
Near-optimal Distributional Reinforcement Learning
towards Risk-sensitive Control

Anonymous Author(s)
Affiliation
Address
email

Abstract

We consider finite episodic Markov decision processes aiming at the entropic risk1

measure (EntRM) of return for risk-sensitive control. We identify two properties of2

the EntRM that enable risk-sensitive distributional dynamic programming. We pro-3

pose two novel distributional reinforcement learning (DRL) algorithms, including4

a model-free one and a model-based one, that implement optimism through two5

different schemes. We prove that both of them attain Õ( exp(|β|H)−1
|β|H H

√
HS2AT )6

regret upper bound, where S is the number of states, A the number of states, H7

the time horizon and T the number of total time steps. It matches RSVI2 proposed8

in [22] with a much simpler regret analysis. To the best of our knowledge, this is9

the first regret analysis of DRL, which theoretically verifies the efficacy of DRL10

for risk-sensitive control. Finally, we improve the existing lower bound by proving11

a tighter bound of Ω( exp(βH/6)−1
βH H

√
SAT ) for β > 0 case, which recovers the12

tight lower bound Ω(H
√
SAT ) in the risk-neutral setting.13

1 Introduction14

Standard reinforcement learning (RL) [45] seeks to find an optimal policy that maximizes the15

expectation of return. It is also called risk-neutral RL since the objective is the mean functional of16

the return distribution. However, in some high-stakes applications including finance [15, 6], medical17

treatment [21] and operations [16] etc, the decision-maker tends to be risk-sensitive with the goal of18

maximizing some risk measure of return distribution.19

In this paper, we consider the problem of optimizing the exponential risk measure (EntRM) in the20

episodic and finite MDP setting for risk-sensitive control. The entropic risk measure can trade-off21

between the expectation and the variance, and adjusts the risk-sensitiveness by control a risk parameter22

(see Equation 1). Ever since the seminal work of [29], risk-sensitive RL based on the EntRM has23

been applied across a wide range of domains [43, 37, 27]. Most of the existing approaches, however,24

involve complicated algorithmic design to deal with the non-linearity of the EntRM.25

Distributional reinforcement learning (DRL) [4] has demonstrated its superior performance over26

traditional methods in some difficult tasks [14, 13] under risk-neutral setting. Different from the27

value-based approaches, it learns the whole return distribution instead of a real-valued value function.28

Given the entire return distribution, it is natural to leverage the distributional information to optimize29

a risk measure other than expectation [13, 44, 33]. Despite of the intrinsic connection between DRL30

and risk-sensitive RL, it is surprising that existing works on risk-sensitive control via DRL approaches31

([13, 34, 1]) lack regret analysis. Consequently, it is challenging to evaluate and improve these DRL32

algorithms in terms of sample-efficiency, which brings about a reasonable question33

Can distributional reinforcement learning attain near-optimal regret for risk-sensitive control?34
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In this work, we answer this question positively by providing two DRL algorithms with provably35

regret guarantees. We devise two novel DRL algorithms with principled exploration schemes for36

risk-sensitive control in the tabular MDP setting. In particular, the proposed algorithms implement37

the principle of optimism in the face of uncertainty (OFU) at the distributional level to balance the38

exploration-exploitation trade-off. By providing the first regret analysis of DRL, we theoretically39

verifies the efficacy of DRL for risk-sensitive control. Therefore, our work bridge the gap between40

DRL and risk-sensitive RL with regard to sample complexity.41

Main contributions. We summarize our main contributions in the following.42

1. We build a risk-sensitive distributional dynamic programming (RS-DDP) framework. To be more43

specific, we choose the entropic risk measure (EntRM) of the return distribution as our objective. By44

identifying two key properties of EntRM, We establish distributional Bellman optimality equation for45

risk-sensitive control.46

2. We propose two DRL algorithms that enforce the OFU principle in a distributional fashion through47

two different schemes. We provide Õ( exp(|β|H)−1
|β| H

√
S2AK) regret upper bound, which matches48

the best existing result of RSVI2 in [22]. It is the first regret analysis of DRL algorithm in the49

finite episodic MDP in the risk-sensitive setting. Compared to [22], our algorithm does not involve50

complicated bonus design, and our analysis are conceptually cleaner and easier to interpret.51

3. We fill the gaps in the proof of lower bound in [23]. To the best of our knowledge, [23] only52

implies a lower bound Ω( exp(|β|H/2)−1
|β|

√
K) rather the claimed bound Ω( exp(|β|H/2)−1

|β|
√
T ). The53

resulting lower bound is independent of S and A and is loose with a factor of
√
H . We overcome54

these issues by proving a tight lower bound of Ω( exp(βH/6)−1
βH H

√
SAT ) for β > 0. Note that the55

lower bound is tight in the risk-neutral setting (β → 0).56

Related work. Following the paper [4], DRL has witnessed a rapid growth of study in literature57

[40, 14, 13, 2, 32]. Most of these works focus on improving the performance in the risk-neutral58

setting, with a few exceptions [13, 34, 1]. However, none of these works study the sample complexity.59

A rich body of work studies risk-sensitive RL with the EntRM [7, 8, 10, 9, 3, 11, 12, 18, 17, 19,60

24, 28, 30, 33, 35, 36, 38, 39, 42, 43]. In particular, [29] is the first to introduce the ERM as risk-61

sensitive objective in MDP. However, they either assume known transition and reward or consider62

infinite-horizon setting without sample-complexity considerations.63

Two works are closely related to ours [23, 22] under precisely the same setting. [23] is the first to64

study the risk-sensitive episodic MDP, which provides the first algorithms and regret guarantees.65

Nevertheless, the regret upper bounds contain a dispensable factor of exp(|β|H2). Additionally, their66

lower bound proof contains mistakes, and the corrected proof suggests a weaker bound. [22] improves67

the algorithm by removing the additional O(exp(|β|H2)) factor. However, the regret analysis is68

complicated, and the lower bound is not fixed. A very recent work ([1]) independently proposes a69

risk-sensitive DDP framework, but their work is fundamentally different from ours. The risk measure70

considered in [1] is the conditional value at risk (CVaR), and they focus on the infinite horizon setting.71

Due to the space limit, we provide detailed comparisons with [23, 22, 1] in Appendix A.72

2 Preliminaries73

Notations. We write [M : N ] ≜ {M,M + 1, ..., N} and [N ] ≜ [1 : N ] for any positive integers74

M ≤ N . We adopt the convention that
∑m

i=n ai ≜ 0 if n > m and
∏m

i=n ai ≜ 1 if n > m. We75

use I{·} to denote the indicator function. For any x ∈ R, we define [x]+ ≜ max{x, 0}. We define76

the step function with parameter c as ψc(x) ≜ I{x ≥ c}. Note that ψc represents the CDF of a77

deterministic variable taking value c. We denote by D([a, b]), DM and D the set of distributions78

supported on [a, b], [0,M ] and the set of all distributions respectively. For a random variable (r.v.) X ,79

we use E[X] and V[X] to denote its expectation and variance. For two r.v.s, we denote by X⊥Y if80

X is independent of Y . We use Õ(·) to denote O(·) omitting logarithmic factors.81

Episodic MDP. An episodic MDP is identified byM ≜ (S,A, (Ph)h∈[H], (Rh)h∈[H], H), where82

S is the state space, A the action space, Ph : S ×A× → ∆(S) the probability transition kernel at83

step h,Rh : S ×A → D([0, 1]) the collection of reward distributions at step h and H the length of84
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one episode. The agent interacts with the environment for K episodes. At the beginning of episode k,85

Nature selects an initial state sk1 arbitrarily. In step h, the agent takes action akh and observes random86

reward Rk
h(s

k
h, a

k
h) ∼ Rh(s

k
h, a

k
h) and reaches the next state skh+1 ∼ Ph(·|skh, akh). The episode87

terminates at H + 1 with Rk
H+1 = 0, then the agent proceeds to next episode.88

For each (k, h) ∈ [K] × [H], we denote by Hk
h ≜

(
s11, a

1
1, s

1
2, a

1
2, . . . , s

1
H , a

1
H , . . . , s

k
h, a

k
h

)
the89

(random) history up to step h episode k. We define Fk ≜ Hk−1
H as the history up to episode90

k − 1. We describe the interaction between the algorithm and MDP in two levels. In the level of91

episode, we define an algorithm as a sequence of function A ≜ (Ak)k∈[K], each mapping Fk to92

a policy Ak(Fk) ∈ Π. We denote by πk ≜ Ak(Fk) the policy at episode k. In the level of step, a93

(deterministic) policy π is defined as a sequence of functions π = (πh)h∈[H] with πh : S → ∆(A).94

Entropic risk measure. EntRM is a well-known risk measure in risk-sensitive decision-making,95

including mathematical finance [25], Markovian decision processes [3]. The EntRM value of a r.v.96

X ∼ F with coefficient β ̸= 0 is defined as97

Uβ(X) ≜
1

β
log(EX∼F [exp(βX)]) =

1

β
log

(∫
R
exp(βx)dF (x)

)
.

With slight abuse of notations, we write Uβ(F ) = Uβ(X) for X ∼ F . For β with small absolute98

value, using Taylor’s expansion we have99

Uβ(X) = E[X] +
β

2
V[X] +O(β2). (1)

Hence for a decision-maker who aims at maximizing the EntRM value, she tends to be risk-seeking100

(favoring high uncertainty in X) if β > 0 and risk-averse (favoring low uncertainty in X) if β < 0.101

|β| controls the risk-sensitivity. It exactly recovers mean as the risk-neutral objective when β → 0.102

3 Risk-sensitive Distributional Dynamic Programming103

[4, 40] has discussed the infinite-horizon distributional dynamic programming in the risk-neutral104

setting, which will be referred to as the classical DDP. There is a big gap between the risk-sensitive105

MDP and the risk-neutral one. In this section, we establish the novel DDP framework for risk-sensitive106

control.107

We start with defining the return for a policy π starting from state-action pair (s, a) at step h108

Zπ
h (s, a) ≜

H∑
h′=h

Rh′(sh′ , ah′), sh = s, ah′ = πh′(sh′), sh′+1 ∼ Ph′(·|sh′ , ah′).

Define Y π
h (s) ≜ Zπ

h (s, πh(s)). There are three sources of randomness in Zπ
h (s, a): the reward109

Rh(s, a), the transition Pπ and the next-state return Y π
h+1(sh+1). Denote by νπh (s) and ηπh(s, a) the110

cumulative distribution function (CDF) corresponding to Y π
h (s) and Zπ

h (s, a) respectively. To the111

end of risk-sensitive control, we define the action-value function of a policy π at step h as Qπ
h(s, a) ≜112

Uβ(Z
π
h (s, a)), i.e. the EntRM value of the return distribution, for each (s, a, h) ∈ S ×A× [H]. The113

value function is defined as V π
h (s) ≜ Qπ

h(s, πh(s)) = Uβ(Y
π
h (s)).114

We focus on the control setting, in which the goal is to find an optimal policy to maximize the value115

function, i.e.116

π∗ ≜ arg max
(π1,...,πH)∈Π

V π1...πH
1 (s).

We write π = (π1, ..., πH) to emphasize that it is a multi-stage maximization problem. Direct search117

suffers exponential computational complexity. In the risk-neutral case, the principle of optimality118

holds, i.e.,the optimal policy of tail sub-problem is the tail optimal policy [5]. Therein the multi-stage119

maximization problem can be reduced to a multiple single-stage maximization problem. However,120

the principle does not always hold for general risk measures. For example, the optimal policy for121

CVaR may be non-Markovian/history-dependent ([41]).122

We identify two key properties of EntRM, upon which we retain the principle of optimality.123
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Lemma 1. The EntRM satisfies the following properties:124

• Additive: X⊥Y ⇒ Uβ(X + Y ) = Uβ(X) + Uβ(Y ), ∀X,Y .125

• Monotonicity-preserving: ∀F1, F2, G ∈ D , ∀θ ∈ [0, 1],126

Uβ(F2) ≤ Uβ(F1)⇒ Uβ((1− θ)F2 + θG) ≤ Uβ((1− θ)F1 + θG).

The proof is given in Appendix B. In particular, the additivity entails that the EntRM value of the127

current return Zπ
h (s, a) equals the sum of the immediate value of Rh(s, a) and the value of the future128

return Y π
h (s′), i.e.,129

Uβ(Z
π
h (s, a)) = Uβ(Rh(s, a)) + Uβ(Y

π
h (s′).

The monotonicity-preserving property together with the additivity suggests that the optimal future130

return Y ∗
h (s

′) consists in the optimal current return Z∗
h(s, a)131

Z∗
h(s, a) = Rh(s, a) + Y ∗

h (s
′).

These observations implies the principle of optimality.132

Proposition 1 (Principle of optimality). Let π∗ = {π∗
1 , π

∗
2 , ..., π

∗
H} be an optimal policy and assume133

when we visit some state s using policy π at time-step h with positive probability. Consider the134

sub-problem defined by the the following maximization problem135

max
π∈Π

V π
h (s) = Uβ(Rh(s, a)) + Uβ([Phν

π
h+1](s, a)).

Then the truncated optimal policy {π∗
h, π

∗
h+1, ..., π

∗
H} is optimal for this sub-problem.136

The proof is given in Appendix E. It further induces the distributional Bellman optimality equation.137

Proposition 2 (Distributional Bellman optimality equation). For arbitrary initial state s1, the optimal138

policy (π∗
h)h∈[H] is given by the following backward recursions:139

ν∗H+1(s) = ψ0, η
∗
h(s, a) = [Phν

∗
h+1](s, a) ∗ fh(·|s, a),

π∗
h(s) = argmax

a∈A
Q∗

h(s, a) = Uβ(η
∗
h(s, a)), ν

∗
h(s) = η∗h(s, π

∗
h(s)),

(2)

where fh(s, a) is the probability density function of Rh(s, a). Furthermore, the sequence (η∗h)h∈[H]140

and (ν∗h)h∈[H] are the sequence of distributions corresponding to the optimal returns at each step.141

The proof is given in Appendix E. For simplicity, we define the distributional Bellman operator142

B(P,R) : DS → DS×A with associated model (P,R) = (P (s, a),R(s, a))(s,a)∈S×A as143

[B(P,R)ν](s, a) ≜ [Pν](s, a) ∗ fh(·|s, a), ∀(s, a) ∈ S ×A.

Hence we can rewrite Equation 2 in a compact form:144

ν∗H+1(s) = ψ0, η
∗
h(s, a) = [B(Ph,Rh)ν

∗
h+1](s, a),

π∗
h(s) = argmax

a∈A
Uβ(η

∗
h(s, a)), ν

∗
h(s) = η∗h(s, π

∗
h(s)),∀(s, a, h) ∈ S ×A× [H]. (3)

Finally, we define the regret of an algorithm A interacting with an MDPM for K episodes as145

Regret(A ,M,K) ≜
K∑

k=1

V ∗
1 (s

k
1)− V πk

h (sk1).

Note that the regret is a random variable since πk is a random quantity. We denote by146

E[Regret(A ,M,K)] the expected regret. We will omit π andM if it is clear from the context.147

4 Algorithm148

For a better understanding of the readers, we present our algorithms under the assumption that149

the reward is deterministic and known1. The algorithms for the case of random reward are given150

1The algorithms for random reward enjoy the regret bounds of the same order.
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in Appendix C. We denote by {rh(s, a)}(s,a,h)∈S×A×[H] the reward functions. For the case of151

deterministic reward, the Bellman update in Equation 2 takes the form152

η∗h(s, a) = [Phν
∗
h+1](s, a)(· − rh(s, a)),

since adding a deterministic reward rh(s, a) corresponds to shifting the distribution [Phν
∗
h+1](s, a) by153

an amount of rh(s, a). We thus define the distributional Bellman operator B(P,R) : DS → DS×A154

with associated model (P, r) = (P (s, a), r(s, a))(s,a)∈S×A as155

[B(P, r)ν](s, a) ≜ [Pν](s, a)(· − rh(s, a)), ∀(s, a) ∈ S ×A.

We propose two DRL algorithms in this section, including a model-free algorithm and a model-based156

algorithm. We first introduce the Model- Free Risk-sensitive Optimistic Distribution Iteration157

(RODI-MF) in Algorithm 1. For completeness, we introduce some additional notations here. For158

two CDFs F and G over reals, we define the supremum distance between them ∥F − G∥∞ ≜159

supx |F (x) − G(x)|. We define the ℓ1 distance between two probability mass functions (PMFs)160

P and Q as ∥P −Q∥1 ≜
∑

i |Pi − Qi|. We denote by B∞(F, c) := {G ∈ D |∥G − F∥∞ ≤ c}161

the supremum norm ball centered at F with radius c. With slight abuse of notations, we denote by162

B1(P, c) the l1 norm ball centered at P with radius c.163

4.1 Algorithm overview164

4.1.1 RODI-MF165

In each episode, the algorithm includes the planning phase (Line 4-12) and the interaction phase166

(Line 13-17).167

Planning phase. In a high level, the algorithm implements an optimistic version of approximate168

DDP from step H + 1 to step 1 in each episode. In Line (5-7), it performs sample-based Bellman169

update. To make it clear, we introduce the superscript k to the variables of Algorithm 1 in episode k.170

For example, ηkh denotes ηh in episode k. Specifically, for those visited state-action pairs, we claim171

that Line 6 is equivalent to a model-based Bellman update. Denote by Ikh(s, a) ≜ I{(skh, akh) = (s, a)}.172

Fix a tuple (s, a, k, h) such that Nk
h (s, a) ≥ 1. We denote by P̂ k

h (·|s, a) the empirical transition173

model174

P̂ k
h (s

′|s, a) = 1

Nk
h (s, a)

∑
τ∈[k−1]

Iτh(s, a) · I{sτh+1 = s′}.

Observe that for any ν ∈ DS , we have175 [
P̂ k
h ν
]
(s, a) =

∑
s′∈S

P̂ k
h (s

′|s, a)ν(s′) = 1

Nk
h (s, a)

∑
s′∈S

∑
τ∈[k−1]

Iτh(s, a) · I{sτh+1 = s′}ν(s′)

=
1

Nk
h (s, a)

∑
τ∈[k−1]

Iτh(s, a) ·
∑
s′∈S

I{sτh+1 = s′}ν(sτh+1)

=
1

Nk
h (s, a)

∑
τ∈[k−1]

Iτh(s, a)ν(sτh+1).

Hence the update formula in Line 6 of Algorithm 1 can be rewritten as176

ηkh(s, a) =
[
P̂ k
h ν

k
h+1

]
(s, a)(· − rh(s, a)) =

[
B(P̂ k

h , rh)ν
k
h+1

]
(s, a),

implying the equivalence to a model-based Bellman update with empirical model P̂ k
h . Alternatively,177

the unvisited (s, a) remains to be the return distribution corresponding to the highest possible reward178

H + 1 − h. The algorithm then computes the optimism constants (Line 8) and enforces OFU179

through the distributional optimism operator ckh (Line 9) to obtain the optimistically plausible return180

distribution ηkh. The choice of ckh will be discussed later. The optimistic return distributions yields the181

optimistic value function, from which the algorithm generates the greedy policy πk
h. The policy πk

h182

will be used in the interaction phase.183

5



Interaction phase. In Line (15-16), the agent interacts with the environment using policy π and184

updates the counts Nh based on new observations.185

Algorithm 1 RODI-MF
1: Input: T and δ
2: Initialize Nh(·, ·)← 0; ηh(·, ·), νh(·)← ψH+1−h for all h ∈ [H]
3: for k = 1 : K do
4: for h = H : 1 do
5: if Nh(·, ·) > 0 then
6: ηh(·, ·)← 1

Nh(·,·)
∑

τ∈[k−1] Iτh(·, ·)νh+1(s
τ
h+1)(· − rh(·, ·))

7: end if
8: ch(·, ·)←

√
2S

Nh(·,·)∨1 ι

9: ηh(·, ·)← O∞
ch(·,·)ηh(·, ·)

10: πh(·)← argmaxa Uβ(ηh(·, a))
11: νh(·)← ηh(·, πh(·))
12: end for
13: Receive sk1
14: for h = 1 : H do
15: akh ← πh(s

k
h) and transit to skh+1

16: Nh(s
k
h, a

k
h)← Nh(s

k
h, a

k
h) + 1

17: end for
18: end for

4.1.2 RODI-MB186

We introduce the second algorithm Model- Based Risk-sensitive Optimistic Distribution Iteration187

(RODI-MB). Algorithm 2 is a model-based algorithm because it requires to explicitly maintaining the188

empirical transition model in each episode. However, it can be reduced to a non-distributional rein-189

forcement learning algorithm that deals with the one-dimensional values instead of the distributions,190

which saves the computational complexity and space complexity. Likewise, the algorithm includes191

the planning phase (Line 4-10) and the interaction phase (Line 11-15).192

Planning phase. Analogous to Algorithm 1, the algorithm also performs approximate DDP together193

with the OFU principle. First, it applies the distributional optimistic operator to the empirical transition194

model P̂ k
h to get the optimistic transition model P̃ k

h . Then the algorithm uses P̃ k
h to execute Bellman195

update to generate the optimistic return distributions ηkh. The remaining steps are the same as196

Algorithm 1.197

Interaction phase. In Line (13-14), the agent interacts with the environment using policy πk and198

updates the counts Nk+1
h and empirical transition model P̂ k+1

h based on the new observations.199

Algorithm 2 RODI-MB
1: Input: T and δ
2: N1

h(·, ·)← 0; P̂ 1
h (·, ·)← 1

S 1 for all h ∈ [H]
3: for k = 1 : K do
4: νkH+1(·)← ψ0

5: for h = H : 1 do
6: P̃ k

h (·, ·)← O1
ckh(·,·)

P̂ k
h (·, ·)

7: ηkh(·, ·)←
[
B
(
P̃ k
h , rh

)
νkh+1

]
(·, ·)

8: πk
h(·)← argmaxa Uβ(η

k
h(·, a))

9: νkh(·)← ηkh(·, πk
h(·))

10: end for
11: Receive sk1
12: for h = 1 : H do
13: akh ← πk

h(s
k
h) and transit to skh+1

14: Compute Nk+1
h (·, ·) and P̂ k+1

h (·, ·)
15: end for
16: end for

Algorithm 3 ROVI
1: Input: T and δ
2: N1

h(·, ·)← 0; P̂ 1
h (·, ·)← 1

S 1 for all h ∈ [H]
3: for k = 1 : K do
4: W k

H+1(·)← 1
5: for h = H : 1 do
6: P̃ k

h (·, ·)← O1
ckh(·,·)

P̂ k
h (·, ·)

7: Jk
h (·, ·)← eβrh(·,·)

[
P̃ k
hW

k
h+1

]
(·, ·)

8: W k
h (·)← maxa J

k
h (·, a)

9: end for
10: Receive sk1
11: for h = 1 : H do
12: akh ← argmaxa J

k
h (s

k
h, a) and tran-

sit to skh+1

13: Compute Nk+1
h (·, ·) and P̂ k+1

h (·, ·)
14: end for
15: end for
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Equivalence to ROVI. Risk-sensitive Optimistic Value Iteration (ROVI) is a non-distributional200

algorithm that deals with the real-valued value function rather than the distribution. It is motivated by201

the exponential Bellman equation proposed by [22]. We define the functional exponential EntRM202

(EERM) Eβ as the EntRM after the exponential transformation203

Eβ(F ) ≜ exp(β(Uβ(F ))) =

∫
R
exp(βx)dF (x).

Define the exponential value functions Wh(s) ≜ Eβ(νh(s)) and Jh(s, a) ≜ Eβ(ηh(s, a)) for all204

(s, a, h)s. Applying EERM to Equation 3 yields the exponential Bellman equation205

J∗
h(s, a) = exp(βrh(s, a))[PhW

∗
h+1](s, a),

W ∗
h (s) = sign(β)max

a
sign(β)J∗

h(s, a), W
∗
H+1(s) = 1.

(4)

To verify the equivalence, it is sufficient to show that Jk
h in Algorithm 3 corresponds to the exponential206

function of ηkh in Algorithm 2. Observe that Eβ is linear in F , hence it follows that207

Eβ(η
k
h(s, a)) = Eβ

([
P̃ k
h ν

k
h+1

]
(s, a)(· − rh(s, a))

)
= exp(βrh(s, a)) ·

[
P̃ k
hEβ(ν

k
h+1)

]
(s, a)

= exp(βrh(s, a))
[
P̃ k
hW

k
h+1

]
(s, a) = Jk

h (s, a).

The two algorithms generate the policy sequence in the same way, implying that their trajectories208

HK
H follow the same distribution. The formal statement is given in Appendix E.209

4.2 Distributional Optimism210

It is common to add a bonus to the reward to ensure optimism in the risk-neutral setting. Specifically,211

the bonus is closely related to the level of uncertainty, which is quantified by the concentration212

inequality. Yet, this type of optimism cannot be adapted to the distributional setup. As one of our213

technical novelty, the distributional optimism is introduced for algorithmic design and regret analysis.214

In particular, we specify two types of distributional optimism operators, which map a statistically215

plausible distribution (either the empirical model or the return distribution) to a optimistically216

plausible distribution. Either of them is applied by Algorithm 2 or Algorithm 1.217

Distributional optimism on the return distribution (in Algorithm 1). For two CDFs F and G,218

we say that F is more optimistic thanG (w.r.t. EntRM) if Uβ(F ) ≥ Uβ(G). This reflects the intuition219

that the more optimistic distribution should own larger EntRM value. Following [31], we define the220

distributional optimism operator O∞
c : D([a, b]) 7→ D([a, b]) with level c ∈ (0, 1) as221

(O∞
c F )(x) ≜ [F (x)− cI[a,b)(x)]+.

The optimistic operator shifts the input F down by at most c over [a, b), and retain the value 1 at b. It222

ensures that O∞
c F remains in D([a, b]) and dominates all the other CDFs in D([a, b]) in the sense223

that (O∞
c F )(x) ≤ G(x) for any G ∈ B∞(F, c). Since EntRM is monotonic, it holds that224

Uβ(O
∞
c F ) ≥ Uβ(G), ∀G ∈ B∞(F, c).

Hence O∞
c F is the most optimistic distribution in the infinity ball B∞(F, c). In other words, for225

any CDF F and G satisfying ∥F −G∥∞ ≤ c, we have O∞
c G ⪰ F . When specialized to the return226

distributions, we can apply the distributional optimism operator to the estimated return distribution227

ηkh (Line 9 of Algorithm 1) with the constant ckh to ensure Uβ(η
k
h(s, a)) ≥ Uβ(η

∗
h(s, a). The constant228

ckh quantifies uncertainty in the model estimation, i.e.,
∥∥∥P̂ k

h (s, a)− Ph(s, a)
∥∥∥
1
.229

Distributional optimism on the model (in Algorithm 2). Given the model, we consider the
optimism among the space of PMFs rather than CDFs. Using the ℓ1 concentration inequality [46],
we get a concentration bound of the empirical PMF of model: with probability at least 1− δ,∥∥∥P̂ k

h (s, a)− Ph(s, a)
∥∥∥
1
≤ ckh(s, a) =

√
2S

Nk
h (s, a)

log
1

δ
= Õ

(√
2S

Nk
h (s, a)

)
.

We wish to obtain a optimistic transition model P̃ k
h (s, a) from the empirical one P̂ k

h (s, a). To be more230

specific, the return distribution ηkh computed from P̃ k
h (s, a) and νkh+1 should be more optimistic than231
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the optimal one η∗h(s, a) with high probability. We thus define the distributional optimism operator232

O1
c : D(S) 7→ D(S) with level c and future return ν ∈ DS as233

O1
c

(
P̂ (s, a), ν

)
≜ arg max

P∈B1(P̂ (s,a),c)
Uβ([Pν]).

The ERM satisfy an interesting property that enables an efficient approach to perform O1
c (see234

Appendix B). The following holds by using the induction235

Uβ

(
ηkh(s, a)

)
= rh(s, a) + Uβ

([
P̃ k
h ν

k
h+1

]
[s, a]

)
≥ rh(s, a) + Uβ

([
Phν

k
h+1

]
[s, a]

)
≥ rh(s, a) + Uβ

([
Phν

∗
h+1

]
[s, a]

)
= Uβ(η

∗
h(s, a)),

which verify the optimism of ηkh(s, a) over η∗h(s, a).236

5 Regret Analysis237

5.1 Regret upper bounds238

Theorem 1 (Regret upper bound of RODI-MF). For any δ ∈ (0, 1), with probability 1− δ, the regret239

of Algorithm 1 under deterministic reward or Algorithm 4 under random reward is bounded as240

Regret(RODI-MF,K) ≤ O
(

1

|β|
LHH

√
S2AK log(4SAT/δ)

)
= Õ

(
exp(|β|H)− 1

|β|
H
√
S2AK

)
.

The proof is given in Appendix D.241

Theorem 2 (Regret upper bound of RODI-MB/ROVI). For any δ ∈ (0, 1), with probability 1− δ, the242

regret of Algorithm 1/Algorithm 3 under deterministic reward or Algorithm 4/Algorithm 6 under243

random reward is bounded as244

Regret(RODI-MF,K) = Regret(ROVI,K) ≤ O( 1

|β|
LHH

√
S2AK log(4SAT/δ))

= Õ
(
exp(|β|H)− 1

|β|
H
√
S2AK

)
.

The proof is given in Appendix D. The above results match the best-known results in [22]. In245

particular, our algorithms attain exponentially improved regret bounds than those of RSVI and RSQ246

in [23] with a factor of exp(|β|H2). By choosing |β| = O(1/H), we can eliminate the exponential247

term and achieve polynomial regret bound akin to the risk-neutral setting.248

Compared to the traditional/non-distributional analysis dealing with one-dimensional values, our249

analysis is distribution-centered, called the distributional analysis. The distributional analysis deals250

with the distributions of the return rather than the risk measure values of the return. For example, it251

involves the operations of the distributions, the optimism between different distributions, the error252

caused by estimation of distribution, etc. These distributional aspects fundamentally differ from the253

traditional analysis that deals with the one-dimensional scalars (value functions). Now we recap the254

technical novelty of our analysis in the following.255

Lipschitz continuity and linearity. We identify two important properties of EERM that establishes256

the regret upper bounds, including the Lipschitz continuity and linearity. Denote by LM the Lipschitz257

constant of the EERM Eβ : D([0,M ]) → R with respect to the infinity norm ∥·∥∞. Lemma 2258

provides a tight Lipschitz constant of EERM. The Lipschitz constant relates the difference between259

distributions to the difference measured by their EERM values.260

Lemma 2 (Lipschitz property of EERM). Eβ is Lipschitz continuous with respect to the supremum261

norm over DM with LM = exp(|β|M)− 1. Moreover, LM is tight in terms of both |β| and M .262

Notice that limβ→0 LM = 0, which coincides with the fact that limβ→0Eβ = 1. The linearity of263

EERM is a key property that sharpens the regret bounds. In contrast, EntRM is non-linear in the264

distribution, which could induce a factor of exp(|β|H) when controlling the error propagation across265

time-steps. It would further lead to a compounding factor of exp(|β|H2) in the regret bound. In266

summary, the Lipschitz continuity property enables the regret upper bounds of DRL algorithms, and267

the linearity tightens the bound.268
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Distributional optimism. Another technical novelty in our analysis is the optimism in the face of269

uncertainty at the distributional level. The traditional analysis uses the OFU to construct a sequence270

of optimistic value functions. However, our analysis implements the distributional optimism that271

yields a sequence of optimistic return distributions. In particular, we first define a high probability272

event, under which the true return distribution concentrates around the estimated one with a certain273

confidence radius. Then we apply the distributional optimism operator to obtain the optimistically274

plausible return distribution and the optimistic EntRM value. Hence the regret can be bounded by the275

surrogate regret, with the optimal EntRM value replaced by276

Regret(K) =

K∑
k=1

1

β
log
(
W ∗

1 (s
k
1)
)
− 1

β
log
(
Wπk

1 (sk1)
)
≤ 1

β

K∑
k=1

W k
1 (s

k
1)−Wπk

1 (sk1).

277

Distributional analysis vs. non-distributional analysis. When analyzing Algorithm 2/Algorithm278

3, proving the regret bound of either algorithm suffices due to their equivalence relation. Since279

Algorithm 3 is a non-distributional algorithm, one may consider using the standard analysis that280

does not involve distributions. However, we show that this induces a factor of 1
|β| exp(|β|H), which281

explodes as |β| → 0. We overcome this issue by invoking a novel distributional analysis of Algorithm282

2, leading to the desired factor of 1
|β| (exp(|β|H)− 1).283

Although we focus on the algorithms for the deterministic reward in the main text, the regret upper284

bounds also hold for case of random reward. Algorithm 4, Algorithm 5 and Algorithm 6 corresponds285

to Algorithm 1, Algorithm 2 and Algorithm 3 respectively (cf. Appendix C).286

5.2 Regret lower bound287

We provide more details of the mistakes in the lower bound of [23] in Appendix D. The proof of [23]288

reduces the regret lower bound to the two-armed bandit regret lower bound. Since the two-armed289

bandit is a special case of MDP with S = 1, A = 2 and H = 1, the reduction-based proof only leads290

to a lower bound independent of S,A, andH . Instead, our tight lower bound follows a totally different291

roadmap motivated by [20]. [20] proves the tight minimax lower bound H
√
SAT for risk-neutral292

MDP. However, the generalization to risk-sensitive MDP is non-trivial. The main technical challenge293

is due to the non-linearity of EntRM. The proof in [23] heavily relies on the linearity of expectation,294

allowing the exchange between taking the risk measure (expectation) and the summation. In the295

risk-sensitive setting, the non-linearity of EntRM requires new proof techniques.296

Assumption 1. Assume S ≥ 6, A ≥ 2, and there exists an integer d such that S = 3 + Ad−1
A−1 . We297

further assume that H ≥ 3d and H̄ ≜ H
3 ≥ 1.298

Theorem 3 (Tighter lower bound). Assume Assumption 1 holds and β > 0. Let L̄ ≜ (1− 1
A )(S −299

3) + 1
A . Then for any algorithm A , there exists an MDPMA such that for K ≥ 2 exp(β(H − H̄ −300

d))H̄L̄A we have301

E[Regret(A ,MA ,K)] ≥ 1

72
√
6

exp(βH/6)− 1

βH
H
√
SAT .

The proof is given in Appendix D. Theorem 3 recovers the tight lower bound for standard episodic302

MDP, implying that the exponential dependence on |β| and H in the upper bounds is indispensable.303

Yet, it is not clear whether a similar lower bound holds for β < 0, which is left as a future direction.304

6 Conclusion305

We propose a risk-sensitive distributional dynamic programming framework. We devise two novel306

DRL algorithms, including a model-free one and a model-based one, which implement the OFU307

principle at the distributional level to balance the exploration and exploitation trade-off under the308

risk-sensitive setting. We prove that both attain near-optimal regret upper bounds compared with our309

improved lower bound.310

There are several promising future directions. The current regret upper bound has an additional factor311 √
HS compared with the lower bound. It might be possible to remove the factor by designing new312

algorithms or improving the analysis. Besides, it is interesting to extend the DRL algorithm from313

tabular MDP to linear function approximation setting. Finally, it will be meaningful to investigate314

whether the DDP framework holds for other risk measures.315

9



References316

[1] Mastane Achab and Gergely Neu. Robustness and risk management via distributional dynamic317

programming. arXiv preprint arXiv:2112.15430, 2021.318

[2] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva319

Tb, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional determin-320

istic policy gradients. arXiv preprint arXiv:1804.08617, 2018.321

[3] Nicole Bäuerle and Ulrich Rieder. More risk-sensitive markov decision processes. Mathematics322

of Operations Research, 39(1):105–120, 2014.323

[4] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-324

ment learning. In International Conference on Machine Learning, pages 449–458. PMLR,325

2017.326

[5] Dimitri P Bertsekas et al. Dynamic programming and optimal control: Vol. 1. Athena scientific327

Belmont, 2000.328

[6] Tomasz R Bielecki, Stanley R Pliska, and Michael Sherris. Risk sensitive asset allocation.329

Journal of Economic Dynamics and Control, 24(8):1145–1177, 2000.330

[7] Vivek S Borkar. A sensitivity formula for risk-sensitive cost and the actor–critic algorithm.331

Systems & Control Letters, 44(5):339–346, 2001.332

[8] Vivek S Borkar. Q-learning for risk-sensitive control. Mathematics of operations research,333

27(2):294–311, 2002.334

[9] Vivek S Borkar. Learning algorithms for risk-sensitive control. In Proceedings of the 19th335

International Symposium on Mathematical Theory of Networks and Systems–MTNS, volume 5,336

2010.337

[10] Vivek S Borkar and Sean P Meyn. Risk-sensitive optimal control for markov decision processes338

with monotone cost. Mathematics of Operations Research, 27(1):192–209, 2002.339

[11] Rolando Cavazos-Cadena and Daniel Hernández-Hernández. Discounted approximations for340

risk-sensitive average criteria in markov decision chains with finite state space. Mathematics of341

Operations Research, 36(1):133–146, 2011.342

[12] Stefano P Coraluppi and Steven I Marcus. Risk-sensitive, minimax, and mixed risk-343

neutral/minimax control of markov decision processes. In Stochastic analysis, control, opti-344

mization and applications, pages 21–40. Springer, 1999.345

[13] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for346

distributional reinforcement learning. In International conference on machine learning, pages347

1096–1105. PMLR, 2018.348

[14] Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement349

learning with quantile regression. In Thirty-Second AAAI Conference on Artificial Intelligence,350

2018.351

[15] Mark Davis and Sébastien Lleo. Risk-sensitive benchmarked asset management. Quantitative352

Finance, 8(4):415–426, 2008.353

[16] Erick Delage and Shie Mannor. Percentile optimization for markov decision processes with354

parameter uncertainty. Operations research, 58(1):203–213, 2010.355

[17] Giovanni B Di Masi et al. Infinite horizon risk sensitive control of discrete time markov356

processes with small risk. Systems & control letters, 40(1):15–20, 2000.357

[18] Giovanni B Di Masi and Lukasz Stettner. Risk-sensitive control of discrete-time markov358

processes with infinite horizon. SIAM Journal on Control and Optimization, 38(1):61–78, 1999.359

[19] Giovanni B Di Masi and Łukasz Stettner. Infinite horizon risk sensitive control of discrete time360

markov processes under minorization property. SIAM Journal on Control and Optimization,361

46(1):231–252, 2007.362

10



[20] Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic363

reinforcement learning in finite mdps: Minimax lower bounds revisited. In Algorithmic Learning364

Theory, pages 578–598. PMLR, 2021.365

[21] Damien Ernst, Guy-Bart Stan, Jorge Goncalves, and Louis Wehenkel. Clinical data based366

optimal sti strategies for hiv: a reinforcement learning approach. In Proceedings of the 45th367

IEEE Conference on Decision and Control, pages 667–672. IEEE, 2006.368

[22] Yingjie Fei, Zhuoran Yang, Yudong Chen, and Zhaoran Wang. Exponential bellman equation369

and improved regret bounds for risk-sensitive reinforcement learning. Advances in Neural370

Information Processing Systems, 34, 2021.371

[23] Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang, and Qiaomin Xie. Risk-372

sensitive reinforcement learning: Near-optimal risk-sample tradeoff in regret. arXiv preprint373

arXiv:2006.13827, 2020.374

[24] Wendell H Fleming and William M McEneaney. Risk-sensitive control on an infinite time375

horizon. SIAM Journal on Control and Optimization, 33(6):1881–1915, 1995.376

[25] Hans Föllmer and Alexander Schied. Stochastic finance. In Stochastic Finance. de Gruyter,377

2016.378

[26] Aurélien Garivier, Pierre Ménard, and Gilles Stoltz. Explore first, exploit next: The true shape379

of regret in bandit problems. Mathematics of Operations Research, 44(2):377–399, 2019.380

[27] Lars Peter Hansen and Thomas J Sargent. Robustness. In Robustness. Princeton university381

press, 2011.382

[28] Daniel Hernández-Hernández and Steven I Marcus. Risk sensitive control of markov processes383

in countable state space. Systems & control letters, 29(3):147–155, 1996.384

[29] Ronald A Howard and James E Matheson. Risk-sensitive markov decision processes. Manage-385

ment science, 18(7):356–369, 1972.386
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468

A Comparisons with Related Works469

Comparison with [1] We summarize the differences between our work and [1] as follows.470

• Setting. [1] considers the discounted MDP with infinite horizon, but we consider the471

episodic MDP setting. Moreover, [1] assumes that the model is known, while we propose472

DRL algorithms when the model is unknown (i.e., the learning). Neither RL algorithms473

suitable for unknown model nor sample complexity guarantee is provided in their work.474

• Risk measure. [1] establish the risk-sensitive DDP framework using the risk measure475

Conditional Value at Risk, while our work considers the entropic risk measure.476

Comparison with [23, 22] [21,22] solved the risk-sensitive MDP problem using valued-based RL,477

which estimates and constructs the optimistic version of the (EntRM) value function. [21] proposed478

the RSVI2 algorithm that improved upon [22] and achieved the best result with the regret upper479

bound of Õ( exp(|β|H)−1
|β| H

√
S2AK). The significance of the proposed algorithms is three-fold.480

• Our algorithms are the first distributional reinforcement learning algorithms with provably481

regret guarantees, suggesting that DRL can work well and even matches the performance of482

the SOTA value-based RL algorithm for risk-sensitive control in terms of sample complexity.483

The idea of leveraging the distributional information for risk-sensitivity purposes is natural484

since the risk measure value is obtained by applying the risk measure/functional to the return485

distribution. However, existing works on risk-sensitive control via DRL approaches [12,486

31, 1] lack regret analysis. Thus, it is difficult to evaluate and improve their algorithms for487

sample efficiency. Therefore, our algorithms with near-optimal regret upper bounds bridge488

the gap between the DRL and risk-sensitive MDP in the theoretic RL community.489

• Compared with [21], our algorithms are simpler and easier to interpret, leading to clean490

regret analysis. [21] implements optimism by adding a bonus to the risk measure value491

function. It designed an exploration mechanism called doubly decaying bonus to remove the492

exp(|β|H2) factor from [22]. The doubly decaying bonus decays across the episode and the493

horizon, which is complicated and not straightforward. Instead, our algorithms implement494

the distributional optimism by iteratively constructing the optimistic return distribution.495

The distributional optimism does not involve a complicated bonus design. It only requires496

a simple application of distributional optimism operator with a constant decaying across497

the episode. Moreover, the doubly decaying bonus obscures the regret analysis, while our498

distributional-based analysis is clean and easy to follow.499

• Our algorithm may be generalized to risk-sensitive MDP with other risk measures. The500

analysis of [22,23] is particularly suitable for the EntRM. It is unclear whether it is possible501

to extend to other risk measures. Under the distributional perspective, our algorithm502

maintains a sequence of optimistically plausible estimates of the return distribution. Since503

the distributional information suffices to deal with any risk measure, our algorithm may504

motivate the design of similar algorithms for other risk measures.505

B Further Statements about the Properties506

B.1 Proof of properties of EntRM507

Proof of Lemma 1. We only prove the case that β > 0. The case that β < 0 follows analogously. For508

any two independent random variables X and Y , we have509

Uβ(X + Y ) =
1

β
logE[exp(β(X + Y ))] =

1

β
logE[exp(βX) · exp(βY )]

=
1

β
logE[exp(βX)] +

1

β
logE[exp(βY )]

= Uβ(X) + Uβ(Y ),
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therefore ERM is additive.510

For any two distributions F1 and F2 such that Uβ(F1) > Uβ(F2), we have511

Uβ(F1) =
1

β
log

∫
R
exp(βx)dF1(x) >

1

β
log

∫
R
exp(βx)dF2(x) = Uβ(F1),

which implies
∫
R exp(βx)dF1(x) >

∫
R exp(βx)dF2(x). Thus for any distribution G, it follows that512

Uβ(θF1 + (1− θ)G) = 1

β
log

∫
R
exp(βx)d(θF1(x) + (1− θ)G(x))

=
1

β
log

(
θ

∫
R
exp(βx)dF1(x) + (1− θ)

∫
R
exp(βx)dG(x)

)
>

1

β
log

(
θ

∫
R
exp(βx)dF2(x) + (1− θ)

∫
R
exp(βx)dG(x)

)
= Uβ(θF2 + (1− θ)G).

For any distributions F and G such that Uβ(F ) > Uβ(G) and θ > θ′, it holds that513 ∫
R
exp(βx)d(θF (x) + (1− θ)G(x))−

∫
R
exp(βx)d(θ′F (x) + (1− θ′)G(x))

= (θ − θ′)
(∫

R
exp(βx)dF (x)−

∫
R
exp(βx)dG(x)

)
> 0.

Since t 7→ 1
β log(t) is a strictly monotonic mapping, we have Uβ(θF +(1− θ)G) > Uβ(θ

′F +(1−514

θ′)G). Hence ERM satisfies the monotonicity-preserving property.515

B.2 Monotonicity preserving516

We state some lemmas about the monotonicity-preserving property and their proofs here. Note that517

the results hold for general risk measures satisfying the monotonicity-preserving property. They will518

be used in the proof of Proposition 1 and Proposition 2.519

Lemma 3. Let T be a risk measure satisfying the monotonicity-preserving property and n ≥ 2520

be an arbitrary integer. If T(Fi) ≥ T(Gi),∀i ∈ [n] (and T(Fj) ̸= T(Gj) for some j ∈ [n]) then521

T (
∑n

i=1 θiFi) ≥ (>)T(
∑n

i=1 θiGi) for any θ ∈ ∆n (and θj ̸= 0).522

Proof. The proof follows from induction. Note that
∑n

i=1 θiFi = θ1F1 + (1 − θ1)
∑n

i=2
θi

1−θ1
Fi523

and
∑n

i=2
θi

1−θ1
Fi ∈ D , therefore by the definition of MP we have T(

∑n
i=1 θiFi) ≥ T(θ1G1 +524 ∑n

i=2 θiFi). Suppose that for some k ∈ [n − 1] it holds that T(
∑n

i=1 θiFi) ≥ T(
∑k

i=1 θiGi +525 ∑n
i=k+1 θiFi). Since526

k∑
i=1

θiGi +

n∑
i=k+1

θiFi = θk+1Fk+1 +

k∑
i=1

θiGi +

n∑
i=k+2

θiFi

= θk+1Fk+1 + (1− θk+1)

[
k∑

i=1

θi
1− θk+1

Gi +

n∑
i=k+2

θi
1− θk+1

Fi

]

and 1
1−θk+1

[∑k
i=1 θiGi +

∑n
i=k+2 θiFi

]
∈ D , it follows that

T

(
n∑

i=1

θiFi

)
≥ T

(
k∑

i=1

θiGi +

n∑
i=k+1

θiFi

)
≥ T

(
k+1∑
i=1

θiGi +

n∑
i=k+2

θiFi

)
.

The induction is completed. If in addition for some j ∈ [n] it holds that T(Fj) > T(Gj), the proof527

follows analogously by replacing the inequality to the strict one and the fact that θj > 0.528
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Lemma 4 (Monotonicity-preserving under pairwise transport). Let T be a risk measure satisfying529

the monotonicity-preserving property. Suppose n ≥ 2 and (Fi)i∈[n] satisfies T(F1) ≤ T(F2)... ≤530

T(Fn). For any θ, θ′ ∈ ∆n and any 1 ≤ i < j ≤ n such that531 
θ′i ≤ θi,
θ′j ≥ θj ,
θ′k = θk, k ̸= i, j

It holds that T(
∑n

i=1 θiFi) ≤ T(
∑n

i=1 θ
′
iFi).532

Proof. Observe that533

n∑
k=1

θ′kFk = θ′iFi + θ′jFj +
∑
k ̸=i,j

θ′kFk = θ′iFi + θ′jFj +
∑
k ̸=i,j

θkFk

= (θ′iFi + θ′jFj) + (1− θi − θj)
∑
k ̸=i,j

θkFk.

By the definition of the monotonicity-preserving property, it suffices to prove T( 1
θi+θj

(θ′iFi +534

θ′jFj)) ≥ T( 1
θi+θj

(θiFi + θjFj)). The result follows from the definition and the fact that T(Fi) ≤535

T(Fj) and θ′i ≤ θi.536

Lemma 5 (Monotonicity-preserving under block-wise transport). Suppose n ≥ 2 and (Fi)i∈[n]537

satisfies T(F1) ≤ T(F2)... ≤ T(Fn). It holds that T(
∑n

i=1 θiFi) ≤ T(
∑n

i=1 θ
′
iFi) for any538

θ, θ′ ∈ ∆n satisfying ∃k ∈ [n], θ′i ≤ θi if i ≤ k and θ′i ≥ θi otherwise.539

Proof. Fix k ∈ [n]. We rewrite the assumption imposed to θ′ as θ′i = θi − δi for i ≤ k and540

θ′i = θi + δi for i > k, where each δi ≥ 0. It will be shown that there exists a sequence {θl}l∈[k]541

satisfying θ0 = θ and θk = θ′ such that T(θl) ≤ T(θl+1), then the proof shall be completed.542

The sequence is constructed as follows: at the l-th iteration, we transport probability mass δl of θl to543

the probability mass of k + 1, ..., n. Specifically, we start from moving to the least number il ≥ il−1544

that satisfy θl−1
il

< θ′il and sequentially move to the next one if there is remaining mass. The iteration545

stops until all the mass δl are transported. Repeating the procedure for k times we obtain θk = θ′.546

The inequality T(θl) ≤ T(θl+1) for each iteration follows from Lemma 4.547

B.3 Proof of properties of EERM548

Proof of Lemma 2. We only provide the proof for the case β > 0. The case β < 0 fol-549

lows from analogous arguments. For any F,G ∈ DM , without loss of generality we assume550 ∫M

0
G(x)d exp(βx)−

∫M

0
F (x)d exp(βx) ≥ 0, otherwise we switch the order.551

|Eβ(F )− Eβ(G)| =

∣∣∣∣∣
∫ M

0

exp(βx)dF (x)−
∫ M

0

exp(βx)dG(x)

∣∣∣∣∣
=

∣∣∣∣∣exp(βx)F (x)|M0 −
∫ M

0

F (x)d exp(βx)− exp(βx)G(x)|M0 +

∫ M

0

G(x)d exp(βx)

∣∣∣∣∣
=

∫ M

0

(G(x)− F (x))d exp(βx)

≤
∫ M

0

|G(x)− F (x)| d exp(βx)

≤ ∥F −G∥∞
∫ M

0

1d exp(βx)

= (exp(βM)− 1) ∥F −G∥∞ .
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To show the tightness of the constant, consider two scaled Bernoulli distributions F = (1− µ1)ψ0 +552

µ1ψM and G = (1 − µ2)ψ0 + µ2ψM with ∆ := µ1 − µ2 > 0, where µ1, µ2 ∈ (0, 1) are some553

constants to be determined. It holds that554

Eβ(F )− Eβ(G) = µ1 exp(βM) + 1− µ1 − (µ2 exp(βM) + 1− µ2)

= (µ1 − µ2)(exp(βM)− 1)

= ∥F −G∥∞ (exp(βM)− 1).

where the last equality holds since ∥F −G∥∞ = F (0)−G(0) = µ1 − µ2 = ∆ (independent of M ).555

More formally, we have556

inf
M>0,β>0

sup
F,G∈DM

|Eβ(F )− Eβ(G)|
∥F −G∥∞

= exp(βM)− 1.

557

C Algorithms for the Random Reward558

We present the algorithms for the random reward in this section, which share the same intuitions as559

the deterministic reward case. Therefore we focus on clarifying their differences here. We denote by560

δ(·) the Dirac delta function.561

C.1 RODI-MF562

In each episode, the algorithm includes the planning phase (Line 4-12) and the interaction phase563

(Line 13-17). We highlight two key differences in the planning phase. We introduce the superscript564

k to the variables of Algorithm 4 in episode k. The first difference is that the algorithm implicitly565

maintains the empirical reward distribution in addition to the empirical transition model566

R̂k
h(s, a) =

∑
τ∈[k−1] Iτh(s, a)δ(· −Rτ

h)

Nk
h (s, a)

.

Analogous to the previous setting, we claim that Line 6 is equivalent to a model-based Bellman567

update for those visited (s, a)s. Fix an (s, a, k, h) such that Nk
h (s, a) ≥ 1. We have shown that for568

any ν ∈ DS ,569

[
P̂ k
h ν
]
(s, a) =

1

Nk
h (s, a)

∑
τ∈[k−1]

Iτh(s, a)ν(sτh+1).

Hence the update formula in Line 6 of Algorithm 4 can be rewritten as570

ηkh(s, a) =
[
P̂ k
h ν

k
h

]
(s, a) ∗ R̂k

h(s, a) = [B(P̂ k
h , R̂k

h)ν](s, a).

Alternatively, the unvisited (s, a) remains to be the return distribution corresponding to the highest571

possible reward H + 1− h. The second difference is that the optimism constant ckh(s, a) is increased572

by an amount of
√

1
2Nk

h (s,a)∨1
ι, which corresponds to the estimation error arisen from the unknown573

reward distribution. The additional term is a lower order term, implying that the regret upper bound574

of Algorithm 4 is in the same order as that of Algorithm 1.575

17



Algorithm 4 RODI-MF (for the random reward)
1: Input: T and δ
2: Initialize Nh(·, ·)← 0; ηh(·, ·), νh(·)← ψH+1−h for all h ∈ [H]
3: for k = 1 : K do
4: for h = H : 1 do
5: if Nh(·, ·) > 0 then
6: ηh(·, ·)← 1

(Nh(·,·))2
∑

τ,τ ′∈[k−1]2 Iτh(·, ·)Iτ
′

h (·, ·)νh+1(s
τ
h+1)(· −Rτ ′

h (·, ·))
7: end if
8: ch(·, ·)←

√
2S

Nh(·,·)∨1 ι+
√

1
2Nh(·,·)∨1 ι

9: ηh(·, ·)← O∞
ch(·,·)ηh(·, ·)

10: πh(·)← argmaxa Uβ(ηh(·, a))
11: νh(·)← ηh(·, πh(·))
12: end for
13: Receive sk1
14: for h = 1 : H do
15: akh ← πh(s

k
h) and transit to skh+1

16: Nh(s
k
h, a

k
h)← Nh(s

k
h, a

k
h) + 1

17: end for
18: end for

C.2 RODI-MB576

We provide a model-based algorithm (Algorithm 5), which is equivalent to a nearly classical algorithm577

(Algorithm 5). We emphasize the difference between Algorithm 5 and Algorithm 2. For each (s, a),578

it applies the distributional optimism operators O1
ckh,1(s,a)

and O∞
ckh,2(s,a)

to the empirical transition579

model P̂ k
h (s, a) and the empirical reward distribution R̂k

h(s, a) respectively, in which ckh,1(s, a) and580

ckh,2(s, a) are set to be
√

2S
Nk

h (s,a)∨1
ι and

√
1

2Nk
h (s,a)∨1

ι. Note that the ckh,2(s, a) is a lower order term581

in comparison to ckh,1(s, a), implying that the regret upper bound of Algorithm 5 is in the same order582

as that of Algorithm 2.583

Remark 1. Algorithm 5 is not a fully classical algorithm because it explicitly maintains the reward584

distributions for all state-action pairs. However, it does not involve the distributional Bellman update585

that takes the return distributions for all states as input and outputs the return distributions for all586

state-action pairs. Hence it still reduces considerable computation complexity and space complexity,587

which makes more close to the classical algorithm rather than the distributional algorithm.588

Equivalence to ROVI Define the exponential value functions Wh(s) ≜ Eβ(νh(s)) and Jh(s, a) ≜589

Eβ(ηh(s, a)) for all (s, a, h)s. Observe that for two independent r.v.s X ∼ F and Y ∼ G, we have590

Eβ(F ∗ g) = Eβ(X + Y ) = Eβ(X)Eβ(Y ),

where g is the PDF of G. Applying EERM to Equation 2 yields the exponential Bellman equation591

J∗
h(s, a) = Eβ(Rh(s, a))[PhW

∗
h+1](s, a),

W ∗
h (s) = sign(β)max

a
sign(β)J∗

h(s, a), W
∗
H+1(s) = 1.

(5)

We will show that Jk
h in Algorithm 6 corresponds to the exponential value function of ηkh in Algorithm592

5. Observe that593

Eβ(η
k
h(s, a)) = Eβ

([
P̃ k
h ν

k
h+1

]
(s, a) ∗ R̃k

h(s, a)
)
= Eβ(R̃k

h(s, a)) ·
[
P̃ k
hEβ(ν

k
h+1)

]
(s, a)

= Eβ(R̃k
h(s, a))

[
P̃ k
hW

k
h+1

]
(s, a) = Jk

h (s, a).

The two algorithms generate the policy sequence in the same way. The formal statement is given in594

Appendix E.595
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Algorithm 5 RODI-MB
1: Input: T and δ
2: N1

h(·, ·) ← 0; (P̂ 1
h (·, ·), R̂1

h(·, ·)) ←
( 1
S 1, ψ 1

2
) for all h ∈ [H]

3: for k = 1 : K do
4: νkH+1(·)← ψ0

5: for h = H : 1 do
6: P̃ k

h (·, ·)← O1
ckh,1(·,·)

P̂ k
h (·, ·)

7: R̃k
h(·, ·)← O∞

ckh,2(·,·)
R̂k

h(·, ·)

8: ηkh(·, ·)← [B(P̃ k
h , R̃k

h)ν
k
h+1](·, ·)

9: πk
h(·)← argmaxaEβ(η

k
h(·, a))

10: νkh(·)← ηkh(·, πk
h(·))

11: end for
12: Receive sk1
13: for h = 1 : H do
14: akh ← πk

h(s
k
h) and transit to skh+1

15: Compute Nk+1
h (·, ·), P̂ k+1

h (·, ·) and
R̂k+1

h (·, ·)
16: end for
17: end for

Algorithm 6 ROVI
1: Input: T and δ
2: N1

h(·, ·) ← 0; (P̂ 1
h (·, ·), R̂1

h(·, ·)) ←
( 1
S 1, ψ 1

2
) for all h ∈ [H]

3: for k = 1 : K do
4: W k

H+1(·)← 1
5: for h = H : 1 do
6: P̃ k

h (·, ·)← O1
ckh,1(·,·)

P̂ k
h (·, ·)

7: R̃k
h(·, ·)← O∞

ckh,2(·,·)
R̂k

h(·, ·)
8: Jk

h (·, ·) ←
Eβ

(
R̃k

h(·, ·)
) [
P̃ k
hW

k
h+1

]
(·, ·)

9: W k
h (·)← maxa J

k
h (·, a)

10: end for
11: Receive sk1
12: for h = 1 : H do
13: akh ← argmaxa J

k
h (s

k
h, a) and tran-

sit to skh+1

14: Compute Nk+1
h (·, ·) and P̂ k+1

h (·, ·)
15: end for
16: end for

D Proof of Regret Bounds596

D.1 Proof of Theorem 1597

We only prove the case that the reward is random and β > 0. The proof can be readily adapted to598

other cases.599

Step 1: Verify optimism. Denote by ι = log(2SAT/δ). For any δ ∈ (0, 1), we define the good600

event as601

Gδ :=

{∥∥∥R̂k
h(s, a)−Rh(s, a)

∥∥∥
∞
≤
√

1

2(Nk
h (s, a) ∨ 1)

ι,
∥∥∥P̂ k

h (·|s, a)− Ph(·|s, a)
∥∥∥
1

≤

√
2S

Nk
h (s, a) ∨ 1

ι, ∀(s, a, k, h) ∈ S ×A× [K]× [H]

}
,

under which the empirical distributions concentrates around the true distributions w.r.t. ∥·∥1.602

Lemma 6 (High probability good event). For any δ ∈ (0, 1), the event Gδ is true with probability at603

least 1− δ.604

Fact 1. Let X be a random variable taking values over positive integers and E be an event. If605

P(E|X = i) ≥ p for any i = 1, 2, ..., then P(E|X > 0) ≥ p.606

Proof. P(E|X > 0) = P(E,X>0)
P(X>0) =

∑
i≥1 P(E|X=i)P(X=i)∑

i≥1 P(X=i) ≥
∑

i≥1 pP(X=i)∑
i≥1 P(X=i) = p.607

Proof. Fix some (s, a, k, h) ∈ S × A × [K] × [H]. If Nk
h (s, a) = 0, then we have608

(P̂ k
h (·|s, a), R̂k

h(s, a)) = ( 1
S 1, ψ 1

2
). A simple calculation yields that for any Rh(s, a) ∈ D([0, 1])609

and any Ph(·|s, a)610 ∥∥∥ψ 1
2
−Rh(s, a)

∥∥∥
∞
≤ 1

2
≤
√

1

2
log(2SAT/δ),

∥∥∥∥ 1S 1− Ph(·|s, a)
∥∥∥∥
1

≤ 2 ≤
√

2S log(2SAT/δ).
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It follows that611

P

(∥∥∥R̂k
h(s, a)−Rh(s, a)

∥∥∥
∞
≤
√

1

2(Nk
h (s, a) ∨ 1)

log(2/δ),
∥∥∥P̂ k

h (·|s, a)− Ph(·|s, a)
∥∥∥
1

≤

√
2S

Nk
h (s, a) ∨ 1

log(2/δ)

∣∣∣∣∣Nk
h (s, a) = 0

)
= 1.

Thus the the event is true for the unseen state-action pairs. Now we consider the case that Nk
h (s, a) >612

0. By the DKW inequality, ℓ1 concentration bound of empirical measure and a union bound, we have613

that for any n ≥ 1614

P

(∥∥∥R̂k
h(s, a)−Rh(s, a)

∥∥∥
∞
≤
√

1

2Nk
h (s, a)

,
∥∥∥P̂ k

h (·|s, a)− Ph(·|s, a)
∥∥∥
1

≤

√
2S

Nk
h (s, a)

log(2/δ)

∣∣∣∣∣Nk
h (s, a) = n

)
≥ 1− δ.

We use Fact 1 to get615

P

(∥∥∥R̂k
h(s, a)−Rh(s, a)

∥∥∥
∞
≤
√

1

2Nk
h (s, a)

log(2/δ),
∥∥∥P̂ k

h (·|s, a)− Ph(·|s, a)
∥∥∥
1

≤

√
2S

Nk
h (s, a)

log(2/δ)

∣∣∣∣∣Nk
h (s, a) > 0

)
≥ 1− δ.

Taking the two cases into consideration616

P

(∥∥∥R̂k
h(s, a)−Rh(s, a)

∥∥∥
∞
≤

√
log(2/δ)

2Nk
h (s, a)

,
∥∥∥P̂ k

h (·|s, a)− Ph(·|s, a)
∥∥∥
1
≤

√
2S log(2/δ)

Nk
h (s, a)

)

= P

(∥∥∥R̂k
h(s, a)−Rh(s, a)

∥∥∥
∞
≤

√
log(2/δ)

2(Nk
h (s, a) ∨ 1)

,
∥∥∥P̂ k

h (·|s, a)− Ph(·|s, a)
∥∥∥
1

≤

√
2S log(2/δ)

Nk
h (s, a) ∨ 1

∣∣∣∣∣Nk
h (s, a) = 0

)
P(Nk

h (s, a) = 0)

+ P

(∥∥∥R̂k
h(s, a)−Rh(s, a)

∥∥∥
∞
≤

√
log(2/δ)

2Nk
h (s, a)

,
∥∥∥P̂ k

h (·|s, a)− Ph(·|s, a)
∥∥∥
1
≤

√
2S log(2/δ)

Nk
h (s, a)

|Nk
h (s, a) > 0)P(Nk

h (s, a) > 0
)

≥ P
(
Nk

h (s, a) = 0) + (1− δ)P(Nk
h (s, a) > 0

)
≥ 1− δ.

Applying a union bound over all (s, a, k, h) ∈ S × A × [K] × [H] and rescaling δ leads to the617

result.618

Lemma 6 suggests that Gδ holds with probability 1 − δ, therefore it suffices to prove the theorem619

conditioned on Gδ .620

Lemma 7. Let T be a functional (not necessarily a risk measure) satisfying the monotonicity, i.e.,621

T(F ) ≤ T(G) for any F ⪯ G. For any G ∈ D([a, b]), it holds that if G ∈ B∞(F, c), then622

G ⪯ O∞
c F . Moreover, it holds that623

O∞
c F ∈ arg max

G∈B∞(F,c)∩D([a,b])
T(G).

Proof. Let G ∈ D([a, b]) ∩ B∞(F, c). It follows from the definition of B∞(F, c) that624

supx∈[a,b] |F (x)−G(x)| ≤ c, therefore for any x ∈ [a, b], G(x) ≥ max(F (x)−c, 0) = (O∞
c F )(x).625

The monotonicity of T leads to the result.626
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Notice that Eβ is also monotonic, which will be used to establish the optimism of the EERM value627

sequence generated by the algorithm.628

Lemma 8. For any two distributions F,G ∈ DM and any function u : R→ R, we have that629

|EF [u(X)]− EG[u(X)]| ≤ |u(M)− u(0)|∥F −G∥∞.

Proof. Observe that630

|EF [u(X)]− EG[u(X)]| =

∣∣∣∣∣
∫ M

0

u(x)dF (x)−
∫ M

0

u(x)dG(x)

∣∣∣∣∣
=

∣∣∣∣∣u(x)F (x)|M0 −
∫ M

0

F (x)du(x)− u(x)G(x)|M0 +

∫ M

0

G(x)du(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ M

0

G(x)− F (x)du(x)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ M

0

du(x)

∣∣∣∣∣ ∥F −G∥∞ = |u(M)− u(0)| ∥F −G∥∞.

631

Lemma 9 (Bound on the optimistic constant). For any bounded distributions {Fi}i∈[n], any G,G′ ∈632

D([0, 1]) and any θ, θ′ ∈ ∆n it holds that if c ≥ ∥θ − θ′∥1 + ∥G−G′∥∞, then633

g ∗
n∑

i=1

θiFi ⪯ O∞
c

(
g′ ∗

n∑
i=1

θ′iFi

)
,

where g and g′ are the PDF of G and G′ resp..634

Proof. Without loss of generality assume F ∈ Dn
M . For any x ∈ [0,M + 1),635

O∞
c

(
g′ ∗

n∑
i=1

θ′iFi

)
(x) =

[
n∑

i=1

θ′i

∫ 1

0

Fi(x− r)g′(r)dr − c

]+

=

[
n∑

i=1

θi

∫ 1

0

Fi(x− r)g(r)dr +
n∑

i=1

θ′i

∫ 1

0

Fi(x− r)g′(r)dr −
∑

θi

∫ 1

0

Fi(x− r)g(r)dr − c

]+

=

[(
g ∗

n∑
i=1

θiFi

)
(x) +

n∑
i=1

θ′i

∫ 1

0

Fi(x− r)g′(r)dr −
n∑

i=1

θi

∫ 1

0

Fi(x− r)g(r)dr − c

]+
.

It suffices to prove636

c ≥

∣∣∣∣∣
n∑

i=1

θ′i

∫ 1

0

Fi(x− r)g′(r)dr −
n∑

i=1

θi

∫ 1

0

Fi(x− r)g(r)dr

∣∣∣∣∣ ,∀x ∈ [0,M + 1].

We have ∀x ∈ [0,M + 1],637

RHS ≤

∣∣∣∣∣
n∑

i=1

θ′i

∫ 1

0

Fi(x− r)g′(r)dr −
n∑

i=1

θi

∫ 1

0

Fi(x− r)g′(r)dr

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

θi

∫ 1

0

Fi(x− r)g′(r)dr −
n∑

i=1

θi

∫ 1

0

Fi(x− r)g(r)dr

∣∣∣∣∣
≤

n∑
i=1

|θ′i − θi|
∫ 1

0

Fi(x− r)g′(r)dr +
n∑

i=1

θi

∣∣∣∣∫ 1

0

Fi(x− r)g′(r)dr −
∫ 1

0

Fi(x− r)g(r)dr
∣∣∣∣

≤ ∥θ′ − θ∥1 + ∥G−G′∥∞,
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where the last inequality follows from that
∫ 1

0
Fi(x− r)g′(r)dr ≤

∫ 1

0
g′(r)dr = 1 and the fact that∣∣∣∣∫ 1

0

Fi(x− r)g′(r)dr −
∫ 1

0

Fi(x− r)g(r)dr
∣∣∣∣ = |EG[Fi(x−R)]−EG′ [Fi(x−R)| ≤ ∥G−G′∥∞

due to Lemma 8.638

We define the EERM value produced by the algorithm as W k
h (s) ≜ Eβ(ν

k
h(s)) and Jk

h (s, a) ≜639

Eβ(η
k
h(s, a)) for all (s, a, k, h)s. Similarly, we define W ∗

h (s) ≜ Eβ(ν
∗
h(s)) and J∗

h(s, a) ≜640

Eβ(η
∗
h(s, a)) for all (s, a, h)s. Using Lemma 9, the monotonicity of EERM, and inductions, we641

arrives at Lemma 10, which guarantees the sequence {W k
1 (s

k
1)}k∈[K] produced by Algorithm 4 is642

indeed optimistic compared to the optimal value {W ∗
1 (s

k
1)}k∈[K].643

Lemma 10 (Optimism). Conditioned on event Gδ, the sequence {W k
1 (s

k
1)}k∈[K] produced by644

Algorithm 4 are all greater than or equal to W ∗
1 (s

k
1), i.e.,645

W k
1 (s

k
1) = Eβ(ν

k
1 (s

k
1)) ≥ Eβ(ν

∗
1 (s

k
1)) =W ∗

1 (s
k
1),∀k ∈ [K].

Proof. The proof follows from induction. Fix k ∈ [K]. For h = H we have that for any (s, a)646

Jk
H(s, a) = Eβ(η

k
H(s, a)) = Eβ(O

∞
ckH(s,a)(R̂

k
H(s, a)))

≥ Eβ(RH(s, a)) = J∗
H(s, a),

where the inequality is due to Lemma 7 and the fact thatRH(s, a) ∈ B∞(R̂H(s, a), ckH(s, a)) ∩D1.647

Thus W k
H(s) = maxa J

k
H(s, a) ≥ maxa J

∗
H(s, a) = W ∗

H(s),∀s. Now suppose for h + 1 ∈648

[2 : H], it holds that W k
h+1(s) ≥ W ∗

h+1(s),∀s. For each (s, a), we applying Lemma ?? with649

θ = Ph(s, a), θ
′ = P̂ k

h (s, a), F = νkh+1, G = Rh(s, a) and G′ = R̂k
h(s, a) to obtain650

[Phν
k
h+1](s, a) ∗ fRh(s,a) ⪯ O∞

ckh(s,a)
([P̂ k

h ν
k
h+1](s, a) ∗ fR̂k

h(s,a)
)

since ckh(s, a) =
√

2S
Nk

h (s,a)∨1
ι +

√
1

2(Nk
h (s,a)∨1)

ι ≥
∥∥∥Ph(·|s, a)− P̂ k

h (·|s, a)
∥∥∥
1

+651 ∥∥∥Rh(s, a)− R̂k
h(s, a)

∥∥∥
∞

for h ∈ [H − 1]. It follows that652

Jk
h (s, a) = Eβ(O

∞
ckh(s,a)

([P̂ k
h ν

k
h+1](s, a) ∗ fR̂k

h(s,a)
))

≥ Eβ([Phν
k
h+1](s, a) ∗ fRh(s,a))

= Eβ(Rh(s, a)) · [PhW
k
h+1](s, a)

≥ Eβ(Rh(s, a)) · [PhW
∗
h+1](s, a)

= J∗
h(s, a),∀(s, a),

where the first inequality is due to the property (M), and the second inequality follows from the653

induction assumption. The second equality is due to Equation ??. Finally it follows that for any s,654

W k
h (s) = max

a
Jk
h (s, a) ≥ max

a
J∗
h(s, a) =W ∗

h (s).

The induction is completed.655

Step 2: Regret decomposition.656

Lemma 11. For any Fi ∈ D and any θ, θ′ ∈ ∆n with any n ≥ 2, it holds that657 ∥∥∥∥∥
n∑

i=1

θiFi −
n∑

i=1

θ′iFi

∥∥∥∥∥
∞

≤ ∥θ − θ′∥1 .
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Proof. ∥∥∥∥∥
n∑

i=1

θiFi −
n∑

i=1

θ′iFi

∥∥∥∥∥
∞

= sup
x∈R

∣∣∣∣∣
n∑

i=1

(θiF − θ′i)Fi(x)

∣∣∣∣∣
≤ sup

x∈R

n∑
i=1

|θi − θ′i|Fi(x)

≤
n∑

i=1

|θi − θ′i|

= ∥θ − θ′∥1 .
658

We define ∆k
h ≜W k

h −Wπk

h = Eβ(ν
k
h)− Eβ

(
νπ

k

h

)
∈ DS

h with659

Dh ≜ [1− exp(β(H + 1− h)), exp(β(H + 1− h))− 1]

and δkh ≜ ∆k
h(s

k
h). For any (s, h) and any π, we let Pπ

h (·|s) := Ph(·|s, πh(s)). Observe that the660

regret can be bounded as661

Regret(K) =

K∑
k=1

1

β
log
(
W ∗

1 (s
k
1)
)
− 1

β
log
(
Wπk

1 (sk1)
)

=

K∑
k=1

1

β
log
(
W ∗

1 (s
k
1)
)
− 1

β
log
(
V k
1 (sk1)

)
+

1

β
log
(
W k

1 (s
k
1)
)
− 1

β
log
(
V πk

1 (sk1)
)

≤
K∑

k=1

1

β
log
(
W k

1 (s
k
1)
)
− 1

β
log
(
Wπk

1 (sk1)
)

≤ 1

β

K∑
k=1

W k
1 (s

k
1)−Wπk

1 (sk1) =
1

β

K∑
k=1

δk1 .

We can decompose δkh as follows662

δkh = Eβ

(
νkh(s

k
h)
)
− Eβ

(
νπ

k

h (skh)
)

= Eβ

(
Ockh

([
P̂πk

h ηkh+1

]
(skh) ∗ fR̂πk

h (skh)

))
− Eβ

([
Pπk

h νπ
k

h+1

]
(skh) ∗ fRπk

h (skh)

)
= Eβ

(
Ockh

([
P̂πk

h νkh+1

]
(skh) ∗ fR̂πk

h (skh)

))
− Eβ

([
P̂πk

h νkh+1

]
(skh) ∗ fR̂πk

h (skh)

)
︸ ︷︷ ︸

(a)

+ Eβ

([
P̂πk

h νkh+1

]
(skh) ∗ fR̂πk

h (skh)

)
− Eβ

([
P̂πk

h νkh+1

]
(skh) ∗ fRπk

h (skh)

)
︸ ︷︷ ︸

(b)

+ Eβ

([
P̂πk

h νkh+1

]
(skh) ∗ fRπk

h (skh)

)
− Eβ

([
Pπk

h νkh+1

]
(skh) ∗ fRπk

h (skh)

)
︸ ︷︷ ︸

(c)

+ Eβ

([
Pπk

h νkh+1

]
(skh) ∗ fRπk

h (skh)

)
− Eβ

([
Pπk

h νπ
k

h+1

]
(skh) ∗ fRπk

h (skh)

)
︸ ︷︷ ︸

(d)

.

Using the Lipschitz property of EERM,663

(a) ≤ LH+1−h

∥∥∥O∞
ckh

([
P̂πk

h νkh+1

]
(skh) ∗ fR̂πk

h (skh)

)
−
[
P̂πk

h νkh+1

]
(skh) ∗ fR̂πk

h (skh)

∥∥∥
∞

≤ LH+1−hc
k
h

= (exp(β(H + 1− h))− 1)

(√
1

2(Nk
h ∨ 1)

ι+

√
S

(Nk
h ∨ 1)

ι

)
.
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Define ekh ≜
∥∥∥P̂ k

h (s
k
h)− Pπk

h (skh)
∥∥∥
1
. We can bound (b) as664

(b) =
(
Eβ(R̂πk

h (skh))− Eβ(Rπk

h (skh))
)
· Eβ

([
P̂ k
h ν

k
h+1

]
(skh)

)
≤ L1

∥∥∥R̂πk

h (skh)−Rπk

h (skh))
∥∥∥
∞

[
P̂ k
hW

k
h+1

]
(skh)

≤ (exp(β)− 1)

√
1

2(Nk
h ∨ 1)

ι exp(β(H − h))

≤ (exp(β(H + 1− h))− 1)

√
1

2(Nk
h ∨ 1)

ι.

We bound (c) as665

(c) = Eβ(Rπk

h (skh))
(
Eβ

([
P̂πk

h νkh+1

]
(skh)

)
− Eβ

([
Pπk

h νkh+1

]
(skh)

))
≤ exp(β)LH−h

∥∥∥[P̂πk

h νkh+1

]
(skh)−

[
Pπk

h νkh+1

]
(skh)

∥∥∥
∞

≤ exp(β)(exp(β(H − h))− 1)
∥∥∥P̂πk

h (skh)− Pπk

h (skh)
∥∥∥
1

≤ (exp(β(H + 1− h))− 1)

√
S

(Nk
h ∨ 1)

ι,

where the second inequality is due to Lemma 11. By the linearity of EERM, We bound (d) as666

(d) = Eβ(Rπk

h (skh))
[
Pπk

h (V k
h+1 − V πk

h+1)
]
(skh)

= Eβ(Rπk

h (skh))
[
Pπk

h ∆k
h+1

]
(skh)

= Eβ(Rπk

h (skh))(ϵ
k
h + δkh+1),

where ϵkh ≜ [Pπk

h ∆k
h+1](s

k
h)−∆k

h+1(s
k
h+1) is a martingale difference sequence with ϵkh ∈ 2Dh+1667

a.s. for all (k, h) ∈ [K]× [H]. Since668

(b) + (c) ≤ LH+1−hc
k
h,

we can bound δkh recursively as669

δkh ≤ 2LH+1−hc
k
h + Eβ(Rπk

h (skh))(ϵ
k
h + δkh+1).

Repeating the procedure, we can get670

δk1 ≤ 2

H−1∑
h=1

LH+1−h

h−1∏
i=1

Eβ(Rπk

i (ski ))c
k
h +

H−1∑
h=1

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h +

H−1∏
i=1

Eβ(Rπk

i (ski ))δ
k
H

≤ 2

H−1∑
h=1

(exp(β(H + 1− h))− 1) exp(β(h− 1))ckh +

H−1∑
h=1

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h +

H−1∏
i=1

Eβ(Rπk

i (ski ))δ
k
H

≤ 2

H−1∑
h=1

(exp(βH)− 1)ckh +

H−1∑
h=1

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h +

H−1∏
i=1

Eβ(Rπk

i (ski ))δ
k
H .

It follows that671

K∑
k=1

δk1 ≤ 2(exp(β(H+1))−1)
K∑

k=1

H−1∑
h=1

ckh+

K∑
k=1

H−1∑
h=1

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h+

K∑
k=1

H−1∏
i=1

Eβ(Rπk

i (ski ))δ
k
H .
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Step 3: Bound each term. The first term can be bounded as672

2(exp(β(H + 1))− 1)

K∑
k=1

H−1∑
h=1

ckh = 2(exp(β(H + 1))− 1)

H−1∑
h=1

K∑
k=1

(√
1

2(Nk
h ∨ 1)

ι+

√
S

(Nk
h ∨ 1)

ι

)

≤ 3(exp(β(H + 1))− 1)

H−1∑
h=1

√
2S2AKι

= 3(exp(β(H + 1))− 1)
√
2S2AKι.

Observe that673

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h ∈ exp(βh)Dh = exp(βh)[1− exp(β(H + 1− h)), exp(β(H + 1− h))− 1]

⊆ [1− exp(β(H + 1)), exp(β(H + 1))− 1],

thus we can bound the second term by Azuma-Hoeffding inequality: with probability at least 1− δ′,674

the following holds675

K∑
k=1

H−1∑
h=1

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h ≤ (exp(β(H + 1))− 1)

√
2KH log(1/δ′).

We have676

K∑
k=1

H−1∏
i=1

Eβ(Rπk

i (ski ))δ
k
H ≤

K∑
k=1

exp(β(H − 1))L1c
k
H

≤
K∑

k=1

exp(β(H − 1))(exp(β)− 1)

(√
1

2(Nk
h ∨ 1)

ι+

√
S

(Nk
h ∨ 1)

ι

)
≤ 1.5(exp(βH)− 1)

√
2S2AKι.

Using a union bound and let δ = δ′ = δ̃
2 , we have that with probability at least 1− δ,677

Regret(K) ≤ 1

β

(
4.5(exp(β(H + 1))− 1)

√
2S2AKι+ (exp(β(H + 1))− 1)

√
2KHι

)
= Õ

(
exp(βH)− 1

βH
H
√
HS2AT

)
,

where ι ≜ log(4SAT/δ).678

D.2 Proof of Theorem 2679

We only prove the case that the reward is random. The proof can be readily adapted to the deterministic680

reward case.681

Distributional analysis vs non-distributional analysis By Proposition 5, Algorithm 5 is equivalent682

to Algorithm 6. Since Algorithm 6 is a classical algorithm, it is thus natural to use the classical683

analysis to derive the regret bounds. That being said, we will show that the distributional analysis684

yields a tighter bound than the non-distributional analysis. In particular, the latter one yields a regret685

bound that explodes as β approaches zero, but our analysis can recover the desired order when686

reduced to the risk-neutral setting.687

Step 1: Verify optimism. Lemma 6 suggests that Gδ holds with probability 1 − δ, therefore it688

suffices to prove the theorem conditioned on Gδ .689

Lemma 12 (Optimistic transition model). Fix (s, a, k, h). For any P ∈ B1(P̂
k
h (s, a), c

k
h,1(s, a)), we690

have691

Eβ

([
P̃ k
h ν

k
h+1

]
(s, a)

)
≥ Eβ

([
Pνkh+1

]
(s, a)

)
.
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Lemma 13 (Optimism). Conditioned on event Gδ, the sequence {W k
1 (s

k
1)}k∈[K] produced by692

Algorithm 5 are all greater than or equal to W ∗
1 (s

k
1), i.e.,693

W k
1 (s

k
1) = Eβ(ν

k
1 (s

k
1)) ≥ Eβ(ν

∗
1 (s

k
1)) =W ∗

1 (s
k
1),∀k ∈ [K].

Proof. The proof follows from induction. Fix k ∈ [K]. For h = H , we have that for any (s, a)694

Jk
H(s, a) = Eβ(η

k
H(s, a)) = Eβ(O

∞
ckH,2(s,a)

(R̂k
H(s, a)))

≥ Eβ(RH(s, a)) = J∗
H(s, a),

where the inequality is due to Lemma 7 and the fact thatRH(s, a) ∈ B∞(R̂H(s, a), ckH,2(s, a))∩D1.695

Thus W k
H(s) = maxa J

k
H(s, a) ≥ maxa J

∗
H(s, a) =W ∗

H(s),∀s. Now suppose for h+ 1 ∈ [2 : H],696

it holds that W k
h+1(s) ≥W ∗

h+1(s),∀s. It follows that697

Jk
h (s, a) = Eβ

(
R̃k

h(s, a)
)
Eβ

([
P̃ k
h ν

k
h+1

]
(s, a)

)
≥ Eβ (Rh(s, a))Eβ

([
Phν

k
h+1

]
(s, a)

)
≥ Eβ (Rh(s, a))Eβ

([
Phν

∗
h+1

]
(s, a)

)
= J∗

h(s, a),∀(s, a),

where the first inequality is due to Lemma 12, and the second inequality follows from the induction698

assumption. Since for any s,699

W k
h (s) = max

a
Jk
h (s, a) ≥ max

a
J∗
h(s, a) =W ∗

h (s),

The induction is completed.700

Step 2: Regret decomposition. We define ∆k
h ≜W k

h −Wπk

h = Eβ(ν
k
h)−Eβ

(
νπ

k

h

)
∈ DS

h with701

Dh ≜ [1− exp(β(H + 1− h)), exp(β(H + 1− h))− 1]

and δkh ≜ ∆k
h(s

k
h). For any (s, h) and any π, we let Pπ

h (·|s) ≜ Ph(·|s, πh(s)). The regret can be702

bounded as703

Regret(K) =

K∑
k=1

1

β
log
(
W ∗

1 (s
k
1)
)
− 1

β
log
(
Wπk

1 (sk1)
)

=

K∑
k=1

1

β
log
(
W ∗

1 (s
k
1)
)
− 1

β
log
(
W k

1 (s
k
1)
)
+

1

β
log
(
W k

1 (s
k
1)
)
− 1

β
log
(
Wπk

1 (sk1)
)

≤
K∑

k=1

1

β
log
(
W k

1 (s
k
1)
)
− 1

β
log
(
Wπk

1 (sk1)
)

≤ 1

β

K∑
k=1

W k
1 (s

k
1)−Wπk

1 (sk1) =
1

β

K∑
k=1

δk1 .
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We can decompose δkh as follows704

δkh = Eβ(ν
k
h(s

k
h))− Eβ(ν

πk

h (skh))

= Eβ

(
R̃πk

h (skh)
)
Eβ

([
P̃ k
h ν

k
h+1

]
(skh)

)
− Eβ

(
Rπk

h (skh)
)
Eβ

([
Pπk

h νπ
k

h+1

]
(skh)

)
= Eβ

(
R̃πk

h (skh)
)
Eβ

([
P̃ k
h ν

k
h+1

]
(skh)

)
− Eβ

(
Rπk

h (skh)
)
Eβ

([
P̃ k
h ν

k
h+1

]
(skh)

)
︸ ︷︷ ︸

(a)

+ Eβ

(
Rπk

h (skh)
)
Eβ

([
P̃ k
h ν

k
h+1

]
(skh)

)
− Eβ

(
Rπk

h (skh)
)
Eβ

([
Pπk

h νkh+1

]
(skh)

)
︸ ︷︷ ︸

(b)

+ Eβ

(
Rπk

h (skh)
)
Eβ

([
Pπk

h νkh+1

]
(skh)

)
− Eβ

(
Rπk

h (skh)
)
Eβ

([
Pπk

h νπ
k

h+1

]
(skh)

)
︸ ︷︷ ︸

(c)

= Eβ

(
R̃πk

h (skh)
) [
P̃ k
hW

k
h+1

]
(skh)− Eβ

(
Rπk

h (skh)
) [
P̃ k
hW

k
h+1

]
(skh)︸ ︷︷ ︸

(a)

+ Eβ

(
Rπk

h (skh)
) [
P̃ k
hW

k
h+1

]
(skh)− Eβ

(
Rπk

h (skh)
) [
Pπk

h W k
h+1

]
(skh)︸ ︷︷ ︸

(b)

+ Eβ

(
Rπk

h (skh)
) [
Pπk

h W k
h+1

]
(skh)− Eβ

(
Rπk

h (skh)
) [
Pπk

h Wπk

h+1

]
(skh)︸ ︷︷ ︸

(c)

.

Both distributional analysis and non-distributional analysis seem to be viable to deal with (b), but the705

non-distributional analysis turns out to yield an unsatisfactory bound.706

Non-distributional analysis: Notice that W k
h+1(s) ≤ exp(β(H − h)), ∀s. Thus the following holds707

(b) = Eβ

(
Rπk

h (skh)
)([

P̃ k
hW

k
h+1

]
(skh)−

[
Pπk

h W k
h+1

]
(skh)

)
= Eβ

(
Rπk

h (skh)
)([(

P̃ k
h − Pπk

h

)
W k

h+1

]
(skh)

)
≤ exp(β)

∥∥∥P̃ k
h − Pπk

h

∥∥∥
1
max

s
W k

h+1(s)

≤ 2 exp(β(H + 1− h))ckh,1.
Distributional analysis: Using the Lipschitz property of EERM, we have708

(b)≤LH+1−h

∥∥∥[P̃ k
h ν

k
h+1

]
(skh)(· − rkh)−

[
Pπk

h νkh+1

]
(skh)(· − rkh)

∥∥∥
∞

≤ LH+1−h

∥∥∥P̃ k
h − Pπk

h

∥∥∥
1

≤ 2LH+1−hc
k
h,1

= 2(exp(β(H + 1− h))− 1)ckh,1,

where the second inequality is due to Lemma 11. The two types of analysis lead to different709

coefficients. Consider the risk-neutral setting β → 0. For the distributional analysis, the coefficient710

appears in the regret bound as711

lim
β→0

exp(β(H + 1− h))− 1

β
= H + 1− h,

in contrast, the non-distributional analysis leads to that712

lim
β→0

exp(β(H + 1− h))
β

=∞.

For small β, the distributional analysis recovers the order of the corresponding risk-neutral algorithm.713

However, the non-distributional analysis yields a exploding factor as β → 0. Therefore, it is not714
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proper to use the classical analysis to obtain the regret bound of Algorithm 6. We can bound (a) as715

(a) =
(
Eβ

(
R̃πk

h (skh)
)
− Eβ

(
Rπk

h (skh)
)) [

P̃ k
hW

k
h+1

]
(skh)

≤ L1

∥∥∥R̃πk

h (skh)−Rπk

h (skh)
∥∥∥
∞
· exp(β(H − h))

≤ (exp(β(H + 1− h))− 1)ckh,2,

where the second inequality follows from the DKW inequality and the definition of ckh,2. Term (c) is716

bounded as717

(c) = Eβ

(
Rπk

h (skh)
) [
Pπk

h (W k
h+1 −Wπk

h+1)
]
(skh)

= Eβ

(
Rπk

h (skh)
) [
Pπk

h ∆k
h+1

]
(skh)

= Eβ

(
Rπk

h (skh)
)
(ϵkh + δkh+1),

where ϵkh ≜ [Pπk

h ∆k
h+1](s

k
h)−∆k

h+1(s
k
h+1) is a martingale difference sequence with ϵkh ∈ 2Dh+1718

a.s. for all (k, h) ∈ [K]× [H]. Denote by ckh ≜ ckh,1+c
k
h,2. In summary, we can bound δkh recursively719

as720

δkh ≤ 2LH+1−hc
k
h + Eβ(Rπk

h (skh))(ϵ
k
h + δkh+1).

Repeating the procedure, we can get721

δk1 ≤ 2

H−1∑
h=1

LH+1−h

h−1∏
i=1

Eβ(Rπk

i (ski ))c
k
h +

H−1∑
h=1

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h +

H−1∏
i=1

Eβ(Rπk

i (ski ))δ
k
H

≤ 2

H−1∑
h=1

(exp(β(H + 1− h))− 1) exp(β(h− 1))ckh +

H−1∑
h=1

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h +

H−1∏
i=1

Eβ(Rπk

i (ski ))δ
k
H

≤ 2

H−1∑
h=1

(exp(βH)− 1)ckh +

H−1∑
h=1

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h +

H−1∏
i=1

Eβ(Rπk

i (ski ))δ
k
H .

It follows that722

K∑
k=1

δk1 ≤ 2(exp(β(H+1))−1)
K∑

k=1

H−1∑
h=1

ckh+

K∑
k=1

H−1∑
h=1

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h+

K∑
k=1

H−1∏
i=1

Eβ(Rπk

i (ski ))δ
k
H .

Step 3: Bound each term. The first term can be bounded as723

2(exp(β(H + 1))− 1)

K∑
k=1

H−1∑
h=1

ckh = 2(exp(β(H + 1))− 1)

H−1∑
h=1

K∑
k=1

(√
1

2(Nk
h ∨ 1)

ι+

√
S

(Nk
h ∨ 1)

ι

)

≤ 3(exp(β(H + 1))− 1)

H−1∑
h=1

√
2S2AKι

= 3(exp(β(H + 1))− 1)
√
2S2AKι.

Observe that724

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h ∈ exp(βh)Dh = exp(βh)[1− exp(β(H + 1− h)), exp(β(H + 1− h))− 1]

⊆ [1− exp(β(H + 1)), exp(β(H + 1))− 1],

thus we can bound the second term by Azuma-Hoeffding inequality: with probability at least 1− δ′,725

the following holds726

K∑
k=1

H−1∑
h=1

h∏
i=1

Eβ(Rπk

i (ski ))ϵ
k
h ≤ (exp(β(H + 1))− 1)

√
2KH log(1/δ′).
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We have727

K∑
k=1

H−1∏
i=1

Eβ(Rπk

i (ski ))δ
k
H ≤

K∑
k=1

exp(β(H − 1))L1c
k
H

≤
K∑

k=1

exp(β(H − 1))(exp(β)− 1)

(√
1

2(Nk
h ∨ 1)

ι+

√
S

(Nk
h ∨ 1)

ι

)
≤ 1.5(exp(βH)− 1)

√
2S2AKι.

Using a union bound and let δ = δ′ = δ̃
2 , we have that with probability at least 1− δ,728

Regret(K) ≤ 1

β

(
4.5(exp(β(H + 1))− 1)

√
2S2AKι+ (exp(β(H + 1))− 1)

√
2KHι

)
= Õ

(
exp(βH)− 1

βH
H
√
HS2AT

)
,

where ι ≜ log(4SAT/δ).729

In contrast, if we use non-distributional analysis, we will arrive at730

Regret(K) ≤ Õ
(
exp(βH)

β

√
HS2AT

)
,

which blows up as β → 0.731

D.3 Proof for regret lower bounds732

Notations. We define kl(p, q) := p log p
q + (1 − p) log 1−p

1−q as the KL divergence between two733

Bernoulli distributions with parameters p and q.734

D.3.1 Correction of Lower Bound735

[23] presents the following lower bound.736

Proposition 3 (Theorem 3,[23]). For sufficiently large K and H , the regret of any algorithm obeys

E[Regret(K)] ≳
e|β|H/2 − 1

|β|
√
T log T .

However, the lower bound itself and the proof are incorrect. The major mistake appears at the second737

inequality of the following statements in their proof738

E[Regret(K)] ≳
exp(βH/2)− 1

β

√
K log(K)

≳
exp(βH/2)− 1

β

√
KH log(KH).

The authors establish the second inequality based on the following fact739

Fact 2 (Fact 5,[23] ). For any α > 0, the function fα := eαx−1
x , x > 0 is increasing and satisfies740

limx→0 fα = α.741

In fact, we can only use Fact 2 to derive exp(βH/2)−1
β ≳ H , which combined with the first inequality742

yields743

E[Regret(K)] ≳ H
√
KH log(KH).

It is a weaker lower bound and does not feature the dependence on β. The best result we can get744

based on the original proof is that745

Proposition 4 (Correction of Theorem 3,[23] ). For sufficiently large K and H , the regret of any
algorithm obeys

E[Regret(K)] ≳
e|β|H/2 − 1

|β|
√
K logK.
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D.3.2 Proof of Theorem 3746

We introduce some notations here. We define the probability measure induced by an algorithm A747

and an MDP instanceM as748

PA M(FK+1) :=

K∏
k=1

PAk(Fk)M(IkH |sk1),

where PπM is the probability measure induced by a policy π andM, which is defined as749

PπM(IH |s1) :=
H∏

h=1

πh(ah|sh)PM
h (sh+1|sh, ah).

Note that the probability measure for the truncated historyHk
h can be obtained by marginalization750

PA M(Hk
h) = PA M(Fk)PAk(Fk)M(Ikh).

We denote by PA M and EA M the probability measure and expectation induced by A andM. For751

the sake of simplicity, the dependency on A andM may be dropped if it is clear in the context.752

Fact 3 (Lemma 1, [26]). Consider a measurable space (Ω,F) equipped with two distributions P1

and P2. For any F-measurable function Z : Ω→ [0, 1], we have

KL (P1,P2) ≥ kl (E1[Z],E2[Z]) ,

where E1 and E2 are the expectations under P1 and P2 respectively.753

Fact 4 (Lemma 5, [20]). LetM andM′ be two MDPs that are identical except for their transition
probabilities, denoted by Ph and P ′

h, respectively. Assume that we have ∀(s, a), Ph(· | s, a) ≪
P ′
h(· | s, a). Then, for any stopping time τ with respect to (Ik)k≥1 that satisfies PM[τ <∞] = 1

KL (PM,PM′) =
∑

(s,a,h)∈S×A×[H−1]

EM [Nτ
h (s, a)] KL (Ph(· | s, a), P ′

h(· | s, a)) .

Lemma 14. If ϵ ≥ 0, p ≥ 0 and p+ ϵ ∈ [0, 12 ], then kl(p, p+ ϵ) ≤ ϵ2

2p(1−p) ≤
ϵ2

p .754

Proof. Fix q ∈ [0, 1], let h(p) := kl(p, q). It is immediate that755

h′(p) = log
p

q
− log

1− p
1− q

,

h′′(p) =
1

p(1− p)
> 0.

Therefore h(p) is strictly convex, increasing in (q, 1) and decreasing in (0, q). By Taylor’s expansion,756

we have that757

h(p) = h(q) + h′(q)(p− q) + 1

2
h′′(r)(p− q)2 =

(p− q)2

2r(1− r)
for some r ∈ [p, q] (p < q) or r ∈ [q, p] (p > q). In particular, for any ϵ ≥ 0 such that q = p+ ϵ ≤ 1

2758

it follows that759

kl(p, p+ ϵ) =
(p− q)2

2r(1− r)
|q=p+ϵ =

ϵ2

2r(1− r)
≤ ϵ2

2p(1− p)
≤ ϵ2

p
,

where the first inequality follows from the fact that r 7→ r(1− r) is increasing in [p, p+ ϵ] ⊂ [0, 12 ]760

and the second inequality is due to that 1− p ≥ 1
2 .761

The proof of Theorem 3 adopts the same construction of hard MDP class C as [20].762

Proof. We consider the case that β > 0. Fix an arbitrary algorithm A . We introduce three types of763

special states for the hard MDP class: a waiting state sw where the agent starts and may stay until764

stage H̄ , after that it has to leave; a good state sg which is absorbing and is the only rewarding state;765

a bad state sb that is absorbing and provides no reward. The rest S − 3 states are part of a A-ary tree766
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of depth d− 1. The agent can only arrive sw from the root node sroot and can only reach sg and sb767

from the leaves of the tree.768

Let H̄ ∈ [H − d] be the first parameter of the MDP class. We define H̃ := H̄ + d + 1 and769

H ′ := H + 1 − H̃ . We denote by L := {s1, s2, ..., sL̄} the set of L̄ leaves of the tree. For each770

u∗ := (h∗, ℓ∗, a∗) ∈ [d+ 1 : H̄ + d]× L×A, we define an MDPMu∗ as follows. The transitions771

in the tree are deterministic, hence taking action a in state s results in the a-th child of node s. The772

transitions from sw are defined as773

Ph (sw | sw, a) := I
{
a = aw, h ≤ H̄

}
and Ph (sroot | sw, a) := 1− Ph (sw | sw, a) .

The transitions from any leaf si ∈ L are specified as774

Ph (sg | si, a) := p+∆u∗ (h, si, a) and Ph (sb | si, a) := p−∆u∗ (h, si, a) ,

where ∆u∗ (h, si, a) := ϵI{(h, si, a) = (h∗, sℓ∗ , a
∗)} for some constants p ∈ [0, 1] and ϵ ∈775

[0,min(1−p, p)] to be determined later. p and ϵ are the second and third parameters of the MDP class.776

Observe that sg and sb are absorbing, therefore we have ∀a, Ph (sg | sg, a) := Ph (sb | sb, a) := 1.777

The reward is a deterministic function of the state778

rh(s, a) := I{s = sg, h ≥ H̃}.

Finally we define a reference MDPM0 which differs from the previous MDP instances only in that779

∆0(h, si, a) := 0 for all (h, si, a). For each ϵ, p and H̄ , we define the MDP class780

CH̄,p,ϵ :=M0 ∪ {Mu∗}u∗∈[d+1:H̄+d]×L×A.

The total expected ERM value of A is given by781

EA ,Mu∗

[
K∑

k=1

Uβ

(
H∑

h=1

rh(s
k
h, a

k
h)|πk

)]

= EA ,Mu∗

[
K∑

k=1

1

β
logEA ,Mu∗

[
exp

(
β

H∑
h=1

rh(s
k
h, a

k
h)

)]]

= EA ,Mu∗

 K∑
k=1

1

β
logEπk,Mu∗

exp
β H∑

h=H̃

I{skh = sg}


= EA ,Mu∗

[
K∑

k=1

1

β
logEπk,Mu∗

[
exp(βH ′I{sk

H̃
= sg})

]]

= EA ,Mu∗

[
K∑

k=1

1

β
log(exp(βH ′)Pπk,Mu∗ (s

k
H̃

= sg) + Pπk,Mu∗ (s
k
H̃

= sb))

]
,

where the second equality follows from the fact that the reward is non-zero only after step H̃ , the782

third equality is due to that the agent gets into absorbing state when h ≥ H̃ . Define xkh := (skh, a
k
h)783

for each (k, h) and x∗ := (sℓ∗ , a
∗), then it is not hard to obtain that784

Pπk,u∗
[
sk
H̃

= sg
]
=

H̄+d∑
h=1+d

pPπk,u∗
(
skh ∈ L

)
+ I {h = h∗}Pπk,u∗(xkh = x∗)ε

= p+ ϵPπk,u∗(xkh∗ = x∗).

For an MDPMu∗ , the optimal policy π∗,Mu∗ starts to traverse the tree at step h∗ − d then chooses785

to reach the leaf sl∗ and performs action a∗. The corresponding optimal value in any of the MDPs786

is V ∗,Mu∗ = 1
β log(exp(βH ′)(p + ϵ) + 1 − p − ϵ). Define pku∗ := Pπk,u∗(xkh∗ = x∗), then the787
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expected regret of A inMu∗ can be bounded below as788

EA ,Mu∗ [Regret(A ,Mu∗ ,K)]

= EA ,Mu∗

[
K∑

k=1

V ∗,Mu∗ − Uβ

(
H∑

h=1

rh(x
k
h)|πk

)]

= EA ,Mu∗

[
K∑

k=1

1

β
log

exp(βH ′)(p+ ϵ) + 1− p− ϵ
exp(βH ′)(p+ ϵpku∗) + 1− p− ϵpku∗

]

= EA ,Mu∗

[
K∑

k=1

1

β
log

(
1 +

ϵ(1− pku∗)(exp(βH ′)− 1)

exp(βH ′)(p+ ϵpku∗) + 1− p− ϵpku∗

)]

≥ EA ,Mu∗

[
K∑

k=1

1

β
log

(
1 +

ϵ(1− pku∗)(exp(βH ′)− 1)

1 + 1

)]

≥ EA ,Mu∗

[
exp(βH ′)− 1

4β
ϵ

K∑
k=1

(1− pku∗)

]

=
exp(βH ′)− 1

4β
ϵ

K∑
k=1

(1− EA ,Mu∗ [p
k
u∗ ])

=
exp(βH ′)− 1

4β
Kϵ

(
1− 1

K
EA ,Mu∗ [NK(u∗)]

)
.

The first inequality holds by setting p + ϵ ≤ exp(−βH ′). The second inequality holds by letting789

ϵ ≤ 2 exp(−βH ′) since log(1 + x) ≥ x
2 for x ∈ [0, 1]. The last equality follows from the fact that790

EA ,Mu∗ [p
k
u∗ ] = EA ,Mu∗ [Pπk,u∗(xkh∗ = x∗)] = PA ,u∗(xkh∗ = x∗) = EA ,u∗ [I{(xkh∗ = x∗)}]

and the definition of NK(u∗) :=
∑K

k=1 I{xkh∗ = x∗}.791

The maximum of the regret can be bounded below by the mean over all instances as792

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥ 1

H̄L̄A

∑
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K)

≥ exp(βH ′)− 1

4β
Kϵ

1− 1

L̄AKH̄

∑
u∗∈[d+1:H̄+d]×L×A

Eu∗ [NK(u∗)]

 .

Observe that it can be further bounded if we can obtain an upper bound on793 ∑
u∗∈[d+1:H̄+d]×L×A Eu∗ [NK(u∗)], which can be done by relating each expectation to the794

expectation under the reference MDPM0.795

By applying Fact 3 with Z = NK(u∗)
K ∈ [0, 1], we have796

kl

(
1

K
E0 [NK(u∗)] ,

1

K
Eu∗ [NK(u∗)]

)
≤ KL (P0,Pu∗) .

By Pinsker’s inequality, it implies that797

1

K
Eu∗ [NK(u∗)] ≤ 1

K
E0 [NK(u∗)] +

√
1

2
KL (P0,Pu∗).

SinceM0 andMu∗ only differs at stage h∗ when (s, a) = x∗, it follows from Fact 4 that798

KL (P0,Pu∗) = E0 [NK(u∗)] kl(p, p+ ε).
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By Lemma 14, we have kl(p, p+ ϵ) ≤ ϵ2

p for ϵ ≥ 0 and p+ ϵ ∈ [0, 12 ]. Consequently,799

1

K

∑
u∗∈[d+1:H̄+d]×L×A

Eu∗ [NK(u∗)]

≤ 1

K
E0

 ∑
u∗∈[d+1:H̄+d]×L×A

NK(u∗)

+
ϵ√
2p

∑
u∗∈[d+1:H̄+d]×L×A

√
E0 [NK(u∗)]

≤ 1 +
ϵ√
2p

√
L̄AKH̄,

where the second inequality is due to the Cauchy-Schwartz inequality and that800 ∑
u∗∈[d+1:H̄+d]×L×ANK(u∗) = K.801

It follows that802

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥ exp(βH ′)− 1

4β
Kϵ

1− 1

L̄AH̄
−

ϵ√
2p

√
L̄AKH̄

L̄AH̄

 .

Choosing ϵ =
√

p
2 (1−

1
LAH̄

)
√

LAH̄
K maximizes the lower bound803

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥
√
p

8
√
2

exp(βH ′)− 1

β

(
1− 1

L̄AH̄

)2√
L̄AKH̄.

Since S ≥ 6 andA ≥ 2, we have L̄ = (1− 1
A )(S−3)+ 1

A ≥
S
4 and 1− 1

L̄AH̄
≥ 1− 1

6
4 ·2

= 2
3 . Choose804

H̄ = H
3 and use the assumption that d ≤ H

3 to obtain that H ′ = H − d− H̄ ≥ H
3 . Now we choose805

p = 1
4 exp(−βH

′) and ϵ =
√

p
2 (1−

1
L̄AH̄

)
√

LAH̄
K ≤ 1

2
√
2
exp(−βH ′/2)

√
L̄AH̄
K ≤ 1

4 exp(−βH
′)806

if K ≥ 2 exp(βH ′)L̄AH̄ . Such choice of p and ϵ guarantees the assumption of Lemma 14 and that807

p+ ϵ ≤ exp(−βH ′), ϵ ≤ 2 exp(−βH ′). Finally we use the fact that
√
L̄AKH̄ ≥ 1

2
√
3

√
SAKH to808

obtain809

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥ 1

72
√
6

exp(βH/6)− 1

β

√
SAKH.

810

E Proof for Propositions811

For notational simplicity, we write πh1:h2
= {πh1

, πh1+1, · · · , πh2
} for two positive integers h1 <812

h2 ≤ H .813

Proof of Proposition 1. Notice that there exists some optimal policy for sub-problems at each step,
which will be shown in Proposition 2. Suppose that the truncated policy π∗

h:H is not optimal for this
subproblem, then there exists an optimal policy π̃h:H such that

∃s̃h occurring with positive probability, V π̃h:H

h (s̃h) > V
π∗
h:H

h (s̃h).

There exists a state s̃h−1 which occurs with positive probability and Ph−1(s̃h|s̃h−1, π
∗
h−1(s̃h−1) > 0814

such that815

Uβ(ν
π∗
h−1,π̃h:H

h−1 (s̃h−1)) = Uβ(Rh−1(s̃h−1, π
∗
h−1(s̃h−1))) + Uβ

([
Ph−1ν

π̃h:H

h

]
(s̃h−1, π

∗
h−1(s̃h−1)

)
> Uβ(Rh−1(s̃h−1, π

∗
h−1(s̃h−1))) + Uβ

([
Ph−1ν

π∗
h:H

h

]
(s̃h−1, π

∗
h−1(s̃h−1)

)
= Uβ

(
ν
π∗
h−1:H

h−1 (s̃h−1)
)
,

where the inequality is due to the strict monotonicity preserving property of Uβ . It follows that816

{π∗
h−1, π̃h, , ..., π̃H} is a strictly better policy than {π∗

h−1, π
∗
h, , ..., π

∗
H} for the subproblem from817
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h − 1 to H . Suppose for h′ + 1 ∈ [2, h − 1], {π∗
h′+1, ..., π̃h, , ..., π̃H} is a strictly better policy818

than {π∗
h′+1, ..., π

∗
h, , ..., π

∗
H} for the sub-problem from h′ + 1 to H . Similarly we can obtain819

that {π∗
h′ , ..., π̃h, , ..., π̃H} is also a strictly better policy than {π∗

h′ , ..., π∗
h, , ..., π

∗
H}. Repeating the820

above arguments finally yields that {π∗
1 , π

∗
2 , ..., π̃h, , ..., π̃H} is a strictly better policy than π∗ =821

{π∗
1 , π

∗
2 , ..., π

∗
H}. This is contradicted to the assumption that π∗ = {π∗

1 , π
∗
2 , ..., π

∗
H} is an optimal822

policy.823

Proof of Proposition 2. Throughout the proof we drop the dependence on ∗ for the ease of notation.
The proof follows from induction. Notice that by distributional Bellman equation, ηh(sh) and Vh(sh)
are the return distribution at state sh at step h following policy πh:H and value function respectively.
At step H , it is obvious that πH is the optimal policy that maximizes the ERM value at the final
step for each state sH ∈ S. Now fix h ∈ [H − 1], assume that πh+1:H is the optimal policy for the
subproblem

V
πh+1:H

h+1 (sh+1) = max
π′
h+1:H

V
π′
h+1:H

h+1 (sh+1),∀sh+1.

In other words,824

Uβ(νh+1(sh+1)) = Uβ(ν
πh+1:H

h+1 (sh+1)) = max
π′
h+1:H

Uβ(ν
π′
h+1:H

h+1 (sh+1))

≥ Uβ(ν
π′
h+1:H

h+1 (sh+1)),∀π′
h+1:H ,∀sh+1.

It follows that ∀sh,825

Vh(sh) = Qh(sh, πh(sh)) = Uβ(ν
πh:H

h (sh)) = max
ah

Uβ(ηh(sh, ah))

= max
ah

{Uβ(Rh(sh, ah)) + Uβ ([Phνh+1] (sh, ah))}

≥ max
ah

{
Uβ(Rh(sh, ah)) + max

π′
h+1:H

Uβ

([
Phν

π′
h+1:H

h+1

]
(sh, ah)

)}

= max
π′
h

{
Uβ(Rh(sh, π

′
h(sh))) + max

π′
h+1:H

Uβ

([
Phν

π′
h+1:H

h+1

]
(sh, ah)

)}
= max

π′
h:H

{
Uβ(Rh(sh, π

′
h(sh))) + Uβ

([
Phν

π′
h+1:H

h+1

]
(sh, π

′
h(sh))

)}
= max

π′
h:H

Uβ

(
ν
π′
h+1:H

h (sh)
)
.

Hence Vh is the optimal value function at step h and πh:H is the optimal policy for the sub-problem826

from h to H . The induction is completed.827

Definition 1. For two algorithms A and Ã , we say that A is equivalent to Ã (vice versa) if for any828

k ∈ [K], any Fk it holds that A (Fk) = Ã (Fk).829

It follows from the induction that the whole history/trajectory FK+1 generated by the interaction830

between each of two equivalent algorithms and any MDP instance follows the same distribution.831

Moreover, the two algorithms possess equal regret.832

Proposition 5 (Equivalence between ROVI and RODI-MB). Algorithm 5 (Algorithm 2) is equivalent833

to Algorithm 6 (Algorithm 3).834

Proof. We only prove the case that β > 0. The case that β < 0 follows analogously. Fix an835

arbitrary k ∈ [K] and Fk = {s11, a11, R1
1, · · · , sk−1

H , ak−1
H , Rk−1

H }. Denote by A (Ã ) and {πk
h}836

({π̃k
h}) Algorithm 6 (Algorithm 5) and the associated policy sequence. It suffices to prove that πk837

coincides with π̃k for the same history Fk. By the definition of the two algorithms, we have838

π̃k
h(s) = argmax

a
Qk

h(s, a) = Uβ(η
k
h(s, a)), π

k
h(s) = argmax

a
Jk
h (s, a).

If Jk
h (s, a) = Eβ(η

k
h(s, a)) = exp(βQk

h(s, a)) for any (s, a), then πk
h = π̃k

h due to the monotonicity839

of the exponential function. We will prove that Jk
h (s, a) = Eβ(η

k
h(s, a)) by the induction. Notice840

34



that Jk
H(s, a) = Eβ(η

k
H(s, a)). Assume that Jk

h (s, a) = Eβ(η
k
h(s, a)) for some h ∈ [H]. It follows841

that πk
h = π̃k

h and842

W k
h (s) = max

a
Jk
h (s, a) = Jk

h (s, π
k
h(s)) = Eβ(η

k
h(s, π

k
h(s))) = Eβ(η

k
h(s, π̃

k
h(s)))

= Eβ(ν
k
h(s)).

Given the same history Fk, the two algorithms share the empirical transition model P̂ k
h−1, the843

empirical reward distribution R̂k
h−1, the count Nk

h−1, and the optimism constants ckh−1,1, ckh−1,2.844

Therefore they also share the optimistic transition model P̃ k
h−1 as well as the optimistic reward845

distribution R̃k
h−1. According to the update formula of Algorithm 6, we have that for any (s, a)846

Jk
h−1(s, a) = Eβ

(
R̃k

h−1(s, a)
) [
P̃ k
h−1W

k
h

]
(s, a) = Eβ

(
R̃k

h−1(s, a)
)
Eβ

([
P̃ k
h−1ν

k
h

]
(s, a)

)
= Eβ

([
B(P̃ k

h−1, R̃k
h−1)ν

k
h

]
(s, a)

)
= Eβ

(
ηkh−1(s, a)

)
.

Thus the proof for the case of random reward is completed. The proof for the case of deterministic847

reward follows analogously.848

849
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