us to compare the principal’s utility in the learning model
with the classic model with common prior. (2) Their principal has commitment power, which is
reasonable in, e.g., auction design, but less realistic in information design where the principal’s
strategy is a signaling scheme. Our principal does not commit.

Deng et al. (2019) show that the follower’s no-swap-regret learning can cap the leader’s utility at
U∗ + o(1) in Stackelberg games. We find that this conclusion holds for all generalized principal-
agent problems where the agent does not have private information. This conclusion does not hold
when the agent is privately informed, as shown by Mansour et al. (2022) in Bayesian Stackelberg
games. We view our work as characterizing the largest class of games under which this conclusion
holds.

The literature on information design (Bayesian persuasion) has investigated various relaxations of
the strong rationality assumptions in the classic models. For the sender, known prior (Camara et al.,
2020; Ziegler, 2020; Zu et al., 2021; Kosterina, 2022; Wu et al., 2022; Dworczak & Pavan, 2022;
Harris et al., 2023; Lin & Li, 2025) and known utility (Babichenko et al., 2021; Castiglioni et al.,
2020; Feng et al., 2022; Bacchiocchi et al., 2024) are relaxed. For the receiver, the receiver may
make mistakes in Bayesian updates (de Clippel & Zhang, 2022), be risk-conscious (Anunrojwong
et al., 2023), do quantal response (Feng et al., 2024) or approximate best response (Yang & Zhang,
2024). Independently and concurrently of us, Jain & Perchet (2024) also study Bayesian persuasion
with a learning agent. Their work has a few differences with us: First, their model is a general
Bayesian persuasion model with imperfect and non-stationary dynamics for the state of the world.
Our model generalizes Bayesian persuasion in another direction (namely, generalized principal-
agent problems), while still assuming a perfect and stationary environment. Second, their results are
qualitatively similar to our Result 1 and Result 4, while our results are more quantitative and precise.
Third, we additionally show that no-swap-regret learning can cap the sender’s utility (Result 2).

As our problem reduces to generalized principal-agent problems with approximate best response,
our work is also related to recent works on approximately-best-responding agents in Stackelberg
games (Gan et al., 2023) and Bayesian persuasion (Yang & Zhang, 2024). We focus on the range of
payoff that can be obtained by a computationally-unbounded principal, ignoring the computational
aspect considered by Gan et al. (2023); Yang & Zhang (2024). Besides the “maxmin/robust” objec-
tive, we also study the “maxmax” objective where the agent approximately best responds in favor of
the principal, which is usually not studied in the literature.

B DETAILS ABOUT CONTEXTUAL NO-(SWAP-)REGRET ALGORITHMS

Contextual no-(swap-)regret algorithms can be constructed by running an ordinary no-(swap-)regret
algorithm for each context independently. Since algorithms with O(

√
T ) (swap-)regret exist under

bandit feedback (Audibert & Bubeck, 2010; Ito, 2020), they lead to algorithms with O(
√
|S|T )

contextual (swap-)regret. This is formalized by the following proposition:

Proposition B.1. There exist learning algorithms with contextual regret CReg(T ) = O(
√

|A||S|T )
and contextual swap-regret CSReg(T ) = O(|A|

√
|S|T ). They can be constructed by running an

ordinary no-(swap-)regret multi-armed bandit algorithm for each context independently.

We prove Proposition B.1 in the rest of this section.
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Let A be an arbitrary no-regret (no-swap-regret) learning algorithm for a multi-armed bandit (MAB)
problem with |A| arms. There exist such algorithms with regret O(

√
T |A| log |A|) (variants of

Exp3 (Auer et al., 2002)) and even O(
√
T |A|) (doubling trick + polyINF (Audibert & Bubeck,

2010)) for any time horizon T > 0. By swap-to-external regret reductions, they can be converted to
multi-armed bandit algorithms with swap regret O(

√
T |A|3 log |A|) (Blum & Mansour, 2007) and

O(|A|
√
T ) (Ito, 2020). We then convert A into a contextual no-regret (contextual no-swap-regret)

algorithm, in the following way:

Algorithm 1: Convert any MAB algorithm to a contextual MAB algorithm
Input: MAB algortihm A. Arm set A. Context set S.
Instantiate |S| copies A1, . . . ,A|S| of A, and initialize their round number by
t1 = · · · = t|S| = 0.

for round t = 1, 2, . . . do
Receive context st. Call Ast to obtain an action at.
Play at and obtain feedback (which includes the reward vt(at) of action at).
Feed the feedback to Ast . Increase its round number tst by 1.

end

Proposition B.2. The contextual regret of Algorithm 1 is at most

CReg(T ) ≤ max
{ |S|∑

s=1

Reg(Ts)
∣∣∣ T1 + · · ·+ T|S| = T

}
,

where Reg(Ts) is the regret of A for time horizon Ts.

The contextual swap-regret of Algorithm 1 is at most

CSReg(T ) ≤ max
{ |S|∑

s=1

SReg(Ts)
∣∣∣ T1 + · · ·+ T|S| = T

}
,

where SReg(Ts) is the swap-regret of A for time horizon Ts.

When plugging in Reg(Ts) = O(
√
|A|Ts), we obtain CReg(T ) ≤ O(

√
|A||S|T ).

When plugging in SReg(Ts) = O(|A|
√
Ts), we obtain CSReg(T ) ≤ O(|A|

√
|S|T ).

Proof. The contextual regret of Algorithm 1 is

CReg(T ) = max
d:S→A

E
[ T∑

t=1

(
vt(d(st))− vt(at)

)]

= max
d:S→A

E
[ |S|∑
s=1

∑
t:st=s

(
vt(d(s))− vt(at)

)]

≤
|S|∑
s=1

max
a′∈A

E
[ ∑
t:st=s

(
vt(a′)− vt(at)

)]

≤
|S|∑
s=1

ETs

[
Reg(Ts)

]
where Ts is the number of rounds where st = s

≤ max
{ |S|∑

s=1

Reg(Ts)
∣∣∣ T1 + · · ·+ T|S| = T

}
.

When Reg(Ts) = O(
√

|A|Ts), by Jensen’s inequality we obtain

CReg(T ) ≤
|S|∑
s=1

O(
√

|A|Ts) ≤ O(
√

|A|)
√

|S|

√√√√ |S|∑
s=1

Ts = O(
√
|A||S|T ).
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The argument for contextual swap-regret is similar:

CSReg(T ) = max
d:S×A→A

E
[ T∑

t=1

(
vt(d(st, at))− vt(at)

)]

= max
d:S×A→A

E
[ |S|∑
s=1

∑
t:st=s

(
vt(d(s, at))− vt(at)

)]

≤
|S|∑
s=1

max
d′:A→A

E
[ ∑
t:st=s

(
vt(d′(at))− vt(at)

)]

≤
|S|∑
s=1

ETs

[
SReg(Ts)

]
where Ts is the number of rounds where st = s

≤ max
{ |S|∑

s=1

SReg(Ts)
∣∣∣ T1 + · · ·+ T|S| = T

}
.

When SReg(Ts) = O(|A|
√
Ts), by Jensen’s inequality we obtain

CSReg(T ) ≤
|S|∑
s=1

O(|A|
√

Ts) ≤ O(|A|)
√

|S|

√√√√ |S|∑
s=1

Ts = O(|A|
√
|S|T ).

C EXAMPLE OF APPROXIMATELY BEST RESPONDING AGENTS

Our model of approximately-best-responding agent (Section 3.1) includes, for example, two other
models in the Bayesian persuasion literature that also relax the agent’s Bayesian rationality assump-
tion: the quantal response model (proposed by (McKelvey & Palfrey, 1995) in normal-form games
and studied by (Feng et al., 2024) in Bayesian persuasion) and a model where the agent makes
mistakes in Bayesian update (de Clippel & Zhang, 2022):
Example C.1. Assume that the receiver’s utility is in [0, 1]. In Bayesian persuasion, the following
receiver strategies are δ-best-responding:

• Quantal response: given signal s ∈ S, the agent chooses action a ∈ A with probability
exp(λv(µs,a))∑

a′∈A exp(λv(µs,a′)) , with λ > 0. This strategy belongs to Rδ(π) with δ = 1+log(|A|λ)
λ .

• Inaccurate belief: given signal s ∈ S, the agent forms some posterior µ′
s that is different

yet close to the true posterior µs in total variation distance dTV(µ
′
s, µs) ≤ ε. The agent

picks an optimal action for µ′
s. This strategy belongs to D2ε(π).

Proof. Consider the quantal response model. Let γ = log(|A|λ)
λ . Given signal s, with posterior µs,

we say an action a ∈ A is not γ-optimal for posterior µs if

v(µs, a
∗
s)− v(µs, a) ≥ γ

where a∗s is an optimal action for µs. The probability that the receiver chooses not γ-optimal action
a is at most:

exp(λv(µs, a))∑
a∈A exp(λv(µs, a))

≤ exp(λv(µs, a))

exp(λv(µs, a∗s))
= exp

(
− λ

[
v(µs, a

∗
s)− v(µs, a)

])
≤ exp(−λγ) =

1

|A|λ
.

By a union bound, the probability that the receiver chooses any not γ-approxiamtely optimal action
is at most 1

λ . So, the expected loss of utility of the receiver due to not taking the optimal action is at
most

(1− 1

λ
) · γ +

1

λ
· 1 ≤ log(|A|λ) + 1

λ
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This means that the quantal response strategy is a log(|A|λ)+1
λ -best-responding randomized strategy.

Consider inaccurate belief. Given signal s, the receiver has belief µ′
s with total variation distance

dTV(µ
′
s, µs) ≤ ε to the true posterior µs. For any action a ∈ A, the difference of expected utility of

action a under beliefs µ′
s and µs is at most ε:∣∣Eω∼µ′

s
[v(ω, a)]− Eω∼µs

[v(ω, a)]
∣∣ ≤ dTV(µ

′
s, µs) ≤ ε.

So, the optimal action for µ′
s is a 2ε-optimal action for µs. This means that the receiver strategy is a

deterministic 2ε-best-responding strategy.

D ADDITIONAL DETAILS ON APPLICATIONS TO SPECIFIC
PRINCIPAL-AGENT PROBLEMS

D.1 STACKELBERG GAMES

In a Stackelberg game, the principal (leader), having a finite action set B, first commits to a mixed
strategy x = (x(b))b∈B ∈ ∆(B), which is a distribution over actions. So the principal’s decision
space X is ∆(B). The agent (follower) then takes an action a ∈ A in response to x. The (expected)
utilities for the two players are u(x, a) =

∑
b∈B x(b)u(b, a) and v(x, a) =

∑
b∈B x(b)u(b, a). The

signal s can (but not necessarily) be an action that the principal recommends the agent to take.

Assume bounded utility |u(b, a)| ≤ B. Then, the principal’s utility function u(x, a) is bounded in
[−B,B] and (L = B)-Lipschitz in x. The diameter diam(X ) = maxx1,x2∈∆(B) ∥x1 − x2∥1 ≤ 2.
Applying the theorem for unconstrained generalized principal-agent problems (Theorem 4.1) and
the theorems for learning agent (Theorem 3.1 and 3.4), we obtain:

Corollary D.1 (Stackelberg game with a learning agent). Suppose T is sufficiently large such that
CReg(T )

T < G and CSReg(T )
T < G, then:

• with a contextual no-regret learning agent, the principal can obtain utility
1
T E

[∑T
t=1 u(x

t, at)
]

≥ OBJR
(CReg(T )

T

)
≥ U∗ − 4B√

G

√
CReg(T )

T using a fixed strategy
in all rounds.

• with a contextual no-swap-regret learning agent, the principal cannot obtain utility more than
1
T E

[∑T
t=1 u(x

t, at)
]
≤ OBJ

D(CSReg(T )
T

)
≤ U∗+ 2B

G
CSReg(T )

T even using adaptive strategies.

The conclusion that the principal can obtain utility at least U∗ − o(1) against a no-regret learning
agent and no more than U∗ + o(1) against a no-swap-regret agent in Stackelberg games was proved
by (Deng et al., 2019). Our Corollary D.1 reproduces this conclusion and moreover provides bounds

on the o(1) terms, namely, U∗ − O(
√

CReg(T )
T ) and U∗ + O(CSReg(T )

T ). This demonstrates the
generality and usefulness of our framework.

D.2 CONTRACT DESIGN

In contract design, there is a finite outcome space O = {r1, . . . , rd} where each ri ∈ R is a monetary
reward to the principal. When the agent takes action a ∈ A, outcome ri will happen with probability
pai ≥ 0,

∑d
i=1 pai = 1. The principal cannot observe the action taken by the agent but can observe

the realized outcome. The principal’s decision space X is the set of contracts, where a contract
x = (x(i))

d
i=1 ∈ [0,+∞]d is a vector that specifies the payment to the agent for each possible

outcome. So, if the agent takes action a under contract x, the principal obtains expected utility

u(x, a) =

d∑
i=1

pai(ri − x(i))

and the agent obtains v(x, a) =
∑d

i=1 paix(i) − ca, where ca ≥ 0 is the cost of action a ∈ A for the
agent. The signal s can (but not necessarily) be an action that the principal recommends the agent to
take. The principal’s decision space X ⊆ [0,+∞]d in contract design, however, may be unbounded
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and violate the requirement of bounded diameter diam(X ) that we need. We have two remedies for
this.

The first remedy is to require the principal’s payment to the agent be upper bounded by some
constant P < +∞, so 0 ≤ x(i) ≤ P and X = [0, P ]d. Under this requirement and the as-
sumption of bounded reward |ri| ≤ R, the principal’s utility becomes bounded by |u(x, a)| ≤∑d

i=1 pai(R+ P ) = R+ P = B and (L = 1)-Lipschitz under ℓ∞-norm:

|u(x1, a)−u(x2, a)| =
∣∣ d∑
i=1

pai(x1(i)−x2(i))
∣∣ ≤ d

max
i=1

|x1(i)−x2(i)|
d∑

i=1

pai = ∥x1−x2∥∞. (10)

And the diameter of X is bounded by (under ℓ∞-norm)

diam(X ; ℓ∞) = max
x1,x2∈X

∥x1 − x2∥∞ = max
x1,x2∈[0,P ]d

d
max
i=1

|x1(i) − x2(i)| ≤ P. (11)

Now, we can apply the theorem for unconstrained generalized principal-agent problems (Theo-
rem 4.1) and the theorems for learning agent (Theorem 3.1 and Theorem 3.4) to obtain:

Corollary D.2 (Contract design (with bounded payment) with a learning agent). Suppose T is suf-
ficiently large such that CReg(T )

T < PG
2(R+P ) and CSReg(T )

T < G, then:

• with a contextual no-regret learning agent, the principal can obtain utility at least
1
T E

[∑T
t=1 u(x

t, at)
]
≥ OBJR

(CReg(T )
T

)
≥ U∗ − 2

√
2(R+P )P

G

√
CReg(T )

T using a fixed con-
tract in all rounds.

• with contextual a no-swap-regret learning agent, the principal cannot obtain utility more than
1
T E

[∑T
t=1 u(x

t, at)
]
≤ OBJ

D(CSReg(T )
T

)
≤ U∗ + P

G
CSReg(T )

T even using adaptive contracts.

The second remedy is to write contract design as a generalized principal-agent problem in another
way. Let x̃ = (x̃(a))a∈A ∈ [0,+∞]|A| be a vector recording the expected payment from the principal
to the agent for each action a ∈ A:

x̃(a) =

d∑
i=1

paix(i). (12)

And let r̃(a) be the expected reward of action a, r̃(a) =
∑d

i=1 pairi. Then, the principal and the
agent’s utility can be rewritten as functions of x̃ and a:

u(x̃, a) = r̃(a) − x̃(a), v(x̃, a) = x̃(a) − ca, (13)

which are linear (strictly speaking, affine) in x̃ ∈ X̃ . Assuming bounded reward |r̃(a)| ≤ R, we can
without loss of generality assume that the expected payment x̃(a) is bounded by R as well, because
otherwise the principal will get negative utility. So, the principal’s decision space can be restricted
to

X̃ =
{
x̃ | ∃ x ∈ [0,+∞]d such that x̃(a) =

d∑
i=1

paix(i) for every a ∈ A
}
∩ [0, R]|A|, (14)

which is convex and has bounded diameter (under ℓ∞ norm)

diam(X̃ ; ℓ∞) ≤ diam([0, R]|A|; ℓ∞) = R. (15)

The utility function u(x̃, a) is bounded by 2R and (L = 1)-Lipschitz (under ℓ∞ norm):

|u(x̃1, a)− u(x̃2, a)| = |x̃1(a) − x̃2(a)| ≤ max
a∈A

|x̃1(a) − x̃2(a)| = ∥x̃1 − x̃2∥∞. (16)

Thus, we can apply the theorem for unconstrained generalized principal-agent problems (Theo-
rem 4.1) and the theorems for learning agent (Theorem 3.1 and Theorem 3.4) to obtain:

Corollary D.3 (Contract design with a learning agent). Suppose T is sufficiently large such that
CReg(T )

T < G
2 and CSReg(T )

T < G, then:
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• with a contextual no-regret learning agent, the principal can obtain utility at least
1
T E

[∑T
t=1 u(x

t, at)
]
≥ OBJR

(CReg(T )
T

)
≥ U∗ − 4R√

G

√
CReg(T )

T using a fixed contract in
all rounds.

• with a contextual no-swap-regret learning agent, the principal cannot obtain utility more than
1
T E

[∑T
t=1 u(x

t, at)
]
≤ OBJ

D(CSReg(T )
T

)
≤ U∗ + R

G
CSReg(T )

T even using adaptive contracts.

Providing the quantitative lower and upper bounds, the above results refine the result in (Guruganesh
et al., 2024) that the principal can obtain utility at least U∗ − o(1) against a no-regret learning agent
and no more than U∗ + o(1) against a no-swap-regret agent. This again demonstrates the versatility
of our general framework.

E MISSING PROOFS FROM SECTION 3

E.1 PROOF OF LEMMA 3.2

Since πt = π is fixed, we have πt
s = πs and xt

s = xs, ∀s ∈ S. The regret of the receiver not
deviating according to d is:

1

T
E
[ T∑

t=1

(
v(xt, d(st))− v(xt, at)

)]
=

1

T

T∑
t=1

∑
s∈S

πt
s

∑
a∈A

pta|s

(
v(xt

s, d(s))− v(xt
s, a)

)
=

∑
s∈S

πs

∑
a∈A

∑T
t=1 pt

a|s
T

(
v(xs, d(s))− v(xs, a)

)
=

∑
s∈S

πsv(xs, d(s)) −
∑
s∈S

πs

∑
a∈A

ρ(a|s)v(xs, a) = V (π, d)− V (π, ρ).

Here, d is interpreted as an agent strategy that deterministically takes action d(s) for signal s.

By a similar derivation, we see that the principal’s expected utility is equal to
1
T E

[∑T
t=1 u(x

t, at)
]

=
∑

s∈S πs

∑
a∈A

∑T
t=1 pt

a|s
T u(xs, a) = U(π, ρ), which proves the

lemma.

E.2 PROOF OF THEOREM 3.3

We prove this theorem for no-swap-regret learning algorithms. The argument for no-regret learning
algorithms is analogous.

Fix the principal’s adaptive strategy σ = (σt)Tt=1 for the T rounds, where each σt is a mapping from
the history ht−1 = (si, ai)t−1

i=1 (including past signals and actions) to a single-round strategy πt for
round t. Given any function CSReg(T ), let δ = CSReg(T )

2T . We construct the following algorithm A
for the agent: at each round t, given history ht−1 = (si, ai)t−1

i=1 ,

• If the single-round strategy chosen by the principal at round t is equal to πt = σt(ht−1),
then the agent plays a strategy ρt ∈ argminρ∈Rδ(πt) U(πt, ρ), namely, a randomized δ-best-
responding strategy that minimizes the principal’s utility.

• If the single-round strategy chosen by the principal at round t is not equal to πt = σt(ht−1),
then the agent switches to any existing contextual no-swap-regret algorithm with swap regret
at most CSReg(T )

2 (see Proposition B.1 for examples of such algorithms).

We show that the agent’s algorithm has swap regret at most CSReg(T ) no matter what strategy the
principal uses:

- If the principal keeps using strategy σ, namely, at each round t the principal uses single-round
strategy πt = σt(ht−1), denoted by πt = {(πt

s, x
t
s)}s∈S , then the agent will respond by strategy ρt.

For any deviation function d : S ×A → A, the expected regret of the agent not deviating according
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to d in this round is

E[v(xt, d(st, at))− v(xt, at)] = Eht−1

[∑
s∈S

πt
s

∑
a∈A

ρt(a|s)
(
v(xt

s, d(s, a))− v(xt
s, a)

)]
= Eht−1

[∑
s∈S

πt
s

∑
a∈A

ρt(a|s)v(xt
s, d(s, a))−

∑
s∈S

πt
s

∑
a∈A

ρt(a|s)v(xt
s, a)

]
≤ Eht−1

[∑
s∈S

πt
s max

a∈A
v(xt

s, a)−
∑
s∈S

πt
s

∑
a∈A

ρt(a|s)v(xt
s, a)

]
= Eht−1

[∑
s∈S

πt
s max

a∈A
v(xt

s, a)− V (πt, ρt)
]

≤ Eht−1

[
δ
]

because by definition, ρt ∈ Rδ(π
t) ⇐⇒ V (πt, ρt) ≥

∑
s∈S

πt
s max

a∈A
v(xt

s, a)− δ.

Summing over all T rounds, we obtain:

T∑
t=1

E[v(xt, d(st, at))− v(xt, at)] ≤ Tδ =
CSReg(T )

2
.

- If the principal does not play according to σ in any round, then the agent will switch to an algorithm
with swap regret at most CSReg(T )

2 , so the total swap regret of the agent is at most:

Tδ +
CSReg(T )

2
≤ CSReg(T ),

which proves that the agent’s learning algorithm has swap regret at most CSReg(T ).

The principal’s average utility, when the principal uses strategy σ and the agent uses the above
no-swap-regret algorithm, is

1

T

T∑
t=1

E[u(xt, at)] =
1

T

T∑
t=1

Eht−1

[∑
s∈S

πt
s

∑
a∈A

ρt(a|s)u(xt
s, a)

]

=
1

T

T∑
t=1

Eht−1

[
U(πt, ρt)

]
≤ 1

T

T∑
t=1

Eht−1

[
sup
π

min
ρ∈Rδ(π)

U(π, ρ)
]

because ρt ∈ argmin
ρ∈Rδ(πt)

U(πt, ρ)

= sup
π

min
ρ∈Rδ(π)

U(π, ρ)

= OBJR(δ)

= OBJR
(CSReg(T )

2T

)
.

E.3 PROOF OF THEOREM 3.4

Proof. Let pts = Pr[st = s] = E
[
1[st = s]

]
= E[πt

s] be the probability that signal s ∈ S is sent in
round t. Let pta|s = Pr[at = a | st = s] be the probability that the agent takes action a conditioning
on signal st = s being sent in round t. Let d : S × A → A be any deviation function for the agent.
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The utility gain by deviation for the agent is upper bounded by the contextual swap-regret:

CSReg(T )

T
≥ 1

T
E
[ T∑

t=1

(
v(xt, d(st, at))− v(xt, at)

)]
(17)

=
1

T

T∑
t=1

∑
s∈S

pts
∑
a∈A

pta|sExt
s|st=s

[
v(xt

s, d(s, a))− v(xt
s, a)

]

=
1

T

T∑
t=1

∑
s∈S

pts
∑
a∈A

pta|s

(
v(E[xt

s|st = s], d(s, a))− v(E[xt
s|st = s], a)

)
by linearity of v(·, a)

=
∑
s∈S

∑
a∈A

∑T
j=1 p

j
sp

j
a|s

T

1∑T
j=1 p

j
sp

j
a|s

T∑
t=1

ptsp
t
a|s

(
v(E[xt

s|st = s], d(s, a))− v(E[xt
s|st = s], a)

)

=
∑
s∈S

∑
a∈A

∑T
j=1 p

j
sp

j
a|s

T

[
v
(∑T

t=1 pt
sp

t
a|sE[x

t
s|s

t=s]∑T
j=1 pj

sp
j
a|s

, d(s, a)
)
− v

(∑T
t=1 pt

sp
t
a|sE[x

t
s|s

t=s]∑T
j=1 pj

sp
j
a|s

, a
)]

.

Define qs,a =
∑T

j=1 pj
sp

j
a|s

T and ys,a =
∑T

t=1 pt
sp

t
a|sE[x

t
s|s

t=s]∑T
j=1 pj

sp
j
a|s

∈ X . Then the above is equal to

=
∑
s∈S

∑
a∈A

qs,a

[
v(ys,a, d(s, a))− v(ys,a, a)

]
. (18)

We note that
∑

s∈S

∑
a∈A qs,a =

∑T
j=1

∑
s∈S

∑
a∈A pj

sp
j
a|s

T = 1, so q is a probability distribution over
S ×A. And note that∑
s,a∈S×A

qs,ays,a =
∑

s,a∈S×A

1

T

T∑
t=1

ptsp
t
a|sE[x

t
s|st = s] =

1

T

T∑
t=1

∑
s∈S

ptsE[xt
s|st = s]

=
1

T

T∑
t=1

∑
s∈S

E
[
1[st = s]xt

s

]
=

1

T

T∑
t=1

E
[∑
s∈S

1[st = s]xt
s

]
=

1

T

T∑
t=1

E
[
xt
]

=
1

T

T∑
t=1

E
[∑
s∈S

πt
sx

t
s

]
∈ C because

∑
s∈S

πt
sx

t
s ∈ C.

This means that π′ = {(qs,a, ys,a)}(s,a)∈S×A defines a valid principal strategy with the larger signal
space S × A. Then, we note that (18) is the difference between the agent’s expected utility under
principal strategy π′ when responding using strategy d : S × A → A and using the strategy that
maps signal (s, a) to action a. And (18) is upper bounded by CSReg(T )

T by (17):

(18) = V (π′, d)− V (π′, (s, a) 7→ a) ≤ CSReg(T )
T , ∀d : S ×A → A. (19)

In particular, this holds when d is the agent’s best-responding strategy. This means that the agent
strategy (s, a) 7→ a is a (CSReg(T )

T )-best-response to π′. So, the principal’s expected utility is upper
bounded by the utility in the approximate-best-response model:

1

T
E
[ T∑

t=1

u(xt, at)
]
=

1

T

T∑
t=1

∑
s∈S

pts
∑
a∈A

pta|sv(E[x
t
s|st = s], a)

=
∑
s∈S

∑
a∈A

qs,au(ys,a, a) = U(π′, (s, a) → a) ≤ OBJ
R(CSReg(T )

T

)
.

E.4 PROOF OF THEOREM 3.5

The instance has 2 states (A, B), 3 actions (L, M, R), uniform prior µ0(A) = µ0(B) = 0.5, with the
following utility matrices (left for sender’s, right for receiver’s):
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u(ω, a) L M R v(ω, a) L M R
A 0 −2 −2 A

√
γ −1 0

B 0 0 2 B −1 1 0

Claim 2. In this instance, the optimal sender utility U∗ in the classic BP model is 0, and the
approximate-best-response objective OBJ

R
(γ) = O(γ).

Proof. Recall that any signaling scheme decomposes the prior µ0 into multiple posteriors {µs}s∈S .
If a posterior µs puts probability > 0.5 to state B, then the receiver will take action M, which gives
the sender a utility ≤ 0; if the posterior µs puts probability ≤ 0.5 to state B, then no matter what
action the receiver takes, the sender’s expected utility on µs cannot be greater than 0. So, the sender’s
expected utility is ≤ 0 under any signaling scheme. An optimal signaling scheme is to reveal no
information (keep µs = µ0); the receiver takes R and the sender gets utility 0.

This instance satisfies the assumptions of Theorem 4.2, so OBJ
R
(γ) ≤ U∗ +O(γ) = O(γ).

Claim 3. By doing the following, the sender can obtain utility ≈ 1
2 − O(

√
γ) if the receiver is

γ-mean-based learning:

• in the first T/2 rounds: if the state is A, send signal 1; if the state is B, send 2.

• in the remaining T/2 rounds, switch the scheme: if the state is A, send 2; if state is B, send 1.

Proof. In the first T/2 rounds, the receiver finds that signal 1 corresponds to state A so he will take
action L with high probability when signal 1 is sent; signal 2 corresponds to B so he will take action
M with high probability. In this phase, the sender obtains utility ≈ 0 per round. At the end of this
phase, for signal 1, the receiver accumulates utility ≈ T

2
1
2

√
γ = T

4

√
γ for action L. For signal 2, the

receiver accumulates utility ≈ T
2

1
2 · 1 = T

4 for action M.

In the remaining T/2 rounds, the following will happen:

• For signal 1, the receiver finds that the state is now B, so the utility of action L decreases by 1
every time signal 1 is sent. Because the utility of L accumulated in the first phase was ≈ T

4

√
γ,

after ≈ T
4

√
γ rounds in second phase the utility of L should decrease to below 0, and the

receiver will no longer play L (with high probability) at signal 1. The receiver will not play M
at signal 1 in most of the second phase either, because there are more A states than B states at
signal 1 historically. So, the receiver will play action R most times, roughly T

4 − T
4

√
γ rounds.

This gives the sender a total utility of ≈ (T4 − T
4

√
γ) · 2 = T

2 −O(T
√
γ).

• For signal 2, the state is now A. But the receiver will continue to play action M in most times.
This because: R has utility 0; L accumulated ≈ −T

4 utility in the first phase, and only increases
by

√
γ per round in the second phase, so its accumulated utility is always negative; instead, M

has accumulated T
4 utility in the first phase, and decreases by 1 every time signal 2 is sent in

the second phase, so its utility is positive until near the end. So, the receiver will play M. This
gives the sender utility 0.

Summing up, the sender obtains total utility ≈ T
2 − O(T

√
γ) in these two phases, which is 1

2 −
O(

√
γ) > 0 per round in average.

The above two claims together prove the theorem.
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F MISSING PROOFS FROM SECTION 4

F.1 PROOF OF CLAIM 1

If no G > 0 satisfies the claim, then there must exist an a0 ∈ A such that for all x ∈ X , v(a0, µ)−
v(a′, µ) ≤ 0 for some a′ ∈ A \ {a0}. Namely,

max
x∈X

min
a′∈A\{a0}

{
v(x, a0)− v(x, a′)

}
≤ 0.

Then, by the minimax theorem, we have

min
α′∈∆(A\{a0})

max
x∈X

{
v(x, a0)− v(x, α′)

}
= max

x∈X
min

a′∈A\{a0}

{
v(x, a0)− v(x, a′)

}
≤ 0.

This means that a0 is weakly dominated by some mixed action α′ ∈ ∆(A \ {a0}), violating As-
sumption 1.

F.2 PROOF OF EXAMPLE 4.1

We use the probability µ ∈ [0, 1] of the Good state to represent a belief (so the probability of Bad
state is 1− µ).

First, the sender’s optimal utility when the receiver exactly best responds is 2µ0:

U∗ = 2µ0.

This is achieved by decomposing the prior µ0 into two posteriors µa = 1
2 and µb = 0 with proba-

bility 2µ0 and 1− 2µ0 respectively, with the receiver taking action a under posterior µa and b under
µb.

Then, consider any signaling scheme of the sender, π = {(πs, µs)}s∈S , which is a decomposition
of the prior µ0 into |S| posteriors µs ∈ [0, 1] such that

∑
s∈S πsµs = µ0. Let ρ : S → ∆(A)

be a randomized strategy of the receiver, where ρ(a|s) (and ρ(b|s)) denotes the probability that the
receiver takes action a (and b) under signal s. The sender’s expected utility under π and ρ is:

U(π, ρ) =
∑
s∈S

πs

[
ρ(a|s) · 1 + ρ(b|s) · 0

]
=

∑
s∈S

πsρ(a|s). (20)

The receiver’s utility when taking action a at posterior µs is µs · 1+ (1−µs) · (−1) = 2µs − 1. So,
the receiver’s expected utility under π and ρ is

V (π, ρ) =
∑
s∈S

πs

[
ρ(a|s) · (2µs − 1) + ρ(b|s) · 0

]
=

∑
s∈S

πsρ(a|s)(2µs − 1). (21)

Clearly, the receiver’s best response ρ∗ is to take action a with certainty if and only if µs > 1
2 , with

expected utility
V (π, ρ∗) =

∑
s:µs>

1
2

πs(2µs − 1). (22)

To find OBJR(δ) = supπ minρ∈Rδ(π) U(π, ρ), we fix any π and solve the inner optimization prob-
lem (minimizing the sender’s utility) regarding ρ:

min
ρ

U(π, ρ) =
∑
s∈S

πsρ(a|s)

s.t. ρ ∈ Rδ(π) ⇐⇒ δ ≥ V (π, ρ∗)− V (π, ρ)

=
∑

s:µs>
1
2

πs(2µs − 1)−
∑
s∈S

πsρ(a|s)(2µs − 1).

Without loss of generality, we can assume that the solution ρ satisfies ρ(a|s) = 0 whenever
µs ≤ 1

2 (if ρ(a|s) > 0 for some µs ≤ 1
2 , then making ρ(a|s) to be 0 can decrease the objective
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∑
s∈S πsρ(a|s) while still satisfying the constraint). So, the optimization problem can be simplified

to:

min
ρ

U(π, ρ) =
∑

s:µs>
1
2

πsρ(a|s)

s.t. δ ≥
∑

s:µs>
1
2

πs(2µs − 1)−
∑

s:µs>
1
2

πsρ(a|s)(2µs − 1)

=
∑

s:µs>
1
2

πs(2µs − 1)(1− ρ(a|s)),

ρ(a|s) ∈ [0, 1], ∀s ∈ S : µs >
1
2 .

We note that this is a fractional knapsack linear program, which has a greedy solution (e.g., (Korte &
Vygen, 2012)): sort the signals with µs >

1
2 in increasing order of 2µs − 1 (equivalently, increasing

order of µs); label those signals by s = 1, . . . , n; find the first position k for which
∑k

s=1 πs(2µs −
1) > δ:

k = min
{
j :

j∑
s=1

πs(2µs − 1) > δ
}
;

then, an optimal solution ρ is given by:
ρ(a|s) = 0 for s = 1, . . . , k − 1;

ρ(a|k) = 1− δ−
∑k−1

s=1 πs(2µs−1)
πk(2µk−1) for s = k;

ρ(a|s) = 1 for s = k + 1, . . . , n.

The objective value (sender’s expected utility) of the above solution ρ is

U(π, ρ) =
∑

s:µs>
1
2

πsρ(a|s)

= πk

(
1−

δ −
∑k−1

s=1 πs(2µs − 1)

πk(2µk − 1)

)
+

n∑
s=k+1

πs

=

n∑
s=k

πs −
δ

2µk − 1
+

k−1∑
s=1

πs(2µs − 1)

2µk − 1
.

Since the signaling scheme π must satisfy
∑

s∈S πsµs = µ0, we have

µ0 =
∑
s∈S

πsµs ≥
n∑

s=1

πsµs =

k−1∑
s=1

πsµs +

n∑
s=k

πsµs ≥
k−1∑
s=1

πsµs +

n∑
s=k

πsµk

=⇒
n∑

s=k

πs ≤
µ0 −

∑k−1
s=1 πsµs

µk
.

So,

U(π, ρ) ≤
µ0 −

∑k−1
s=1 πsµs

µk
− δ

2µk − 1
+

k−1∑
s=1

πs(2µs − 1)

2µk − 1

=
µ0

µk
− δ

2µk − 1
+

k−1∑
s=1

πs

( 2µs − 1

2µk − 1
− µs

µk

)
.

Since 2µs−1
2µk−1 − µs

µk
= µs−µk

(2µs−1)µk
≤ 0 for any s ≤ k − 1, we get

U(π, ρ) ≤ µ0

µk
− δ

2µk − 1
= f(µk).
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We find the maximal value of f(µk) =
µ0

µk
− δ

2µk−1 . Take its derivative:

f ′(µk) = −µ0

µ2
k

+
2δ

(2µk − 1)2
=

[
(
√
2δ + 2

√
µ0)µk −√

µ
0

]
·
[
(
√
2δ − 2

√
µ0)µk +

√
µ
0

]
µ2
k(2µk − 1)2

,

which has two roots
√
µ
0√

2δ+2
√
µ0

< 1
2 and

√
µ
0

2
√
µ0−

√
2δ

∈ ( 12 , 1) when 0 < δ < µ0

2 . So, f(x) is

increasing in [ 12 ,
√
µ
0

2
√
µ0−

√
2δ
) and decreasing in (

√
µ
0

2
√
µ0−

√
2δ
, 1]. Since µk > 1

2 , f(µk) is maximized

at µk =
√
µ
0

2
√
µ0−

√
2δ

. This implies

U(π, ρ) ≤ f
( √

µ
0

2
√
µ0−

√
2δ

)
=

µ0√
µ
0

(2
√
µ0 −

√
2δ)− δ

2
√
µ
0

2
√
µ0−

√
2δ

− 1
= 2µ0 − 2

√
2µ0δ + δ.

This holds for any π. So, OBJR(δ) = supπ minρ∈Rδ(π) U(π, ρ) ≤ U∗ − 2
√
2µ0δ + δ = U∗ −

Ω(
√
δ).

F.3 PROOF OF THEOREMS 4.1 AND 4.2

Lower bounds on OBJD(δ) and upper bounds on OBJ
R
(δ). First, we prove the lower bounds

on OBJD(δ) and the upper bounds on OBJ
R
(δ) in Theorems 4.1 and 4.2, given by the following

two lemmas:
Lemma F.1. In an unconstrained generalized principal-agent problem, OBJD(δ) ≥ U∗ −
diam(X )L δ

G .

With the constraint
∑

s∈S πsxs ∈ C, OBJD(δ) ≥ U∗ −
(
diam(X )L+ 2B diam(X )

dist(C,∂X )

)
δ
G .

Lemma F.2. In an unconstrained generalized principal-agent problem, OBJ
R
(δ) ≤ U∗ +

diam(X )L δ
G .

With the constraint
∑

s∈S πsxs ∈ C, OBJ
R
(δ) ≤ U∗ +

(
diam(X )L+ 2B diam(X )

dist(C,∂X )

)
δ
G .

The proofs of Lemmas F.1 and F.2 are similar and given in Appendix F.4 and F.5. The main idea
to prove Lemma F.2 is the following. Let (π, ρ) be any pair of principal’s strategy and agent’s δ-
best-responding strategy. We perturb the principal’s strategy π slightly to be a strategy π′ for which
ρ is exactly best-responding (such a perturbation is possible due to Assumption 1). Since ρ is best-
responding to π′, the pair (π′, ρ) cannot give the principal a higher utility than U∗ (which is the
optimal principal utility under the best-response model). This means that the original pair (π, ρ)
cannot give the principal a utility much higher than U∗, implying an upper bound on OBJ

R
(δ).

Upper bounds on OBJ
R
(δ) imply upper bounds on OBJ

D
(δ). Then, because OBJ

D
(δ) ≤

OBJ
R
(δ), we immediately obtain the upper bounds on OBJ

D
(δ) in the two theorems.

Lower bounds for OBJD(δ) imply lower bounds for OBJR(δ) Finally, we show that the lower
bounds for OBJD(δ) imply the lower bounds for OBJR(δ), using the following lemma:

Lemma F.3. For any δ ≥ 0,∆ > 0, OBJR(δ) ≥ OBJD(∆)− 2Bδ
∆ .

The proof of this lemma is in Appendix F.6.

Using Lemma F.3 with ∆ =
√

2BGδ
diam(X )L and the lower bound for OBJD(∆) in Lemma F.1 for the

unconstrained case, we obtain:

OBJR(δ) ≥ OBJD(∆)− 2Bδ
∆ ≥ U∗ − diam(X )L∆

G − 2Bδ
∆ = U∗ − 2

√
2BL
G diam(X )δ,

which gives the lower bound for OBJR(δ) in Theorem 4.1.
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Using Lemma F.3 with ∆ =
√

2BGδ

Ldiam(X )+2B
diam(X )

dist(C,∂X )

and the lower bound for OBJD(∆) in

Lemma F.1 for the constrained case, we obtain:

OBJR(δ) ≥ OBJD(∆)− 2Bδ
∆ ≥ U∗ −

(
diam(X )L+ 2B diam(X )

dist(C,∂X )

)
∆
G − 2Bδ

∆

= U∗ − 2
√

2B
G

(
diam(X )L+ 2B diam(X )

dist(C,∂X )

)
δ.

This proves the lower bound for OBJR(δ) in Theorem 4.2.

F.4 PROOF OF LEMMA F.1

Let (π, ρ) be a pair of principal strategy and agent strategy that achieves the optimal principal utility
with an exactly-best-responding agent, namely, U(π, ρ) = U∗. Without loss of generality ρ can be
assumed to be deterministic, ρ : S → A. The strategy π consists of pairs {(πs, xs)}s∈S that satisfy∑

s∈S

πsxs =: µ0 ∈ C, (23)

and the action a = ρ(s) is optimal for the agent with respect to xs. We will construct another
principal strategy π′ such that, even if the agent chooses the worst δ-best-responding strategy to π′,
the principal can still obtain utility arbitrarily close to U∗ −

(
Ldiam(X ; ℓ1) + 2B diam(X )

dist(C,∂X )

)
δ
G .

To construct π′ we do the following: For each signal s ∈ S, with corresponding action a = ρ(s), by
Claim 1 there exists ya ∈ X such that v(ya, a)−v(ya, a

′) ≥ G for any a′ ̸= a. Let θ = δ
G+ε ∈ [0, 1]

for arbitrarily small ε > 0, and let x̃s be the convex combination of xs and yρ(s) with weights 1−θ, θ:

x̃s = (1− θ)xs + θyρ(s). (24)

We note that a = ρ(s) is the agent’s optimal action for x̃s and moreover it is better than any other
action a′ ̸= a by more than δ:

v(x̃s, a)− v(x̃s, a
′) = (1− θ)

[
v(xs, a) − v(xs, a

′)︸ ︷︷ ︸
≥0 because a = ρ(s) is optimal for xs

]
+ θ

[
v(ya, a)− v(ya, a

′)︸ ︷︷ ︸
≥G by our choice of ya

]
≥ 0 + θG > δ

GG = δ. (25)

Let µ′ be the convex combination of {x̃s}s∈S with weights {πs}s∈S :

µ′ =
∑
s∈S

πsx̃s. (26)

Note that µ′ might not satisfy the constraint µ′ ∈ C. So, we want to find another vector z ∈ X and a
coefficient η ∈ [0, 1] such that

(1− η)µ′ + ηz ∈ C. (27)
(If µ′ already satisfies µ′ ∈ C, then let η = 0.) To do this, we consider the ray starting from µ′

pointing towards µ0: {µ′ + t(µ0 − µ′) | t ≥ 0}. Let z be the intersection of the ray with the
boundary of X :

z = µ′ + t∗(µ0 − µ′), t∗ = argmax{t ≥ 0 | µ′ + t(µ0 − µ′) ∈ X}.
Then, rearranging z = µ′ + t∗(µ0 − µ′), we get

1
t∗ (z − µ′) = µ0 − µ′ ⇐⇒ (1− 1

t∗ )µ
′ + 1

t∗ z = µ0 ∈ C,

which satisfies (27) with η = 1
t∗ . We then give an upper bound on η = 1

t∗ :

Claim 4. η = 1
t∗ ≤ diam(X )

dist(C,∂X )θ.

Proof. On the one hand,

∥µ0 − µ′∥ =
∥∥∑

s∈S

πsxs −
∑
s∈S

πsx̃s

∥∥ =
∥∥∑

s∈S

πsθ(yρ(s) − xs)
∥∥

≤ θ
∑
s∈S

πs

∥∥yρ(s) − xs

∥∥ ≤ θ
∑
s∈S

πs · diam(X ) = θ · diam(X ).
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On the other hand, because z − µ′ and µ0 − µ′ are in the same direction, we have

∥z − µ′∥ = ∥z − µ0∥+ ∥µ0 − µ′∥ ≥ ∥z − µ0∥ ≥ dist(C, ∂X )

because µ0 is in C and z is on the boundary of X . Therefore, η = 1
t∗ = ∥µ0−µ′∥

∥z−µ′∥ ≤ diam(X )
dist(C,∂X )θ.

The convex combinations (27) (26) define a new principal strategy π′ with |S|+1 signals, consisting
of x̃s with probability (1 − η)πs and z with probability η, satisfying

∑
s∈S(1 − η)πsx̃s + ηz =

µ0 ∈ C. Consider the agent’s worst (for the principal) δ-best-responding strategies ρ′ to π′:

ρ′ ∈ argmin
ρ∈Dδ(π′)

U(π′, ρ).

We note that ρ′(x̃s) must be equal to ρ(s) for each s ∈ S. This is because a = ρ(s) is strictly better
than any other action a′ ̸= a by a margin of δ (25), so a is the only δ-optimal action for x̃s.

Then, the principal’s expected utility under π′ and ρ′ is

U(π′, ρ′)
(27),(26)
= (1− η)

∑
s∈S

πsu(x̃s, ρ
′(x̃s)) + ηu(z, ρ′(z))

≥ (1− η)
∑
s∈S

πsu(x̃s, ρ(s)) − ηB

≥ (1− η)
∑
s∈S

πs

(
u(xs, ρ(s))− L ∥x̃s − xs∥︸ ︷︷ ︸

=∥θ(yρ(s)−xs)∥≤θdiam(X )

)
− ηB

≥ (1− η)U(π, ρ)− Lθdiam(X )− ηB

≥ U(π, ρ)− Lθdiam(X )− 2ηB

(Claim 4) ≥ U(π, ρ)− Lθdiam(X )− 2B diam(X )
dist(C,∂X )θ

= U(π, ρ)−
(
Ldiam(X ) + 2B diam(X )

dist(C,∂X )

)
( δ
G + ε)

= U∗ −
(
Ldiam(X ) + 2B diam(X )

dist(C,∂X )

)
δ
G −O(ε).

So, we conclude that

OBJD(δ) = sup
π

min
ρ∈Dδ(π)

U(π, ρ) ≥ min
ρ∈Dδ(π′)

U(π′, ρ)

= U(π′, ρ′) ≥ U∗ −
(
Ldiam(X ) + 2B diam(X )

dist(C,∂X )

)
δ
G −O(ε).

Letting ε → 0 finishes the proof for the case with the constraint
∑

s∈S πsxs ∈ C.

The case without
∑

s∈S πsxs ∈ C is proved by letting η = 0 in the above argument.

F.5 PROOF OF LEMMA F.2

Let π be a principal strategy and ρ ∈ Rδ(π) be a δ-best-responding randomized strategy of the
agent. The principal strategy π consists of pairs {(πs, xs)}s∈S with∑

s∈S

πsxs =: µ0 ∈ C. (28)

At signal s, the agent takes action a with probability ρ(a|s). Let δs,a be the “suboptimality” of
action a with respect to xs:

δs,a = max
a′∈A

{
v(xs, a

′)− v(xs, a)
}
. (29)

By Claim 1, for action a there exists ya ∈ X such that v(ya, a)− v(ya, a
′) ≥ G for any a′ ̸= a. Let

θs,a =
δs,a

G+δs,a
∈ [0, 1] and let x̃s,a be the convex combination of xs and ya with weights 1 − θs,a

and θs,a:
x̃s,a = (1− θs,a)xs + θs,aya. (30)
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Claim 5. We have two useful claims regarding x̃s,a and θs,a:

(1) a is an optimal action for the agent with respect to x̃s,a: v(x̃s,a, a)−v(x̃s,a, a
′) ≥ 0,∀a′ ∈

A.

(2)
∑

s∈S

∑
a∈A πsρ(a|s)θs,a ≤ δ

G .

Proof. (1) For any a′ ̸= a, by the definition of x̃s,a and θs,a,

v(x̃s,a, a)− v(x̃s,a, a
′) = (1− θs,a)

[
v(xs, a)− v(xs, a

′)
]
+ θs,a

[
v(ya, a)− v(ya, a

′)
]

≥ (1− θs,a)(−δs,a) + θs,aG = G
G+δs,a

(−δs,a) +
δs,a

G+δs,a
G = 0.

(2) By the condition that ρ is a δ-best-response to π, we have

δ ≥ max
ρ∗:S→A

V (π, ρ∗)− V (π, ρ) =
∑
s∈S

πs

(
max
a′∈A

{
v(xs, a

′)
}
−

∑
a∈A

ρ(a|s)v(xs, a)
)

=
∑
s∈S

∑
a∈A

πsρ(a|s)max
a′∈A

{
v(xs, a

′)− v(xs, a)
}

=
∑
s∈S

∑
a∈A

πsρ(a|s)δs,a.

So,
∑

s∈S

∑
a∈A πsρ(a|s)θs,a =

∑
s∈S

∑
a∈A πsρ(a|s) δs,a

G+δs,a
≤

∑
s∈S

∑
a∈A πsρ(a|s) δs,aG ≤

δ
G .

We let µ′ be the convex combination of {x̃s,a}s,a∈S×A with weights {πsρ(a|s)}s,a∈S×A:

µ′ =
∑

s,a∈S×A

πsρ(a|s)x̃s,a. (31)

Note that µ′ might not satisfy the constraint µ′ ∈ C. So, we want to find another vector z ∈ X and a
coefficient η ∈ [0, 1] such that

(1− η)µ′ + ηz ∈ C. (32)

(If µ′ already satisfies µ′ ∈ C, then let η = 0.) To do this, we consider the ray pointing from µ′ to
µ0: {µ′ + t(µ0 − µ′) | t ≥ 0}. Let z be the intersection of the ray with the boundary of X :

z = µ′ + t∗(µ0 − µ′), t∗ = argmax{t ≥ 0 | µ′ + t(µ0 − µ′) ∈ X}.

Then, rearranging z = µ′ + t∗(µ0 − µ′), we get
1
t∗ (z − µ′) = µ0 − µ′ ⇐⇒ (1− 1

t∗ )µ
′ + 1

t∗ z = µ0 ∈ C,

which satisfies (32) with η = 1
t∗ . We then give an upper bound on η = 1

t∗ :

Claim 6. η = 1
t∗ ≤ diam(X )

dist(C,∂X )
δ
G .

Proof. On the one hand,

∥µ0 − µ′∥ =
∥∥∑

s∈S

πsxs −
∑
s∈S

∑
a∈A

πsρ(a|s)x̃s,a

∥∥ =
∥∥∑

s∈S

∑
a∈A

πsρ(a|s)θs,a(ya − xs)
∥∥

≤
∑
s∈S

∑
a∈A

πsρ(a|s)θs,a
∥∥ya − xs

∥∥ ≤
∑
s∈S

∑
a∈A

πsρ(a|s)θs,adiam(X )
Claim 5
≤ diam(X ) δ

G .

On the other hand, because z − µ′ and µ0 − µ′ are in the same direction, we have

∥z − µ′∥ = ∥z − µ0∥+ ∥µ0 − µ′∥ ≥ ∥z − µ0∥ ≥ dist(C, ∂X )

because µ0 is in C and z is on the boundary of X . Therefore, η = 1
t∗ = ∥µ0−µ′∥

∥z−µ′∥ ≤ diam(X )
dist(C,∂X )

δ
G .
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The convex combinations (32) (31) define a new principal strategy π′ (with |S| × |A| + 1 signals)
consisting of x̃s,a with probability (1−η)πsρ(a|s) and z with probability η. Consider the following
deterministic agent strategy ρ′ in response to π′: for x̃s,a, take action ρ′(x̃s,a) = a; for z, take any
action that is optimal for z. We note that ρ′ is a best-response to π′, ρ′ ∈ R0(π

′), because, according
to Claim 5, a is an optimal action with respect to x̃s,a.

Then, consider the principal’s utility under π′ and ρ′:

U(π′, ρ′)
(32),(31)
= (1− η)

∑
s∈S

∑
a∈A

πsρ(a|s)u(x̃s,a, ρ
′(x̃s,a)) + ηu(z, ρ′(z))

≥ (1− η)
∑
s∈S

∑
a∈A

πsρ(a|s)u(x̃s,a, a) − ηB

≥ (1− η)
∑
s∈S

∑
a∈A

πsρ(a|s)
(
u(xs, a)− L ∥x̃s − xs∥︸ ︷︷ ︸

=∥θs,a(ya−xs)∥≤θs,adiam(X )

)
− ηB

≥ (1− η)U(π, ρ) − Ldiam(X )
∑
s∈S

∑
a∈A

πsρ(a|s)θs,a − ηB

(Claim 5) ≥ U(π, ρ)− Ldiam(X ) δ
G − 2ηB

(Claim 6) ≥ U(π, ρ)−
(
Ldiam(X ) + 2B diam(X )

dist(C,∂X )

)
δ
G .

Rearranging, U(π, ρ) ≤ U(π′, ρ′)+
(
Ldiam(X )+ 2B diam(X )

dist(C,∂X )

)
δ
G . Note that this argument holds

for any pair (π, ρ) that satisfies ρ ∈ Rδ(π). And recall that ρ′ ∈ R0(π
′). So, we conclude that

OBJ
R
(δ) = max

π
max

ρ∈Rδ(π)
U(π, ρ) ≤ max

π′
max

ρ′∈R0(π)
U(π′, ρ′) +

(
Ldiam(X ; ℓ1) + 2B diam(X )

dist(C,∂X )

)
δ
G

= U∗ +
(
Ldiam(X ; ℓ1) + 2B diam(X )

dist(C,∂X )

)
δ
G .

This proves the case with the constraint
∑

s∈S πsxs ∈ C.

The case without
∑

s∈S πsxs ∈ C is proved by letting η = 0 in the above argument.

F.6 PROOF OF LEMMA F.3

Let A∆(x) =
{
a ∈ A | v(x, a) ≥ v(x, a′) − ∆,∀a′ ∈ A

}
be the set of ∆-optimal actions of the

agent in response to principal decision x ∈ X . The proof of Lemma F.3 uses another lemma that
relates the principal utility under a randomized δ-best-responding agent strategy ρ ∈ Rδ(π) and that
under an agent strategy ρ′ that only randomizes over A∆(xs).
Lemma F.4. Let π = {(πs, xs)}s∈S be a principal strategy and ρ ∈ Rδ(π) be a randomized δ-best-
response to π. For any ∆ > 0, there exists an agent strategy ρ′ : s 7→ ∆(A∆(xs)) that randomizes
over ∆-optimal actions only for each xs, such that the principal’s utility under ρ′ and ρ satisfies:∣∣U(π, ρ′)− U(π, ρ)

∣∣ ≤ 2Bδ
∆ .

Proof. Let a∗s = maxa∈A v(xs, a) be the agent’s optimal action for xs. Let A∆(xs) = A \A∆(xs)
be the set of actions that are not ∆-optimal for xs. By the definition that ρ ∈ Rδ(π) is a δ-best-
response to π, we have

δ ≥
∑
s∈S

πs

[
v(xs, a

∗
s)−

∑
a∈A

ρ(a|s)v(xs, a)
]

=
∑
s∈S

πs

( ∑
a∈A∆(xs)

ρ(a|s)
[
v(xs, a

∗
s)− v(xs, a)︸ ︷︷ ︸

≥0

]
+

∑
a∈A∆(xs)

ρ(a|s)
[
v(xs, a

∗
s)− v(xs, a)︸ ︷︷ ︸
>∆

])
≥ 0 + ∆

∑
s∈S

πs

∑
a∈A∆(xs)

ρ(a|s)

= ∆
∑
s∈S

πsρ(A∆(xs) | s).
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Rearranging, ∑
s∈S

πsρ(A∆(xs) | s) ≤
δ

∆
. (33)

Then, we consider the randomized strategy ρ′ that, for each s, chooses each action a ∈ A∆(xs) with
the conditional probability that ρ chooses a given a ∈ A∆(xs):

ρ′(a | s) = ρ(a | s)
ρ(A∆(xs) | s)

.

The sender’s utility under ρ′ is:

U(π, ρ′) =
∑
s∈S

πs

∑
a∈A∆(xs)

ρ(a | s)
ρ(A∆(xs) | s)

u(xs, a).

The sender’s utility under ρ is

U(π, ρ) =
∑
s∈S

πs

∑
a∈A∆(xs)

ρ(a | s)u(xs, a) +
∑
s∈S

πs

∑
a∈A∆(xs)

ρ(a | s)u(xs, a)

Taking the difference between the two utilities, we get∣∣U(π, ρ′)− U(π, ρ)
∣∣

≤
∣∣∣∑
s∈S

πs

( 1

ρ(A∆(xs) | s)
− 1

) ∑
a∈A∆(xs)

ρ(a | s)u(xs, a)
∣∣∣ +

∣∣∣∑
s∈S

πs

∑
a∈A∆(xs)

ρ(a | s)u(xs, a)
∣∣∣

=
∣∣∣∑
s∈S

πs
1− ρ(A∆(xs) | s)
ρ(A∆(xs) | s)

∑
a∈A∆(xs)

ρ(a | s)u(xs, a)
∣∣∣ +

∣∣∣∑
s∈S

πs

∑
a∈A∆(xs)

ρ(a | s)u(xs, a)
∣∣∣

≤
∑
s∈S

πs
1− ρ(A∆(xs) | s)
ρ(A∆(xs) | s)

∑
a∈A∆(xs)

ρ(a | s) ·B +
∑
s∈S

πs

∑
a∈A∆(µs)

ρ(a | s) ·B

= B
∑
s∈S

πs
ρ(A∆(xs) | s)
ρ(A∆(xs) | s)

ρ(A∆(xs) | s) + B
∑
s∈S

πsρ(A∆(xs) | s)

= 2B
∑
s∈S

πsρ(A∆(xs) | s)
(33)
≤ 2Bδ

∆
.

This proves the lemma.

We now prove Lemma F.3.

Proof of Lemma F.3. Consider the objective OBJR(δ) = supπ minρ∈Rδ(π) U(π, ρ). By
Lemma F.4, for any (π, ρ) there exists an agent strategy ρ′ : s 7→ ∆(A∆(xs)) that only random-
izes over ∆-optimal actions such that

∣∣U(π, ρ′) − U(π, ρ)
∣∣ ≤ 2Bδ

∆ . Because minimizing over
∆(A∆(xs)) is equivalent to minimizing over A∆(xs), which corresponds to deterministic ∆-best-
responding strategies, we get:

OBJR(δ) = sup
π

min
ρ∈Rδ(π)

U(π, ρ) ≥ sup
π

min
ρ′:s7→∆(A∆(xs))

U(π, ρ′)− 2Bδ
∆

= sup
π

min
ρ′:s7→A∆(xs)

U(π, ρ′)− 2Bδ
∆

= OBJD(∆)− 2Bδ
∆ .

32


	Introduction
	Generalized Principal-Agent Problem with a Learning Agent
	Generalized Principal-Agent Problem
	Learning Agent
	Special Case: Bayesian Persuasion with a Learning Agent

	Reduction from Learning to Approximate Best Response
	Generalized Principal-Agent Problem with Approximate Best Response
	Agent's No-Regret Learning: Lower Bound on Principal's Utility
	Agent's No-Swap-Regret Learning: Upper Bound on Principal's Utility
	Agent's Mean-Based Learning: Exploitable by the Principal

	Generalized Principal-Agent Problems with Approximate Best Response
	Applications to Specific Principal-Agent Problems
	Discussion
	Additional Related Works
	Details about Contextual No-(Swap-)Regret Algorithms
	Example of Approximately Best Responding Agents
	Additional Details on Applications to Specific Principal-Agent Problems
	Stackelberg Games
	Contract Design

	Missing Proofs from Section 3
	Proof of Lemma 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Theorem 3.5

	Missing Proofs from Section 4
	Proof of Claim 1
	Proof of Example 4.1
	Proof of Theorems 4.1 and 4.2
	Proof of Lemma F.1
	Proof of Lemma F.2
	Proof of Lemma F.3


