
Improving Zero-shot
Generalization in Offline Reinforcement Learning

using Generalized Similarity Functions

Bogdan Mazoure∗
McGill University, Quebec AI Institute
bogdan.mazoure@mail.mcgill.ca

Ilya Kostrikov
UC Berkeley

Ofir Nachum
Google Brain

Jonathan Tompson
Google Brain

Abstract

Reinforcement learning (RL) agents are widely used for solving complex sequential
decision making tasks, but still exhibit difficulty in generalizing to scenarios not
seen during training. While prior online approaches demonstrated that using
additional signals beyond the reward function can lead to better generalization
capabilities in RL agents, i.e., using self-supervised learning (SSL), they struggle in
the offline RL setting, i.e., learning from a static dataset. We show that performance
of online algorithms for generalization in RL can be hindered in the offline setting
due to poor estimation of similarity between observations. We propose a new
theoretically-motivated framework called Generalized Similarity Functions (GSF),
which uses contrastive learning to train an offline RL agent to aggregate observations
based on the similarity of their expected future behavior, where we quantify this
similarity using generalized value functions. We show that GSF is general enough
to recover existing SSL objectives while also improving zero-shot generalization
performance on two pixel-based offline RL benchmarks.

1 Introduction

Reinforcement learning (RL) is a powerful framework for solving complex tasks that require a
sequence of decisions. The RL paradigm has allowed for major breakthroughs in various fields, e.g.
outperforming humans on video games [1, 2], controlling stratospheric balloons [3] and learning
reward functions from robot manipulation videos [4]. More recently, RL agents have been tested
in a generalization setting, i.e. in which training involves a finite number of related tasks sampled
from some distribution, with a potentially distinct sampling distribution during test time [5, 6, 7].
The main issue for designing generalizable agents is the lack of on-policy data from tasks not seen
during training: it is impossible to enumerate all variants of a real-world environment during training
and hence the agent must extrapolate from a (limited) training task collection onto a broader set of
problems. Since the learning agent is given no training data from test-time tasks, this problem is
referred to as zero-shot generalization. In our work, we are interested in the problem of zero-shot
generalization where the difference between tasks is predominantly due to perceptually distinct
observations. An example of this setting is any environment with distractor features [8, 9], i.e. features
with no dependence on the reward signal nor the agent’s decisions. This generalization setting has
recently received much attention [10, 11, 12], due to its particular relevance to real-world scenarios,
for example deploying the same autonomous driving agent at day or at night.

∗Work done while at Google Brain.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Generalization capabilities of an agent can be analyzed through the prism of representation learning,
under which the agent’s current belief about a rich and high-dimensional environment are summarized
in a low-dimensional entity, called a representation. Recent work in online RL has shown that learning
state representations with specific properties such as disentanglement [13] or linear separability [14]
can improve zero-shot generalization performance. Achieving this with limited data (i.e. offline
RL) is challenging, since the representation will have a large estimation error over regions of low
data coverage. A common solution to mitigate this task-specific overfitting and extracting the most
information out of the data consists in introducing auxiliary learning signals other than instantaneous
reward [15]. As we show later in the paper, many such signals already contained in the dataset can
be used to further improve generalization performance. For instance, the generalization performance
of PPO on Procgen remains limited even when training on 200M frames, while generalization-oriented
agents [15, 12] can outperform it by leveraging additional auxiliary signals. However, a major issue
with the aforementioned methods is their exorbitant reliance on online access to the environment, an
impractical restriction for real-world scenarios.

In contrast, in many real-world scenarios access to the environment is restricted to an offline, fixed
dataset of experience [16, 17]. A natural limitation for generalization from offline data is that policy
improvement is dependent on dataset quality. Specifically, high-dimensional problems such as control
from pixels require large amounts of training experience: a standard training of PPO [18] for 25 million
frames on Procgen [8] generates more than 300 Gb of data, an impractical amount of data to share
for offline RL research. Improving zero-shot generalization performance from an offline dataset of
high-dimensional observations is therefore a hard problem due to limitations on dataset size and quality.

In this work, we are interested in improving zero-shot generalization across a family of Partially-
Observable Markov decision processes [POMDPs, 19] in an offline RL setting, i.e. by training agents
on a fixed dataset. We hypothesize that in order for an RL agent to be able to generalize across perceptu-
ally different POMDPs without adaptation, observations with similar future behavior should be assigned
to close representations. We use the generalized value function (GVF) framework [20] to capture future
behavior with respect to any instantaneous signal (called cumulant) at a given state. Specifically, the
choice of cumulant determines the nature of the behavioral similarity that is induced into state representa-
tions. For example, using reward similarity leads to learning bisimulation metrics [21, 22, 23, 24], while
using future state-action visitation counts encourages reward-free behavioral similarity [25, 10, 11, 12].

Our main contributions are as follows:

1. We propose Generalized Similarity Functions (GSF), a novel self-supervised learning
algorithm for reinforcement learning that aggregates latent representations of observations
by their future behavior (or generalized value function).

2. Existing offline RL benchmarks [26, 27] are not well-suited to test zero-shot generalization,
and so we devise two new benchmarks: offline Procgen and Distracting Control Suite. The
first consists of 5M transitions from 200 related levels of 16 distinct games; the second
consists of 1M transitions from 3 variations of 4 distincts tasks.

3. We evaluate performance of GSF and other baseline methods on both benchmarks, and show
that GSF outperforms both previous state-of-the-art offline RL and representation learning
baselines on the entire distribution of levels.

4. We analyze the theoretical properties of GSF and describe the impact of hyperparameters and
cumulant functions on empirical behavior in both offline Procgen and the offline Distracting
Suite benchmarks.

2 Related Works

Generalization in reinforcement learning Generalizing a model’s predictions across a variety
of unseen, high-dimensional inputs has been extensively studied in the static supervised learning
setting [28, 29, 30, 31]. Generalization in RL has received a lot of attention: extrapolation to unseen
rewards [32, 25], observations [24, 15, 10, 11, 12] and transition dynamics [33]. Each generalization
scenario is best solved by their respective set of methods: sufficient exploration [25, 34], auxiliary
learning signals [35, 36, 37] or data augmentation [33, 38]. Data augmentation is a promising technique,
but typically relies on handcrafted domain information, which might not be available a priori. In
fact, we will show in our experiments that generalization in the offline RL setting is poor even when

2

using such handcrafted data augmentations, without additional representation learning mechanisms.
In this work, we posit that representation learning should use instantaneous auxiliary signals in order
to prevent overfitting onto a unique signal (e.g. reward across tasks) and improve generalization
performance. Theoretical generalization guarantees have only been provided so far for limited
scenarios, mostly for bandits [39], linear MDPs [40, 41, 42] and across reward functions [32, 43, 44].

Representation learning For simple POMDPs, near-optimal policies can be found by optimizing
for the reward alone. However, more complex settings may require additional auxiliary signals
in order to find state abstractions better suited for control. The problem of learning meaningful
state representations (or abstractions) for planning and control has been extensively studied
previously [45, 22], but saw real breakthroughs only recently, in particular due to advances in
self-supervised learning (SSL). Outside of RL, SSL has achieved spectacular results by closing the
gap between unsupervised and supervised learning on certain datasets [46, 47, 48, 49]. Representation
learning, and specifically self-supervised learning, has also been used to achieve state-of-the-art
generalization and sample efficiency results in RL on challenging control problems such as data
efficient Atari [2, 50], DeepMind Control [11] and Procgen [36, 37, 15, 12]. Noteworthy instances
of theoretically-motivated representation learning methods for RL include heuristic-guided learning
[51], random Fourier features [42] and metric learning [52, 53].

Offline reinforcement learning When learning from a static dataset, agents should balance
interpolation and extrapolation errors, while ensuring proper diversity of actions (i.e. prevent collapse
to most frequent action in the data). Popular offline RL algorithms such as BCQ [54], MBS [55],
and CQL [56] rely on a behavior regularization loss [57] as a tool to control the extrapolation error.
Some methods, such as F-BRC [58] are defined only for continuous action spaces while others, such
as MOReL [59] estimate a pessimistic transition model. The major issue with current offline RL
algorithms such as CQL is that they are perhaps overly pessimistic for generalization purposes, i.e.
CQL and MBS ensure that the policy improvement is well-supported by the batch of data.

3 Problem setting

3.1 Partially-observable Markov decision processes

A (infinite-horizon) partially-observable Markov decision process [POMDP, 19]M is defined by the
tupleM=〈S,p0,A,pS ,O,pO,r,γ〉, where S is a state space, p0 =P[s0] is the starting state distribution,
A is an action space, pS=P[·|st,at] :S×A→∆(S) is a transition function,O is an observation space,
pO=P[·|st] :S→∆(O)2 is an observation function, r :S×A→ [rmin,rmax] is a reward function and
γ ∈ [0,1) is a discount factor. The system starts in one of the initial states s0∼ p0 with observation
o0 ∼ pO(·|s0). At every timestep t= 1,2,3,.., the agent, parameterized by a policy π :O→∆(A),
samples an action at∼π(·|ot). The environment transitions into a next state st+1∼pS(·|st,at) and
emits a reward rt=r(st,at) along with a next observation ot+1∼pO(·|st+1).

The goal of an RL agent is to maximize the cumulative discounted rewards
∑∞
t=0γ

trt obtained over
the entire episode. Value-based off-policy RL algorithms achieve this by estimating the state-action
value function under a target policy π:

Qπ(st,at)=EPπt [

∞∑
k=1

γkr(st+k,at+k)|st,at], (1)

for st∈S,at∈A and wherePπt denotes the joint distribution of {st+k,at+k}∞k=1 obtained by executing
π in the environment.

An important distinction from online RL is that, in the offline RL setting, we assume access to a
historical datasetDµ (instead of a simulator) collected by logging experience of the policy, µ, in the
form {oi,t,ai,t,ri,t}i=N,t=Ti=1,t=1 where, for practical purposes, the episode is truncated at T timesteps.
Furthermore, we assume that the agent can only be trained on a limited collection of POMDPs
Mtrain = {Mi}mi=1, and its performance is evaluated on the set of test POMDPsMtest. We assume
that bothMtrain andMtest were sampled from a common task distribution and that every POMDP
Mi∈M=Mtrain∪Mtest shares the same transition dynamics and reward function withM but has

2∆(X) denotes the entire set of distributions over the space X .

3

a different observation function pi,O. Importantly, since we perform control from pixels, we are in
the POMDP setting [see 60] and therefore emphasize the difference between observations ot and
corresponding states st throughout the paper.

3.2 Representation learning

Previous works in the RL literature have studied the use of auxiliary signals to improve generalization
performance. Among others, [10, 11] define the similarity of two observations to depend on the
distance between action sequences rolled out from that observation under their respective optimal
policies. They achieve this by finding a latent space Z ⊆ S in which the distance dZ(z, z′) for
all z, z′ ∈ Z is equivalent to distance between true latent states dS(s, s′) for all s, s′ ∈ S; the
aforementionned works learn Z by optimizing action-based similarities between observations. In
practice, latent space z is decoded from observation o using a latent state decoder f :O→Z from
observation ot. Throughout the paper, we assume that all value functions have a linear form in the
latent decoded state, i.e. Qθ(o,a)=θ>a fψ(o)=θ>a zψ , which agrees with our practical implementation
of all algorithms. Within this model family, the ability of an RL agent to correctly decode latent states
from unseen observations directly affects its policy, and therefore, its generalization capabilities. In
the next section, we discuss why representation learning is important for offline RL, and how existing
action-based similarity metrics fail to recover the true latent states for important families of POMDPs.

4 Motivating example

Figure 1: (a) Two levels of the Climber game from the Procgen benchmark [8] with near-identical
true latent states and near-identical value functions but drastically different action sequences. (b)
Four levels of the jumping task [61] where the constant reward signal makes policy similarity more
informative than state value similarity.

Multiple recently proposed self-supervised objectives [10, 11] conjecture that observations
o1 ∈M1,o2 ∈M2 that emit similar future action sequences under optimal policies π∗1 ,π

∗
2 should be

decoded into nearby latent states z1,z2. While this heuristic can correctly group observations with
respect to their true latent state in simple action spaces, it fails to identify similar pairs of trajectories
in POMDPs with multiple optimal policies3. For instance, two trajectories might visit an identical
set of latent states, but have drastically different actions.

Fig. 1a shows one such example: two levels of the Climber game have a near-identical true latent
state (see Appendix) and value function (average normalized mean-squared error of 0.0398 across
episode), while having very different action sequences from a same PPO policy (average total variation
distance of 0.4423 across episode). The problem is especially acute in Procgen, since the PPO policy
is high-entropy for some environments (see Fig. 5), i.e. various levels can have multiple drastically
different near-optimal policies, and hence fail to properly capture observation similarities.

In this scenario, assigning observations to a similar latent state by value function similarity would yield a
better state representation than reasoning about action similarities. On the other hand, Fig. 1b shows a do-
main where grouping state representations by action sequences can be optimal. So how do we unify these
similarity metrics under a single framework? In the next section, we use this insight to design a general
way of improve representation learning through self-supervised learning of discounted future behavior.

3While optimal policies are not guaranteed to be unique, the optimal value function is unique.

4

5 Method

We propose measuring a generalized notion of future behavior similarity using generalized value
functions, as defined by the corresponding cumulant function. The choice of cumulant determines
which components of the future trajectory are most relevant for generalization.

Figure 2: Schematic view of GSF : the offline datasetDµ is used to estimate POMDP-specific GVFs
wrt some cumulant function c, whose quantiles are then used to label each observation in the dataset.

5.1 Quantifying future behavior with GVFs

An RL agent’s future discounted behavior can be quantified not only by its value function, but other aux-
iliary signals, for example, by its future observation occupancy measure, known as successor representa-
tion [62, 32]. The choice of the signal used during value iteration measures the properties the agent will
exhibit in the future, such as accumulated returns, actions, or observation visitation density. See Thm. 1
in the Appendix for the connection between successor features and interpolation error in our method.

Following the work of [20], we can broaden the class of value functions to any kind of cumulative
discounted signal, as defined by a bounded cumulant function c :O×A→Rd, s.t. |c(o,a)|≤cmax for
cmax =supo,a∈O×Ac(o,a). While typically cumulants are scalar-valued functions (e.g. reward), we
also make use of the vector-valued case for learning the successor features [32], in which case the
norm of c(o,a) is bounded.

Definition 1 (Generalized value function) Let c be any bounded function over Rd, let γ∈ [0,1] and
µ any policy. The generalized value function is defined, for any timestep t≥1 and ot∈O, as

Gµ(ot)=EPµt [

∞∑
k=1

γkc(ot+k,at+k)|ot] . (2)

Since, in our case, we can learn Gµ for each distinct POMDP Mi for the dataset Dµ, we index the
GVF using the POMDP index, i.e. Gµi =LearnGVF(c,Dµ,i) (in practice, learning is parallelized).

Algorithm 1: LearnGVF(c,Dµ,i,θ(0),J,α,γ): Offline estimation of GVF Ĝµi
Input :Cumulant function c, datasetDµ, POMDP label i, initial parameters

θ(0), target parameters θ̃, latent state decoder f , iterations J , learning rate α, discount γ
1 for j=1,..,J do
2 o,a,o′∼D[i]; // Sample transition from subset corresponding to POMDP i
3 c←c(o,a);
4 o← random crop(o);
5 z,z′←f(o),f(o′);
6 θ(j)←θ(j−1)−α∇θ(j−1)(Gθ(j−1)(z)−c−γGθ̃(j−1)(z′))2 ;
7 Update target parameters θ̃ with β of online parameters θ;

5

5.2 Measuring distances between GVFs of different POMDPs

Examining the difference between future behaviors of two observations quantifies the exact amount
of expected behavior change between these two observations. Using the GVF framework, we could
compute the distance between o1∈M1 and o2∈M2 by first estimating the latent state with z=f(o)
using a latent state decoder f , and then using the following distance as a measure of dissimilarity

dµ(o1
i,o2

j)= ||Gµi (f(o1))−Gµj (f(o2))||, i,j=1,... (3)

However, the distance between GVFs from two different POMDPs can have drastically different scales,
i.e. supo1,o2 |G

µ
1 (o1)−Gµ2 (o2)|≤ cµ1,max+c

µ
2,max

1−γ , thus making point-wise comparison meaningless. The
issue is less acute for cumulants which are homogenous between different POMDPs (e.g. indicator
functions for successor representation), and more problematic when the cumulant incorporates a
more heterogeneous signal, such as the extrinsic reward function. To avoid this problem, we suggest
performing a comparison based on order statistics.

Namely, a robust distance estimate between GVF signals across POMDPs can be obtained by looking
at the cumulative distribution function of Gi denoted Fi(g) = P[Gi(ot)≤ g] for all ot ∈O. Gi is a
deterministic GVF with the set of discontinuity points of measure 0, and as such Fi can be understood
through the induced state distribution Pµt (using continuous mapping theorem from [63]). It can be
estimated from n independent and identically distributed samples ofDµ as

F̂i(g)=
1

n

n∑
i=1

1Gi<g,Gi=LearnGVF(c,Dµ,i),g∈
[
− ci,max

1−γ
,
ci,max

1−γ
]

(4)

and its inverse, the empirical quantile function [64]

F̂−1i (p)=inf{g∈
ï
−
cµi,max

1−γ
,
cµi,max

1−γ

ò
:p≤Fi(g)}, (5)

for p∈ [0,1]. We use the empirical quantile function to partition the range of all GVFs intoK quantile
bins, i.e. disjoint sets with identical size where the set corresponding to quantile k is defined as
Ii(k) ={o∈Mi :F−1i (kK)≤Gµi (o)≤F−1i (k+1

K)} and its aggregated version as I(k) =∪mi=1Ii(k)4.
Importantly, we augment the datasetDµ with observation-specific labels, which correspond to the index
of the quantile bin into which the GVFG of an observation o∈Mi falls into li(o)=maxk1o∈Ii(k).

These self-supervised labels are then used in a multiclass InfoNCE loss [47], which is a variation of
metric learning with respect to the quantile distance defined above [65, 66] and this forms the basis
of our self-supervised learning objective.

5.3 Self-supervised learning of GSFs

After augmenting the offline dataset with observation labels as described above, we use a simple
self-supervised learning procedure to minimize distance in the latent representation space between
observations with identical labels.

First, the observation o is encoded using a non-linear encoder fψ :O→Z with parameters ψ into a
latent state representation z= fψ(o)5. The representation z is then passed into two separate trunks:
1) a linear matrix θa which recovers the state-action value functionQθ(o,a)=θ>a z, and 2) a non-linear
projection network hθ :Z→Z with parameters θh to obtain a new embedding, used for self-supervised
learning. The projection hθ(z) is then used in a multiclass InfoNCE loss [47, 66] where a linear
classifier W∈R|Z|×K aims to correctly predict the observation labels (i.e. quantile bins k=1,2,..,K)
from hθ(z), for temperature τ >0:

`GSF(θ,ψ,W)=−Eo∼Dµ
ï K∑
k=1

1l(o)=kLogSoftmax(W>hθ(fψ(o))/τ)k

ò
. (6)

4A special case of quantile binning occurs whenK=n, in which case the auxiliary task is to predict the rank
of the GVF associated to a given observation in the current minibatch.

5This encoder is different from the one used to evaluate the GVFs.

6

5.4 Full Algorithm

Given m training tasks, GSF first learns GVF estimates Gµ1 , .., G
µ
2 by applying LearnGVF to

task-specific data from the offline datasetDµ. Each data point inDµ is then labeled with the quantile
into which its GVF falls. These labels are then used to jointly optimize Eq.6 and a control loss with
respect to the encoder parameters. To learn the value functionQθ, we use CQL [56], which is trained
using a linear combination of Q-learning [67, 16] and behavior-regularization:

`CQL(θ)=Eo,a,r,o′∼Dµ [(r+γmaxa′∈AQθ̃(o
′,a′)−Qθ(o,a))2]+λEs∼Dµ [LSE(Qθ(o,a))−Ea∼µ[Qθ(o,a)]], (7)

for λ≥0, θ̃ target network parameters6 andLSE being the log-sum-exp operator 7. For domains with
continuous actions, we also decode the Bolztmann policy π fromQθ.

Fig. 2 provides a schematic view of the algorithm, while Alg. 2 in the Appendix presents the exact
learning procedure for GSF as implemented on top of a CQL agent for a discrete action space.

Recovering existing self-supervised objectives The generality of our framework allows it to
recover existing objectives such as CSSC and PSEs by carefully designing the cumulant function.
Below, we highlight which existing algorithms can be recovered by GSF.

• Cross-State Self-Constraint [CSSC, 10]: In CSSC, observations o1,o2 are considered sim-
ilar if they have identical future action sequences of lengthK under some fixed policy; a total
of |A|K distinct classes are possible. This approach can be approximated in our framework
by picking c(ot,at)=1at(a),∀a∈A. The problem reduces to a |A|T−t-way classification
problem for observations of timestep t, which GSF approximates usingK quantiles.

• Policy similarity embedding [PSE, 11]: PSEs balance the distance between local optimal
behaviors and long-term dependencies in the transitions, notably using dTV. If we consider
the space of Boltzmann policies πBoltzmann with respect to a POMDP-specific value function
Q, then choosing c(ot,at)=r(st,at) in GSF will effectively compute the distance between
unnormalized policies.

The choice ofK induces a bias-variance trade-off How should the number of quantilesK (read
labels) be set, and what is the effect of smaller/ larger values of K on the learned representations?
Thm. 1 highlights a trade-off when choosing the number of quantile bins empirically.

Theorem 1 LetG1,G2 be generalized value functions with cumulants c1,c2 from respective POMDPs
M1,M2, K be the number of quantile bins, n1, n2 the number of sample transitions from each
POMDP. Suppose that P[supt=1,2,..|c1(o1,t,µ(o1,t))−c2(o2,t,µ(o2,t))|> (1−γ)ε/γ]≤δ. Then, for any
k=1,2,..,K and ε>0 the following holds without loss of generality:

P
ï
supo1,o2∈I(k)|G1(o1)−G2(o2)|>3ε

ò
≤2e−2n1ε

2/4+P
ï
supk=1,2,..,K

∣∣F̂−11

(
k+1/K

)
−F̂−11

(
k/K
)∣∣>εò+p(n1,K,ε)+δ (8)

The proof can be found in the Appendix Sec. A.5. For POMDPM1, the error decreases monotonically
with increasing bin number K (second term) but the variance of bin labels depends on the number
of sample transitions n1 (first term). The inter-POMDP error (third term) does not affect the bin
assignment. Hence, choosing a largeK will amount to pairing states by rankings, but results in high
variance, as orderings are estimated from data and each bin will have n=1. SettingK too small will
group together unrelated observations, inducing high bias.

Limitations As is the case with all offline RL methods, GSF is limited by the compounding
extrapolation error under low data coverage. We hypothesize that wise choices ofK and c can mitigate
the extrapolation error by learning observation groups with low intra-group variance, but, since they
are environment-dependent, searching for an optimal (K,c) pair can be computationally expensive.

6A copy of θ updated solely using an exponential moving average (see Appendix).
7https://en.wikipedia.org/wiki/LogSumExp

7

https://en.wikipedia.org/wiki/LogSumExp

6 Experiments

Unlike for single task offline RL [26], most prior work on zero-shot generalization from offline data
either come up with an ad hoc solution suiting their needs, e.g. [33], or assess performance on bench-
marks that do not evaluate generalization across observation functions [e.g., 68]. To accelerate progress
in this field, we devised two benchmarks: offline Procgen (discrete actions) and offline Distracting Suite
(continuous actions) - two offline RL datasets to directly test for generalization of RL agents across
observation functions8. Moreover, for a standard comparison, we provide generalization results on the
classical online Procgen simulator, comparing PPO to PPO with GSF and PPO with PSE, respectively.

GVF training In the offline setting, the training dataset is used to learn a set of task-specific GVFs in
parallel as follows. First, we project each observation o into a latent representation z=fψ′(o); we then
pass z through a non-linear network hθ′ :Z→Rdc×m where dc is the dimensionality of the cumulant
function’s output. The output of hθ′ is then split intom disjoint chunks, which are in turn used in their
respective temporal difference losses `TD in place of value functions. The procedure can be adapted
to an online setting via a similar procedure, except that all GVF estimators are trained simultaneously
and independently in separate simulators.

Offline Procgen benchmark We evaluate the proposed approach on an offline version of the
Procgen benchmark [8], which is widely used to evaluate zero-shot generalization across complex
visual perturbations. Given a random seed, Procgen supports sampling procedurally generated level
configurations for 16 games under various complexity modes: “easy”, “hard” and “exploration”. More
details can be found in Appendix.

Offline Procgen results We compare the zero-shot performance on the entire distribution of
"easy" POMDPs for GSF against that of strong RL and representation learning baselines: behavioral
cloning (BC) - to assess the quality of the PPO policy, CQL [56] - the current state-of-the-art
on multiple offline benchmarks which balances RL and BC objectives, CURL [35], CTRL [12],
DeepMDP [69] - which learns a metric closely related to bisimulation across the MDP, Value
Prediction Network [VPN, 70] - which combines model-free and model-based learning of values,
observations, next observations, rewards and discounts, Cross-State Self-Constraint [CSSC, 10] -
which boosts similarity of observations with identical action sequences, as well as Policy Similarity
Embeddings [34], which groups observation representations based on distance in optimal policy space.

Figure 3: Returns on the offline Procgen benchmark [8] after 1M training steps. Boxplots are
constructed over 5 random seeds and all 16 games; each method is normalized by the per-game median
CQL performance. White dots represent average of distribution.

Fig. 3 shows the performance of all methods over 5 random seeds and all 16 games on the offline
Procgen benchmark after 1 million gradient steps. Per-game average scores for all methods can be
found in Tab. 2 (Appendix). The scores are standardized per-game using the downstream task’s (offline
RL) performance, in this case implemented by CQL. It can be seen that GSF performs better than
other offline RL and representation learning baselines.

8Code can be found at https://github.com/bmazoure/gsf_public.

8

https://github.com/bmazoure/gsf_public

Using different cumulant functions can lead to different label assignments and hence different
similarity groups. Fig. 3 examines the performance of GSF with respect to 3 cumulants: 1) r(st,at),
rewards s.t. GSF learns the policy’s Qµ-value, 2) 1ot(o), the successor representation9 [62, 32] s.t.
GSF learns the distribution induced by µ overDµ [71] and 3) 1at(a), action counts, s.t. GSF learns
discounted policy. While rewards and successor feature cumulant choices leads to similar performance,
using action-based distance leads to larger variance.

Offline Distracting Control Suite results Following the same procedure as for offline Procgen
results, we first formed an offline dataset from the challenging Distracting Control Suite [9] by saving
the replay buffer of Soft Actor-Critic [72] trained for 1M frames on 4 environments with 2 different
background perturbations. Next, we pre-trained Gµ1 ,G

µ
2 with action and reward-based cumulants,

which were then used in conjunction with CQL to learn a single multi-task policy. Fig 4 shows
the online performance of GSF evaluated on 10 background perturbations not seen during training,
normalized by per-environment median CQL scores.

Figure 4: Improvement of GSF over CQL with action and reward-based similarity functions aggregated
using performance metrics on 3 seeds and 4 environments of the Distracting Control Suite reported
as suggested by [73] with 95% confidence intervals. We can see that using action counts results in
higher mean, median and interquartile mean (IQM) statistics and lower optimality gap (i.e. fraction
of scores falling under a certain threshold), than when using rewards, or when comparing with the
performance of CQL.

The results are consistent with findings of [11], in that 1) learning policy-based similarity improves
generalization capabilities of state representations, and 2) unlike in Procgen, policy-based similarity
provides a better learning signal than value-based similarity.

Online Procgen results We additionally compare performance of GSF to that of PPO and PPO
with PSEs in the classical online Procgen benchmark [5]. Figure 8 shows test returns for 20M
frames obtained on the entire distribution of easy levels while training on 200 easy levels for PPO,
PPO+PSEs [11] and our PPO+GSFs. PPO+GSF outperforms or matches both PPO and PPO+PSE
on most environments, showing that GSF can be efficiently combined with both offline and online
algorithms. See Appendix A.6.1 for detailed results.

7 Discussion

In this work we proposed Generalized Similarity Functions, a novel framework which combines
reinforcement learning with representation learning to improve zero-shot generalization performance
on challenging, pixel-based control tasks. GSF relies on computing the similarity between observation
pairs with respect to any instantaneous accumulated signal, which leads to improved empirical
performance on two newly introduced benchmarks, offline Procgen and offline Distracting Suite.
Theoretical results suggest that GSF’s hyperparameter choice depends on a bias-variance trade-off.

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[2] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and
Philip Bachman. Data-efficient reinforcement learning with self-predictive representations.
International Conference on Learning Representations, 2020.

9In the continuous observation space, we learn a d-dimensional successor feature vector zψ via TD and
compute the quantiles over ||zψ||1.

9

[3] Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado,
Subhodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77–82, 2020.

[4] Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions
from" in-the-wild" human videos. arXiv preprint arXiv:2103.16817, 2021.

[5] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. In International Conference on Machine Learning,
pages 1282–1289. PMLR, 2019.

[6] Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational over-
fitting in reinforcement learning. International Conference on Learning Representations, 2019.

[7] R Devon Hjelm, Bogdan Mazoure, Florian Golemo, Felipe Frujeri, Mihai Jalobeanu, and Andrey
Kolobov. The sandbox environment for generalizable agent research (segar). arXiv preprint
arXiv:2203.10351, 2022.

[8] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pages
2048–2056. PMLR, 2020.

[9] Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting
control suite–a challenging benchmark for reinforcement learning from pixels. arXiv preprint
arXiv:2101.02722, 2021.

[10] Guan Ting Liu, Pu-Jen Cheng, and GuanYu Lin. Cross-state self-constraint for feature
generalization in deep reinforcement learning. 2020.

[11] Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. arXiv preprint
arXiv:2101.05265, 2021.

[12] Bogdan Mazoure, Ahmed M Ahmed, Patrick MacAlpine, R Devon Hjelm, and Andrey Kolobov.
Cross-trajectory representation learning for zero-shot generalization in rl. International
Conference on Learning Representations, 2022.

[13] Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot
transfer in reinforcement learning. In International Conference on Machine Learning, pages
1480–1490. PMLR, 2017.

[14] Zichuan Lin, Derek Yang, Li Zhao, Tao Qin, Guangwen Yang, and Tie-Yan Liu. Rd2: Reward
decomposition with representation decomposition. Advances in Neural Information Processing
Systems, 33, 2020.

[15] Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in
reinforcement learning. International Conference on Machine Learning, 2021.

[16] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6:503–556, 2005.

[17] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In
Reinforcement learning, pages 45–73. Springer, 2012.

[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[19] Kevin P Murphy. A survey of pomdp solution techniques. environment, 2:X3, 2000.

[20] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam
White, and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction. In The 10th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 761–768, 2011.

[21] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision
processes. In UAI, volume 4, pages 162–169, 2004.

[22] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction
for mdps. ISAIM, 4:5, 2006.

10

[23] Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov
decision processes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 10069–10076, 2020.

[24] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. International
Conference on Learning Representations, 2020.

[25] Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state
abstraction and provably efficient rich-observation reinforcement learning. In International
conference on machine learning, pages 6961–6971. PMLR, 2020.

[26] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning, 2020.

[27] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo,
Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, et al. Rl
unplugged: Benchmarks for offline reinforcement learning. 2020.

[28] Peter L Bartlett. The sample complexity of pattern classification with neural networks: the size
of the weights is more important than the size of the network. IEEE transactions on Information
Theory, 44(2):525–536, 1998.

[29] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu,
Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset:
A dataset of datasets for learning to learn from few examples. International Conference on
Learning Representations, 2019.

[30] Guillermo Valle-Pérez and Ard A Louis. Generalization bounds for deep learning. arXiv preprint
arXiv:2012.04115, 2020.

[31] Lu Liu, William Hamilton, Guodong Long, Jing Jiang, and Hugo Larochelle. A universal represen-
tation transformer layer for few-shot image classification. arXiv preprint arXiv:2006.11702, 2020.

[32] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado Van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. arXiv preprint
arXiv:1606.05312, 2016.

[33] Philip J Ball, Cong Lu, Jack Parker-Holder, and Stephen Roberts. Augmented world models
facilitate zero-shot dynamics generalization from a single offline environment. International
Conference on Machine Learning, 2021.

[34] Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed
exploration for provable policy gradient learning. Neural Information Processing Systems, 2020.

[35] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised repre-
sentations for reinforcement learning. International Conference on Machine Learning, 2020.

[36] Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, and R Devon Hjelm.
Deep reinforcement and infomax learning. Neural Information Processing Systems, 2020.

[37] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation
learning from reinforcement learning. In International Conference on Machine Learning, pages
9870–9879. PMLR, 2021.

[38] Samarth Sinha and Animesh Garg. S4rl: Surprisingly simple self-supervision for offline
reinforcement learning. arXiv preprint arXiv:2103.06326, 2021.

[39] Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through
counterfactual risk minimization. The Journal of Machine Learning Research, 16(1):1731–1755,
2015.

[40] Justin Boyan and Andrew W Moore. Generalization in reinforcement learning: Safely approximat-
ing the value function. Advances in neural information processing systems, pages 369–376, 1995.

[41] Yuanhao Wang, Ruosong Wang, and Sham M Kakade. An exponential lower bound for linearly-
realizable mdps with constant suboptimality gap. arXiv preprint arXiv:2103.12690, 2021.

[42] Ofir Nachum and Mengjiao Yang. Provable representation learning for imitation with contrastive
fourier features. Neural Information Processing Systems, 2021.

[43] Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, and Sham M Kakade. Instabilities of offline
rl with pre-trained neural representation. arXiv preprint arXiv:2103.04947, 2021.

11

[44] Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. arXiv
preprint arXiv:2103.07945, 2021.

[45] Nicholas K Jong and Peter Stone. State abstraction discovery from irrelevant state variables.
In IJCAI, volume 8, pages 752–757. Citeseer, 2005.

[46] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. arXiv preprint arXiv:1808.06670, 2018.

[47] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[48] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint
arXiv:2006.09882, 2020.

[49] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv
preprint arXiv:2006.07733, 2020.

[50] Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin,
Devon Hjelm, Philip Bachman, and Aaron Courville. Pretraining representations for data-efficient
reinforcement learning. arXiv preprint arXiv:2106.04799, 2021.

[51] Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Heuristic-guided reinforcement
learning. arXiv preprint arXiv:2106.02757, 2021.

[52] Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning
via distance metric learning and behavior regularization. arXiv preprint arXiv:2010.01112, 2020.

[53] Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Henrik Christensen, and
Hao Su. Multi-task batch reinforcement learning with metric learning. Advances in Neural
Information Processing Systems, 33:6197–6210, 2020.

[54] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pages 2052–2062. PMLR, 2019.

[55] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch
reinforcement learning without great exploration. NeurIPS, 2020.

[56] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

[57] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

[58] Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.

[59] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

[60] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus.
Improving sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2019.

[61] Remi Tachet, Philip Bachman, and Harm van Seijen. Learning invariances for policy
generalization. arXiv preprint arXiv:1809.02591, 2018.

[62] Peter Dayan. Improving generalization for temporal difference learning: The successor
representation. Neural Computation, 5(4):613–624, 1993.

[63] Henry B Mann and Abraham Wald. On stochastic limit and order relationships. The Annals
of Mathematical Statistics, 14(3):217–226, 1943.

[64] A. W. van der Vaart. Asymptotic statistics. cambridge series in statistical and probabilistic
mathematics, 1998.

[65] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Neural Information
Processing Systems, 2020.

12

[66] Jiaming Song and Stefano Ermon. Multi-label contrastive predictive coding. Neural Information
Processing Systems, 2020.

[67] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[68] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning, pages 1094–1100. PMLR, 2020.

[69] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. In International Conference
on Machine Learning, pages 2170–2179. PMLR, 2019.

[70] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. arXiv preprint
arXiv:1707.03497, 2017.

[71] Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with
the successor representation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 5125–5133, 2020.

[72] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[73] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc
Bellemare. Deep reinforcement learning at the edge of the statistical precipice. Advances in
Neural Information Processing Systems, 34, 2021.

[74] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. International Conference on Learning Representations,
2021.

[75] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado
van Hasselt. Multi-task deep reinforcement learning with popart. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 3796–3803, 2019.

[76] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International Conference on Machine
Learning, pages 1407–1416. PMLR, 2018.

[77] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam
Fishman, Ke Wang, Ekaterina Gonina, Neal Wu, Efi Kokiopoulou, Luciano Sbaiz, Jamie Smith,
Gábor Bartók, Jesse Berent, Chris Harris, Vincent Vanhoucke, and Eugene Brevdo. TF-Agents: A
library for reinforcement learning in tensorflow. https://github.com/tensorflow/agents,
2018. [Online; accessed 4-October-2021].

[78] Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of
the sample distribution function and of the classical multinomial estimator. The Annals of
Mathematical Statistics, pages 642–669, 1956.

[79] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[80] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See end of Section 5
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We include

a brief discussion in Appendix Section A.1

13

https://github.com/tensorflow/agents

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix

Section A.5
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix Section A.4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Due to the large size of the offline datasets, we include the code which can re-generate
the data from scratch.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board

(IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Appendix

A.1 Broader Impact Statement

Learning generalizable state representations from limited interactions is of paramount importance for
allowing for accessible and inclusive research, which does not rely on having access to large compute
needs. In this work, we provide a first attempt to show that it is possible to learn generalizable state
representations from an offline dataset containing high-dimensional observations. We hope that this
work lays foundation for future research exploring data-efficient learning of generalizable and robust
state representations from offline data.

However, zero-shot generalization is a double-edged sword: in order to have a good performance on
unseen tasks, the agent has to extrapolate its set of inductive biases and knowledge collected on the
training data onto unseen tasks. This process can be detrimental and heavily biased by the nature of the
training set. For this reason, generally-capable agents, especially in real-world applications of sequential
decision-making, have to be properly regularized, e.g. using safe policy iteration mechanisms.

A.2 Experimental details

Name Description Value

nMDPs Number of training POMDPs in the dataset 200
γ Discount factor 0.99

Batch size Batch size 1024
Hidden layers Size ofQ critic post-encoder layers 256×256×|A|

λ CQL regularization coefficient 1
Data augmentation Type of data augmentation use in all methods Random crop

α Target soft update rate 0.005

Hidden layers Size ofG network post-encoder layers 256×256×|A|∗nMDPs
G pretraining steps Number of iterations to pretrain GVF estimator for 100,000

K Number of quantiles 7
τ Softmax temperature 0.5

Table 1: Experiments’ parameters

Target updates: As is common in multiple deep RL algorithms [74, 58], the bootstrap target
estimates are typically computed using a value network with parameters θ̃, which are in turn
periodically updated using an exponential moving average of historical values with the current online
network parameters θ with update rate α:

θ̃=αθ+(1−α)θ̃ (9)

A.2.1 Offline Procgen

For improved time efficiency in the offline experiments, we jointly train the estimatorsG1,G2,..,Gm
by first projecting each observation o∈Mi into a latent representation z= fψ′(o) and then passing
the representation through a non-linear network h′ :Z→Rdc×m where dc is the dimensionality of
the cumulant function’s output. The output of h′ is then split into m disjoint chunks, with chunk i
used in the temporal difference loss `TD with the reward replaced by the cumulant function. However,
due to different scales of cumulants across POMDPs, we use the PopArt re-normalization scheme [75]
to prevent gradient instability. All GVFs are trained for 50k iterations using `TD.

Data augmentation was taken to be solely random crops, since this type of data augmentation was
shown to be sufficient to improve performance of deep RL agents in pixel-based control tasks [74].
To do so, we first symmetrically padded the 64×64×3 observation up to 68×68×3, and applied a
64×64 random crop on the resulting tensor.

15

We used data augmentation on all methods in Fig. 3 to improve the robustness of the encoder
and prevent premature convergence. Precisely, we applied random crops, since this type of data
augmentation was shown to be sufficient to improve performance of deep RL agents in pixel-based
control tasks [74]. To do so, we first symmetrically padded the 64×64×3 observation up to 68×68×3,
and applied a 64×64 random crop on the resulting tensor. This allowed the information content of
each observation to be preserved, while simultaneously preventing the encoder to overfit on static
entities such as walls, food pellets, etc.

All baselines’ code was taken from their respective repositories and adapted into our codebase (except
DeepMDP which had to be implemented from third-party sources).

Hyperparameter search: We allowed each method to tune one hyperparameter due to computational
budget constraints. For CQL, λwas tuned and found to be 1. For GSFs, we tunedK, the number of
quantiles. For all other methods, we tuned the auxiliary loss coefficient(s). Performance of GSFs vs
some hyperparameter choices can be seen in Fig. 7.

Dataset composition The dataset was obtained as follows: we first pre-trained a PPO [18] agent
with the IMPALA architecture [76] for 25M timesteps on 200 levels of “easy” distribution for each
environment10 (“easy” mode is widely used to test generalization capabilities [8, 15, 12]). Then we
conducted rollouts with the resulting policy under an εt-greedy strategy; εt was allowed to decay
according to the rule εt= 0.1−3.96×10−9twhich has two endpoints: ε0 = 0.1 and ε25M = 0. This
was done in order to prevent collapse of the Q-values due to the log-sum-exp term in CQL to very
low negative values (if action coverage is not sufficient in the dataset).

A.2.2 Offline Distracting Suite

Similarly to offline Procgen, we pre-trained action and reward-based generalized value functions on
offline data collected by the SAC [72] replay buffer after 1M steps. These estimators were then used to
label data in the dataset based and jointly optimize the GSF loss together with the actor loss of CQL. All
scores are reported on 10 unseen tasks (different videos playing in background) after 100,000 gradient
updates, and normalized by the average performance of CQL for each environment over 3 seeds. The
CQL-normalized scores for all four environments (cartpole-swingup, cheetah-run, reacher-easy and
walker-walk) were then run through the rlliable library [73] which computes aggregate performance
statistics under a low number of random seeds. We used a Lagrangian coefficient for the GSF loss
of 1.0 andK=10 quantile bins for all environments in this experiment.

A.3 Detailed Algorithm

Alg.2 shows the learning procedure used by GSFs, on top of CQL. Note that, in our experiments, all
methods (baselines and GSF) use random crops as data augmentation.

A.4 Compute resources

For all experiments, we used a mix of P100 and V100 GPUs on our internal cluster to conduct both
hyperparameter search, as well as the final training of models reported in the figures and tables over
multiple random seeds.

A.5 Proofs

Proof 1 (Thm. 1) First, consider some arbitrary quantile bin k=1,2,..,K.

sup
o1,o2∈I(k)

|Gµ1 (o1)−Gµ2 (o2)|= sup
o1,o2∈I(k)

|Gµ1 (o1)−Gµ1 (o2)+Gµ1 (o2)−Gµ2 (o2)|

≤ sup
o1,o2∈I(k)

|Gµ1 (o1−o2)|+|Gµ1 (o2)−Gµ2 (o2)|
(10)

10We use the TFAgents’ implementation [77]

16

Algorithm 2: GSF : Offline RL with future behavior observation matching
Input :DatasetD∼µ, initialized Q-function

Qθ with encoder fθf and action weights θa, per-POMDP set of GVFs G={Gµi }i∈,
state projection network hψ , epoch number J , number of POMDPsm, number
of quantilesK, temperature parameter τ , exponential moving average parameter β

1 for epoch j=1,2,..,J do
2 for minibatch B∼D do

/* Data augmentation on observation */
3 o← random crop(o) for all o∈B;
4 z←fψ(o) for all o∈B ;

/* Update CQL agent */
5 Update θa,ψ using∇θa,ψ`CQL(θ) ;

/* Compute G quantiles */
6 for POMDPMi=1,2,..,m do
7 Estimate F̂−1i ofGµi from B ;
8 for observation o∈B∩Mi do
9 l(o)←k if F̂−1i (kK)≤Gµi (o)≤ F̂−1i (k+1

K) ;
/* Update encoder and projection network */

10 Update θh,ψ,W using∇θh,ψ,W`GSF(θh,ψ,W) computed with z,l(o) and τ ;
11 Update CQL agent’s target network with β of online parameters ψ,θ;

Since the cumulant is, in practice, estimated from Dµ, it follows that c(s,a) ∈ [−cµi,max, c
µ
i,max] ⊆

[−cmax,cmax] for all s,a∈S,A. Since the disparity between cumulants for POMDP M1,M2 comes
from the uneven coverage by µ, we can denote this as δ1,2(t)= |c(o1,t,µ(o1,t))−c(o2,t,µ(o2,t))|.
Suppose that P[supk=1,2,..δ1,2(t+k)>ε]≤pµ(c1,c2,ε). Then,

P[|Gµ1 (ot)−Gµ2 (ot)|>ε]=P[EPµt [

∞∑
k=1

γk|cµi (ot+k,at+k)−cµj (ot+k,at+k)||ot]>ε]

=P[EPµt [

∞∑
k=1

γkδ1,2(t+k)|ot]>ε]

≤P[sup
k=1,2,..,K

δ1,2(t+k)EPµt [

∞∑
k=1

γk|ot]>ε]

≤P[sup
k=1,2,..,K

δ1,2(t+k)>
(1−γ)ε

γ
]

≤pµ(c1,c2,(1−γ)ε/γ)

(11)

sinceM1,M2 share the same induced distribution Pµt . Due to stationarity, we can drop the time index.

Now, the first term can be decomposed with the empirical distribution function F̂−1i estimated from
ni samples of POMDPMi:

∣∣∣∣F−11

Å
k+1

K

ã
−F−11

Å
k

K

ã∣∣∣∣≤ sup
k′=1,2,..,K

∣∣∣∣F−11

Å
k′+1

K

ã
−F−11

Å
k′

K

ã∣∣∣∣
≤ sup
k′=1,2,..,K

∆(F1,n1,
k′+1

K
)+∆(F1,n1,

k′

K
)+∆(F1,n1,

k′+1

K
,
k′

K
)

≤2 sup
k′=1,2,..,K

∆(F1,n1,
k′

K
)+ sup

k′=1,2,..,K
∆(F1,n1,

k′+1

K
,
k′

K
)

(12)

where
∆(F,n,p)=

∣∣F−1(p)−F̂−1(p)∣∣
17

and

∆(F,n,p1,p2)=
∣∣F̂−1(p1)−F̂−1(p2)∣∣,

and dependence of F on n is implicit.

We now use the union bound to observe the fact that P[
∑n
i=1 |Xi| > nε] ≤

∑n
i=1P[|Xi| > ε] for

X1,..,Xn real-valued random variables and ε>0.

Using this fact, and that events listed in Eq. 12 form an increasing sequence of supersets

P
ï∣∣∣∣F−11

Å
k+1

K

ã
−F−11

Å
k

K

ã∣∣∣∣>2ε

ò
≤P
ï

sup
k′∈[0,1]

∆(F1,n1,
k′

K
)>

ε

2

ò
+P
ï

sup
k′=1,2,..,K

∆(F1,n1,
k′+1

K
,
k′

K
)>ε

ò
≤2e−2n1ε

2/4+p(n1,K,ε)
(13)

Here, we used the known results of convergence of the empirical distribution function F̂ to the
true distribution function F as n → ∞ [78]. Using the continuous mapping theorem [63] for a
transformation with a set of discontinuities of measure 0, we transposed this result onto the empirical
quantile function F−1.

Since the error is monotonic in n, we symmetrize the bound by replacing n1 by min(n1,n2), so that
bothM1 andM2 can be interchanged.

Proposition 1 If c(ot,at)=1o(ot) for all o∈O, then I(K) is the set which has the largest estimator
variance and I(1) has the smallest estimator variance.

Proof 2 (Prop. 1) For the specific choice of cumulant being the state indicator function, the following
result is due to (author?) [71]:

γ

n(o)+1
− γ2

1−γ
≤(1+γ)−||G(o)||1≤

γ

n(o)+1
, (14)

where n(o) is the number of times observation o was visited by policy µ in POMDP M (here, G is
a vector-valued function).

Rearranging, we obtain
γ

n(o)+1
− γ2

1−γ
≤(1+γ)−||G(o)||1≤

γ

n(o)+1

γ

n(o)+1
− γ2

1−γ
−(1+γ)≤−||G(o)||1≤

γ

n(o)+1
−(1+γ)

(1+γ)− γ

n(o)+1
≤||G(o)||1≤

γ2

1−γ
+(1+γ)− γ

n(o)+1

(15)

The ordering of quantile bins of info∈I(k+1) ||G(o)||1 ≥ supo∈I(k) ||G(o)||1 for k = 1,2, ..,K − 1
implies the following:

γ2

1−γ
+1+γ− inf

o∈I(k+1)

γ

n(o)+1
≥ inf
o∈I(k+1)

||G(o)||1

sup
o∈I(k)

||G(o)||1≥1+γ− sup
o∈I(k)

γ

n(o)+1

(16)

Rearranging the previous inequality and using the approximation ||G(o)||1≈−n−1(o), we see that
ordering quantiles induces an ordering on the number of total samples contained in each bin:

sup
o∈I(K)

n(o)≤ inf
o∈I(K−1)

n(o)≤ sup
o∈I(K−1)

n(o)≤ ...≤ inf
o∈I(1)

n(o)≤ sup
o∈I(1)

n(o)

Computing any statistic (e.g. Ĝ) over the set I(K) will yield at most as much samples as the least
frequent pair of observations in the set I(K−1), which in turn implies that the variance of the average
statistic over I(K) will be at least that of the variance of the average statistic over I(K−1).

18

A.6 Additional results

True latent state similarity in Procgen The true latent state in Procgen consists of a byte vector
describing the entire memory state of the environment and the agent. This vector can be extracted
by using the command list(env.callmethod("get_state")) in Python. To assess the distance
between latent state vectors, we computed the negative cosine similarity between them. Fig. 1 shows
two pairs of trajectories, for which the average cosine similarity between true latent states across
timesteps was 0.897.

Value-function similarity in Procgen Fig. 1 shows two pairs of trajectories with drastically dissim-
ilar (discrete) action sequences. Computing the distance between them will result in a large quantity
which doesn’t necessarily decrease with latent state similarity. On the other hand, the values for
the first sequence of states are 8.20, 8.05, 8.74, 9.06, 9.29, and 8.35, 8.30, 8.26, 8.55, 8.40 for the
second sequence of states. We can see that values are much more similar in this coupling of tasks than
actions (with respect to, e.g. `1) and, if we group the states by their corresponding value magnitude
(or quantiles), the encoder will learn to assign all states which look like the sequences above to a
neighboring latent representation, and hence, will allow better zero-shot generalization as it will learn
to ignore backgrounds, platform length and small variations in agent’s position.

RL+Bisim. RL+value pred. RL+action dist. RL+GVF dist.

Env BC DeepMDP [69] VPN [70] CSSC [10] PSE [11] GSF (reward)

bigfish -0.443686 -0.296928 0.296928 0.116041 0.189761 0.153584
bossfight 0.319048 -0.945238 -0.757143 -0.878571 -0.355714 0.385714
caveflyer -0.033058 -0.727273 -0.685950 -0.669421 -0.221488 0.123967
chaser 0.148368 -0.890208 -0.848994 -0.919057 -0.348961 -0.049456
climber 0.631579 -0.596491 -1.000000 -0.859649 -0.263158 1.894737
coinrun 0.070671 -0.742049 -0.597173 -0.597173 0.286926 0.466431
dodgeball -0.132653 -0.244898 0.010204 -0.102041 -0.112245 -0.030612
fruitbot -0.373832 -0.747664 -0.780374 -0.747664 -0.262617 0.238318
heist -0.637681 -0.420290 -0.362319 -0.275362 0.034783 -0.159420
jumper 0.196078 -0.549020 -0.196078 -0.333333 0.035294 0.862745
leaper -0.285714 0.074286 0.457143 0.497143 0.374857 -0.091429
maze -0.368421 -0.254386 -0.245614 -0.228070 0.021053 0.122807
miner -0.060606 -0.454546 -0.393940 -0.424243 0.127273 0.121212
ninja -0.097015 -0.868159 -0.644279 -0.666667 -0.153731 0.044776
plunder 0.156863 -0.768627 -0.784314 -0.784314 -0.324706 -0.078431
starpilot -0.022989 -0.772988 -0.750000 -0.767241 -0.220690 0.178161

Table 2: Average performance for 16 games of the Procgen benchmark [8] across 5 random seeds.
All scores are standardized by the performance of CQL [56] on the downstream task (zero-shot
generalization across the entire distribution of "easy" levels).

Entropy of PPO policies on Procgen While in some domains, policies can achieve optimality
without much exploration, the Procgen benchmark requires PPO to have a non-zero entropy-boosting
term (otherwise, results are suboptimal).

When the logging policies are high-entropy, many action sequences can possibly lead to high rewards.
However, this does not imply that the observations in those sequences must have high similarity in
latent space.

Choice of contrastive objective Here, we ablate the choice of the loss function used in GSF.

The multi-class InfoNCE objective is defined as follows. First, we pick the latent space distance to
be the negative cosine similarity:

d(o1,o2)=− hθ(fψ(o1))>hθ(fψ(o2))

||hθ(fψ(o1))||2||hθ(fψ(o2))||2
(17)

The optimization objective is then taken to be the set-valued InfoNCE loss, defined for a set of positive
samples SP , set of negative samples SN and temperature parameter τ . Positive scores are computed

19

Figure 5: Average conditional entropy of online PPO policy during training phase for all 16 games
of Procgen. Dotted line indicates theoretical maximum (−log15).

over randomly sampled positive pairs (i.e., elements of the same quantile), while negative scores are
computed between representations belonging to different quantiles.

`InfoNCE(OP ,ON)=−log

∑
o1,o2∈OP exp

(
−d(o1,o2)τ−1

)∑
o1∈OP ,o2∈ON exp(−d(o1,o2)τ−1)

(18)

The batch version of the loss is defined as

`InfoNCE(θ,ψ)=EOP ,ON∼B[`InfoNCE(OP ,ON)] (19)

Fig. 6 compares the loss used by GSF with the alternative loss based on multi-class NCE. The loss
based on categorical cross-entropy yields a more stable and lower error, as well as higher test returns.
For this reason, we take `GSF =`CCE in all experiments.

Figure 6: Comparison of two versions of our multi-class contrastive objective: (1) classification of
labels via categorical cross entropy [79] and (2) pairwise InfoNCE [47]. Curves are averaged over
16 games and 5 random seeds.

Ablation on hyperparameters Fig. 7 shows performance of GSF for various combinations of
hyperparameters, for the GVF being the Q-value of each POMDP. We picked the last combination
of hyperparameters, as it has one of the highest inter-game median values, and lowest inter-quartile
range (i.e. more stable performance across seeds).

20

Figure 7: Ablation on GSF hyperparameters: 1) softmax temperature τ , 2) number of bins K and
3) structure of projection network h.

A.6.1 Online Procgen results

We compared PSEs and GSFs in the classical, online Procgen setting. Both PSE and GSF use 5
level-specific pre-trained value functions (PSE uses policies, GSF uses value functions), and all
methods’ performance is averaged over 5 seeds and tuned over the same parameter space.

Figure 8: Test returns on the online Procgen benchmark [8] after 20M training frames. Curves are
averaged over 5 random seeds.

GSFs can be seen to provide a performance boost in some challenging environments such as Plunder
and Leaper, even though it was designed with offline RL generalization improvements in mind. Note
that in the Climber game (example of PSE failure mode in Fig. 1), using a value-based similarity is
much more beneficial than using action-based similarity.

21

In the online experiments, we do not use any data augmentation techniques, as all methods are allowed to
query state-action pairs in the simulator, and hence no additional stochasticity in the inputs is required.

A.6.2 Qualitative UMAP results

In order to answer the question "Does using GSFs induce an ordering on the state representations
based on the choice of cumulant", we conducted the following simple experiment. First, we pre-trained
a PPO agent and a PPO+GSF agent on the Plunder game in the online setting. Then, we generated
100 trajectories with each respective agent and performed dimensionality reduction of all state
representations using UMAP [80]. We then visualized all resulting embeddings, by coloring each
state with its value function.

Figure 9: State representations learned with PPO and projected onto a 2-dimensional manifold using
UMAP. Colors are proportional to the value function at each state. Some weak structure is visible,
where a small subset of states is aggregated together due to having similar state values. States are not
linearly separable by their value function.

Figure 10: State representations learned with PPO+GSF and projected onto a 2-dimensional manifold
using UMAP. Colors are proportional to the value function at each state. A clear separation between
low-value and high-value states is visible. States are linearly separable by their value function.

22

Figure 9 shows how state embeddings learned with PPO exhibit a structure which is not entirely
dependent on the value function. On the other hand, Figure 10 shows how introducing an auxiliary
signal based on GSF aggregates state representations based on the magnitude of their value function.

We also overlaid three sample observations from two sample trajectories obtained on the test set of
tasks, and show their approximate location in the space found by UMAP. We can immediately see
that GSF representations are ordered not only according to their value function, but also temporally:
these observations are mapped close to each other pairwise (e.g. higher value states are mapped close
to each other for all tasks). This implies that the policy found by the GSF agent would behave similarly
independently of the task-specific information, which implies better robustness to distracting features
such as changing background images, color swaps, etc.

For thorough analysis, we also add a visualization of state representations learned in the offline setting
by CQL (Figure 11) and CQL+GSF (Figure 12). While the latent structure learned by CQL+GSF
is not as clear-cut as in the online setting due to out-of-distribution actions, it still exhibits a relative
smoothness in terms of value function, i.e. states with similar value function values are placed close
to each other in this space.

Figure 11: State representations learned with CQL and projected onto a 2-dimensional manifold using
UMAP. Colors are proportional to the value function at each state. Some weak structure is visible,
where a small subset of states is aggregated together due to having similar state values. States are not
linearly separable by their value function.

23

Figure 12: State representations learned with CQL+GSF in the offline setting and projected onto a
2-dimensional manifold using UMAP. Colors are proportional to the value function at each state. A
clear separation between low-value and high-value states is visible. States are linearly separable by
their value function.

24

	Introduction
	Related Works
	Problem setting
	Partially-observable Markov decision processes
	Representation learning

	Motivating example
	Method
	Quantifying future behavior with GVFs
	Measuring distances between GVFs of different POMDPs
	Self-supervised learning of GSFs
	Full Algorithm

	Experiments
	Discussion
	Appendix
	Broader Impact Statement
	Experimental details
	Offline Procgen
	Offline Distracting Suite

	Detailed Algorithm
	Compute resources
	Proofs
	Additional results
	Online Procgen results
	Qualitative UMAP results

