
Supplemental Material:
Differentiable hierarchical and surrogate gradient

search for spiking neural networks

Kaiwei Che1,2 ∗, Luziwei Leng1,2∗�, Kaixuan Zhang1,2, Jianguo Zhang1,
Max Q.-H. Meng1, Jie Cheng2, Qinghai Guo2, Jiangxing Liao2

1 Southern University of Science and Technology, China
2 ACS Lab, Huawei Technologies, Shenzhen, China

A Cell search space

A.1 Mixed operation

For spiking neurons, we can either mix the operation at the spike activation or at the input of the
membrane potential. The former allows a search over operations with different SG functions, while
the latter transfers more accurate learning signals for α and leads to a concise node with fewer spiking
filters, as we show in the following.
For mixed operation at the spike function, ȳ = ō and y = o. The mixed operation is then:

ȳ =

K∑
k

eαk

Z
yk (1)

where Z =
∑K

k eαk is the normalizing constant, K denotes the number of candidate operations on
one edge and k is the index of the operation.
Given loss L, assuming T = 1 for simplification, the gradient of αk is derived as:

∂L

∂αk
=

T∑
t

∂L

∂f t

∂f t

∂ȳt
∂ȳt

∂αk

=
∂L

∂f

∂f

∂ȳ

eαk

Z

[
yk −

∑K
k (eαkyk)

Z

]

=
∂L

∂f

∂f

∂ȳ

eαk

Z

(
yk − ȳ

)
(2)

where f is the sign function of the node and for ∂f
∂ȳ we apply a fixed SG function.

For mixed operation at the input of the membrane potential, Ī = ō and I = o. The mixed operation
is then:

Ī =

K∑
k

eαk

Z
Ik (3)

Similarly, the gradient of αk is then derived as:

∂L

∂αk
=

T∑
t

∂L

∂yt
∂yt

∂ut

∂ut

∂Īt
∂Īt

∂αk

=
∂L

∂y
· g(u) · 1 · e

αk

Z

(
Ik − Īk

)
(4)

∗Equal Contributions. �Corresponding author. lengluziwei@huawei.com

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



concat

cell to node
node to node

Conv BN

OP1

Skip

OP2 Spike

node

Figure 1: Mixed operation at the input of membrane potential. 2 operations are shown here as an
example.

For mixed operation at the spike activation, as Eq. 2 shows, the gradient of αk stops at yk − ȳ, so
for candidate operations we can use different SG functions for the corresponding spike activation.
However, the learning signal of α is also filtered by an additional SG function ∂f

∂ȳ at the node, which
could cause additional noise. In addition, when applied for DGS method, the contribution of wgi will
be filtered by the consecutive spike activation. If the difference between the original weight and wgi
is minor, they could lead to the same spike activation and in the extreme case ygi − ȳ could be 0. For
mixed operation at the input of membrane potential, as Eq. 4 shows, the gradient of αk applies a
unified SG function g(u) for different candidate operations which limits the exploration of diverse
SG functions. However, since Ik directly depends on the weight, when applied for DGS method it
strictly reflects different changes of the original weight, thus giving more accurate learning signals
for αk. Also, in forward path this leads to a more concise node without the sign filter, as shown in
Fig. 1.

B Layer search space

As stated in the main text, to ensure spike-based computation for the network, we apply the nearest
interpolation for upsampling in order to maintain a binary feature map. For event-based deep stereo,
at the end of each subnetwork, the feature map of the last cell is upsampled to the original resolution.
In the feature subnetwork, this is done by upsampling (double scaled) followed by convolution with
spike activation, this process is repeated for multiple times until the feature map is recovered to the
original resolution. In the matching subnetwork, we cancel the last spike activation and directly
output the membrane potential in order to increase the representation ability.

C Classification

For classification task, we inherit the searching structure from DARTS [9] and make some adjustments.
Same as most NAS structures, we adopt stem layer as our first layer to extract features. Meanwhile
it’s also a spike emitter to transmit floating numbers to spikes. Then we employ cell structure as
our basic unit to construct our whole searching structure. The stem layer takes 3-channel images
as input and outputs 48-channel spiking feature maps. For the rest of the network, we employ 6
normal cells and 2 reduction cells. Normal cells keep the dimension of feature maps unchanged,
while reduction cells (Cell2 and Cell5) halve the spatial size and double the channel number of
former feature maps. Finally, we use a global pooling and a fully-connected layer to end the whole
classification process. The auxiliary loss is applied at Cell5. In retraining stage, we use 8 cells as
well to avoid some intrinsic problem of DARTS to some extent, like depth-gap between searching
structure and retraining structure as described in [4]. In this stage, stem layer uses 108 output channels
rather than 48, to extract more features from row image data. The detailed network structure for
retraining is shown in Table 1. In extending experiments, we slightly increase the output channel of
the first stem layer to 144 and use 3 nodes within a cell, the size of the output feature map of the cell
remains the same. Detailed architectures of SpikeDHS-CLA (node=4), SpikeDHS-CLA (node=3)
and SpikeDHS-CLA-large (ImageNet) are listed in Table 1, 2 and 3.

2



Table 1: Network architecture of SpikeDHS-CLA for CIFAR with 4 nodes in a cell.

Layer Feature map size c× h× w
Stem 108× 32× 32
Cell0 144× 32× 32
Cell1 144× 32× 32
Cell2 288× 16× 16
Cell3 288× 16× 16
Cell4 288× 16× 16
Cell5 576× 8× 8
Cell6 576× 8× 8
Cell7 576× 8× 8

Pooling 576× 1× 1
FC 10

Table 2: Network architecture of SpikeDHS-CLA for CIFAR with 3 nodes in a cell.

Layer Feature map size c× h× w
Stem 144× 32× 32
Cell0 144× 32× 32
Cell1 144× 32× 32
Cell2 288× 16× 16
Cell3 288× 16× 16
Cell4 288× 16× 16
Cell5 576× 8× 8
Cell6 576× 8× 8
Cell7 576× 8× 8

Pooling 576× 1× 1
FC 10

Table 3: Network architecture of SpikeDHS-CLA-large for ImageNet with 3 nodes in a cell.

Layer Feature map size c× h× w
Stem0 72× 112× 112
Stem1 144× 56× 56
Cell0 144× 56× 56
Cell1 144× 56× 56
Cell2 288× 28× 28
Cell3 288× 28× 28
Cell4 576× 14× 14
Cell5 576× 14× 14
Cell6 576× 8× 8
Cell7 1152× 7× 7
Cell8 1152× 7× 7
Cell9 1152× 7× 7

Pooling 1152× 1× 1
FC 1000

3



D Event-based deep stereo

We split and preprocess the Indoor Flying dataset from the MVSEC dataset following the same setting
as [10, 1, 17]. In split one, 3110 samples from the Indoor Flying 2 and 3 are used as the training set
while 861 and 200 samples from the Indoor Flying 1 are used as the test set and validation set. In
split three, 2600 samples from the Indoor Flying 2 and 3 are used as the training set while 1343 and
200 samples from the Indoor Flying 1 are used as the test set and validation set.

D.1 Event encoding

We use stacking based on time (SBT) [11] which merges events into temporally neighboring frames.
Specifically, within one stack, a duration of ∆t event stream is compressed into n frames. The value
of each pixel in the ith frame is defined as the accumulated polarity of events:

P (x, y) = sign(
∑
t∈T

p(x, y, t)) (5)

where P is the value of the pixel at (x, y), t is the timestamp, p is the polarity of the event and
T ∈ [ (i−1)∆t

n , i∆t
n ] is the duration of events merged into one frame. The advantage of SBT is that it is

simple and has low computation cost. Besides, event cameras are often embedded with accumulator
modules that directly output events in SBT. However, when too few events happening during the
interval, SBT may produce a very sparse event image. This limitation can be alleviated for SNN
by its intrinsic temporal accumulation effect of the membrane potential. During training, we set
∆t = 50ms, n = 5 and T = 10ms for each stack and use 6+ 2 consecutive stacks as one input (with
the first 2 stacks as burn in time), corresponding to 6 consecutive ground truth disparities as one label.
A training epoch on split one thus contains 518 batches (no time overlap between label batches).

D.2 Architecture search and retrain

We use random cropping for data augmentation as well as memory saving. The input images are
cropped from 260 × 346 to 200 × 280 with 50% probability at random positions. Our feature
subnetwork produces a pair of left and right feature maps FL and FR. Following volumetric
approaches in deep stereo matching [7, 15, 16], we construct a feature volume by concatenating the
left feature map and disparity shifted right feature map in channel dimension. With a given disparity
shift ds ∈ {0, 1, 2, . . . , D}, the feature volume for pixel x can be expressed as:

C(x, ds) = concat(FL(x), FR(x− ds)), C ∈ RD×H×W (6)

For architecture search, we set the channel number of the last stem feature map to 12. In the retraining
phase, we expand this channel number from 12 to 24 to improve network performance, the rest of
the network also have channel number doubled accordingly. We set D = 33, close to the maximum
disparity of the MVSEC dataset, which is 37. The detailed network architecture for retraining is
shown in Table 4.

D.3 Random seed experiments

To determine the final architecture, we repeat the experiment for 3 times with different random
seeds and select the best architecture based on the validation performance obtained by training from
scratch for a short period. Fig. 2 shows that while the architecture exhibits certain sensitivity for
initialization, it can be gradually optimized during the search phase. This gradual improvement in
dense image prediction may in a degree owing to the layer level optimization. In the classification
task, we didn’t observe a smooth improvement of the architecture during the search phase. This could
be due to the intrinsic optimization problem of the original DARTS [9]. This issue is discussed in
[13, 5, 3, 12] where various solutions have proposed. Future works can potentially be improved using
these methods.

D.4 Further ablation study

In the main text, we reported results based on mixed operation at the spike function for the cell
(for DGS we applied mixed operation at the membrane potential since there is no multiple spike

4



Table 4: Detailed architecture of SpikeDHS-Stereo. C = 12, H = 260,W = 346, D = 33.

Module Layer Feature map size

Feature net

Stem0 C ×H ×W
Stem1 2C × 1

3H × 1
3W

Cell0 4C × 1
6H × 1

6W
Cell1 2C × 1

3H × 1
3W

Upsampling 2C × 1
3H × 1

3W
Feature Volume Concat 4C ×D × 1

3H × 1
3W

Matching net

Stem0 2C ×D × 1
3H × 1

3W
Stem1 2C ×D × 1

3H × 1
3W

Cell0 4C × 1
2D × 1

6H × 1
6W

Cell1 8C × 1
4D × 1

12H × 1
12W

Cell2 8C × 1
4D × 1

12H × 1
12W

Cell3 4C × 1
2D × 1

6H × 1
6W

Upsampling 1×D × 1
3H × 1

3W
Estimator Estimator H ×W

0 3 6 9
Epochs

72.5
75.0
77.5
80.0
82.5
85.0
87.5

1P
A 

[%
]

0 3 6 9
Epochs

18

20

22

24

26

M
DE

 [c
m

]

Figure 2: Search progress of SpikeDHS on MVSEC. We record the searched architecture for every 3
epochs. Each recorded architecture is retrained from scratch for 100 epochs and then evaluated on
the validation set. We repeat the experiment for 3 times with different random seeds and report the
best 1PA and MDE for each recorded architecture.

functions at the stem layer) and results from extending experiments with mixed operation at the
membrane potential (MM). To save computation time, we directly convert the searched architecture
from mixed at spike to mixed at membrane potential. Specifically, we reinitialize all SG function
to b = 3 and retrain the model on split one. We also apply DGS in the first stem layer as before. In
addition, to compare with ANN converted SNN network, we convert the DDES model to spike-based
model, i.e replace Relu units with LIF neurons, to create DDES-SNN model and directly train it. The
results are summarized in Table 5. Models with mixed operation at the membrane potential achieves
significantly better results, probably due to a more concise node which uses fewer SG function. The
performance of the model is further improved with DGS method, demonstrating the effectiveness
of the algorithm. The DDES-SNN model performs much worse than SpikeDHS-Stereo, though
additional fine tuning could potentially improve its performance, it shows the difficulty of directly
applying ANN architecture for spiking neurons in dense prediction task.

D.5 FPS calculation

For DARTS-SNN, We use 8 consecutive stacks as one input and calculate corresponding inference
time of the network. Then we divide the time by 8 to obtain the inference time of producing one
disparity map. For DDES we run the public available code with one input sample and produce one
disparity map. Both experiments are repeated multiple times to obtain the average duration. These
experiments are performed on a single NVIDIA Tesla V100 (32G) GPU.

5



Table 5: We denote the best and second best results in bold and underscore. Symbols meaning: (·),
streaming tests;D, training with DGS; MM, mixed operation at the membrane potential

Method EO No. param.
MDE [cm] ↓

Median depth
error [cm] ↓

Mean disparity
error [pix] ↓

1PA [%] ↑

split1 split3 split1 split3 split1 split3 split1 split3

DDES [10] ✓ 2.33M 16.7 27.8 6.8 14.7 0.59 0.94 89.4 74.8
SpikeDHS ✓ 0.87M 16.5(16.5) 19.4(19.5) 6.5(6.5) 10.6(10.6) 0.57(0.57) 0.73(0.74) 90.1(90.2) 88.5(88.4)

SpikeDHSD ✓ 0.87M 15.9(15.8) 19.1(19.3) 6.3(6.3) 10.4(10.5) 0.54(0.54) 0.72(0.74) 90.7(90.8) 88.9(88.8)
DDES-SNN ✓ 2.33M 53.4 - 37.8 - 2.08 - 37.1 -

SpikeDHS (MM) ✓ 0.87M 15.7(15.7) - 6.3(6.3) - 0.55(0.54) - 91.0(91.1) -
SpikeDHSD (MM) ✓ 0.87M 15.4(15.4) - 6.0(6.0) - 0.54(0.54) - 91.3(91.4) -

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
ut

0.0
0.5
1.0
1.5
2.0
2.5

Dspike
1
2
3 (init)
4
5

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
ut

0.0
0.5
1.0
1.5
2.0
2.5

Triangle
1
2
3 (init)
4
5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
ut

0.0
0.2
0.4
0.6
0.8
1.0

Superspike
1
2
3 (init)
4
5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
ut

0.0

0.5

1.0

1.5

Arctan
1
2
3 (init)
4
5

Figure 3: The shape of different SG functions with different temperature factor b. We set the initial
value of b to 3.

D.6 Different SGs for DGS

We evaluate four different SG functions including Dspike [8] (Eq. 7), Triangle [2] (Eq. 8), Superspike
[14] (Eq. 9) and Arctan [6] (Eq. 10) functions with fixed hyperparameters during training and varying
hyperparameters with DGS. These functions are described as following

δ′D(x) =
b

2
·
1− tanh2(b(x− 1

2 ))

tanh( b2 )
if 0 ≤ x ≤ 1 (7)

δ′T (x) = b ·max{0, 1− |x− 1

2
|} (8)

δ′S(x) =
1

(b · |x|+ 1)2
(9)

δ′A(x) =
b/3

1 + (πx)2
(10)

Each SG function has a temperature factor b to control its shape through DGS. A visualization is
shown in Fig. 3.

6



References
[1] Soikat Hasan Ahmed, Hae Woong Jang, SM Nadim Uddin, and Yong Ju Jung. Deep event

stereo leveraged by event-to-image translation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 882–890, 2021.

[2] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass.
Long short-term memory and learning-to-learn in networks of spiking neurons. Advances in
neural information processing systems, 31, 2018.

[3] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via
perturbation-based regularization. In International conference on machine learning, pages
1554–1565. PMLR, 2020.

[4] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1294–1303, 2019.

[5] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xiaolin Wei, and Junchi Yan.
Darts-: robustly stepping out of performance collapse without indicators. arXiv preprint
arXiv:2009.01027, 2020.

[6] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong
Tian. Incorporating learnable membrane time constant to enhance learning of spiking neural
networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2661–2671, 2021.

[7] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy, Abraham
Bachrach, and Adam Bry. End-to-end learning of geometry and context for deep stereo
regression. In Proceedings of the IEEE International Conference on Computer Vision, pages
66–75, 2017.

[8] Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differ-
entiable spike: Rethinking gradient-descent for training spiking neural networks. Advances in
Neural Information Processing Systems, 34, 2021.

[9] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

[10] Stepan Tulyakov, Francois Fleuret, Martin Kiefel, Peter Gehler, and Michael Hirsch. Learning an
event sequence embedding for dense event-based deep stereo. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1527–1537, 2019.

[11] Lin Wang, Yo-Sung Ho, Kuk-Jin Yoon, et al. Event-based high dynamic range image and
very high frame rate video generation using conditional generative adversarial networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10081–10090, 2019.

[12] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Re-
thinking architecture selection in differentiable nas. arXiv preprint arXiv:2108.04392, 2021.

[13] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. arXiv preprint
arXiv:1907.05737, 2019.

[14] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking
neural networks. Neural computation, 30(6):1514–1541, 2018.

[15] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. Ga-net: Guided aggregation
net for end-to-end stereo matching. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 185–194, 2019.

[16] Yiran Zhong, Yuchao Dai, and Hongdong Li. Self-supervised learning for stereo matching with
self-improving ability. arXiv preprint arXiv:1709.00930, 2017.

7



[17] Alex Zihao Zhu, Yibo Chen, and Kostas Daniilidis. Realtime time synchronized event-based
stereo. In Proceedings of the European Conference on Computer Vision (ECCV), pages 433–447,
2018.

8


	Cell search space
	Mixed operation

	Layer search space
	Classification
	Event-based deep stereo
	Event encoding
	Architecture search and retrain
	Random seed experiments
	Further ablation study
	FPS calculation
	Different SGs for DGS


