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ABSTRACT

In this Supplementary Material, we present details of the instruc-
tion dataset used for fine-tuning of the PAVC-Reasoner as well
as the collection principles of PACS-Reason (A), details of the im-
plementation of PAVC-Reasoner (B), example demonstrations of
the predictions generated by PAVC-Reasoner variants on PACS-
Reason and PACS-Reason+ benchmarks (C), visualizations of the
effects of perceivers in PAVC-Reasoner (D), and an analysis of the
model-generated hallucination rationales (E).

CCS CONCEPTS

« Computing methodologies — Knowledge representation
and reasoning,.

KEYWORDS

multimodal commonsense reasoning, commonsense reasoning, ex-
plainable reasoning, physical audiovisual commonsense reasoning

A INSTRUCTION TUNING

PAVC-Reasoner empowers frozen LLMs with the capability of un-
derstanding both visual and auditory signals in videos as well as
following human instructions by independently training the three
perceives. Specifically, for the vision-language perceiver, a two-stage
training scheme is employed. In Stage I, cross-modal pretraining
is conducted using two large-scale vision-caption datasets. This
stage primarily focuses on achieving vision-language alignment. In
Stage II, the perceiver is fine-tuned with several image-language
instruction-following datasets. The training in this stage aims to
enhance the model’s instruction-following ability. Regarding the
audio-language and audiovisual-language perceivers, due to the
absence of large-scale aligned audio-text pairs, we exclusively per-
form instruction fine-tuning for these two perceivers. This is accom-
plished using our self-constructed audio-text and video-audio-text
instruction-tuning datasets. Both stages of training employ an au-
toregressive language modeling task, wherein the model learns to
generate subsequent prediction text tokens based on the preceding
context, aiming to maximize the log-likelihood of the generated
text tokens.
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A.1 Vision Instruction Tuning

Based on the autoregressive training objective, we prompt the LLM
to sequentially generate prediction tokens. Let x, and x, denote a
video clip and its corresponding audio. Let xq and x; represent the
instructions (questions) related to the audible video and the ground-
truth responses (answers) respectively, which can be represented
by a sequence of discrete text tokens. Then, for a sequence of length
L, we can calculate the probability of generating the target answer
as follows:

L
p(xrlxuxq) = | | po xilxv, xq, xr,<0), (1)

i=1

where 0 denote the trainable parameters. And xq denote the ques-
tion (instruction) tokens. X, <; are the answer (response) tokens
before the current prediction token x;, respectively. To pre-train
the visual-language perceiver, we perform two distinct tasks: video-
caption generation and image-caption generation. Here, images
are considered as single-frame videos. For this purpose, we employ
Webvid-2M [4], an extensive short video dataset that encompasses
text descriptions collected from stock footage websites. Addition-
ally, we utilize LLaVA-CC3M-Pretrain-595K [32], which constitutes
a subset of the CC3M [40] image-text dataset, filtered to achieve
a more balanced distribution of conceptual coverage. Specifically,
we feed images/videos into the visual-language perceiver to ob-
tain video prompt embeddings Q,, which are subsequently passed
into the LLM to generate textual descriptions of the videos/images.
Original video captions and image captions serve as the ground
truth for prediction. During training, we maintain the weights of
the visual encoder and LLM frozen, allowing only the trainable
parameters of the Video Q-Former, the positional embedding layer,
and the linear projection layer. This pretraining process ensures
that the visual embeddings Q, align with the pretrained LLM text
embeddings. And this phase can be conceptualized as training a
compatible visual sensor for the frozen LLM, thereby enhancing
the visual perception capabilities of the LLM.

After the pretraining phase, our model has acquired the fun-
damental capability to comprehend video/image content. Subse-
quently, the focus shifts to enhancing the LLM’s ability to express
video details and follow multi-modal instructions. Therefore, in the
second phase, we consider fine-tuning the model using a series of
high-quality multi-modal instruction datasets. One such dataset
is the LLaVA-Instruct-150K [32], generated through interactions
with the COCO [30] dataset and GPT-4 comprising a total of 158K
distinct language-image instruction-following samples with 58K
in conversations, 23K in detailed description, and 77k in complex
reasoning respectively. Another image-centric instruction dataset
is the CC-Sub-Align [57] dataset, a high-quality collection of 3,500
image-text pairs collected by MiniGPT-4 [57] and structured in the
instruction format. We also consider the VideoChat-Instruct-11K
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dataset, a video-centric instruction dataset constructed by Video-
Chat [27] based on WebVid-10M [4], encompassing 7K detailed
video descriptions and 4K multi-run video conversations.

A.3 Audio Instruction Tuning

Multimodal instruction datasets with a primary focus on images
have seen a significant surge in development due to the abundance
of image-text pairs [32]. However, datasets that center around audio
in multimodal instructions are relatively scarce, mainly due to the
limited availability of audio-text data [27]. It is worth noting that
recent research has resorted to employing ASR datasets to train
speech interfaces in order to align the output of the speech inter-
face with the LLM. Nevertheless, given that our task is related to
physical commonsense attributes, we aspire for the audio-language
perceiver to endow PAVC-Reasoner with the ability to compre-
hend the natural audio semantics, rather than being overly oriented
towards the interpretation of human speech.

To this end, we have considered three audio datasets aimed
at characterizing natural environments, namely the Audio-Visual
Event (AVE) [42] dataset, the VGG-Sound [7], and the ESC-50 [37]
dataset. Notably, AVE comprises 4,143 videos spanning 28 event cat-
egories, with each video being temporally labeled for audio-visual
events along with a background label. VGG-Sound encompasses
over 200,000 video clips containing both visual frames and audio
sound, encompassing 310 audio classes that span diverse and chal-
lenging acoustic environments and real-world noise characteristics.
ESC-50 constitutes a labeled collection of 2,000 environmental au-
dio recordings, with each audio recording lasting 5 seconds and
being categorized into one of 50 semantic classes. Given an audio
segment and its associated semantic label (xa, X¢), it is inherent
to generate a set of instructions X aimed at prompting the LLM
to articulate the audio content. We prompt GPT-4 [1] to curate
such a list of instructions (see Fig. 1 for details) and randomly sam-
ple a datapoint xq, e.g., “briefly describe the audio”. We extend an
audio-label pair to its instruction-following version by the following
prompt: <System Message> ###Human: x, Question: Xq <EOC>
###Assistant: This audio describes the sound of x; < EOC >.
Here, x; is the semantic label of an audio clip, e.g., “door knock” or
“glass breaking”. And < EOC > is the special token indicating and
end of chunk. The list of instructions used to describe audio content
is illustrated in Fig. 16.

A.4 Joint Instruction Tuning

The probability of generating text tokens for training the audiovisual-
language perceiver can be defined as follows:

L

P(Xr[Xa, Xy, Xq) = npfp(xﬂxa, Xy, Xq,<i» Xr,<i), (2)
i=1

where the objective of the learnable parameters ¢ in the audiovisual-
language perceiver is to align the joint outputs of the frozen video
encoder and audio encoder with the embedding space of LLM,
enabling the model to possess joint audio-visual perception capabil-
ities. We generate three types of instruction-following data based
on PACS [50] and GPT-4: detailed description, complex reasoning,
and video conversation.

Anonymous Authors

Fig. 1 presents an example of each type. For each type, we ini-
tially manually designed some examples, which served as unique
human annotations during the data collection and were used as
demonstrations to elicit GPT-4 in-context learning. We collected a
total of 158K unique video-language instruction-following samples,
including 23K video description samples, 77K complex reasoning
samples, and 58K dialogue samples. Below, we elaborate on the
construction process of this instruction-following data:

Detailed Description In order to provide rich and detailed descrip-
tions of the joint audio-visual content in the videos, we created a
series of questions with this intent. We prompted GPT-4 and filtered
to obtain a list of questions, as shown in Table 1 in the Appendix.
For each pair of videos 01 and oy, we randomly selected a question
from the list, querying GPT-4 to generate a detailed description.
Fig. 17 shows the instructions list for asking model to describe the
video content in detail.

Complex Reasoning. The instruction data of detailed descriptions
primarily focuses on strengthening the model’s comprehension of
audio-visual content in videos. Building upon this foundation, we
further evaluate the model’s ability in the realm of physical com-
monsense reasoning. To achieve this, we have curated a series of
physical commonsense questions, which encompass binary ques-
tions akin to those found in the original PACS [50] dataset and its
derivative, PACS-Material [50]. In the given scenario involving a
question xq, a video containing object 01, and a video containing ob-
ject 0z, the model is tasked with selecting the more suitable object to
answer the question and provide a detailed rationale. Additionally,
we have leveraged the capabilities of GPT-4 to create compara-
tive audio-visual commonsense reasoning questions, aligned with
the PACS style. Concretely, our design principles are categorized
into two classes. The first class of questions pertains to intuitive
physics and functional world models, such as predicting the motion
of objects, or interactions between objects. These questions revolve
around forecasting the effects of interactions between one or more
objects. Simple questions involve individual objects and behaviors,
e.g., “Which object (a rubber ball or a ceramic tile) is more likely to
shatter upon impact?” More challenging questions entail multiple
objects or behaviors, encompassing interactions between two ob-
jects, e.g., “Which object would you put on top of the other (a plastic
phone case and a piece of paper) to keep both from blowing away ?”

The second class of questions delves into common real-world
knowledge, inspired by previous commonsense datasets, which
examine human or object’s more specific understanding of how the
real world operates [5, 15, 51]. These questions inquire about the
potential applications of objects in real-life scenarios. It is of signif-
icance that these scenarios focus on non-standard uses of objects,
thereby reducing the likelihood of misusing existing knowledge,
e.g., “In the absence of an eye shadow brush, which object should T
use ( a cotton swab or a toothpick)?” More challenging questions
may introduce more complex or uncommon scenarios involving
multiple objects, e.g., “If I want to stack these two objects together,
which one should be placed underneath ?” We have amalgamated
the formidable capabilities of GPT-4 with the meticulous review of
multiple human experts to generate high-quality answers pertain-
ing to both categories of questions. These answers typically adhere
to rigorous logical reasoning and undergo a step-by-step reason-
ing process. The prompt used to ask GPT-4 to generate complex
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Textualized Video De

Action description: a girl uses her five fingers to fiddl
click a plastic phone case in front of a mirror
Object, Class: plastic mobile phone case

Frame captions of video:
00:00-00:01: & worn:

00:01-00:02: &
elfle in frc

00:02-00:03: the

Object 2

00:03-00:04:
vith o

. Gbjeot with location: ounding_box': [ 510, 58, 1080, 3341,
Perception Tools “materials's [ "plastic" ], "objects’s [ ‘Plastic mobile phone case with

honeycomb design’ ]

r-3 )
X
e e Simple video deseription:
he . T.ahint, standing n front of
3 mPLUG-Owl GRIT  Region-to-text Transformer &mm‘vrbﬂhs‘xs using Lh_snﬁngfrs of her: m':em hgnd;bmph:nd cr:abs As::nds
Scone, while the woman holds i with her lef hand, acing it towards the
o B e cptioving e mirror. The phone case s rafted from plastic material with an ntricate
n rinage-aptonng esign. Inthe upper eftcorner of th scene, what appears to be a bed can
‘e seen. The woman seems to be attentively rubbing the phone case to
—— @) e T A e A A A e
aselfle in front of the camera without the audiory oues and the context

‘provided by the consecutive video frames.

g Answer: Object1 is made of plastic, which is typically a hard and rigid material. Plastic is known
L] for tts durability and resistance to deformation under normal circumstances. Object is clearly
—> j—— identified as paper, which is a lightweight and relatively soft material. Paper is d

S Question: What is the primary action that the young woman is performing in the video?
(ig)} Answer: The primary action the young woman is performing in the video is interacting with a.
plastic mobile phone case with . She is delicately the phone
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( Detailed Video Description
10 the video, we observe & young woman wearing a purple T-ghirt, standing n front of & mirror.
Her aotions involve (nteracting with & plastio mobile phane oase with & horeyoomb design, She
uses her right hand to delicately Tanipulate the phane 0ase, liAing 1, down, ef, and right
The plastic material of the phone 088 emits subile sounds as she engages with i. The scene
captures her n the act of taking  self-portrait using her cell phore, which is carefully held o
her left hand, positioned directly in the center of the frame, facing the mirror, It seems like she
1s using the phone's camera function to capture an image. This interaction can be misunder-
stood as her taking a selfie since it closely resembles the action of capturing a photo in front of a |

‘mirror. However, her primary focus appears to be on the tactile sensation and sounds produced
by manipulating the phone case, rather than capturing a photograph. The background of the
scene reveals what t0 be a bed in the provides
context to her activities, suggesting that she may be in a bedroom setting.

~

Question: Which item would hurt your foot more if you dropped the object on it while barefoot?
options: A: object 1 B: object 2

an easily fold or crumple upon impact. Object1 is likely to be heavier and more rigid than
object due to its plastic composition. When dropped, it will exert more force on impact. Objectz,
lex . being made of paper, is lightweight and lacks rigidity, meaning it will deform and cushion the

impact to some extent. When object falls on your foot, the hardness and weight of the plastic
could lead to a more painful experience. Therefore, the answer is A

Q e Video Dialogue )

case by sliding 1t up, down, left, and right, while also producing subtle sounds from the plastio
‘material. Although she is holding a cell phone in her left hand and facing the mirror, her main
foous seems to be on the tactile sensation and the sounds produced by the phone case, rather
than taking a selfle.

Question: Can you describe the young woman's clothing in the video?
Answer: The young woman in the video is wearing a purple T-shirt.

Question: What is the position of the cell phone in the video?
Answer: The cell phone is held by the young woman in her left hand,and it is positioned
directly in the center of the frame, facing the mirror.

Figure 1: Pipeline of the GPT-assisted video-audio-text instruction-following data generation. We generate three types of
instruction-following data based on GPT-4 [57] and PACS [50]: detailed description, complex reasoning, and video conversation.
We utilize various vision models for the transformation of visual data extracted from videos into textual video descriptions.
Following this, employing diverse prompts and using human-annotated demonstrations as context, we elicit responses from
GPT-4, inducing it to generate specific questions and corresponding rationales (inclusive of answers) aligned with our specified
queries. The generated data will serve as our video-audio-text instruction-following dataset for model finetuning.

reasoning instruction data is shown in Fig. 18. And the prompt for
the construction of the PACS-Reason+ using GPT-4 [1] to query all
object pairs in PACS [50] is illustrated in Fig. 20.

Video Conversation. This design aims to boost the instruction-
following and audiovisual commonsense reasoning capabilities of
our model. We orchestrate a dialogue in which PAVC-Reasoner
would act as an agent, engaging in conversation with a person who
poses questions about the pair of videos. PAVC-Reasoner performs
as if it is actively watching the videos and providing answers. Based
on the audiovisual content of the videos, we use GPT-4 to formulate
a diverse set of physical commonsense questions and answers, en-
compassing aspects such as material composition of objects, physical
properties and affordances of objects, effects of interactions between
objects, and how to manipulate them, as well as potential real-world
applications of objects. We exclusively consider questions that have
explicit answers. The prompt used to ask GPT-4 to generate video
conversation instruction data is shown in Fig. 19.

B IMPLEMENTATION DETAILS
B.1 Baseline Mulitmodal Models

Specifically, we use state-of-the-art encoders to obtain unimodal
outputs. For instance, we take into account the following pretrained
encoders:

Image Encoder: Using the ViT/B-16 model [13] pre-trained on
ImageNet-21k [12] to derive the image embedding for each object.
Audio Encoder: Utilizing the AST (Audio Spectrogram Trans-
former) model [20], featuring a time and frequency stride of 10 and
weight averaging, pre-trained on the full AudioSet [22] as the audio
encoder for generating the object’s audio embeddings.

Video Encoder: Employing the TDN (Temporal Difference Net-
work) model [44], pre-trained on Something-Something-V2 [21]
with a ResNet101 [23] backbone and 8-frame inputs, as the video
encoder to obtain the object’s video embeddings.

Question Encoder: Employing a pre-trained DeBERTa-V3-Large
model [24] as the text encoder to derive the question embeddings
of a pair of objects. We do not use any text augmentations, and we
pre-extract the text embeddings from the [CLS] token of the output
layer (pre-pooler) of the text model to optimize training efficiency.
We amalgamate unimodal embeddings from image, audio, video and
question encoders to construct five late fusion models as follows:
I+A+V: Concatenating the unimodal embeddings of image, audio,
and video for both objects, followed by an MLP to derive two object
embeddings, e((,l) and e((,z). Finally, the two object embeddings are
concatenated and fed into the MLP to generate binary classification
output.

Q+I: Concatenating the separate image embeddings of the two
objects with the question embedding, and then utilizing an MLP
to produce two question-object embeddings, eé},) and e((;,). Finally,
these question-object embeddings are input to an MLP to generate
binary classification output.

Q+A: Concatenating the individual audio embeddings of the two
objects with the question embeddings, followed by an MLP to create
two question-object embeddings, e((z(l,) and el(zi). Consequently, these
embeddings are then fed into an MLP to derive binary classification
output.

Q+V: Concatenating the individual video embeddings of the two
objects with the question embeddings, followed by using an MLP to

generate two question-object embeddings, e((]},) and e((]?,). Finally, an
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MLP processes these question-object embeddings to obtain binary
classification output.

Late Fusion (Q+I+V+A) Concatenating the image, audio, and video
embeddings of both objects, using an MLP to generate two ob-
ject embeddings, e,gl) and e((,z). These object embeddings are con-
catenated with the question embeddings, followed by an MLP to
yield two question-object embeddings, ec(lé) and eéi). Finally, these
question-object embeddings are concatenated and sent to an MLP
to yield binary classification output. In addition, we also consider

the following advanced methods:

e CLIP [38] (contrastive language—image pre-training), known
as a powerful zero-shot transfer, pre-trains an image encoder
and a text encoder to predict which images were paired with
which texts by maximizing the cosine similarity of their em-
beddings. Employing CLIP, we encode two images and a
question for a pair of objects, aiming to predict the object
whose image embedding is closer to the question embedding.

e AudioCLIP [22] extends CLIP by integrating an audio en-
coder, resulting in a tri-modal hybrid architecture. Employ-
ing the audio encoder and image encoder from AudioCLIP,
we acquire audio embeddings and visual embeddings of an
object. These are concatenated and projected onto the same
embedding space as the question embedding via a linear
layer. The objective is to predict the object whose embed-
ding aligns more closely with the question embedding.

e UNITER (8] is a large-scale pre-trained model for joint mul-
timodal embedding. It initially employs image encoders and
text encoders to encode image regions (containing visual fea-
tures and bounding box features) and textual words (tokens
and positions) into a shared embedding space. Subsequently,
a transformer module is applied through four meticulously
designed pre-training tasks to learn generalizable contex-
tualized embeddings for each region and word. Employing
UNITER, we input image-question pairs to generate image
embeddings and question embeddings, then concatenate
these embeddings and feed them into an MLP for binary
answer classification.

e MERLOT Reserve [52] extends MERLOT [53] by including
the audio modality. It acquires a multimodal neural script
representation of videos, jointly reasoning over video frames,
text, and audio via a unified vision-audio-language Trans-
former. We obtain the question-object embeddings by feed-
ing the sequence-level representations of video frames, ques-
tion words, and audio segments to the joint encoder. This is
achieved by pooling the output hidden representations of the
last layer. We then feed these question-object embeddings
into a linear layer to generate binary answer predictions.

B.2 Baseline Multimodal Large Language
Models (MLLMs)

We also consider various popular open-source multimodal large

language models (MLLMs) as baseline models. These MLLMs have

shown excellent performance on comprehensive multimodal eval-

uation benchmarks such as MME [16] and MMBench [33] which

include multiple dimensions or tasks evaluating reasoning abilities
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such as physical attribute reasoning, functional reasoning, and com-
monsense reasoning. In essence, these MLLMs exhibit a certain de-
gree of perceptual and cognitive capabilities, rendering them robust
baseline models for our explainable physical audiovisual common-
sense reasoning (EPACR) task. Specifically, we evaluate the follow-
ing MLLMs: FrozenBiLM [47], MiniGPT-4 [57], InstructBLIP [11],
OpenFlamingo [3], MM-GPT [19], LLaVA [32], mPLUG-Owl [48],
VideoChat [27], LLaMA Adapter [55], Video-ChatGPT [36] and
Video-LLaVA [29].

Table 2 records the parameter counts of these MLLM models and
the specific configurations. Since most MLLMs are only equipped
to handle visual and textual inputs, we only test their physical
visual commonsense reasoning capabilities. We did not perform
expensive fine-tuning on these MLLMs on instruction-following
data (i.e. PACS-Reason and PACS-Reason+). Instead, we employed
a multimodal few-shot in-context learning approach similar to
the methods used in GPT-3 [6] and Flamingo [2] for PACR task
adaptation. Specifically, we receive a set of support examples in
the form of (video, text) or (video, audio, text), where video is re-
garded as a sequence of images, and text includes the expected
response and relevant task information such as questions or in-
structions. At the end of these demonstrations, we append a single
query requesting the model to make a prediction. Fig. 2 illustrates
how we construct multimodal prompts by concatenating support
examples and queries. Due to resource constraints, we use a one-
shot evaluation. In addition, we consider two MLLMs capable of
processing audio, Video-LLaMA [54] and PandaGPT [41]. We fine-
tune these two MLLMs on the PACS-Reason and PACS-Reason+
instruction datasets, using the same instruction fine-tuning strat-
egy as PAVC-Reasoner (combined with LoRA). Below, we briefly
introduce each MLLM used in our experiment:

e FrozenBiLM [47] builds on frozen bidirectional language
models (BiLM) and show that such an approach provides
a stronger and cheaper alternative for zero-shot VideoQA.
In particular, it combine visual inputs with the frozen BIiLM
using light trainable modules, and trains such modules using
Web-scraped multi-modal data, and finally performs zero-
shot VideoQA inference through masked language modeling,
where the masked text is the answer to a given question.
MiniGPT-4 Z [57] consists of a vision encoder with a pre-
trained ViT and Q-Former, a single linear projection layer,
and an frozen LLM. MiniGPT-4 only requires training the
linear layer to align the visual features with the Vicuna [9]
large language model.

InstructBLIP @ [11] Mirroring the architecture of BLIP-
2 [26], InstructBLIP encompasses a frozen image encoder, a
trainable Q-Former, and a frozen Language Model (LLM).
Specifically, the Q-Former is used to extract instruction-
aware visual features from the output embeddings of the
frozen image encoder. These visual features are then pre-
sented as soft prompts to the frozen LLM. Employing lan-
guage modeling loss, the model undergoes instruction tuning
to generate responses.

OpenFlamingo % [3] is an open-source implementation
of the vision-language model, Flamingo [2]. It integrates
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Support Samples Query
Problem
Ima‘ge 2 Which object would break into more pieces if dropped
from the top of a house? Options: (A) Object 1(B) Object 2

Object 1, despite its plastic-like appearance in the video, judging
from the audio, is ceramic, known for its brittleness. ... The correct
answer is (A).

<BOS><Imagel><EOC><Imagel><EO0C>
[ ] Answer:

Image 1 Image 3

Image 4

Q\ Which object would break into more pieces if dropped
from the top of a house? Options: (A) Object 1(B) Object 2

: [Problem] Answer: [Rationale] <EOC><Image3><EOC><Image4><EOC>

(A) 1-shot Physical Commonsense Question Answering

Support Samples Query
Image Problem
Which object would break into more pieces if dropped
from the top of a house? Options: (A) Object 1(B) Object 2
3 Which object would break into more pieces if dropped
from the top of a house? Options: (A) Object 1(B) Object 2
Object 1, despite its plastic-like appearance in the video, judging
from the audio, is ceramic, known for its brittleness. .. The
correct answer is (A).
: [Problem] Answer: [Rationale] <EOC><Im-

<BOS><Imagel><E0C><Audiol><EOC><Imagel><E0C><Audio2><E0C>
a8e3><E0C><Audio3><E0C><Image4><EO0C><Audio4><EO0C> [ ] Answer:

Image 4

Image 3

Audio2 Audio3 Aud104

(B) 1-shot Physical Audiovisual Commonsense Question Answering

Figure 2: Conceptualization of Few-shot Multimodal Prompt Generation for PACR. Given a few task-specific few-shot examples
(referred to as support samples, as illustrated in the figure with a 1-shot demonstration) and a query for which MLLMs must
make a prediction, we construct prompts by interleaving video and audio preceding each corresponding text. To facilitate this,
we introduce a structured format tailored for physical visual or audiovisual commonsense reasoning, exemplified as follows:

“Question: {problem} Answer: {rationale}”. Zoom in for the best view.

powerful pre-trained visual models with pure language mod-
els by introducing novel cross-attention layers within each
transformer block of the language model (LM). The keys
and values of these layers are derived from visual features
when utilizing language queries. Subsequently, dense feed
forward layers are inserted between the existing pre-trained
and frozen LM layers to fine-tune the language model based
on visual input. These layers are gated to ensure the integrity
of the LM during initialization, thereby enhancing stability
and performance. The model adeptly handles arbitrary in-
terleaved sequences of visual and textual data, including the
seamless ingestion of images or videos as input.

o MM-GPT g [19] excels at following various human di-

rectives, such as generating detailed instructions, counting
objects of interest, and answering general questions from
users. MM-GPT is parameter-efficiently fine-tuned on Open-
Flamingo [3], where low-rank adapters (LoRA [25]) have
been incorporated into both the cross-attention and self-
attention components for parameter-efficient fine-tuning. It
leverages language-only instruction-following data along-
side visual-language instructions for joint training, enabling
the model to comprehend and adhere to human instructions.

e LLaMA Adapter [ [55] is a lightweight adaption method

for instruction fine-tuning a multi-modal LLaMA [43] model.
It inserts lightweight adapters with learnable prompts into

the transformer layers of LLaMA and adopts zero initial-
ized attention with gating mechanisms for stable training in
early stages. In our experiments, we used LLaMA-Adapter
(V2) [17] for evaluation.

LLaVA 4 [32] is an end-to-end trained large multimodal
model that connects a vision encoder and LLM for general-
purpose visual and language understanding, achieving im-
pressive chat capabilities mimicking spirits of the multimodal
GPT-4. We adopted the LLaVA-v1.5-13b [31] for evaluation,
which is a stronger version of LLaVA.

mPLUG-Owl §/ [48] is a novel training paradigm that equips
LLMs with multi-modal abilities via modularized learning
of LLM, a vision foundation model to encode visual knowl-
edge, and a visual abstractor module. It involves a two-stage
method for aligning image and text, which learns visual
knowledge with the assistance of LLM, while maintaining
and even improving the text generation abilities of LLM.
mPLUG-Owl2 %2 [49] utilizes a modularized network de-
sign, with the modality-adaptive language decoder acting
as a universal interface for managing different modalities.
mPLUG-OwI2 incorporates shared functional modules to
facilitate modality collaboration and introduces a modality-
adaptive module that preserves modality-specific features.
VideoChat & [27] is an end-to-end chat-centric video un-
derstanding system. It integrates video foundation models,
namely InternVideo [45], and large language models via a
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Table 1: Performance comparisons between PAVC-Reasoner and diverse baseline models on the newly-collected PACS-Reason+
benchmark. Results are reported as the mean and standard deviation over five runs. For the case of MLLMs, evaluations were
conducted using the 1-shot multimodal in-context learning or fine-tuning on the PACS-Reason+ training set. The symbol "-"
indicates that the current model lacks support for rationales generation or audio input, thus rendering results unattainable.

. Accuracy (%) Helpfulness (%) Relevance (%) Granularity (%) HumanEval (%)
Baseline Model +audio —audio +audio —audio +audio —audio +audio —audio +audio —audio

Simple Late Fusion Baselines

I+A+V [13, 20, 44] 51.6+0.8 - - - - - Z _ _ _
Q+1[13, 24] - 49.140.7 - - _ - _ _ _ B
Q+A [20, 24] 48.3+1.1 - - - - _ _ _ _ _
Q+V [24, 44] - 49.240.9 - - _ - _ _ _ B
Q+I+A+V [50] 514408 48.8+1.0 - - - - - - - -
Multimodal Models

CLIP [38] - 55.6+0.8 - - - _ Z z - -
AudioCLIP [22] 58.1+1.2 - - - - - - - - _
UNITER (Large) [8] - 59.9+1.7 - - - - _ _ _ _

Merlot Reserve (B) [52] 64.8+1.3  62.2+0.8 - - -
Merlot Reserve (L) [52]  68.4+£0.9  66.3+0.5 - - -

Multimodal Large Language Models (MLLMs) with 1-shot Multimodal Prompt

FrozenBiLM [47] - 57.2+1.3 - 64.7+1.4 - 69.0+1.2 - 66.6+1.3 - 57.7+£1.6
MiniGPT-4 [57] - 59.2+1.5 - 65.8+1.4 - 70.2+2.0 - 67.2+£0.6 1 - 58.5+2.2
InstructBLIP [11] - 61.4+1.8 - 67.6+1.2 - 71.0+0.5 - 68.7+1.4 - 61.3+0.3
MM-GPT [19] - 63.3+1.6 - 68.5+0.4 - 72.6+2.0 - 69.2+1.9 - 62.3+1.5
OpenFlamingo [3] - 64.7+0.7 - 71.5+1.4 - 74.2+1.8 - 71.6+1.8 - 63.7+1.7
LLaMA Adapter [55] - 62.9+1.6 - 68.4+1.3 - 72.6+1.6 - 70.2+0.8 - 59.6+2.1
LLaVA [32] - 63.5+2.0 - 67.1+£1.5 - 70.5+1.3 - 69.0+2.0 - 59.5+1.0
mPLUG-Owl [48] - 65.1+0.6 - 69.7+2.1 - 75.8+0.6 - 71.0+2.1 - 60.5+2.2
mPLUG-OwI12 [49] - 66.2+1.3 - 70.4+1.2 - 75.4+0.8 - 71.4+1.7 - 62.4+0.7
VideoChat [27] - 61.7+1.1 - 68.5+1.3 - 71.5+1.1 - 70.1+£0.6 - 60.5+1.5
Video-ChatGPT [36] - 63.1+1.1 - 70.0+0.9 - 71.7+£1.9 - 46.8+1.4 - 60.0+0.5
Video-LLaVA [29] - 64.1+1.0 - 69.0+£1.7 - 73.0+1.7 - 48.4+1.9 - 62.1+1.7
Finetuned Multimodal Large Language Models (MLLMs) on PACS-Reason+

Video-LLaMA [54] 61.4+1.8 59.3+13 71.5+1.8 66.4+1.6 74.1+1.3 72.6+1.2 73.2+1.8 70.2+1.4 62.6+1.9 60.5+2.1
Video-LLaMA-2 [54] 62.3+0.5 60.0£0.8 72.6+1.4 66.9+2.0 75.3+0.8 73.6+1.5 74.1x14 70.8+0.7 64.0+2.2 61.4+2.0
PandaGPT [41] 62.2+1.6 62.0+1.2 73.9+15 68.8+1.7 76.1+1.9 73.9+13 74.6+1.3 72.0+1.8 64.8+2.4 61.6+£2.0
PAVC-Reasoner-V2 73.5+£0.7 71.8+0.5 74.7+1.6 71.6+1.1 77.6£04 76.9+0.9 74.7+1.5 71.8+1.1 67.6+1.4 63.8+1.5
PAVC-Reasoner-V4 76.7+1.3  743+1.0 79.0+1.7 75.7+0.1 86.9+0.8 85.1+1.4 83.1+0.4 78.6+2.0 68.9+1.8 64.9+1.3

learnable neural interface, excelling in spatiotemporal rea-
soning, event localization, and causal relationship inference.
VideoChat2 W [28] is a robust video multimodal LLM base-
line, achieving progressive multimodal training with diverse
instruction-tuning data. The progressive multimodal train-
ing encompasses three distinct phases: Phase 1 aligns the
visual encoder UMT-L with QFormer, effectually compress-
ing extensive visual input. Stage 2 extends this association
to incorporate LLM, while Stage 3 concentrates on effec-
tive instruction tuning to enable the model to follow human
instructions.

e Video-ChatGPT = [36] leverages the CLIP-L/14 [38] visual
encoder to extract both spatial and temporal video feature,
and feeds the resulted spatiotemporal features into a learn-
able linear layer, which then projects them into the LLMs
input space.

e Video-LLaVA {4 [29] extracts visual features using Lan-
guageBind [56] encoders and aligns images and videos be-
fore projection, allowing LLM to learn from a unified visual

representation and endowing LLM with the ability to under-
stand both images and videos simultaneously.
Video-LLaMA [E] [54] is a multimodal framework that em-
powers LLMs with the capability of understanding both vi-
sual and auditory content in the video. It derives a Video
Q-former to assemble the pre-trained image encoder into
the video encoder and introduce a video-to-text generation
task to learn video-language correspondence, and introduces
an Audio Q-former on top of ImageBind [18] to learn rea-
sonable auditory query embeddings for the LLM module.
Video-LLaMA is trained on massive video/image-caption
pairs as well as visual-instruction-tuning datasets of moder-
ate amount but higher quality.

PandaGPT @ [41] combines ImageBind’s multimodal en-
coders and a Vicuna [9] LLM to achieve outstanding capabil-
ities across six modalities (text, image/video, audio, depth,
thermal, and IMU). With a modest set of trainable parame-
ters added (a linear projection layer and LoRA weights on
the attention modules of Vicuna), PandaGPT is trained with
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aligned image-text pairs (160K image-language instruction-
following data released by LLaVa and MiniGPT-4).

B.3 Model Settings

For the frozen image encoder, we investigated two state-of-the-art
pre-trained visual transformer models: (1) ViT-L/14 from CLIP [38],
which has 24 layers with hidden dimension set as 1024, number of
attention heads as 16 and patch size set as 14; and (2) ViT-G/14 from
EVA-CLIP [14]. As for the frozen audio encoder, we explored audio
encoders from ImageBind [18] and LanguageBind [56]. Regarding
the frozen language models, we considered two language model
series: (1) FlanT5 [10], which is an encoder-decoder language model
fine-tuned from T5 [39], and (2) Vicuna [9], which is a decoder-
only language model fintuned from LLaMA [43]. For the visual-
language and audio-language perceivers, we use the six-layer, 16-
head transformer blocks, comprising 64 learnable queries, each
with a dimension of 768. For the audiovisual-language perceiver,
the number of learnable queries is set to 64, with each query having
a dimension of 768. Notice that in the cross-modal training stage,
only the three perceivers, the position embedding layer, and the
liner projection layer are trainable. In the instruction fine-tuning
stage, besides the modules mentioned above, we also update the
parameters of the LoRA module.

B.4 Data Preprocessing and Training Details

Due to the inclusion of a video pair in PACS-Reason and PACS-
Reason+, we conduct temporal sampling by extracting 4 frames per
second (fps) for each video. For every sampled image, we employ
UniDetector [46], a versatile object detector, to detect the target
object within each sampled image. Subsequently, we apply crop
and resize operations to the region containing the target object,
resulting in a size of 224 X 224 for each processed image. In the case
of other videos, (such as Webvid-2M and VideoChat), we uniformly
sample 8 frames and resize each frame to 224x224. Additionally,
we perform image augmentations, including random resized crop-
ping and horizontal flipping. Regarding audio input, we uniformly
extract 4 segments of 2-second short audio clips from the video. To
encode the audio, we transform each 2-second audio segment into
spectrograms using 128 mel-spectrogram bins. Since the spectro-
gram shares similarities with a 2D image signal, we utilize the same
patch embedding technique with a patch size of 16 and a stride of 10,
as described in [20]. All variants of PAVC-Reasoner are conducted
on four 80GB A100 GPUs. Consistent pre-training hyperparameters
are employed across all models. We use the AdamW optimizer [35]
for optimization with f = (0.9,0.98) and a weight decay set at 0.05.
We use a cosine learning rate decay with a peak learning rate of
le-4 and a linear warmup of 2k steps. The minimum learning rate
in the second stage is set to 1e-6. As shown in Table 3, we record the
hyperparameters of the training PAVC-Reasoner at the pretrain-
ing stage and the instruction fine-tuning stage in detail. Through
grid search on the validation subset of the training set (or on the
available official or standard validation sets), we opt for certain
hyperparameters for each task. These hyperparameters encompass
the learning rate (ranging from 1le-8 to le-3), decay schedule (ex-
ponential decay by a factor of 10), training steps, batch size (256
or 512), and the utilization of visual data augmentation (including

ACM MM, 2024, Melbourne, Australia

color augmentation and random horizontal flipping and random
resized cropping etc.)

B.5 GPT-4-Assisted Choice Extraction

Due to the limited instruction-following capabilities of various
MLLMs, despite our questions being in the form of clear multiple-
choice questions with well-structured options (e.g., "Which object
is softer to the touch? Options: A. object 1 B. object 2"), many MLLMs
still produce answers in free-form text (e.g., the model’s direct out-
put could be "The correct answer is object 1, but not explicitly ‘A’).
Extracting choices from free-form predictions is easy for humans
but challenging for rule-based matching. Therefore, inspired by
MMBench [33], we devise a universal evaluation strategy for all
MLLMs with varying instruction-tracking abilities. Specifically, we
employed GPT-4 as a choice extractor. We provided GPT-4 with the
question, options, and model predictions, prompting it to align the
prediction with one of the given options and generate the corre-
sponding option label. We then extract the predicted option (e.g.,
‘A’) from the response generated by GPT-4. For most questions,
GPT-4 is able to return a single character (e.g.,, ‘A’, ‘B’ or ‘X’) as the
model’s label prediction. For each input, we compare the model’s
label prediction with the ground-truth true label. If the prediction
matches the true label, the test sample is considered correct. The
prompt for choice extraction is illustrated in Fig. 3.

C PREDICTION DEMONSTRATION

In this section, we present additional exemplars of the common-
sense reasoning proficiency of PAVC-Reasoner on the PACS-Reason+
(as illustrated in Figures 7, 8, 9, 10, 12, and 14) and PACS-Reason++
benchmarks (as illustrated in Figures 11, 13, and 15). We illus-
trate the model’s capacity to generate corresponding rationales

for various questions, i.e., intermediate reasoning chains serving as

the rationale. These visualizations comprehensively showcase our

model’s capacity in generating step-by-step rationales for diverse

physical commonsense questions involving a variety of physical

properties—namely, intermediate reasoning chains that elucidate

the logical steps taken to derive the answer.

D VISUAL PREFERENCE V.S. AUDIOVISUAL
PREFERENCE

We aim to intuitively analyze the impact of various perceivers on
PAVC-Reasoner. To achieve this, in Fig. 5, we present two ques-
tions with distinct preferences. Question A, “which object could hold
water?” is relatively straightforward, involving an examination
of object shape and size. In contrast, , querying which
object is useful in starting a fire if lost in the cold and dark woods,
entails a certain level of complexity, involving an assessment of the
non-prototype uses of two objects in daily life. This necessitates
the model’s accurate understanding of the material composition,
physical properties, and availability of the objects. In Fig. 4, we
visualize the attention heatmaps in the V-L branch and A-L branch
for both questions.

From the comparison of attention maps between visual tokens
and audio tokens in the Oth and 1st layers in Fig. 4, we observe
that the model predominantly focuses more on visual content when
generating responses to Question A. Conversely, the attention maps
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Table 2: All parameter counts and detailed model configurations for the multimodal large-scale language models used in our

experiments.

Method Large Language Vision Audio Trainable  Trainable
ethods Model & Encoder [E] Encoder & LLM  Visual Encoder

FrozenBiLM [47] Deberta-V2-XLarge (890M)  CLIP-ViT-L/14 (304M) X )
MiniGPT-4 % [57] Vicuna-Vo-7B CLIP-ViT-L/14 (304M) X
InstructBLIP 3 [11] Vicuna-V1.1-7B CLIP-ViT-L/14 (304M) X :
OpenFlamingo » [3] mpt-1b-redpajama-200b CLIP-ViT-L/14 (304M) X &
MultiModal-GPT g [19] LLaMA-7B CLIP-ViT-L/14 (304M) X &
LLaMA Adapter V2 [§ [55] LLaMA-7B CLIP-ViT-L/14 (304M) X &
LLaVA-1.5 4 [32] Vicuna-V1.5-13B CLIP-ViT-L-336px (304M) X )
mPLUG-Owl § [48] LLaMA-7B CLIP-ViT-L/14 (304M) X ) )
mPLUG-Owl2 %2 [49] LLaMA-7B CLIP-ViT-L/14 (304M) X ) )
VideoChat & [27] Vicuna-7b-delta-v0 EVA-ViT-G/14 (1.0B) X )
VideoChat2 § [28] Vicuna-7b-delta-v0 UMT-L (304M) X ) )
Video-ChatGPT {4 [29] Vicuna-v1.1-7B CLIP-ViT-L/14 (304M) X :
Video-LLaVA £ [29] Vicuna-v1.5-7B CLIP-ViT-L/14 (304M) X )
Video-LLaMA 54] Vicuna-7B EVA-ViT-G/14 (1.0B)  ImageBind-H (307M)
Video-LLaMA-2 [§) [54] LLaMA-2-7B-Chat EVA-ViT-G/14 (1.0B)  ImageBind-H (307M)
PandaGPT @ [41] Vicuna-7B ImageBind-H (307M)  ImageBind-H (307M)
PAVC-Reasoner-V2 FlanT5x1 -3B EVA-ViT-G/14 (1.0B)  ImageBind-H (307M) O
PAVC-Reasoner-V4 Vicuna-7B EVA-ViT-G/14 (1.0B)  ImageBind-H (307M) &

Template

messages.append({"role":"user", "content":\n’ join(query)})

Figure 3: The prompt used to generate the binary answer candidate based on GPT-4 [1].

in the second row indicate that the model, in generating responses
to Question B, simultaneously attends to both visual and audio
content. This may be attributed to the valuable information that
audio can provide to distinguish the physical properties between the

two objects, such as object 2 being easily misidentified as a wooden
cup in the absence of audio (actually a ceramic cup). In comparison
to Question A, when addressing Question B, the model elevates

messages = [ {"role":"system", "content": """ Suppose you operate as an Al assistant

to help me matching an answer with several options of a multiple choice question.

You are provided with a question, several options, and an answer, and you need to

find which option is most similar to the answer.

If the meaning of all options are significantly different from the answer, output X.

Your should output a single uppercase character in A or B (if they are valid

options), and X.

Example 1:

Question: Which object would be less painful to rest your head on while napping?

Options: A. object 1 B. object

Answer: object

Your output: B

Example 2:

Question: Which item would hurt your foot more if you dropped the object on it

while barefoot? Options: A. object 1 B. object

Answer: The answer is C

Your output: X

Example 3:

Question: {question}? Options: {options}

Answer: {prediction}

Your output:

"}

for sample in fewshot_samples:
messages.append({'role":"user", "content":sample[ ‘context’]})
messages.append({"role":"assistant", "content":sample[ ‘response’]} )

the contribution of audio features to correctly identify the physical
properties of the object. This signifies that our perceptual branches
can adaptively capture modal features of varying degrees based on
the nature of the question, indirectly reflecting their effectiveness.
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Figure 4: Illustrations of attention maps for visual tokens and audio tokens in layers 0 and 1 about various questions. Blocks
closer to the red spectrum indicate higher attention values, while those closer to the blue spectrum signify lower attention
values. The range of all attention maps is normalized to a fixed interval for enhanced contrast in differences.

Table 3: Training hyper-parameters of PAVC-Reasoner.

Pretraining Stage Instruction Tuning

ViT-L or ViT-G [26]  Pretraining Stage
ImageBind-Huge [18]

Configuration

Vision encoder init.
Audio encoder init.

Audiovisual encoder init. Random Random
LLM init. FlanT5x;, [10] or Vicuna-7B [9]
Image Resolution 224x224 224x224
ViT sequence length 256 1024
LLM sequence length 256 2048
Learnable query numbers 64 64
Optimizer AdamW [35]
Optimizer momentum P1, f2=(0.9,0.999)
Peak learning rate le-4 2e-5
Minimum learning rate le-6 le-7
Layer-wise Ir decay 0.75 0.85
Drop path rate 0 0
Learning rate schedule cosine decay [34]
Weight decay 0.05 0
Gradient clip 1.5
Training steps 250,000 80,0000
Warmup steps 2000 250
Global batch size 4096 256
Gradient Acc. 16
Numerical precision bfloat16
Optimizer sharding v
Activation checkpointing v

E HALLUCINATION RATIONALE ANALYSIS

To delve deeper into the quality of rationales generated by our
model, we classified the model’s predictions on the PACS-Reason
test set. Fig. 6 summarizes the classification results produced by
PACS-Reasoner. Firstly, we observe that even samples classified
as correct (i.e., accurate answers) contain a certain number of er-
roneous rationales (CoTs). These erroneous rationales primarily
fall into two categories: one arising from model misidentifications
of object materials and physical properties, constituting errors in

—| Problem A

?
g Which object could hold water?
o [
0

r—| Problem B

ﬁ If lost in the cold and dark woods, with only

An object that holds water.

Object 2

one match, which would be more useful to
start a warming fire?

% lTn object that is useful in starting a fire if lost
o in the cold and dark woods.

Figure 5: Example of two questions with different modality
preferences.

6.0%
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2.4%

(28) 25%
(29)
2.9%
(33)
18.9% 71.6%
(220) (832),
15.7%
(182)
67.8%
(788)
3.5% 1.7%
[ (19)
(16) 5.6%

(64)

(A) PAVC—Reasoner—FlanT5x, (B) PAVC—Reasoner—Vicuna—7B

Correct CoT Ca Error C Error
Recognition Error Recognition Error Correct CoT

wm Correct Answer
= Incorrect Answer

Figure 6: Categorization error analysis of PAVC-Reasoner.

CoTs, and the other involving generated CoTs containing common-
sense errors (e.g., " .. smaller objects generally experience more
air resistance relative to their size. . .”). Notably, PAVC-Reasoner
(with Vicuna-7B [9]) demonstrates a reduction in the generation
of CoTs with commonsense errors compared to PAVC-Reasoner
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(with FlanT5xy, [10]), decreasing from 2.4% to 1.9%. This implies
that a more powerful LLM contributes to mitigating commonsense
error issues. On the other hand, despite the incorrect rationales
generated by the model, the final answers (i.e., choosing A or B)
were correct. This suggests that our model exhibits a degree of ro-
bustness, capable of predicting the correct answers by disregarding
incorrect rationales.

For incorrect samples (i.e., incorrect answers), misidentification
errors in the CoTs dominate, constituting 18.9% and 15.7% of er-
rors among two model predictions, respectively. When answering
questions involving judgments about the physical properties and
material categories of objects, such as understanding what material
the cup in the video is made of (see Fig. 5), the model often makes
misidentification errors. For instance, object 2 might be misidenti-
fied as a wooden cup instead of a ceramic one. Similarly, we found
that the more powerful visual perception model ViT-G/14 [14], as
compared to ViT-L/14 [38], can reduce the occurrence of misidenti-
fication errors, lowering the error rate from 18.9% to 15.7%. Never-
theless, limitations persist in our model’s understanding of visual
and auditory content in videos. This motivates our exploration of
more efficient multimodal cooperative and modality-separate net-
work modules to capture both modality-shared and modality-specific
features. Additionally, we are actively constructing high-quality
video-audio-text alignment datasets to further enhance the model’s
perception capabilities. Within the category of incorrect CoT, an-
other type of error is commonsense errors, where CoTs contain
inaccuracies in commonsense knowledge. Moreover, in some cases
where the answer is incorrect, the CoT is correct (with ratios of
1.4% and 2.5%), but may not necessarily be relevant to the answers.
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ASMRBakery

System Message

You are a PAVC-Reasoner, a large physical audiovisual commonsense reasoning model trained with video-instruction
data. Please answer the question directly and provide a detailed explanation step-by-step or reasonable intermediate
reasoning steps for inferring the answer.

9 D a0 e building. which obi 9
! o> If hiding in a building, which object W (iflostinthe cold andldark d
e Which object could hold water? N ' would you toss to best distract and Q wi?hsolnnly ;:om;:h W?,ll}cr\:vv?,zufé Be
‘ . Options: (A) Object 1 (B) Object 2 . . lure away your pursuers? . . more useful to start :a warming fire?

- Options: (A) Object 1(B) Object 2

PAVC-Reasoner PAVC-Reasoner
@ w/o audio é}l w/o audio

Options: (A) Object 1(B) Object 2

@ PAVC-Reas'oner
w/o audio

Object 1 appears to be a wooden stick with fuzz. Object 1is likely a wooden stick with fuzz on it,
It is unlikely that this object could hold water due
to its narrow and non-hollow structure. Object 2
is likely a wooden cup with painted carvings. Its
cup-like shape and the material that it is made of
wood make it a suitable vessel for holding lig-
uids. Therefore, the correct answer is (B) Object
2.

while Object 2 appears to be a painted wood
cup with carved patterns. Object 2, being a
painted wood cup with carved patterns, has a
visually interesting and potentially eye-catching
appearance. When thrown, it could draw the
attention of pursuers due to its unique design
and colors, providing a strong visual distraction

Object 1, being likely a small wooden stick with
fuzz, tends to have better ignition capabilities
compared to Object 2. The fuzz on Object 1 can
act as tinder, which is highly flammable and can
catch fire easily when exposed to a flame. On the
other hand, Object 2, being likely a painted wood
cup with carved patterns, may not be as suitable
for starting a fire due to its solid structure and

that may lure them awayvfrom the person hiding. lack of easily ignitable components. Therefore,
Therefore, the better choice would be to toss the better choice would be Object 1. é@
J J

Object 2.

(= 'e‘ PAVC-Reasoner
(°-°)p  wi audio (full)

Object 1is likely a small wooden stick with fuzz
on it, while Object 2 is possibly a long ceramic
cup. A ceramic cup, if thrown or dropped, is
likely to produce a distinct sound. The noise
generated by breaking ceramic could attract
attention. The wooden stick with fluff may not
produce a loud noise when tossed, and the
sound may not be very distinctive. Therefore, the
better choice would be to toss Object 2. J

(= 2(>) pAVC-Reasoner (= 'e‘ PAVC-Reasoner
()P W/ audio (full) wi audio (full)
Object 1is likely a wooden stick with fluff and
Object 2 appears to be an engraved ceramic
cup. Object 1, being a wooden stick, is unsuit-
able for holding water. Even the fluff may be ab-
sorbent, it may soak up water, but the wooden
stick itself may not retain water effectively.
Object 2 (the ceramic cup) is more likely to be
able to hold water effectively. The waterproof
nature of ceramics and the cup's design make it
suitable for containing liquids, including water.
Therefore, the correct answer is Object 2. J

- J

Object 1 seems to be a wooden stick with fluff
and Object 2 is possibly a long ceramic cup. The
fluff on the wooden stick could serve as poten-
tial tinder, aiding in the ignition of the stick.
Wood is generally flammable, and the fluff on
the stick might catch fire relatively easily. Ce-
ramic is not combustible and does not serve as
fuel for a fire. The long tube shape of the ceram-
ic cup does not lend itself well to serving as
tinder or kindling. Therefore, the better choice
would be Object 1. J

- J - J

Figure 7: Demonstration of predictions by PAVC-Reasoner. We showcase two model variants, namely PAVC-Reasoner-Vision
(without audio) and PAVC-Reasoner-V4 ((full), presenting responses (i.e., rationales) generated on the PACS-Reason+ benchmark
for diverse questions. In the leftmost scenario, Object2 is erroneously identified as a wooden cup by the model without audio,
rather than a ceramic cup. Nevertheless, due to the explicit inquiry in the leftmost question, which pertains only to the
physical attributes such as size, shape and prototype usage of the object, it manages to generate the correct answer. The middle
question and response depict a situation where the model without audio fails to recognize that the ceramic object, when
dropped, will shatter and produce a louder sound. Despite this, through an incorrect chain-of-thought (CoT), it fortuitously
deduces the correct answer. In contrast, the full model gives both the correct answer and accurate CoT as the rationale. In
the rightmost scenario, the question explicitly examines the material composition of the object and its non-prototype usage.
While both models can predict the correct answer, the model without audio offers an incorrect CoT. Conversely, the full model
simultaneously yields the correct answer and accurate CoT.
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System Message

‘, Which object could be packed

into a container smaller than its

‘ . original shape?

Options: (A) Object 1 (B) Object 2

@] PAVC-Reas.oner
w/o audio

“a Which object would have its shape be

more easily changed by pulling it from

MDA  bothofits ends?

Options: (A) Object 1 (B) Object 2
A

@ PAVC-Reaslcner
= w/o audio

Anonymous Authors

You are a PAVC-Reasoner, a large physical audiovisual commonsense reasoning model trained with video-instruction
data. Please answer the question directly and provide a detailed explanation step-by-step or reasonable intermediate
reasoning steps for inferring the answer.

Which object would take more time
to pick up if you dropped it on the

‘ . ground?

Options: (A) Object 1 (B) Object 2

@] PAVC-Reas'oner
w/o audio

Object 1is likely a clay-like lump and Object 2 is
likely a plastic lid-like item. Clay is known for its
malleability and ability to be shaped. Object 1,
being a clay-like lump, may not be easily re-
shaped or compressed to fit into a smaller con-
tainer without losing its original form. In contrast,
plastic is known for its flexibility and ability to
deform without breaking. It can be easily com-
pressed or bent to fit into tight spaces. Therefore,

the correct answer is (B) Object 2. %

J/

(= 'e‘ PAVC-Reasoner
() w/ audio (full)

Object 1 appears to be a clay-like lump, which
suggests that it is malleable and can be easily
reshaped. When pulled from both ends, the plas-
tic container may provide some support to the
object, but the object itself is still able to deform
and change shape. In contrast, Object 2 appears
to be a plastic-like mouse, which is less mallea-
ble than clay. When pulled from both ends, the
mouse may provide some resistance to deforma-
tion, making it more difficult to change its shape.

Therefore, the correct answer is (A) Object 1@
J

'9‘ PAVC-Reasoner

()P w/ audio (full)

Object 1 would take more time to pick up if you
dropped it on the ground. This is because it is a
clay-like lump, which is a small and delicate
object that can easily get damaged if not han-
dled carefully. In contrast, Object 2 is a larger
and more robust object, such as a mouse, which
is less likely to get damaged when dropped on
the ground. Therefore, the correct answer is (A)

Object 1. ?
J

f“e. PAVC-Reasoner

w/ audio (full)

Object 1 seems to be a ball of foam and Object
2 appears to be a plastic lid based on the visual
and audio cues. Foam is compressible and can
be easily squished or compressed. Being a
foam-like material, Object 1 can likely be com-
pressed or deformed to fit into a smaller con-
tainer. Plastic lids are generally rigid and less
compressible. The lid-like shape of Object 2 may
not allow for easy compression or deformation
to fit into a smaller container. Therefore, the cor-
rect answer is (A) Object 1. J/

Object 1is identified as a foam-like material and
Object 2 is identified as a plastic material based
on both sound and visual cues. Foam-like mate-
rials are generally more flexible and deformable
compared to rigid plastics. Foam can compress
and change shape more easily when force is
applied. Plastic materials, especially if they are in
a block or lid-like shape, tend to be more rigid
and less deformable than foam. Consequently,
Object 1is more likely to have its shape easily
changed when pulled from both ends. The flexi-
ble and compressible nature of foam allows it to
deform more readily under applied force. There-
fore, the correct answer is (A) Object 1. Jj

Object 1is a foam-like material and Object 2
appears to be a plastic block. Object 1is smaller
in size than Object 2, picking it up might be
more challenging, potentially requiring more
effort and time compared to the larger Object 2.
Smaller objects generally experience more air
resistance relative to their size. Object 1, being
smaller, might experience more air resistance
than Object 2. Higher air resistance tends to
slow down the fall of an object. Consequently,
Object 1 would likely take more time to reach
the ground compared to Object 2. Therefore, the
correct answer is (A) Object 1.

(A) Obj ')

Figure 8: Demonstration of predictions by PAVC-Reasoner. We showcase two model variants, namely PAVC-Reasoner-Vision
(without audio) and PAVC-Reasoner-V4 ((full), presenting responses (i.e., rationales) generated on the PACS-Reason+ benchmark
for diverse questions. The leftmost question and response illustrate a scenario where object1, being uncommon, is susceptible
to being misconstrued as made of plastic or wax rather than foam. Object2 appears visually ambiguous, resembling a plastic
mouse or a plastic lid. Object1 is mistakenly identified as a clay-like lump by the model without audio. Due to the leftmost
question’s focus on the objects’ malleability and softness, the model without audio produces incorrect CoT and an erroneous
answer. In contrast, the full model successfully recognizes the physical properties of both objects, providing accurate thought
chains as rationales and the correct answer. The middle question and response depict a scenario where PAVC-Reasoner-Vision
struggles to comprehend the flexibility or elasticity of these two objects in the absence of audio. Although both models yield
correct predictions, the intermediate reasoning path generated by the model without audio is unreasonable. The rightmost
question and response portray a scenario where both models successfully grasp the implicit query about the physical properties,
such as shape and material, of the objects. Both models provide accurate answers.
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System Message

@

Which object would you be able
to spot in dense forest
ground-covering the fastest?
Options: (A) Object 1 (B) Object 2

PAVC-Reasoner
w/o audio

7

&h

©
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C?

' Which object would take more

v

time to pick up if you dropped it
on the ground?
Options: (A) Object 1(B) Object 2

PAVC-Reasoner
w/o audio

Object 1is likely a plastic cup and Object 2 is
likely a metal cylindrical object. While Object 2
has a smaller visual shape compared to Object 1,
it is still relatively small, which could make it diffi-
cult to spot in a dense forest ground-covering.
Object 1, being visually larger due to its cup
shape, would be easier to spot. Therefore, the
correct answer is (A) Object 1.

PAVC-Reasoner
w/ audio (full)

Object 1is likely a plastic cup, which is visually
larger in size compared to Object 2, which may
be a metal cylindrical object. Larger objects gen-
erally require less precision to grasp, making
them quicker to pick up compared to smaller,
more intricate objects. Object 2, being a metal
cylindrical object, may have a narrower profile,
potentially making it more difficult and time-con-
suming to pick up from the ground. Therefore,
the correct answer is (B) Object 2.

"/

PAVC-Reasoner
w/ audio (full)

Object 1is possibly a glass cup, and Object 2
might be a metal tube. The glass cup is visually
larger, which means it would likely have a higher
contrast against the forest floor. Larger objects
are generally easier to spot, especially if they
have a distinctive shape like a cup. Object 2 is
likely a smaller metal tube, and its shape is visu-
ally smaller compared to Object 1. In a dense
forest, a smaller and more cylindrical object
might be harder to spot among the foliage.
Therefore, the correct answer is (A) Object 1.

/

Object 1is probably a glass cup and Object 2 is
potentially a metal tube. Glass is generally more
fragile and can break upon impact. And metal is
typically more durable and less prone to break-
age. Due to its larger size and fragility, Object 1
might experience a more significant impact upon
hitting the ground, possibly leading to a more
scattered arrangement of broken pieces. Object
2, being smaller and more durable, may experi-
ence less impact damage. Retrieving a shattered
glass may take more time and effort due to the
need to gather broken pieces carefully. Therefore,

the correct answer is (A) Object 1. J
J

ACM MM, 2024, Melbourne, Australia

You are a PAVC-Reasoner, a large physical audiovisual commonsense reasoning model trained with video-instruction
data. Please answer the question directly and provide a detailed explanation step-by-step or reasonable intermediate
reasoning steps for inferring the answer.

If both objects were filled with
pocket change, which would allow
you to take more friends out to eat
with the money contained therein?
Options: (A) Object 1 (B) Object 2

@ PAVC-Reasoner
: w/o audio

Object 1is likely a plastic cup and Object 2 is
probably a small metal tube. Object 1 has a larger
size visually compared to Object 2, indicating that
Object 1 may be able to hold more pocket change.
Object 2, due to its tubular shape, may have a
larger capacity to hold pocket change compared
to a glass cup. Therefore, the correct answer is
(B) Object 2.

PAVC-Reasoner
w/ audio (full)

Object 1is possibly a glass cup, and Object 2 is
likely a metal tube. While Object 1 may be larger
in size, the volume it can hold is limited by its
shape. The volume of the glass cup may not hold
a substantial amount of pocket change. Howev-
er, when it comes to pocket change, the shape
of the coins is a critical factor. The shape of coins
may also affect the number of coins that can fit
into the objects. Since Object 2 is a tube, it has
the potential to hold a larger amount of pocket
change within a smaller physical volume. There-
fore, the correct answer is (B) Object 2. x

J

Figure 9: Demonstration of predictions by PAVC-Reasoner. We showcase two model variants, namely PAVC-Reasoner-Vision
(without audio) and PAVC-Reasoner-V4 ((full), presenting responses (i.c., rationales) generated on the PACS-Reason+ benchmark
for diverse questions. The leftmost question and response depict a scenario where the object1 could be mistaken as plastic, and
the object2 could be made of plastic or metal. Although the model without audio misidentifies the first object as plastic, it still
generates the correct answer due to the explicit nature of the question regarding the size of the objects. Middle: The model
without audio fails to recognize that the glass object will shatter and take longer to pick up off the ground. In contrast, the
full model produces accurate answer and correct chain-of-thought (CoT) as rationale. The rightmost question and response
describe a scenario where both models successfully analyze the third question, which implicitly inquires about the size and
shape of the objects. However, both models generate incorrect answers and CoTs.
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System Message

C)
ﬁ Which of the objects could be ma-
> 4 nipulated to increase it's length?
@A Options: (A) Object 1 (B) Object 2

@ PAVC-Reas.oner
w/o audio

Object 1seems to be a plastic TV remote, and
Object 2 is probably a plastic snake toy. TV re-
motes typically have a fixed and non-expand-
able structure, while wooden snake toys are de-
signed to be manipulated, allowing users to in-
crease their length by unfolding or extending the
toy. Video 2 also shows that Object2 can be de-
formed. Therefore, the correct answer is (B)
Object 2. @

(= 'e. PAVC-Reasoner
(>.2)p W/ audio (full)

Object 1is likely a plastic TV remote, and Object
2 is likely a wooden snake toy. Object 1, being a
plastic TV remote, is typically rigid and not de-
signed to be easily manipulated or extended. It
is unlikely that this object can be increased in
length. Object 2, being a wooden snake toy, is
specifically mentioned to be capable of folding,
extending, and retracting. This suggests that it
has a flexible design and can be manipulated to
increase its length. Therefore, the correct answer

is (B) Object 2. J

9 Ifyou dropped your keys down a

* : drainpipe, which item would you
= attach some sticky gum to and
. . lower down to attempt a retrieval?

Options: (A) Object 1 (B) Object 2

é}l PAVC-Reas‘oner
w/o audio

Object 1 appears to be a plastic TV remote con-
trol and Object 2 may be a plastic snake. The
plastic snake toy has the ability to bend, fold,
extend, and retract. This means that it can be
manipulated to navigate through the drainpipe
and reach the keys more effectively than Object
1, the plastic TV remote, which does not have the
same flexibility or maneuverability. Therefore, the

Anonymous Authors

You are a PAVC-Reasoner, a large physical audiovisual commonsense reasoning model trained with video-instruction
data. Please answer the question directly and provide a detailed explanation step-by-step or reasonable intermediate
reasoning steps for inferring the answer.

If you accidentally fell asleep at your
desk with one of these objects under

@A your cheek, which would be less

likely to cause an impression?

@] PAVC-Reas‘oner
w/o audio

correct answer is (B) Object 2. @

J

e‘ PAVC-Reasoner
w/ audio (full)

Object 1 may be a plastic TV remote, and Object
2 may be a plastic snake toy. Object 1 has a flat
rectangular shape. When pressure is applied to a
flat surface, it is more likely to create a distinct
and potentially deeper impression due to the
uniformity of the surface. Object 2 is composed
of many small square blocks, creating an irregu-
lar surface. When pressure is applied to such an
irregular surface, it is less likely to leave a distinct
and deep impression on the skin because the
pressure is distributed across multiple points of

contact. Therefore, the correct answer is (B). S(j

f"e‘ PAVC-Reasoner
(°-°)p W/ audio (full)

- /

Object 1is likely a plastic TV remote, and Object
2 is likely a wooden snake toy. TV remotes typi-
cally have a fixed and non-expandable structure.
Snake toys are often designed with joints, allow-
ing them to be bent, folded, and extended. The
flexibility and manipulability of the wooden
snake toy make it a better choice for adapting to
the confined space of a drainpipe and potential-
ly reaching the keys. Therefore, the correct
answer is (B) Object 2.

- JJ

G J

Object 1 might be a plastic TV remote, and
Object 2 might be a wooden snake toy. Accord-
ing to the videos, the TV remote has a flat and
elongated shape. Its surface is likely to be rela-
tively uniform and smooth. The wooden snake
toy is composed of multiple small cubes, form-
ing a more textured and irregular surface. The
flat and smooth surface of the plastic remote is
less likely to leave irregular and deep marks on
your skin. Therefore, the correct answer is (A)
Object 1.

Figure 10: Demonstration of predictions by PAVC-Reasoner. We showcase two model variants, namely PAVC-Reasoner-Vision
(without audio) and PAVC-Reasoner-V4 ((full), presenting responses (i.e., rationales) generated on the PACS-Reason+ benchmark
for diverse questions. In this illustration, the object on the left (object1) is a plastic television remote control, while the object
on the right (object2) is a wooden snake toy.
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System Message

would float?
Options: (A) Object 1 (B) Object 2

@ If both objects were submerged
R in water, which one do you think

D) PAVC-Reas.oner
( i )J w/o audio
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@ If you were to use one of these ob-
jects to press a button that requires
R a bit of force, which one do you
think would be more effective?
Options: (A) Object 1(B) Object 2

(D) PAVC-Reas.oner
( i )J w/o audio

ACM MM, 2024, Melbourne, Australia

You are a PAVC-Reasoner, a large physical audiovisual commonsense reasoning model trained with video-instruction
data. Please answer the question directly and provide a detailed explanation step-by-step or reasonable intermediate
reasoning steps for inferring the answer.

In a situation where you needed to

other, which one would be more
stable and less likely to topple over?
Options: (A) Object 1(B) Object 2

R;?) stack multiple objects on top of each

(D) PAVC-Reas.oner
( i )J w/o audio

Object 1is likely be a plastic TV remote, and
Object 2 is likely a plastic snake toy. The object
with a lower volume-to-mass ratio would float,
and the object with a lower volume-to-mass
ratio would have a lower density. Object 1 would
likely have a higher density than Object 2. This is
because the TV remote is visually smaller and
denser than the snake toy, which may have
hollow spaces within the cubes itself. Therefore,
the correct answer is (B) Object 2.

J

(= 'e‘ PAVC-Reasoner
(°.°)p  wi audio (full)

2

Object 1 seems to be a plastic TV remote, and
Object 2 appears to be a plastic snake toy. TV
remotes are typically made of sturdy, rigid plastic
to withstand daily use and handling. They are
designed to be able to endure the force applied
when pressing buttons without deforming or
breaking easily. Object 2 is made of interconnect-
ed small square blocks, which suggests that it is
likely to be more flexible and prone to deforma-
tion when force is applied. Therefore, the correct
answer is (B) Object 2.

J

> PAVC-Reasoner
(°.°)p Wi audio (full)

Object 1 may be a plastic TV remote, and Object
2 appears to be a plastic snake toy. Object 1 has
a flat and slim profile with a semi-ellipsoidal
shape. The surface of Object 1is visually smooth.
Object 2 is composed of interconnected square
blocks. These blocks can be folded into the
shape of a cube or rectangular prism, indicating
that they could interlock and form a stable struc-
ture. It can be inferred that Object 2 would be
more stable and less likely to topple over when

stacked. Therefore, the correct answer is (B)é@
Object 2.
J

f“e. PAVC-Reasoner

w/ audio (full)

Object 1 might be a plastic TV remote, and
Object 2 might be a wooden snake toy. Al-
though plastic is generally denser than water,
the flat and elongated shape of Object 1 may not
displace enough water to generate sufficient
buoyant force. Wood is typically less dense than
water. The multiple small cubes and the ability
to be compressed or expanded may allow for
better displacement of water. Therefore, the cor-
rect answer is (B) Object 2.

J

Object 1 may be a plastic TV remote, and N\
Object 2 may be a wooden snake toy. Being
made up of many small square blocks hinged
together, the ability of Object 2 to be com-
pressed or expanded may make it less stable
for applying direct force. Object 1, being a TV
remote, the rigidity of the plastic material and
the flat shape provide stability, allowing for a
more controlled application of force without
significant deformation. Therefore, the correct
answer is (B) Object 2, J

- J

Object 1 may be a plastic TV remote, and Object
2 may be a wooden snake toy. The flat and elon-
gated shape of Object 1 may make it less stable
for stacking, especially when trying to create a
tall stack. The smooth surface of Object 1 largely
reduce friction between stacked objects, making
them more prone to slipping. Object 2, com-
posed of multiple cubes and having the ability
to be folded into different shapes, provides a
more stable structure for stacking. Therefore, the
correct answer is (B) Object 2. J

J

Figure 11: Demonstration of predictions by PAVC-Reasoner. We showcase two model variants, namely PAVC-Reasoner-Vision
(without audio) and PAVC-Reasoner-V4 ((full), presenting responses (i.e., rationales) generated on the PACS-Reason++ benchmark
for diverse questions.In this illustration, the object on the left (object1) is a plastic television remote control, while the object
on the right (object2) is a wooden snake toy.
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into a pattern?
&Sh

* Which object could be woven
Options: (A) Object 1 (B) Object 2J

é) PAVC-Reasoner
w/o audio

Object 1 may be a plastic brush, and Object 2
may be a ball of foam. The plastic brush is typi-
cally rigid and not conducive to weaving. How-
ever, foam is generally flexible and can be ma-
nipulated. This means that Object 2 can be
easily woven or manipulated into patterns due
to its flexibility. Therefore, the correct answer is

(B) Object 2. J

(= ) PAVC-Reasoner
2P wi audio (full)

Object 1 seems to be a plastic brush, and Object
2 seems to be a ball of glittering soft foam. Object
1 has bristles that are arranged in a specific pat-
tern or layout. However, the bristles of a brush
are usually fixed in place and do not have the
flexibility or interlocking capability required for
weaving. Object 2, being a ball of foam, the soft-
ness and stickiness of the foam material allow for
easy manipulation and interlocking, enabling the
creation of intricate woven patterns. Therefore,

the correct answer is (B) Object 2. J

N J

&h

‘?

@ ° Which object would be more likely to be

Y colonized by mold if it was made wet and
put into a closet without drying?
Options: (A) Object 1(B) Object 2

PAVC-Reasoner
@ w/o audio

Object 1 may be a plastic brush, and Object 2
may be a ball of shining foam. A Plastic brush is
generally non-porous and does not absorb mois-
ture easily. It is also easy to clean and dry,
making it less likely to support mold growth

even if it is wet and put in a closet without
drying. Object 2, as soft and stick foam, is porous
and can absorb water easily, which creates a
favorable environment for mold growth. it is
more likely to retain moisture and promote mold
growth than Object 1. Therefore, the correct
answer is (B) Object 2. Jj

f“e, PAVC-Reasoner
(°°)p Wi audio (full)

Object 1 appears to be a plastic brush, and
Object 2 looks like a ball of soft foam. Plastic is
generally non-porous and less conducive to
mold growth. The smooth and rigid surface of
plastic brushes provides fewer crevices for mold
to establish and thrive. While Object 2, being a
Soft and sticky foam, has a porous structure,
providing more favorable conditions for mold
growth. The soft and sticky nature of foam can
retain moisture, creating an environment condu-
cive to mold colonization. Therefore, the correct
answer is (B) Object 2.

~ J

g

A

@ PAVC-Reas_oner
w/o audio

Anonymous Authors

System Message
You are a PAVC-Reasoner, a large physical audiovisual commonsense reasoning model trained with video-instruction

| data. Please answer the question directly and provide a detailed explanation step-by-step or reasonable intermediate
| reasoning steps for inferring the answer.

?

© Which object would you be able to
throw farther through a wind tunnel?
Options: (A) Object 1(B) Object 2

T

Object 1is likely a plastic brush, and Object 2 is
likely a ball of shining foam. Object 1is made of
plastic, which is generally rigid and may not
easily adapt to airflow. While Object 2, as a foam,
is likely less dense and may have better aerody-
namic properties, allowing it to travel a greater
distance compared to Object 1. Therefore, the
correct answer is (B) Object 2. J

=) PAVC-Reasoner
w/ audio (full)

Object 1is identified as a plastic brush, and
Object 2 is identified as a soft foam. Object 1 has
a solid and rigid structure. When thrown through
a wind tunnel, the aerodynamic properties of the
brush may not be optimized for efficient airflow.
Object 2, on the other hand, being a soft foam, is
generally lightweight. The lightweight nature of
foam allows it to be propelled more easily by the
wind, potentially resulting in a longer distance
traveled. Therefore, the correct answer is (B)

Object 2. J
J

Figure 12: Demonstration of predictions by PAVC-Reasoner. We showcase two model variants, namely PAVC-Reasoner-Vision
(without audio) and PAVC-Reasoner-V4 ((full), presenting responses (i.e., rationales) generated on the PACS-Reason+ benchmark
for diverse questions. In this illustration, Object1 (i.c., the object on the left) is commonly recognized as a plastic brush, whereas
Object2 (i.e., the object on the right) is relatively uncommon. However, through audiovisual analysis, it can be discerned that
Object2 is composed of a soft and viscous foam material.
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m

! I System Message

one would likely be more effective?

@ If you were to use one of these ob-
R jects as a makeshift hammer, which

Options: (A) Object 1 (B) Object 2

PAVC-Reasoner
@ w/o audio

Object 1 looks like a plastic brush and Object 2
looks like a foam ball. Object 1 would likely be
more effective as a makeshift hammer. While
plastic may not be as hard as some other mate-
rials, it is generally harder than foam. Additional-
ly, the plastic brush may offer more rigidity,
allowing for better force transfer when used as a
hammer. The weight of the plastic brush may

also contribute to its effectiveness in delivering

impact. Therefore, the correct answer is (A)
Object 1. v )

(= e‘ PAVC-Reasoner
w/ audio (full)

Object 1is identified as a plastic brush, and
Object 2 is identified as a soft foam. Object
1would likely be more effective as a makeshift
hammer. While plastic may not be as hard as
some materials used for hammers, it is likely to
provide better impact resistance and weight for
tasks that require some force. The foam's soft
and lightweight nature might make it less effi-
cient for hammering, as it lacks the necessary
hardness and weight to transmit impactful force.
Therefore, the correct answer is (A) Object 1. Jj

object is a better choice?
Options: (A) Object 1(B) Object 2

@ In a situation where you needed a
2 material for sound insulation, which

PAVC-Reasoner
@ w/o audio

Object 1seems to be a plastic brush and Object
2 seems to be a foam ball. Object 2, being a soft
foam, the lower density and increased flexibility
make it more effective at absorbing and damp-
ening sound waves. It provides better sound in-
sulation properties compared to the rigid plastic
material of Object 1. Therefore, the correct
answer is (B) Object 2.

ACM MM, 2024, Melbourne, Australia

You are a PAVC-Reasoner, a large physical audiovisual commonsense reasoning model trained with video-instruction
| data. Please answer the question directly and provide a detailed explanation step-by-step or reasonable intermediate
| reasoning steps for inferring the answer.

If you had to design an object that
needed to absorb impact, which
object would be more suitable for
this purpose?

Options: (A) Object 1 (B) Object 2

PAVC-Reasoner
é) w/o audio

f“e‘ PAVC-Reasoner
(°-2)p  wi audio (full)

Object 1is identified as a plastic brush, and N\
Object 2 is identified as a soft foam. Object 1is
generally rigid. Its smooth surface may reflect
sound rather than absorb it. While Object 2,
being a soft foam, is known for its sound-ab-
sorbing qualities. The porous and soft nature of
foam allows it to trap and absorb sound waves,
reducing reverberation. Therefore, the correct
answer is (B) Object 2. J

Object 1seems to be a plastic brush and Object
2 seems to be a foam ball. Object 2, being a soft
foam, is more suitable for absorbing impact. The
flexibility and compressibility of foam make it
effective in absorbing and dispersing impact
energy, providing better shock absorption prop-
erties compared to the rigid plastic material of
Object 1. Therefore, the correct answer is (B)
Object 2.

-

f"e‘ PAVC-Reasoner
(°>.°)p W/ audio (full)

J

Object 1is likely as a plastic brush, and Object 2
is probably a ball of soft foam. Object 1is gener-
ally rigid, and is less effective at absorbing and
dispersing impact energy, as it tends to transmit
the force rather than absorb it. While Object 2,
as a soft foam, is well-suited for absorbing
impact. Its flexibility allows it to compress and
deform, dissipating impact energy and reducing
the force transmitted. Therefore, the correct
answer is (B) Object 2.

J

Figure 13: Demonstration of predictions by PAVC-Reasoner. We showcase two model variants, namely PAVC-Reasoner-Vision
(without audio) and PAVC-Reasoner-V4 ((full), presenting responses (i.e., rationales) generated on the PACS-Reason++ benchmark
for diverse questions. In this illustration, Object1 (i.e., the object on the left) is commonly recognized as a plastic brush, whereas
Object2 (i.e., the object on the right) is relatively uncommon. However, through audiovisual analysis, it can be discerned that
Object2 is composed of a soft and viscous foam material.
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|—i/System Message\

T

[ 7

T

vive being tapped with a hammer?
Options: (A) Object 1 (B) Object 2

“ a 9 Which object is more likely to sur-J

@ PAVC-Reas.oner
w/o audio

&h

é) PAVC-Reas.oner
w/o audio

2

stepped on it?
Options: (A) Object 1(B) Object 2

v Which object would hurt more if yOLIJ

Anonymous Authors

-

You are a, PAVC-Reasoner, a large physical audiovisual commonsense reasoning model trained with video-instruction
data. Please answer the question directly and provide a detailed explanation step-by-step or reasonable intermediate
reasoning steps for inferring the answer.

o Which object would be worse at roll-

ing cookie dough?
Options: (A) Object 1(B) Object 2

é) PAVC-Reas.oner
wl/o audio

Object 1looks like a plastic card, and Object 2
looks like a metal bell. Object 2, a metal copper
bell, is more likely to survive being tapped with a
hammer. Metals, including copper, are known for
their durability and ability to absorb and distrib-
ute impact energy without breaking or shatter-
ing, unlike the potentially brittle ceramic material
of Object 1. Therefore, the correct answer is (B)
Object 2.

(= 'e, PAVC-Reasoner
(°-°)p  wi audio (full)

Figure 14: Demonstration of predictions by PAVC-Reasoner. We showcase two model variants, namely PAVC-Reasoner-Vision
(without audio) and PAVC-Reasoner-V4 ((full), presenting responses (i.e., rationales) generated on the PACS-Reason+ benchmark
for diverse questions. In this illustration, Object1 (i.e, the object on the left) poses a visual challenge in determining its material
composition, as it may be misconstrued as a plastic product rather than crafted from ceramic. Object2 (i.e., the object on the
right) is composed of metal. The absence of crucial audio cues could potentially lead the model without audio to misconstrue

Object 1 appears to be a plastic card, and Object
2 appears to be a metal bell. Object 1, possibly a
plastic item, would likely hurt more if stepped on.
From videos, Object 1 has some hardness and
edges that can cause discomfort. Object 2, being
metal and smoother, is less likely to have sharp
edges and would be more forgiving underfoot.
Therefore, the correct answer is (A) Object 1.

-

(= 'e‘ PAVC-Reasoner
(°.°)p W/ audio (full)

Object 1 appears to be a small plastic card, and
Object 2 appears to be a metal bell. Object 1 is
visually rigid and thin. It could be easily break
into pieces if used to roll dough. Object 2 has a
smoother metal surface compared to Object 1.
Therefore, the correct answer is (A) Object 1.

(= 'e‘ PAVC-Reasoner
(°.°)p W/ audio (full)

Object 1seems to be a ceramic small decora-
tion, while Object 2 seems to be a metal copper
bell. Object 1, being made up of ceramic, is gen-
erally brittle and can be prone to cracking or
breaking under force. Object 2, being a durable
and resilient material, is better suited to with-
stand impact compared to ceramic, which is
more prone to breakage. Therefore, the correct

answer is (B) Object 2. J

)

Object 1is possibly a ceramic small building
souvenir, while Object 2 is possibly a metal
copper bell. Object 1, being made up of ceramic,
is generally fragile and prone to break into sharp
pieces when stepping on it. While Object 2,
being a metal copper bell, has a smoother sur-
face and is less prone to breaking into sharp
pieces compared to Object 1. Therefore, the cor-

rect answer is (A) Object 1. J

N J

Object 1is likely a slim ceramic building souve-
nir, while Object 2 is likely a metal copper bell.
Ceramic is generally a rigid and inflexible mate-
rial, making it difficult to roll cookie dough
evenly. Additionally, the small size and pointy
shape of Object 1 may make it less effective at
smoothing out the dough and achieving a uni-
form thickness. Object 2 has a smooth surface
and is harder than Object 1. Therefore, the cor-

rect answer is (A) Object 1. J

N J

the material composition of these objects, consequently misinterpreting their strength.
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J— System Messagé

@ Which object would be more
prone to breaking if accidentally
dropped on a hard surface?
Options: (A) Object 1(B) Object 2

é) PAVC-Reas.oner
w/o audio

Object 1looks like a small plastic item, while
Object 2 looks like a metal bell. Object 1, a small
plastic object, is more fragile and susceptible to
breaking when dropped on a hard surface,

while Object 2, a metal copper bell, would be
more durable and less likely to break in such a
scenario. Therefore, the correct answer is (A)
Object 1.

(= 'e‘ PAVC-Reasoner
(°°)p Wi audio (full)

Object 1is likely a slim ceramic building souve-
nir, while Object 2 is possibly a metal bell. Ce-
ramic is generally a less durable material com-
pared to metal. It is more prone to cracking or
shattering when subjected to impact or pres-
sure. Object 1 would be more prone to breaking
if accidentally dropped on a hard surface. The
brittleness of ceramic, combined with its sharp
edges, makes it more susceptible to shattering
upon impact compared to the more durable
metal surface of Object 2. Therefore, the correct

Supplementary Material of Toward Explainable Physical Audiovisual Commonsense Reasoning

when struck with a mallet?
Options: (A) Object 1(B) Object 2

é) PAVC-Reas.oner
wl/o audio

Object 1is likely a slim plastic building souvenir,
while Object 2 is likely a metal bell. Plastic is
generally not known for producing clear and
resonant sounds when struck. It tends to have a
duller and less vibrant acoustic quality com-
pared to materials like metal. Additionally, Object
1is like a small and solid plastic item, it may lack
the hollow space or resonance necessary for
generating a distinct ringing sound. Therefore,
the correct answer is (B) Object 2.

ACM MM, 2024, Melbourne, Australia

You are a PAVC-Reasoner, a large physical audiovisual commonsense reasoning model trained with video-instruction
data. Please answer the question directly and provide a detailed explanation step-by-step or reasonable intermediate
reasoning steps for inferring the answer.

@ Which object is more likely to
R produce a clear ringing sound

more effective at keeping papers in
place?
Options: (A) Object 1(B) Object 2

@ If you needed a paperweight on a
3 windy day, which object would be

é}l PAVC-Reas.oner
wl/o audio

J

S PAVC-Reasoner
w/ audio (full)

answer is (A) Object 1.
J

Object 1is identified as a thin ceramic building
souvenir, while Object 2 is identified as a metal
copper bell. Both Object 1 and Object 2 are ca-
pable of producing clear ringing sounds when
struck. However, metal, especially copper bells,
is renowned for its distinct and resonant tones
when struck with a mallet. The specific design
and material properties of a metal bell often
contribute to a more pronounced and sustained
ringing sound. Therefore, the correct answer is
(B) Object 2.

J

Object 1 resembles an elongated plastic building
souvenir, while Object 2 resembles a metal bell.
Object 1, being a small plastic item, is visually
lightweight and may not provide enough weight
to hold down papers effectively, especially in
windy conditions. Object 2, the metal copper
bell, would be expected to provide better weight
and stability. Therefore, the more effective
answer is (B) Object 2.

J

PAVC-Reasoner
w/ audio (full)

Object 1is identified as a thin and small ceramic
souvenir, while Object 2 is identified as a metal
bell. Object 2, possibly a metal copper bell, is
more likely to be effective as a paperweight on a
windy day. Metal, being heavier and more
stable, is generally better suited for this purpose
than Object 1, a ceramic item, which can be
more fragile and may have less mass and fric-
tion. Therefore, the more effectiveanswer is (B)

Object 2. Jj

Figure 15: Demonstration of predictions by PAVC-Reasoner. We showcase two model variants, namely PAVC-Reasoner-Vision
(without audio) and PAVC-Reasoner-V4 ((full), presenting responses (i.e., rationales) generated on the PACS-Reason+ benchmark
for diverse questions. In this illustration, Object1 (i.e.,, the object on the left) poses a visual challenge in determining its material
composition, as it may be misconstrued as a plastic product rather than crafted from ceramic. Object2 (i.e., the object on the
right) is composed of metal. The absence of crucial audio cues could potentially lead the model without audio to misconstrue
the material composition of these objects, consequently misinterpreting their strength.
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2205 2263
- ( Instructions for Brief Audio Description\ e
2208 * "Concisely describe this audio" 2200
2209 . . . . . . 2267
o » "Provide a brief description of the given audio" s
211 » "Offer a succinct explanation of the presented audio" 2269
e * "Summarize the content depicted in this audio" 0
2213 . . . . . 2271
s * "Provide a concise and clear explanation of this audio" 272
2215 * "Share a brief interpretation of the provided audio" 2273
:le * "Provide a succinct description of the key features of this audio" Z:

1 275
Jo1s * "Rephrase the brief and clear explanation of the provided audio" 76
2219 * "Concisely summarize this audio segment" 2277
Zi‘; » "Craft a compact narrative to represent the content of this audio" j;:j
_ * "Concisely delineate the audio segment" 2280
2223 * "Provide a succinct description of the given audio" 2281
jjj;‘ * "Render a concise interpretation of the presented audio" ZZ
2226 * "Summarize the content portrayed in this audio" 2284
2227 » "Offer a brief yet clear explanation of the audio" 2285
- « "Share a succinct exposition of the provided audio" o
2230 * "Concisely describe the primary features of the audio" 2288
2231 * "Rephrase the concise, lucid statement of the provided audio" 2289
2232 " . . . . " 2290
s * "Deliver a clear and concise recap of this audio segment ot
2234 * "Craft a brief yet content-rich abstract for this audio" 2202
2235 k"Compose a compact narrative to represent the presented audio') 2293
2236 2294
2237 2295
2238 Figure 16: The list of instructions for brief audio description. 2296
2239 2297
2240 2298
2241 2299
2242 2300
2243 2301
2244 2302

2245 2303
2246 2304
2247 2305
2248 2306
2249 2307
2250 2308
2251 2309
2252 2310
2253 2311
2254 2312
2255 2313
2256 2314
2257 2315
2258 2316
2259 2317
2260 2318
2261 2319

2262 2320
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s 4 Instructions for Detailed Video Description\ o
2325 * "Provide a comprehensive description of the video segment" 2383
o * "Furnish a detailed account of the given video" o
- « "Elaborate on the aspects of the video you have observed" e
o « "Offer a comprehensive overview of the presented video" e
:ZT * "Provide an in-depth analysis of various facets of the displayed video" 2222
2332 * "Thoroughly expound the content of the showcased video" 2390
. « "Characterize the video using intricate descriptions" o
2335 * "Deconstruct the elements of the video in a certain manner" 2393
o  "Delve into the essential details of the imagery" o
2338 * "Portray the video in a rich, descriptive narrative" 2396
o * "Precisely articulate the content of the video" o
ijf * "Conduct a comprehensive and detailed analysis of the video" 218
22 » "Illustrate the video through descriptive explanations" 2400
o « "Examine the video closely and share its intricacies" o
2345 » "Offer a meticulous description of the given video" 2403
o » "Carefully examine the image and share its intricacies" o
2348 * "Conduct a comprehensive description of the given image" 2006
j:( » "Elaborate on the specifics of this video segment" ij;
2351 » "Provide a comprehensive description of the given video" 2409
2 » "Offer a detailed explanation of the visual content observed" 20
o « "Present a thorough overview of the video being showcased" .
2355 * "Conduct a comprehensive analysis of the displayed video" 2413
o « "Provide an intricate elucidation of various facets of the video" o
2358 * "Clearly expound upon the content presented in the video" 2416
:j: * "Characterize the video using detailed descriptions" :1:
- * "Deconstruct the elements of the video in a systematic manner" 2019
262 * "Articulate the crucial details of the imagery with precision" 2420
o « "Portray the video in a rich, descriptive narrative" o
2365 * "Narrate the content of the video with accuracy" 2423
o « "Analyze the video thoroughly and in detail" o
2368 * "Illuminate the video through descriptive exposition" 2426
o * "Scrutinize the video carefully and share its intricate details" o
s k "Provide an exhaustive description of the given video" / o

2372 2430
2373 2431

s Figure 17: The prompt for generating detailed video description instruction-following data.
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2437 ( . . \ 2495
Jiss Instructions for Complex Reasoning 2196
2439 messages = [ {"role":"system", "content": """ You are an Al vision assistant with the capability to analyze 2497
2440 videos and an expert in physical common-sense reasoning, you will receive the following components: 2498
2441 2499
2442 1. Videol Description @u : This provides a detailed natural language description of Video 1. 2500

2443 2501

2. VideoR Description ﬁﬂ : This offers an elaborate natural language description of Video 2.

2444 2502

2445 2503

3. A set of physical common-sense reasoning questions related to the objects in the aforementioned

2446 videos. Each question is accompanied by a correct answer and follows the template structure as shown 2504
2447 below: 2505
2448 "object1_object": { 2506
2449 "questionl": { 2507
2450 ::1a'be}":“}v 2508
2451 } text': 2509
s "éuestionz": { »10
2453 "abel": O, 2511
2454 "text": " 2512
2455 1, 2513
2456 .. } 2514
2457 2515
suss Please note that "object1" exists solely in Video 1, while "object?" is exclusively present in Video 2. Your 516
si5 task I.IOW is tF) cra.ft : : on: for each physical common-sense reasoning y517
pico question. This rationale should include, but is not limited to: yors
2401 (a) Identifying the basis for determining the categorization of objectl and objectd from Video 1 and 219
2462 Video 2—whether the identification of objectl and object& can be solely visual or requires the incorpora- 2520
2463 tion of auditory signals for accurate determination. 2521
2464 2522

(b) Identifying which specific physical property the current question is testing for, such as Texture,
" Flexibility, Shape, Hardness, Weight, Size, Strength, Porosity, and so on, for both object1 and object2. y52s
Include relevant physical common-sense knowledge about these objects, covering their physical charac-

teristics, availability, everyday functions, how they are operated, and how they interact with other

2465 2523

2467 2525

2408 objects. 2526

2469 2527

2470 The rationale you design should be as concise, succinct, and focused as possible, highlighting the core 2528

2471 points. Your responses should be presented in a professional tone befitting an expert in common-sense 2599

2472 reasoning. The final output should be structured in JSON format, resembling the example provided 2530
below:

2473 2531

"object1_objectl": {

2474 "questionl": {

2532

2475 "label": l, 2533
2476 "text": ", 2534
2477 "rationale™ " 2535
2478 }v 2536
2479 "question®": { 2537
2480 ::iabif.l:u?’ 2538
281 "Pz}tfioha&e": 39
2482 }’ 2540
2483 . 2541
2484 2542
2485 Please proceed to provide your responses accordingly. "} ] 2543
2486 f ) 2544
or in :

2487 2545

messages.append({"role":"user", "content":sample[ ‘context’]})
messages.append({"role":"assistant", "content":sample[ ‘response’]} )
\ messages.append({"role":"user", "content":‘\n’ join(query)}) J 2547

2548

2488 2546

2489

2490

2491 2549

2192 Figure 18: The prompt for generating complex reasoning instruction-following data. J5s0
2493 2551

2494 2552



Supplementary Material of Toward Explainable Physical Audiovisual Commonsense Reasoning ACM MM, 2024, Melbourne, Australia

2553 2611
4 Instructions for Detailed Video Description\
:::(S messages = [ {"role":"system", "content": """ You serve as an Al visual assistant zfi
2557 with the capability to analyze video content across various categories: 2615
2558 2616
2559 » Action Description: This category provides a description of the action 2617
2560 categories observed in the video, including object descriptions associated with 2018

2561 2619

the actions.

2562 2620

2563 2621

* Object Class: It pertains to specific objects within the video with which

2564 2622

2565 humans interact. Descriptions include the object category, physical properties, 2623
2566 and their usability, focusing on objects of primary interest in the video. 2624
2567 Attributes may encompass shape, mass, material, and usability or ease of 2625
2508 operation. 2626

2569 2627

o * Frame Captions of Video: These frame captions segment the video into -

2571 2629

2572 multiple frames, each frame accompanied by one or more sentences describing 2630
2573 the visual content. 2631
2574 2632
w7 * Object with Location: This category specifies the precise position within the 2633

e intermediate frames of specific objects of interest in the video. Descriptions 2o

2577 2635

include the material composition, category, and detailed coordinates of the
object within the image, represented by a bounding box format: (x1, y1, X2,

2578 2636

2579 2637

2580 yR), corresponding to the upper-left x, upper-left y, lower-right x, and 2638
2581 lower-right y. 2639
2582 2640
28 » Brief Video Description: This description provides a concise overview of the aout

2584 2642

entire video scene, encompassing object categories, material composition,
physical attributes, usability, object positions, and interactions with humans.

2585 2643

2586 2644

2587 2645

2588 Utilizing these five categories of information, you are tasked with providing a 2646
2589 comprehensive depiction of the video scene. This should include detailed 2647
2590 information about object categories, material composition, physical attributes, 2048

o usability, object positions, and specifics regarding human interaction. Please 2o

2592 2650

present the narrative in natural language, elucidating the video scene without
directly mentioning bounding box coordinates or video timestamps. Your

2593 2651

2594 2652

2595 responses should read as if directly describing the video content observed by a 2653
2596 person, refraining from explicitly citing the sources of information from the 2654
2597 provided categories."} 2099
o ] o
2600 fOP 1n " : n,n non n 2658
s messages.append({"role": , "content": b 2650
2602 messages.append({"role":"assistant", "content":sample[ ‘response’]} ) 2660
2603 Qnessa.ges.append( {"role":" " "content":‘\n’.join( D / 2661
2604 2662

2605 2663

2606 Figure 19: The prompt for generating video conversation instruction-following data.
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2669 / \ 2727

2670 Instructions for Extending Question-Answer-Rationale 2725
2671 2729
2672 messages = [ {"role":"system", "content": """ Suppose you operate as an Al video analysis assistant with expertise in physical 2730
2673 common-sense reasoning. You will receive the following components: 2731
2674 1. Videol Description @n: A comprehensive natural language depiction of Video 1. 2732
2675 2733
2676 2. Video? Description ﬁu : A detailed natural language description of Video 2. 734
2677 3. Object1 Description: Elaboration of the category of Objectl in Video 1. 2735
2678 4. Object? Description: Description of the category of Object? in Video L. 2736
5. A set of physical common-sense reasoning questions associated with Objectl and Object? in the videos. Each question has
2079 a correct answer and follows a template structure, as indicated below: 2737
2680 "object1_objectR": { 2738
2681 "questionl": { 2739
"label" 1,
2682 T 2740
2683 1, 2741
2684 "question®": { 2742
"label": O,
2685 "hext! 2743
2686 } 2744
2687 . . . . . . . . . 2745
Note that Objectl is present solely in Video 1, and Object? exclusively exists in Video 2.
2688 2746
2689 Now, your task is to design ten new physical common-sense reasoning questions in a similar style to the provided questions. 2747
2690 Additionally, provide the correct answer and a detailed rationale, elucidating the specific reasoning pathway leading to the 2748
answer.
2691 2749
2692 Your design principles should encompass the following: 2750

(a) Intuitive physics and functional world models: Inspired by previous psychological and AI experiments related to

common-sense knowledge, these questions focus on predicting the outcome of single or multiple object interactions. Simple
2694 questions involve a single object and action, such as "Which object will break if dropped?" (A vase, a paper ball). More 2752
complex questions include multiple objects or actions, considering interactions between two objects, for instance, "If I place

2693 2751

2695 2753
another object over which object will deform?" (A vase, a paper ball).
2696 2754
2697 (b) Common real-world knowledge: Based on prior common-sense datasets, these questions inquire about the possible uses 2755
2698 of objects in real-life scenarios. The scenarios emphasize atypical uses of objects, reducing the possibility of misusing 2756
learned knowledge, like "Which object is more suitable for cleaning water stains?" (An old T-shirt, a plastic box). More
2699 challenging questions may introduce complex or uncommon scenarios involving multiple objects, such as, "If I stack two 2757
2700 objects together, logically, which one will be at the bottom?" (An old T-shirt, a plastic box). 2758
2 2759
7ol Subsequently, for each new physical common-sense reasoning question you design, provide an answer (O for objectl, 1 for 79
2702 objectR), and a detailed rationale. The rationale should include but is not limited to: 2760
2703 (a) Identifying the basis for categorizing object1 and object from Videos 1 and 2 (whether visual cues alone or a combina- 2761
2704 tion of audio and visual inputs are necessary for accurate identification). 2762
(b) Highlighting the specific physical property tested in the current question (e.g., Texture, Flexibility, Shape, Hardness,
2705 Weight, Size, Strength, Porosity, etc.). Additionally, include common-sense knowledge about the material composition and 2763
2706 the physical characteristics, functionalities, operations, and interactions of these objects with others. 2764
2107 The rationales you create should be concise, succinct, and focused on core points. Your responses should mirror the tone of 2765
2708 a professional expert in common-sense reasoning. The final output should be structured in JSON format, similar to the 2766
2709 example below: 2767
) "object1_objectR": { )
2710 "question_new 1" { 2768
2711 "label": "', 2769
2712 "text": ™, 2770
"rationale": "
2713 i 2771
2714 "question_new_2": { 2772
"abel": ™
2715 ? 2773
et ™
2716 "rationale": " 2774
2717 1 2775
2718 = § 2776
Please proceed to provide your responses accordingly. """} ]
2719 2777
2720 for in : 2778
. messages.append({"role":"user", "content":sample[ ‘context’]}) .
2721 messages.append({"role":"assistant", "content":sample[‘response’]} ) 2179
2722 \messa.ges.append({"role“:“user“, "content":\n’ join(query)}) j 2780
2723 2781
2724 Figure 20: The prompt for generating instruction-following data for PACS-Reason++. 2782
2725 2783

2726 2784
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