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Abstract

We consider finite episodic Markov decision processes aiming at the entropic risk
measure (EntRM) of return for risk-sensitive control. We identify two properties of
the EntRM that enable risk-sensitive distributional dynamic programming. We pro-
pose two novel distributional reinforcement learning (DRL) algorithms, including
a model-free one and a model-based one, that implement optimism through two

different schemes. We prove that both of them attain O (2 “5 D=1 H\/HS?AT)

regret upper bound, where S is the number of states, A the number of states, H
the time horizon and 7' the number of total time steps. It matches RSVI2 proposed
in [22] with a much simpler regret analysis. To the best of our knowledge, this is
the first regret analysis of DRL, which theoretically verifies the efficacy of DRL
for risk-sensitive control. Finally, we improve the existing lower bound by proving

a tighter bound of Q(%H VSAT) for § > 0 case, which recovers the
tight lower bound Q(H v/ SAT) in the risk-neutral setting.

1 Introduction

Standard reinforcement learning (RL) [45] seeks to find an optimal policy that maximizes the
expectation of return. It is also called risk-neutral RL since the objective is the mean functional of
the return distribution. However, in some high-stakes applications including finance [[15} 6], medical
treatment [21]] and operations [16]] etc, the decision-maker tends to be risk-sensitive with the goal of
maximizing some risk measure of return distribution.

In this paper, we consider the problem of optimizing the exponential risk measure (EntRM) in the
episodic and finite MDP setting for risk-sensitive control. The entropic risk measure can trade-off
between the expectation and the variance, and adjusts the risk-sensitiveness by control a risk parameter
(see Equation |I|) Ever since the seminal work of [[29]], risk-sensitive RL based on the EntRM has
been applied across a wide range of domains [43l |37} [27]. Most of the existing approaches, however,
involve complicated algorithmic design to deal with the non-linearity of the EntRM.

Distributional reinforcement learning (DRL) [4] has demonstrated its superior performance over
traditional methods in some difficult tasks [14} [13]] under risk-neutral setting. Different from the
value-based approaches, it learns the whole return distribution instead of a real-valued value function.
Given the entire return distribution, it is natural to leverage the distributional information to optimize
a risk measure other than expectation [[13} 44, |33]]. Despite of the intrinsic connection between DRL
and risk-sensitive RL, it is surprising that existing works on risk-sensitive control via DRL approaches
([L3,134, [1]) lack regret analysis. Consequently, it is challenging to evaluate and improve these DRL
algorithms in terms of sample-efficiency, which brings about a reasonable question

Can distributional reinforcement learning attain near-optimal regret for risk-sensitive control?
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In this work, we answer this question positively by providing two DRL algorithms with provably
regret guarantees. We devise two novel DRL algorithms with principled exploration schemes for
risk-sensitive control in the tabular MDP setting. In particular, the proposed algorithms implement
the principle of optimism in the face of uncertainty (OFU) at the distributional level to balance the
exploration-exploitation trade-off. By providing the first regret analysis of DRL, we theoretically
verifies the efficacy of DRL for risk-sensitive control. Therefore, our work bridge the gap between
DRL and risk-sensitive RL with regard to sample complexity.

Main contributions. We summarize our main contributions in the following.

1. We build a risk-sensitive distributional dynamic programming (RS-DDP) framework. To be more
specific, we choose the entropic risk measure (EntRM) of the return distribution as our objective. By
identifying two key properties of EntRM, We establish distributional Bellman optimality equation for
risk-sensitive control.

2. We propose two DRL algorithms that enforce the OFU principle in a distributional fashion through
two different schemes. We provide O( % H+/S5? AK) regret upper bound, which matches
the best existing result of RSVI2 in [22]]. It is the first regret analysis of DRL algorithm in the
finite episodic MDP in the risk-sensitive setting. Compared to [22]], our algorithm does not involve
complicated bonus design, and our analysis are conceptually cleaner and easier to interpret.

3. We fill the gaps in the proof of lower bound in [23]]. To the best of our knowledge, only
implies a lower bound Q(% V/K) rather the claimed bound Q(% VT). The
resulting lower bound is independent of S and A and is loose with a factor of v/H. We overcome

these issues by proving a tight lower bound of Q(C"p(ﬁ;{%[{\/ SAT) for B > 0. Note that the
lower bound is tight in the risk-neutral setting (3 — 0).

Related work. Following the paper [4]], DRL has witnessed a rapid growth of study in literature
[T4] 2 32]]. Most of these works focus on improving the performance in the risk-neutral
setting, with a few exceptions [1ll. However, none of these works study the sample complexity.

A rich body of work studies risk-sensitive RL with the EntRM [[7, [8], [10} 9, 3, [T}, 12} [18} [17} [19}
24, 33| [38] 39, [42], [43]). In particular, [29] is the first to introduce the ERM as risk-
sensitive objective in MDP. However, they either assume known transition and reward or consider
infinite-horizon setting without sample-complexity considerations.

Two works are closely related to ours under precisely the same setting. is the first to
study the risk-sensitive episodic MDP, which provides the first algorithms and regret guarantees.
Nevertheless, the regret upper bounds contain a dispensable factor of exp(|3|H?). Additionally, their
lower bound proof contains mistakes, and the corrected proof suggests a weaker bound. [22] improves
the algorithm by removing the additional O (exp(|3|H?)) factor. However, the regret analysis is
complicated, and the lower bound is not fixed. A very recent work ([[1]]) independently proposes a
risk-sensitive DDP framework, but their work is fundamentally different from ours. The risk measure
considered in [1] is the conditional value at risk (CVaR), and they focus on the infinite horizon setting.
Due to the space limit, we provide detailed comparisons with 2210 in Appendix [A]

2 Preliminaries

Notations. We write [M : N| = {M, M + 1,..., N} and [N] £ [1 : N] for any positive integers
M < N. We adopt the convention that /" a; £ 0if n > mand [[[~, a; £ 1ifn > m. We
use I{-} to denote the indicator function. For any = € R, we define [z]* = max{z,0}. We define
the step function with parameter c as 1.(z) = I{x > c}. Note that ). represents the CDF of a
deterministic variable taking value c. We denote by Z([a, b]), Za and 2 the set of distributions
supported on [a, b], [0, M] and the set of all distributions respectively. For a random variable (r.v.) X,
we use E[X] and V[X] to denote its expectation and variance. For two r.v.s, we denote by X 1Y if
X is independent of Y. We use O(-) to denote O(-) omitting logarithmic factors.

Episodic MDP.  An episodic MDP is identified by M £ (S, A, (P;,) ne[d]> (Ru)ne(m), H), where
S is the state space, A the action space, P}, : S x Ax — A(S) the probability transition kernel at
step h, Ry, : S x A — 2([0,1]) the collection of reward distributions at step h and H the length of
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one episode. The agent interacts with the environment for K episodes. At the beginning of episode k,
Nature selects an initial state s¥ arbitrarily. In step A, the agent takes action aﬁ and observes random
reward Ry (sf,af) ~ Ry(sk,af) and reaches the next state sy, ~ Py(:|sf,a)). The episode

terminates at H + 1 with R, 41 = 0, then the agent proceeds to next episode.

For each (k,h) € [K] x [H], we denote by HF £ (s},al,s},a},... s}, aly,.... s, af) the

(random) history up to step h episode k. We define F;, = H?{l as the history up to episode
k — 1. We describe the interaction between the algorithm and MDP in two levels. In the level of
episode, we define an algorithm as a sequence of function &/ £ (7,) ke[K]» €ach mapping Fy to
a policy <7, (F) € II. We denote by 7% £ 7, (F}) the policy at episode k. In the level of step, a
(deterministic) policy 7 is defined as a sequence of functions 7 = (7, ) ey With m, : S — A(A).

Entropic risk measure. EntRM is a well-known risk measure in risk-sensitive decision-making,
including mathematical finance [25]], Markovian decision processes [3]. The EntRM value of a r.v.
X ~ F with coefficient 5 # 0 is defined as

1 1

U3(X) 2 3 tog(Ex-rloxp(8X)) = 5 ot [ exp(po)ar(o)).
R

With slight abuse of notations, we write Ug(F') = Ug(X) for X ~ F. For $ with small absolute

value, using Taylor’s expansion we have

Us(X) = EIX] + SV[X] + O(8?). m

Hence for a decision-maker who aims at maximizing the EntRM value, she tends to be risk-seeking
(favoring high uncertainty in X) if 5 > 0 and risk-averse (favoring low uncertainty in X) if 5 < 0.
| 8| controls the risk-sensitivity. It exactly recovers mean as the risk-neutral objective when 3 — 0.

3 Risk-sensitive Distributional Dynamic Programming

[4}, 140] has discussed the infinite-horizon distributional dynamic programming in the risk-neutral
setting, which will be referred to as the classical DDP. There is a big gap between the risk-sensitive
MDP and the risk-neutral one. In this section, we establish the novel DDP framework for risk-sensitive
control.

We start with defining the return for a policy 7 starting from state-action pair (s, a) at step h
H

Z7(s,a) £ > Ru(sn,an), sn = s,an = (sn), sn41 ~ Pur(:[snr, an).
h'=h

Define Y;"(s) £ Z7(s,mx(s)). There are three sources of randomness in Z7 (s, a): the reward
Ry, (s, a), the transition P™ and the next-state return Y}, ; (s51). Denote by /7 (s) and 7} (s, a) the
cumulative distribution function (CDF) corresponding to Y, (s) and Z] (s, a) respectively. To the

end of risk-sensitive control, we define the action-value function of a policy 7 at step h as Q7 (s, a) =
Us(Zf (s,a)), i.e. the EntRM value of the return distribution, for each (s, a, h) € S x A x [H]. The

value function is defined as V;™(s) £ QT (s, mx(s)) = Us(Y;"(s)).

We focus on the control setting, in which the goal is to find an optimal policy to maximize the value
function, i.e.

7 £arg  max VT (s).
(71,...,mpr )€l

We write m = (71, ..., T ) to emphasize that it is a multi-stage maximization problem. Direct search
suffers exponential computational complexity. In the risk-neutral case, the principle of optimality
holds, i.e.,the optimal policy of tail sub-problem is the tail optimal policy [5]. Therein the multi-stage
maximization problem can be reduced to a multiple single-stage maximization problem. However,
the principle does not always hold for general risk measures. For example, the optimal policy for
CVaR may be non-Markovian/history-dependent ([41])).

We identify two key properties of EntRM, upon which we retain the principle of optimality.
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Lemma 1. The EntRM satisfies the following properties:

» Additive: X1Y = Ug(X +Y) =Up(X) +Us(Y), VX,Y.

* Monotonicity-preserving: VFy, F», G € 9, V0 € [0,1],

Ug(F3) <Ug(F1) = Usg((1 —0)Fy, +0G) <Ug((1 —0)F1 + 6G).
The proof is given in Appendix [B] In particular, the additivity entails that the EntRM value of the
current return Z7 (s, a) equals the sum of the immediate value of Ry, (s, a) and the value of the future
return Y;7 ('), i.e.,
Us(Zj(s,a)) = Us(Rn(s,a)) + Us(Yy (s").

The monotonicity-preserving property together with the additivity suggests that the optimal future
return Y;*(s’) consists in the optimal current return Z;: (s, a)

Zj(s,a) = Rp(s,a) + Y (s').
These observations implies the principle of optimality.

Proposition 1 (Principle of optimality). Let 7* = {n}, 75, ..., 7} } be an optimal policy and assume
when we visit some state s using policy w at time-step h with positive probability. Consider the
sub-problem defined by the the following maximization problem

ma V7 (5) = Up(Ri(5, @) + Up ([Pl (5,0)).
Then the truncated optimal policy {7}, 7y 1, ..., 5 } is optimal for this sub-problem.

The proof is given in Appendix [E} It further induces the distributional Bellman optimality equation.

Proposition 2 (Distributional Bellman optimality equation). For arbitrary initial state s, the optimal
policy (7}, ) ne(m) is given by the following backward recursions:

Virg1(s) = Yo, My (s, 0) = [Pavyal(s, @) * fu(-]s; ),
i (s) = argmax @, (s, a) = U (ni (s, a)), vii(s) = mjy (s, w5 (5)),

2)
where f1,(s, a) is the probability density function of Ry (s, a). Furthermore, the sequence (n};)he[H
and (v}, )ne|m) are the sequence of distributions corresponding to the optimal returns at each step.

The proof is given in Appendix [E]l For simplicity, we define the distributional Bellman operator
B(P,R): 2° — 2°*4 with associated model (P, R) = (P(s,a), R(s,a))(s,a)csx.A

[B(P,R)v|(s,a) = [Pv](s,a) * fr(-|s,a), V(s,a) € S x A.
Hence we can rewrite Equation [2]in a compact form:

Vire1(s) = Yo, 14 (s,a) = [B(Pr, Ra)vi14](s, a), ;
7 (s) = arggleaj(Uﬁ(nZ(s,a)), vi(s) = np(s,7m1(s)),Y(s,a,h) € S x A x [HJ. 3)

Finally, we define the regret of an algorithm .27 interacting with an MDP M for K episodes as
K k
Regret(/, M, K) £ 3 | V{'(s}) = Vi (s5).
k=1

Note that the regret is a random variable since 7% is a random quantity. We denote by

E[Regret(«/, M, K)] the expected regret. We will omit 7 and M if it is clear from the context.

4 Algorithm

For a better understanding of the readers, we present our algorithms under the assumption that
the reward is deterministic and knowrﬂ The algorithms for the case of random reward are given

!The algorithms for random reward enjoy the regret bounds of the same order.
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in Appendix [C| We denote by {rx(s, a)}(S a,h)eSxAx[H] the reward functions. For the case of
deterministic reward, the Bellman update in Equatlong] takes the form

(s, @) = [Pavya](s, a)(- = (s, a)),

since adding a deterministic reward (s, a) corresponds to shifting the distribution [P v}; | ](s, a) by

an amount of 7, (s, a). We thus define the distributional Bellman operator B(P, R) : 2% — @5*A
with associated model (P, r) = (P(s,a),7(s,a))(s,a)csx.4 a8

[B(P,7)v](s,a) £ [PV](s,a)(- — mh(s,a)), ¥(s,a) € S x A.

We propose two DRL algorithms in this section, including a model-free algorithm and a model-based
algorithm. We first introduce the Model- Free Risk-sensitive Optimistic Distribution Iteration
(RODI-MF) in Algorithm [T} For completeness, we introduce some additional notations here. For
two CDFs F and G over reals, we define the supremum distance between them ||F — G||o, =
sup, |F(z) — G(z)|. We define the ¢; distance between two probability mass functions (PMFs)
Pand Qas |[P—Q|, = X, |P — Qi|. We denote by B (F,c) := {G € Z||G — F||o < ¢}
the supremum norm ball centered at F' with radius c. With slight abuse of notations, we denote by
B (P, c¢) the I; norm ball centered at P with radius c.

4.1 Algorithm overview

4.1.1 RODI-MF

In each episode, the algorithm includes the planning phase (Line 4-12) and the interaction phase
(Line 13-17).

Planning phase. In a high level, the algorithm implements an optimistic version of approximate
DDP from step H + 1 to step 1 in each episode. In Line (5-7), it performs sample-based Bellman
update. To make it clear, we introduce the superscript k to the variables of Algorlthmmln episode k.
For example, nh denotes 7, in episode k. Specifically, for those visited state-action pairs, we claim
that Line 6 is equivalent to a model-based Bellman update. Denote by 15 (s, a) = I{(s¥,ak) = (s,a)}.

Fix a tuple (s, a, k, h) such that Nfi(s,a) > 1. We denote by Pf(-|s,a) the empirical transition
model

P(s'|s,a) = Y Ii(s,a) - Ifspy = ')

Ny (s,a) Telk—1]

Observe that for any v € 25, we have

(B8] (s.0) = 32 PE(ls,apuls)) = N,f(l)z S Li(s.a) - Hsjy, = (s

s'€S s'€S re[k—1]
1 . i )
= srre sy 2 W) D7 Hshuy = s hw(sT4)
h(S,a) refhiot] o
= Z 17 (s, a)v(shiq)-
5@ TG[k 1]

Hence the update formula in Line 6 of Algorithm [I|can be rewritten as
nh(s,0) = [BEvE ] (s,a)( = ms,0)) = [BOE v | (s, 0),

implying the equivalence to a model-based Bellman update with empirical model ]515 . Alternatively,
the unvisited (s, a) remains to be the return distribution corresponding to the highest possible reward
H + 1 — h. The algorithm then computes the optimism constants (Line 8) and enforces OFU
through the distributional optimism operator c; (Line 9) to obtain the optimistically plausible return
distribution 77} The choice of ¢} will be discussed later. The optimistic return distributions yields the
optimistic value function, from which the algorithm generates the greedy policy wﬁ. The policy WZ
will be used in the interaction phase.
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Interaction phase. In Line (15-16), the agent interacts with the environment using policy 7 and
updates the counts N}, based on new observations.

Algorithm 1 RODI-MF
1: Input: 7 and §
2: Initialize Ny (-, ) = 0; 75 (-,
3:fork=1:Kdo

)svn(+) <= Yuy1-p forall b € [H]

4 forh=H :1do

5 if Nj,(+,-) > 0 then

6: Nn(-,-) < ﬁ Zre[k;—l] HZ(H ')Vh+1(52+1)(' —7u(+))
7: end if

8: C}L('7') «— ’/#Sj\/lb

9: (s, ) Och( )Wh('f)

10: 7 (+) < argmaxg Ug(ny (-, a))
1 vi() < (s ma(c))

12: end for

13: Receive s

14: forh=1:Hdo

15: ay < mx(s}) and transit to sf
16: Ni(s¥,ak) < Np(sk,af) +1
17: end for

18: end for

4.1.2 RODI-MB

We introduce the second algorithm Model- Based Risk-sensitive Optimistic Distribution Iteration
(RODI-MB). Algorithm[2]is a model-based algorithm because it requires to explicitly maintaining the
empirical transition model in each episode. However, it can be reduced to a non-distributional rein-
forcement learning algorithm that deals with the one-dimensional values instead of the distributions,
which saves the computational complexity and space complexity. Likewise, the algorithm includes
the planning phase (Line 4-10) and the interaction phase (Line 11-15).

Planning phase. Analogous to Algorithm/[I] the algorithm also performs approximate DDP together
with the OFU principle. First, it applies the distributional optimistic operator to the empirical transition

model P,’f to get the optimistic transition model P. Then the algorithm uses P}* to execute Bellman

update to generate the optimistic return distributions n}’f. The remaining steps are the same as
Algorithm 1]

In Line (13-14), the agent interacts with the environment using policy 7% and
Pf’fH based on the new observations.

Interaction phase.
updates the counts N, ,’f“ and empirical transition model

Algorithm 2 RODI-MB Algorithm 3 ROVI

1: Input: T and 0

1: Input: T and §

2: NE(, )+ 0; Pﬁ(-, )+~ %1 forall h € [H]  2: N}l(-,-) « 0; 1’5,}(-7 )+ %1 forall h € [H]
3: fork=1:Kdo 3: fork=1:Kdo

4 V() <o 4 Wi () < 1

5: forh = H : 1do . 5: forh =H :1do A

6: P}]f( )<_Olk( )Pif(7) 6: PI’:( )FOI )P( )

7 775( ) ) [ (Ph’ ) VI’§+1} ('7 ) 7 Jili( <_ eﬁrh ) {PkWh+1} "'
8: 7 (-) « arg maxa Us(nk(-,a)) 8: WE(-) + max, JF(-,a

o vi() k() 9 end for

10: end for 10: Receive s]f

11: Receive S]f 11: forh=1: Hdo

122 forh=1:Hdo 12: af <« argmax, JF(s¥, a) and tran-
13: afl — WZ(SZ) and transit to sﬁﬂ sit to sfH_l

14: Compute NF™(-,-) and PFF(- ) 13: Compute NF*1(-, ) and PF1(-,-)
15: end for 6 14: end for

16: end for 15: end for
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Equivalence to ROVI. Risk-sensitive Optimistic Value Iteration (ROVI) is a non-distributional
algorithm that deals with the real-valued value function rather than the distribution. It is motivated by
the exponential Bellman equation proposed by [22]. We define the functional exponential EntRM
(EERM) E3 as the EntRM after the exponential transformation

E5(F) £ exp(B(Us(F))) = / exp(Bz)dF (z).

Define the exponential value functions Wy, (s) £ Eg(vp(s)) and Ji(s,a) = Eg(nin(s,a)) for all
(s,a, h)s. Applying EERM to Equation [3|yields the exponential Bellman equation

J;(S’ a) = exp(ﬁrh(s, a))[PhW;:—Q—l](S? a)’ 4
Wi (5) = sign(8) maxsign(8)J; (5, 0), Wiz (s) = 1. @

To verify the equivalence, it is sufficient to show that J, }’f in Algorithmcorresponds to the exponential
function of n’,j in Algorithm Observe that Fg is linear in F', hence it follows that

Ey(n(s,0)) = By ([Phvi ] (5,00 = (s, @) ) = exp(Bra(s,0)) - [ PEBs(vh 1) (5. 0)

= exp(Bri(s,a)) [ PEWEL | (5,0) = Jh (s, 0).

The two algorithms generate the policy sequence in the same way, implying that their trajectories
HE follow the same distribution. The formal statement is given in Appendixg@

4.2 Distributional Optimism

It is common to add a bonus to the reward to ensure optimism in the risk-neutral setting. Specifically,
the bonus is closely related to the level of uncertainty, which is quantified by the concentration
inequality. Yet, this type of optimism cannot be adapted to the distributional setup. As one of our
technical novelty, the distributional optimism is introduced for algorithmic design and regret analysis.
In particular, we specify two types of distributional optimism operators, which map a statistically
plausible distribution (either the empirical model or the return distribution) to a optimistically
plausible distribution. Either of them is applied by Algorithm 2Jor Algorithm [T}

Distributional optimism on the return distribution (in Algorithm[I). For two CDFs F and G,
we say that F' is more optimistic than G (w.r.t. EntRM) if Ug(F) > Us(Q). This reflects the intuition
that the more optimistic distribution should own larger EntRM value. Following [31], we define the
distributional optimism operator O2° : Z([a, b]) — 2([a, b]) with level ¢ € (0,1) as

(OZF)(z) = [F(x) — clja,p)(2)]"

The optimistic operator shifts the input £’ down by at most ¢ over [a, b), and retain the value 1 at b. It
ensures that O%° F' remains in Z([a, b]) and dominates all the other CDFs in Z([a, b]) in the sense
that (O° F)(x) < G(z) for any G € B (F, ¢). Since EntRM is monotonic, it holds that

Up(OF) > Up(G), VG € Boo(F,c).

Hence O F is the most optimistic distribution in the infinity ball B, (F) c). In other words, for
any CDF F' and G satisfying || F' — G|, < ¢, we have O2°G = F. When specialized to the return
distributions, we can apply the distributional optimism operator to the estimated return distribution
n¥ (Line 9 of Algorithm 1)) with the constant ¢}/ to ensure Ug(nF (s, a)) > Ug(nj.(s, a). The constant

¢k quantifies uncertainty in the model estimation, i.e., || P (s, a) — Py(s,a)
1
Distributional optimism on the model (in Algorithm |Z|) Given the model, we consider the

optimism among the space of PMFs rather than CDFs. Using the ¢; concentration inequality [46]],
we get a concentration bound of the empirical PMF of model: with probability at least 1 — 4,

~ 28 1 - 28
HPh (s,a) — Ph(s,a)H1 cr(s,a) = NE(s,a) log 5 (@) ( N,{f(s,a)) .

We wish to obtain a optimistic transition model P} (s, a) from the empirical one ]3,5 (s,a). To be more
specific, the return distribution n}’j computed from P}’f (s,a) and V,’f 1 should be more optimistic than



232 the optimal one 7 (s, a) with high probability. We thus define the distributional optimism operator
233 Ol : P(S) — 2(S) with level c and future return v € 9 as

o} (ﬁ(s,a),l/> £ arg max Us([Pv]).
PeB;(P(s,a),c)

23¢  The ERM satisfy an interesting property that enables an efficient approach to perform O} (see
235 Appendix [B). The following holds by using the induction

Us (1h(5.@) = ra(s, ) + Us ([Pivka] [s.a]) = m(s,0) + Us ([Puv ] [s, )
> r(s,a) + Ug ([Phy;:+1] [s, a])
= Up(i(5,a)),

236 which verify the optimism of 77 (s, a) over } (s, a).

237 5 Regret Analysis

238 5.1 Regret upper bounds

230 Theorem 1 (Regret upper bound of RODI-MF). Forany ¢ € (0, 1), with probability 1 — 0, the regret
2s0  of Algorithm[I|under deterministic reward or Algorithm[d| under random reward is bounded as

Regret(RODI-MF, K) < O <|;|LHH\/SQAK log(4SAT/5)> =0 (e}q’“%])_lﬂwm@ .
241 The proof is given in Appendix

242 Theorem 2 (Regret upper bound of RODI-MB/ROVI). For any § € (0, 1), with probability 1 — ¢, the
243 regret of Algorithm[IfAlgorithm [3|under deterministic reward or Algorithm @yAlgorithm [6| under
244 random reward is bounded as

1

Regret(RODI-MF, K) = Regret(ROVI, K) < O( ‘mLHH\/S?AK log(4SAT/9))
_0 (QXP“T'; )~ 1H¢m) .

245 The proof is given in Appendix [D| The above results match the best-known results in [22]. In
246 particular, our algorithms attain exponentially improved regret bounds than those of RSVI and RSQ
247 in [23] with a factor of exp(|3|H?). By choosing |3| = O(1/H), we can eliminate the exponential
248 term and achieve polynomial regret bound akin to the risk-neutral setting.

249 Compared to the traditional/non-distributional analysis dealing with one-dimensional values, our
250 analysis is distribution-centered, called the distributional analysis. The distributional analysis deals
251 with the distributions of the return rather than the risk measure values of the return. For example, it
252 involves the operations of the distributions, the optimism between different distributions, the error
253 caused by estimation of distribution, etc. These distributional aspects fundamentally differ from the
254 traditional analysis that deals with the one-dimensional scalars (value functions). Now we recap the
255 technical novelty of our analysis in the following.

256 Lipschitz continuity and linearity. We identify two important properties of EERM that establishes
257 the regret upper bounds, including the Lipschitz continuity and linearity. Denote by L, the Lipschitz
258 constant of the EERM Ejg : 2([0, M]) — R with respect to the infinity norm ||-|| . Lemma
259 provides a tight Lipschitz constant of EERM. The Lipschitz constant relates the difference between
260 distributions to the difference measured by their EERM values.

261 Lemma 2 (Lipschitz property of EERM). Ejg is Lipschitz continuous with respect to the supremum
262 norm over Py with Ly = exp(|B|M) — 1. Moreover, Ly is tight in terms of both | 3| and M.

263 Notice that limg_,o Lp; = 0, which coincides with the fact that limg_,o 3 = 1. The linearity of
264 EERM is a key property that sharpens the regret bounds. In contrast, EntRM is non-linear in the
265 distribution, which could induce a factor of exp(|3|H) when controlling the error propagation across
266 time-steps. It would further lead to a compounding factor of exp(|3|H?) in the regret bound. In
267 summary, the Lipschitz continuity property enables the regret upper bounds of DRL algorithms, and
268 the linearity tightens the bound.
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Distributional optimism. Another technical novelty in our analysis is the optimism in the face of
uncertainty at the distributional level. The traditional analysis uses the OFU to construct a sequence
of optimistic value functions. However, our analysis implements the distributional optimism that
yields a sequence of optimistic return distributions. In particular, we first define a high probability
event, under which the true return distribution concentrates around the estimated one with a certain
confidence radius. Then we apply the distributional optimism operator to obtain the optimistically
plausible return distribution and the optimistic EntRM value. Hence the regret can be bounded by the
surrogate regret, with the optimal EntRM value replaced by

K g 1 . 1 & .
Regret(K) = > 2 log (W7 (5}) — 5 log (wr'sh) < 52 WEGh =i ).
k=1 k=1

Distributional analysis vs. non-distributional analysis. When analyzing Algorithm 2fAlgorithm
Bl proving the regret bound of either algorithm suffices due to their equivalence relation. Since
Algorithm [3]is a non-distributional algorithm, one may consider using the standard analysis that
does not involve distributions. However, we show that this induces a factor of ﬁ exp(|5|H), which

explodes as | 3| — 0. We overcome this issue by invoking a novel distributional analysis of Algorithm
leading to the desired factor of I%I (exp(|B|H) — 1).

Although we focus on the algorithms for the deterministic reward in the main text, the regret upper
bounds also hold for case of random reward. Algorithm ] Algorithm[5]and Algorithm [6]corresponds
to Algorithm[I] Algorithm [2and Algorithm [3|respectively (cf. Appendix [C).

5.2 Regret lower bound

We provide more details of the mistakes in the lower bound of [23]] in Appendix D} The proof of [23]]
reduces the regret lower bound to the two-armed bandit regret lower bound. Since the two-armed
bandit is a special case of MDP with S = 1, A = 2 and H = 1, the reduction-based proof only leads
to a lower bound independent of S, A, and H. Instead, our tight lower bound follows a totally different
roadmap motivated by [20]]. [2Q] proves the tight minimax lower bound H+/ S AT for risk-neutral
MDP. However, the generalization to risk-sensitive MDP is non-trivial. The main technical challenge
is due to the non-linearity of EntRM. The proof in [23]] heavily relies on the linearity of expectation,
allowing the exchange between taking the risk measure (expectation) and the summation. In the
risk-sensitive setting, the non-linearity of EntRM requires new proof techniques.

Assumption 1. Assume S > 6, A > 2, and there exists an integer d such that S = 3 + 1?::11' We
further assume that H > 3d and H: % > 1.
Theorem 3 (Tighter lower bound). Assume Assumptionholds and 3> 0. Let L = (1 — % (S —

3) + . Then for any algorithm <, there exists an MDP M oy such that for K > 2 exp(8(H — H —
d))H LA we have

1 exp(BH/6)—1
E[Regret(o/ , M o7, K)] > HVSAT.
The proof is given in Appendix [D] Theorem [3|recovers the tight lower bound for standard episodic
MDP, implying that the exponential dependence on |3| and H in the upper bounds is indispensable.
Yet, it is not clear whether a similar lower bound holds for 5 < 0, which is left as a future direction.

6 Conclusion

We propose a risk-sensitive distributional dynamic programming framework. We devise two novel
DRL algorithms, including a model-free one and a model-based one, which implement the OFU
principle at the distributional level to balance the exploration and exploitation trade-off under the
risk-sensitive setting. We prove that both attain near-optimal regret upper bounds compared with our
improved lower bound.

There are several promising future directions. The current regret upper bound has an additional factor
v HS compared with the lower bound. It might be possible to remove the factor by designing new
algorithms or improving the analysis. Besides, it is interesting to extend the DRL algorithm from
tabular MDP to linear function approximation setting. Finally, it will be meaningful to investigate
whether the DDP framework holds for other risk measures.
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A Comparisons with Related Works

Comparison with [I] We summarize the differences between our work and [1] as follows.

e Setting. [1] considers the discounted MDP with infinite horizon, but we consider the
episodic MDP setting. Moreover, [1] assumes that the model is known, while we propose
DRL algorithms when the model is unknown (i.e., the learning). Neither RL algorithms
suitable for unknown model nor sample complexity guarantee is provided in their work.

e Risk measure. [1] establish the risk-sensitive DDP framework using the risk measure
Conditional Value at Risk, while our work considers the entropic risk measure.

Comparison with [23] [21,22] solved the risk-sensitive MDP problem using valued-based RL,
which estimates and constructs the optimistic version of the (EntRM) value function. [21] proposed
the RSVI2 algorithm that improved upon [22] and achieved the best result with the regret upper

bound of @(%H V S2AK). The significance of the proposed algorithms is three-fold.

* Our algorithms are the first distributional reinforcement learning algorithms with provably
regret guarantees, suggesting that DRL can work well and even matches the performance of
the SOTA value-based RL algorithm for risk-sensitive control in terms of sample complexity.
The idea of leveraging the distributional information for risk-sensitivity purposes is natural
since the risk measure value is obtained by applying the risk measure/functional to the return
distribution. However, existing works on risk-sensitive control via DRL approaches [12,
31, 1] lack regret analysis. Thus, it is difficult to evaluate and improve their algorithms for
sample efficiency. Therefore, our algorithms with near-optimal regret upper bounds bridge
the gap between the DRL and risk-sensitive MDP in the theoretic RL community.

e Compared with [21], our algorithms are simpler and easier to interpret, leading to clean
regret analysis. [21] implements optimism by adding a bonus to the risk measure value
function. It designed an exploration mechanism called doubly decaying bonus to remove the
exp(|B|H?) factor from [22]. The doubly decaying bonus decays across the episode and the
horizon, which is complicated and not straightforward. Instead, our algorithms implement
the distributional optimism by iteratively constructing the optimistic return distribution.
The distributional optimism does not involve a complicated bonus design. It only requires
a simple application of distributional optimism operator with a constant decaying across
the episode. Moreover, the doubly decaying bonus obscures the regret analysis, while our
distributional-based analysis is clean and easy to follow.

* Our algorithm may be generalized to risk-sensitive MDP with other risk measures. The
analysis of [22,23] is particularly suitable for the EntRM. It is unclear whether it is possible
to extend to other risk measures. Under the distributional perspective, our algorithm
maintains a sequence of optimistically plausible estimates of the return distribution. Since
the distributional information suffices to deal with any risk measure, our algorithm may
motivate the design of similar algorithms for other risk measures.

B Further Statements about the Properties

B.1 Proof of properties of EntRM

Proof of Lemmal(l] We only prove the case that 3 > 0. The case that 3 < 0 follows analogously. For
any two independent random variables X and Y, we have

Usl(X +Y) = 5 log Blexp(B(X + )] = 5 g Elexp(5X) - exp(3Y )
— %log Elexp(8X)] + élogE[exp(ﬁY)]

= Up(X) + Us(Y),
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st0  therefore ERM is additive.
511 For any two distributions F; and F5 such that Ug(Fy) > Ug(F5), we have

1 1
Us(F1) = Blog/ exp(fx)dFy(x) > Blog/ exp(Bx)dFs(xz) = Ug(F1),
R R
siz which implies [, exp(Bx)dF(x) > [ exp(Bx)dF;(x). Thus for any distribution G, it follows that

Ug(0F1 + (1 - 0)G) = 10g/ReXp(ﬁx)d(9F1(a:) +(1-6)G(x))

log <9/Rexp(6x)dF1(x) +(1- 0)/Rexp(5x)dG(x)>

HQ‘HQ‘

> Slog <o /R exp(Bz)dF>(z) + (1 — 6) /R exp(,@x)dG(m))

=Up(0F> + (1 -0)G).
st3  For any distributions F' and G such that Uz(F') > Ug(G) and € > €', it holds that

/Rexp(ﬂm)d(GF(x) +(1-6)G(z)) — /Rexp(ﬁ;v)d(Q’F(ﬂc) +(1-6)G(x))
Y ( /R exp(Bx)dF (x) — /R exp(ﬁm)dG(x)) > 0.

514 Since t — % log(t) is a strictly monotonic mapping, we have Ug(0F + (1 — 0)G) > Ug(0'F + (1 —
515 0')G). Hence ERM satisfies the monotonicity-preserving property. O

st B.2 Monotonicity preserving

517 We state some lemmas about the monotonicity-preserving property and their proofs here. Note that
st the results hold for general risk measures satisfying the monotonicity-preserving property. They will
st9  be used in the proof of Proposition[I]and Proposition [2]

s20 Lemma 3. Ler T be a risk measure satisfying the monotonicity-preserving property and n > 2
521 be an arbitrary integer. If T(F;) > T(G;),Vi € [n] (and T(F};) # T(G;) for some j € [n]) then
sz T (Y, 0,F) > (>)T(X0, 0:G;) forany 0 € A, (and 6; # 0).

523 Proof. The proof follows from induction. Note that Y | 0;F; = 01F1 + (1 —01) > 5 7 19 F;
se« and )", 77 9 F; € 9, therefore by the definition of MP we have T(}., 0;F;) > T(0:G1 +

25 »_ ., 0;F;). Suppose that for some k € [n — 1] it holds that T(}_. | 6,F;) > T(Zf:1 0.G; +
526 Y i k+10 F;). Since

Zea + Z 9F_9k+1Fk+1+ZHG + Z 0;F;

1=k-+1 i=k-+2
k
=011 F,q1+ (1 — Op41) [Z

=1

G+Zl_

i=k+2

i

1-— 9k+1 9k+1

and ﬁ [Zf:l 0;G; + Z?:k-pz GiFZ} € 9, it follows that

<20F>>T<29G - Z 9F>>T<I§HG + Z ep)

i=k+1 i=k+2

527 The induction is completed. If in addition for some j € [n] it holds that T(F}) > T(G,), the proof
528 follows analogously by replacing the inequality to the strict one and the fact that 6; > 0. O
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529 Lemma 4 (Monotonicity-preserving under pairwise transport). Let T be a risk measure satisfying
530  the monotonicity-preserving property. Suppose n > 2 and (F;);c[n) satisfies T(Fy) < T(Fy)...

sst  T(F,). Forany 0,0' € A, and any 1 < i < j < n such that

0;6:0167 k%%]

ss2 It holds that T(Y_)_, 0:;F;) < T(Y._, 0.F;).
533 Proof. Observe that

> 0. F =0;F +0,F;+ > 0,F,=0,F; +0,F; + Y 0;F;

k#i,j k#i,j
= (0F; + 0, F;) + (1—0; — 0;) > _ 04 Fp.
k#i,j
53 By the deﬁmtlon of the monotonicity-preserving property, it suffices to prove T(e +0; (0.F; +
sss 0F))) > T(54 + 7 (0;F; + 0;F})). The result follows from the definition and the fact that T(F;) <
536 T( )and@’gﬁ O

537 Lemma 5 (Monotonicity-preserving under block-wise transport). Suppose n > 2 and (F;)icin)
sss  satisfies T(Fy) < T(F»)... < T(F,). It holds that T(}"_, 6,F;) < T3, 0.F;) for any
ss0 0,0 € A, satisfying Ik € [n],0; < 0, ifi < k and 0, > 0, otherwise.

s40  Proof. Fix k € [n]. We rewrite the assumption imposed to ¢ as 0, = 6; — §; for i < k and
sa1 0] = 0; + &; for i > k, where each &; > 0. It will be shown that there exists a sequence {6'};¢(x)
se2 satisfying ° = 6 and 0% = ¢’ such that T(¢') < T(#'*1), then the proof shall be completed.

s43  The sequence is constructed as follows: at the [-th iteration, we transport probability mass d; of 6; to
s44  the probability mass of k£ + 1, ..., n. Specifically, we start from moving to the least number 4; > 4;_;
s45  that satisfy 0;—1 < 0;, and sequentially move to the next one if there is remaining mass. The iteration

546 stops until all the mass d; are transported. Repeating the procedure for k times we obtain 6% = ¢’
547 The inequality T(#') < T(6"*!) for each iteration follows from Lemma@l O

s B.3 Proof of properties of EERM

549 Proof of Lemma[2] We only provide the proof for the case 5 > 0. The case § < 0 fol-
ss0 lows from analogous arguments For any F,G € %), without loss of generality we assume

551 fOM G(z)dexp(Bz) — fo x)dexp(fx) > 0, otherwise we switch the order.

M M
|Eﬂ<F>—EB<G>|—| / exp(Br)dF () — / exp(f2)dG(z)

M

M
= |exp(Bz)F(z)[y" — ; F(z)dexp(Bz) — exp(Bz)G()[g" + | G(z)d exp(Bz)

M
= /O (G(x) — F(x))d exp(fz)

M
< / G(z) — F(z)| dexp(Bz)

M
<|IF-all, /0 ldexp(Be)
— (exp(BM) — 1) |F — G,
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To show the tightness of the constant, consider two scaled Bernoulli distributions F' = (1 — 1)t +
iy and G = (1 — p2)ho + potdar with A := pg — po > 0, where py, ps € (0, 1) are some
constants to be determined. It holds that

Eg(F) — Eg(G) = prexp(BM) +1 — i1 — (p2exp(BM) + 1 — p2)
= (1 — p2)(exp(BM) — 1)
= ||F - G, (exp(BM) — 1).

where the last equality holds since || F' — G||oc = F'(0) — G(0) = p1 — pt2 = A (independent of M).
More formally, we have

wp [EsF) ~ E5(G)

inf =exp(BM) — 1.
M>0,8>0 p.geoy ”F_ GHOO ( )

C Algorithms for the Random Reward

We present the algorithms for the random reward in this section, which share the same intuitions as
the deterministic reward case. Therefore we focus on clarifying their differences here. We denote by
d(+) the Dirac delta function.

C.1 RODI-MF

In each episode, the algorithm includes the planning phase (Line 4-12) and the interaction phase
(Line 13-17). We highlight two key differences in the planning phase. We introduce the superscript
k to the variables of Algorithmd]in episode k. The first difference is that the algorithm implicitly
maintains the empirical reward distribution in addition to the empirical transition model

Z‘re[k:—l] I} (s,a)0(- — R})

R (s,a) =
h(S,a) N}ILC(S,(I)

Analogous to the previous setting, we claim that Line 6 is equivalent to a model-based Bellman
update for those visited (s, a)s. Fix an (s, a, k, h) such that Nj?(s,a) > 1. We have shown that for

any v € 99,
. 1
[P,’fu} (s,a) = —/——— Z 17 (s, a)v(shyq)-

Hence the update formula in Line 6 of Algorithm [4]can be rewritten as

mh(s,a) = [BEvk] (s,a) 5 Ri(s,0) = [BEE, RE)V](s, ).

Alternatively, the unvisited (s, a) remains to be the return distribution corresponding to the highest
possible reward H + 1 — h. The second difference is that the optimism constant cf/ (s, a) is increased

by an amount of ¢, which corresponds to the estimation error arisen from the unknown

1
2NF (s,a)Vv1
reward distribution. The additional term is a lower order term, implying that the regret upper bound
of Algorithm[@]is in the same order as that of Algorithm|[I]
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Algorithm 4 RODI-MF (for the random reward)
1: Input: T and 6
2: Initialize Ny (-, ) < 0; np (-, ), Vn(+) <= Ymy1—p forall h € [H]
3:fork=1:Kdo

4 forh=H :1do

5 if Ni(-,-) > 0 then

6 () ¢ it Sorrvetimn TG G (57,0 ( = BE ()
7: end if

25 1

8: cn(s ) \/W“r \/W‘
9: () <= O (. ymn(-5 )

10: 7 (+) < argmaxg Ug(np (-, a))

11: v (-) < nn(,ma(e))

12: end for

13: Receive s’f

14: forh=1: Hdo

15: ay < mp(s)) and transit to sF |

16: Nh(SZ,GZ)%Nh(Sﬁaaﬁ)_Fl

17: end for

18: end for
C.2 RODI-MB

We provide a model-based algorithm (Algorithm[5), which is equivalent to a nearly classical algorithm
(Algorithm . We emphasize the difference between Algorithm and Algorithm For each (s, a),

it applies the distributional optimism operators Oik (5.) and O (s,a) O the empirical transition
“h,1\? “h,2\%

model P} (s, a) and the empirical reward distribution R (s, a) respectively, in which lei,l (s,a) and

k 25 1 k :
cp, o(8, a) are set to be \/N,’f(s,a)\/l ¢ and \/2N};j(s,a)v1 t. Note that the cj; , (s, a) is a lower order term

in comparison to 05,1 (s, a), implying that the regret upper bound of Algorithmis in the same order
as that of Algorithm 2}

Remark 1. AlgorithmPlis not a fully classical algorithm because it explicitly maintains the reward
distributions for all state-action pairs. However, it does not involve the distributional Bellman update
that takes the return distributions for all states as input and outputs the return distributions for all
state-action pairs. Hence it still reduces considerable computation complexity and space complexity,
which makes more close to the classical algorithm rather than the distributional algorithm.

Equivalence to ROVI  Define the exponential value functions W, (s) = Es(vp,(s)) and Jy,(s,a) £
Eg(nn(s,a)) for all (s, a, h)s. Observe that for two independent r.v.s X ~ F and Y ~ G, we have
Ep(Fxg) = Es(X +Y) = Es(X)Ep(Y),
where g is the PDF of G. Applying EERM to Equation [2] yields the exponential Bellman equation

Ji(s,a) = Ep(Ri(s, a)) [PaWyia](s, a),

Wi (s) = sign(8) maxsign(8)J; (5, a), Wii1(s) = 1. )

We will show that JF in Algorithm@corresponds to the exponential value function of 7} in Algorithm
Observe that

By (nf(s,0)) = By ([ Phvki | (s.0) 5 RE(5,)) = By(Rf(5.a)) - [ PEEs (v 1) (s.0)
= Bs(R}(s.0)) [PEWEL | (s.0) = Jf (s, 0).

The two algorithms generate the policy sequence in the same way. The formal statement is given in
Appendix [E]
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Algorithm 5 RODI-MB Algorithm 6 ROVI

1: Input: T and 6 1: Input: T and §
2 NI%(’) < O; (Pﬁ(a)aR}L(7)) — 2 N}%(7) <~ 0; (Pé(a)aR}ll(v)) <
(%l,wé)forallhe [H] (él,wé)forallhe[H]
3:fork=1:Kdo 3:fork=1:Kdo
4: V§+1(~) +— g 4: W§+1(~) +—1
5 forh = H : 1do . 5: forh=H :1do A
6: PF(.,) + Olk (_’.)P[f(«, 4 6: PF(,) « Olk 1(.’_)P,f(-, )
7: RE(, ) + Oof s )Rﬁ(~,~) 7: Rk( ) — OSOZ( )Rz(-, )
8: UCORS [B(P;’faRk)V;’fﬂ](w ) 8: ' “
9: 7r(+) + argmax, Eg(nf(-,a)) Egs (Rk ) [PkWhH] )
10: vi() < i (o () 0: WF(+) + max, JF(-,a)
11: end for 10: end for “oh
12: Receive sf 1: Receive s¥
13 forh =1: Hdo . 122 forh=1:H do
14: aj, + 7y (sh) and transit to sp, 13: af + argmax, JF(sF,a) and tran-
15: Compute N¥1(.,.), PF+1(...) and Lk AR
o - ompute [V, s ) Ly ') a Sit to Sh+1
+ A
Ry () 14: Compute N} (-, ) and PFH(-, )
16: end for 15: end for '
17: end for 16: end for

D Proof of Regret Bounds

D.1 Proof of Theorem[I]

We only prove the case that the reward is random and 3 > 0. The proof can be readily adapted to
other cases.

Step 1: Verify optimism. Denote by ¢ = log(2SAT/§). For any § € (0,1), we define the good
event as

Gs —{HRhsa) Rhsa 1/ GV HP’L ‘1s,a) — Pr(:]s, a)H

28

<=0V (s,a,k,h) €S x AX [K
“\ Nf(s,a)v1 ( ) ’

under which the empirical distributions concentrates around the true distributions w.r.t. ||-||;.

Lemma 6 (High probability good event). For any 6 € (0, 1), the event Gy is true with probability at
least 1 — 0.

Fact 1. Let X be a random variable taking values over positive integers and E be an event. If
P(E|X =1i) > pforanyi=1,2,.., then P(E|X > 0) > p.

_ B(BX0) _ Sisy PBIX=)P(X=i) _ S5, pP(X=i) _
Proof. P(B|X > 0) = S50 = Do 0= e s o= O

Proof. Fix some (s,a,k,h) € S x A x [K] x [H]. If Nf(s,a) = 0, then we have
(PE(|s,a), RE(s,a)) = (%l,w%). A simple calculation yields that for any Ry (s,a) € 2([0,1])
and any Py (+|s,a)

<2 < +/2510g(25AT/6).

H’L/J% —Rh(s,a)H - flog(QSAT/é)
1

1
2 gl—Ph(-|s,a)

19
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It follows that

Pmm%ﬂ%WMWﬂwﬁ¢%%é®vDMﬂﬁMmﬂM@—ﬂHWMl

28
< \/J\W log(2/6)

Thus the the event is true for the unseen state-action pairs. Now we consider the case that N} (s, a) >
0. By the DKW inequality, #; concentration bound of empirical measure and a union bound, we have
that for any n > 1

PQmﬂww—m@ﬂwwsMﬂ%Lﬂy

28
< | —=—log(2/
< \/N,’f(s,a) 0g(2/9)
We use Fact[T]to get

P (Hfz;j(s,a) ~Rufs,a)|_ < \/QN},;(M) log(2/5),

28
< \/J\/M log(2/0)

Taking the two cases into consideration

NE(s,a) = O) =1.

PE(1s,0) = PulCls,0)||

Nf(s,a) = n) >1-4.

Pi(1s.a) = Pu(ls,0)|

NF(s,a) >0> >1-09.

P("ﬁ,ﬁ(s,a)—nh(s,a)Hm < m P,’f(-|8,a)—Ph(~|s,a)Hl < W)
log(2/9)

A

PE(1s,a) = Palls.a)|

=P (Hﬁﬁ(s,a) th(s,a)Hoo < W,

251og(2/90)
~ \ Nf(s,a) V1

NF(s,a) = 0) P(NF(s,a) = 0)

log(2/4)
o~ \| 2NF(s,a)’
INF(s,a) > 0)P(Nf(s,a) > 0)

> P (Nf(s,a) =0) + (1 — §)P(Nf(s,a) > 0) > 1—4.

2S5 log(2/6)
17 Nk(s,a)

A

+P (Hﬁl}j(&a) — Rh(s,a)H P}]f(-\s,a) - Ph(-|8,a)H

Applying a union bound over all (s,a,k,h) € S x A x [K]| x [H] and rescaling 0 leads to the
result. =

Lemma [6] suggests that Gs holds with probability 1 — §, therefore it suffices to prove the theorem
conditioned on Gg.

Lemma 7. Let T be a functional (not necessarily a risk measure) satisfying the monotonicity, i.e.,

T(F) < T(G) for any F < G. For any G € 9([a,b]), it holds that if G € B (F,c), then
G = O F. Moreover, it holds that

OFF € arg ax T(G).

m
GEBoo (F,c)N2([a,b])
Proof. Let G € 2([a,b]) N Boo(F,c). It follows from the definition of B (F,c) that

SUPgeap) [F(7) —G(2)| < ¢, therefore for any z € [a,b], G(z) > max(F(z) —c,0) = (OZ°F) ().
The monotonicity of T leads to the result. O
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627 Notice that Fg is also monotonic, which will be used to establish the optimism of the EERM value
628 sequence generated by the algorithm.

620 Lemma 8. For any two distributions F,G € Dy and any function u : R — R, we have that
[EF[u(X)] = Eq[u(X)]| < [u(M) = u(0)||F = G|

630 Proof. Observe that

Ep[u(X)] - Eg[u(X)]| = / u(a)dF(z) - / u()dG(z)

M M
= |u(z)F ()|} — /0 F(x)du(z) — u(z)G(z)[M + G(z)du(z)

0
= /0 G(z) — F(x)du(x)

/OM du(x)

631 O

IN

1F = Glloo = [u(M) = w(O)[ [[F' = G-

32 Lemma 9 (Bound on the optimistic constant). For any bounded distributions { F; };c), any G, G' €
63 2([0,1]) and any 0,60" € A,, it holds that if ¢ > ||0 — 0'||1 + |G — G'|| o, then

g*zn:aisz =0 <g’ *i%ﬂ) ;
im1

i=1

634 where g and g' are the PDF of G and G’ resp..

635 Proof. Without loss of generality assume F' € &7,. For any « € [0, M + 1),
n +
o <g’*ZO;Fi> lZG’/ Fi(x—nr)g ()drc}
i=1
n 1 +
Zﬁi/ Fi(x—r)g dr—!—ZG’/Fx—r dr—ZG/ (x—1)g (r)dr—c]
i=1 V0
n +
:[(g*ZQiFl) —I—ZG'/ (x—1)g dr—Z@/ i(x—1)g (r)dr—c] .
i=1

e3s It suffices to prove

ZG’/ (x —1)g dr—ZG/ Fij(x —r)g(r)dr

637 We have Va € [0, M + 1],

2;9’/01 i —r) '(T)dr—zn:@ /01 Fy(x —r)g'(r)dr
/F (x—r)g dr—ZQ/ i —r)g(r)dr
<Z|9’ 0|/ (x —1)g dr+29

< HG’ —Olh + G = Gl

c> Vo e [0,M +1].

RHS <

/ i(x—r)g (r)dr/olﬂ(:cr)g(r)dr
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657

where the last inequality follows from that fol Fi(x—r)g' (r)dr < fo r)dr = 1 and the fact that

1
[ Fte =g [ R ngteyir] = [BolFe - R -Ea R - R < 6
0
due to Lemmal§] O
We define the EERM value produced by the algorithm as W/ (s) £ Ez(vE(s)) and Jf(s,a) =
A

Eg(n¥(s,a)) for all (s,a,k,h)s. Similarly, we define W;'(s) £ Eg(v;(s)) and J;(s,a)
Es(n;(s, a)) for all (s,a, h)s. Using Lemma 9] the monotonicity of EERM, and inductions, we
arrives at Lemma. 10l which guarantees the sequence {W (s})},cx) produced by Algor1thmE|1$
indeed optimistic compared to the optimal value {W7 (s¥)}re(x]-

Lemma 10 (Optimism). Conditioned on event Gs, the sequence {W(s¥)}re(x] produced by
Algorlthmlare all greater than or equal to W (s¥), i.e.,

WE(st) = Bg(vr(s)) = Es(vi(sh)) = Wi (sh), Vk € [K].

Proof. The proof follows from induction. Fix k € [K]. For h = H we have that for any (s, a)

JIIEI(& a) = EB (77?-1 (5’ CL)) = EB@S%(S,(I)(R?I (8’ a)))
> Eg(Ra(s,a)) = Jp (s, a),
where the inequality is due to Lemmaand the fact that R (s, a) € Boo(Ru(s,a), ki (s,a)) N 2.
Thus WF(s) = max, Jk(s,a) > max, Jj(s,a) = W} (s),Vs. Now suppose for h + 1 €
[2 : H], it holds that W/, (s) > W;,(s),Vs. For each (s,a), we applying Lemma ?? with
0 = Py(s,a),0' = Pf(s,a), F = v, |, G =Ry(s,a) and G’ = R¥(s,a) to obtain

[Phl/i];rl](sv a) * Ry, (s,a) = O ck (s, a)([]si’fylli+1}(3a a) x fﬁﬁ(s,a))

since  cf(s,a) 1/N’€(5a)\/1b + 1/2(Nk(6a)v1) HPh(~|s,a)fP,’f(~|s,a)H1 +

HRh(s,a) — RE(s, a)H for h € [H — 1]. It follows that

J,]f(s,a) Ox k(s a)([Pth+1](5 a) * ffz;i(s,a)))

Es(
2 Eﬁ([PthH](S a) x fR;L(s,a))
= Es(Ru(s,a)) - [PaWiyy1](s, a)
> Eg(Ru(s,a)) - [PaWy4](s, a)
= J;(s,a),¥(s,a),

where the first inequality is due to the property (M), and the second inequality follows from the
induction assumption. The second equality is due to Equation ??. Finally it follows that for any s,

Wi (s) = max JJ(s,a) > max J; (s,a) = Wy (s).

The induction is completed. O

Step 2: Regret decomposition.
Lemma 11. Forany F; € 9 and any 0,0’ € A,, with any n > 2, it holds that

<6 —6; -

oo
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660
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663

Proof.

n

> (0:;F — 0)F;(x)

=1

= sup
z€R

i 0,F; — Z egFl
=1 i=1

<SupZ|9 — 0| F;(z

< Z |0; — 05
i—1

=l6—-o1,.

We define AF £ WF — W}’er = Es(vf) — Eg (V;:k) € Dy with

Dy £ (1 —exp(B(H + 1~ h)),exp(B(H + 1~ h)) — 1]
and 6% £ A¥(s¥). For any (s, h) and any 7, we let P[7(:|s) := Py(:|s, m(s)). Observe that the
regret can be bounded as

Regret(K) = Z % log (Wi (sh)) — %bg (Wfrk (slf))

- ! 1 1 1 .
B kz::l B log (W1 (s1)) = B log (Vi*(s)) + 3 log (W1 (s1)) — 3 log (Vf'(s’f))
<y 5 los (WE(sh)) — 5o (Wf (3’;))

k=1

1 & 1K

il k(oky 1
<3 ;WM ) =3 kz::

k

(a)
{P,’erl/}]f+1} (slfb) * fﬁ;k(sk)) — Ej ({P,’ery}’f+1} (SI;L) * fR;k(si))
(b)
+ Ep ({pﬁrkVﬁﬂ} (s7) * TRt (s ) —Es ({PﬁrkVﬁﬂ} (s7) * frp (sh))
()
+ B ([P vk ] (55) Sy ) = B ([P i) () # Frpi sy )

(d)

Using the Lipschitz property of EERM,
~ _k ~ __k
(@) < Lirsr-n |03 ([P vhar] (55) # Frge ey ) = [P vl ] (1) Pz |

< Lyi1-nc),
— (exp(B(H +1—h)) —1) W Ly ¢ S )
2(NFv1) (NFv1) )
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664

Pl (sk) — P;[k (es’fL)H1 We can bound (b) as

() = (Ba(RE" (s$)) = Es(Ry (k) - Ba (| Phvi | (sh)
< Lo [ R (sh) = R sh))||_ [BRW] (sh)

< (exp(3) = 1)) gyt P (BLH — )

1

< (@A +1 1) = 1)y |5 e

665 We bound (c) as
(©) = Bs (R (1) (85 ([P vhan] (b)) = B (|27 vE | (D))
< exp(B8)Lu- hH[Ph Vh+1} Sh [P Vh+1} Sh H

< exp(B)(exp(B(H — h)) — 1) (S )~ (Sﬁ)Hl

S

< (exp(B(H +1—h)) —1) W%

666 where the second inequality is due to Lemma By the linearity of EERM, We bound (d) as
k k k
(d) = Es(R7, () [P (Vi = Vill)] (sh)
k
= Ba(Ry (s5)) [P Ak | (s5)
k
= Eg(Rf, (sh))(eh + 0 ),

es7 where ef 2 [PF AE | ](sF) — AF . (sh ) is a martingale difference sequence with €f € 2Dy,
ees a.s. forall (k, h) € [K] x [H]. Since

(b) + (€) < Lrr+1-nc,
e6s we can bound § Z recursively as
k
0 < 2Lms1-ncy, + Eg(RY (s))(ef; + 05 )-

670 Repeating the procedure, we can get

H-1 h—1 H-1 h . H-1
0V <23 Lupin [[ Bs(RT (sD))eh + D [T Es(RT (s))eh; + (RT (s9))d%r

h=1 i=1 h=1 i=1 i=1
H-1 H-1 h . H-1

<2 (exp(B(H +1—h)) = Dexp(Bh—1)e + Y [[Es(RT (s))el + [[ Es(RT (s1))s
h=1 h=1 i=1 i=1
H-1 H-1 h . H-1 .

<2 (exp(BH) = ek + > [T Es(RT (si)er + [] Bs(RT (s5)dk;
h=1 h=1 i=1 i=1

671 It follows that

K K
2(5 2(exp(p H—i—l))—l)z

k=1 k=1 h=1 k=1 h=1 i=1 k=1 i=1
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Step 3: Bound each term. The first term can be bounded as

H-1 H-1

K K
2(exp(B(H+1)) —1) Z CZ = 2(exp(B(H + 1)) Z <\/ Nk v 1) L+ \/(les\/l)b)

=1

m:-
,_.»—A

< 3(exp(B(H +1))—1) V2S2AK.

>
Il
—

= 3(exp(B(H + 1)) — 1)V2S2AK..
Observe that
H Eg(RT (sF))ek € exp(Bh)Dy = exp(Bh)[1 — exp(B(H + 1 — h)),exp(B(H + 1 — h)) — 1]

C [1 —exp(B(H + 1)), exp(B(H + 1)) — 1],

thus we can bound the second term by Azuma-Hoeffding inequality: with probability at least 1 — ¢,
the following holds

K H-1
[T E5 (R (s5))el < (exp(B(H + 1)) — 1)y/2K H log(1/5).
k=1 h=1 i=1
‘We have
K H-1 K
Es(RT ()0l < exp(B(H — 1)) Licl;
k=1 i=1 k=1

Using a union bound and let § = ¢’ = g, we have that with probability at least 1 — 6,

Regret(K) < (4 5(exp(B(H + 1)) — 1)V282AK + (exp(B(H + 1)) — 1) 2KHL>

_5 (exp<§f; )= 1H¢m) ,

where ¢ £ log(4SAT/6).

D.2 Proof of Theorem 2]

We only prove the case that the reward is random. The proof can be readily adapted to the deterministic
reward case.

Distributional analysis vs non-distributional analysis By Proposition[5} Algorithm[3]is equivalent
to Algorithm [6] Since Algorithm [6]is a classical algorithm, it is thus natural to use the classical
analysis to derive the regret bounds. That being said, we will show that the distributional analysis
yields a tighter bound than the non-distributional analysis. In particular, the latter one yields a regret
bound that explodes as 3 approaches zero, but our analysis can recover the desired order when
reduced to the risk-neutral setting.

Step 1: Verify optimism. Lemma [6] suggests that G5 holds with probability 1 — §, therefore it
suffices to prove the theorem conditioned on Gj.

Lemma 12 (Optimistic transition model). Fix (s, a, k, h). For any P € By (PF(s, a), cﬁ,l(s, a)), we

have
Eg ([P,’fl/,’fH] (s,a)) > Eg ([Pl/;’fﬂ} (s,a)) .
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Lemma 13 (Optimism). Conditioned on event Gs, the sequence {W (s¥)}e(r] produced by
Algorithm@are all greater than or equal to Wy (s%), i.e.,

Wi (st) = Eg(vf (1)) > Es(vi(sY)) = Wy (s1), Vk € [K].

Proof. The proof follows from induction. Fix k € [K]. For h = H, we have that for any (s, a)

Ti(5.0) = Byl (s,0)) = B0, (Rly(5.))
> EB(RH(Sva)) = J}fl(&a),

where the inequality is due to Lemmaand the fact that R (s, a) € Boo(Ru (s, a), C]IC-I,2 (s,a))N2.

Thus W} (s) = max, J&(s,a) > max, Jj;(s,a) = W};(s),Vs. Now suppose for h + 1 € [2 : H],
it holds that W, (s) > Wy, (s),Vs. It follows that

Ih(s.) = By (Ri(s,)) Bs ([Bivkoa | (5.0)
> Eg (Ru(s,a)) Eg ([Pavy 1] (s,0))

> By (Ra(s,0)) g ([Putin] (5:)
= Jl;k(S’ a),V(s, a),

where the first inequality is due to Lemma|[I2] and the second inequality follows from the induction
assumption. Since for any s,

WE(s) = max Jf(s,a) > max J; (s,a) = Wi (s),

The induction is completed. O

Step 2: Regret decomposition. We define A} £ WF — W = Ez(vf) — B (V;er> € Dy with

Dy 21— exp(B(H + 1 — h)),exp(B(H + 1 ) 1]

and 6F £ AF(sk). For any (s, h) and any 7, we let P7(-|s) £ Py(:|s,74(s)). The regret can be
bounded as

K
Regret(K) = Z % log (W7 (slf)) - %log (Wfrk (s]f)>
k=1
= i 1 log (W*(sk)) _1 log (Wk(sk)) + 1 log (Wk(sk)) _1 log (W”k (sk))
25 181 3 1 (81 3 151 3 1 (81
K
<3 Slog (W(sh) = 5 1og (W7 (1))

k
Wi (s7) = Wi (s1) =

K
> at.
k=1

| =

>
Il
=

IN
™|
M=
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704 We can decompose d¥ as follows

705
706
707

709
710
71

712

713
714

5k = Bo(vii(sh)) — Es(v (s})
= Ep (Rh ) ({Phl/hﬂ} Sh ) Eg (Rzk(si)) Eg ({Ph Vhil} (Si))
= Ep (Rh ) ({Ph Vh+1} ) —Eg (Rﬁk (SZ)) Eg ({Pi]folfﬂ} (5113)>
(a)
+ Ep (Rh (Sh)) Egs ([P Vh+1} (520 (RW (%)) Eg ([P;;k’/]ifﬂ} (Sﬁ))
(b)
+ By (Ri (s8)) Bs ([P i | (s8)) = B (RE 1)) B ([P vita) ()
(¢)
= B (R7 (sh)) [ PEWE ] (55) = B (R7" (D)) [PEWEL | (sh)
(a)
+ By (RE" () [PEWE] k) = B (RR (1)) [P Wik ] (sh)
(b)
+ By (Ri(sh)) [P Wik | (sh) = Bs (R (s0)) [P Wi | (s5)
(¢)

Both distributional analysis and non-distributional analysis seem to be viable to deal with (b), but the
non-distributional analysis turns out to yield an unsatisfactory bound.
Non-distributional analysis: Notice that W}, , (s) < exp(8(H — h)), Vs. Thus the following holds

() = Bs (R (1)) (|PEWikia ] (sh) = [P Wik ()
=By (R ) ([(PF = 2" ) wikia] Gsh)

~ k
<exp(B) | P - Pp

’ max Wy, (s)
1 s
< 2exp(B(H + 1~ h))cj, ;.-
Distributional analysis: Using the Lipschitz property of EERM, we have

(<Larsrn |[[Phvkaa] (0 = o) = [P v ] (6= )|

k
.
< 2LH+17hCZ,1
= 2(exp(B(H +1—h)) = 1)¢}; 1,

where the second inequality is due to Lemma [T} The two types of analysis lead to different
coefficients. Consider the risk-neutral setting 3 — 0. For the distributional analysis, the coefficient
appears in the regret bound as

oo

<Lgyin HP;]f - Py

exp(B(H+1—-h)) -1

lim =H+1-—h,
B—0 /8
in contrast, the non-distributional analysis leads to that
H+1-h
L DB +1-h)

B—0 ﬁ

For small 3, the distributional analysis recovers the order of the corresponding risk-neutral algorithm.
However, the non-distributional analysis yields a exploding factor as 5 — 0. Therefore, it is not
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722
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725
726

proper to use the classical analysis to obtain the regret bound of Algorithm @ We can bound (a) as
~ 7rk Trk ~
(@) = (B (Ri"(s5)) = Bs (RE"(s8)) ) [PEWik ) (sh)
~ __k k
< Lo | Ry (sh) = R7 (b | _ - exp(8(H = 1)
< (exp(B(H +1 = h)) = 1)cj 5,

where the second inequality follows from the DKW inequality and the definition of c§72. Term (c) is
bounded as

() = By (Y (s8)) [P Wiy = Witk (sh)
= 55 (RE" () [P k] (sh)
= By (Ri"(s5)) (ch + 3F1),

where €} £ [Pf[kAﬁH](sﬁ) — AF_(sf,) is a martingale difference sequence with € € 2Dj 11

a.s. forall (k, h) € [K] x [H]. Denote by ¢ = ¢}’ ; +¢j ,. In summary, we can bound d}; recursively
as

k
F < 2Ly y1-nck + Eg(RE (s5))(ef + 5lff+1)-

Repeating the procedure, we can get

H-1 h—1 H-1 h H-1
k k k
08 <2 Lurin [[ Es(RT (sD)eh + Y [T Es(RT (sD)els + T1 Es(RT (s5))0%
h=1 i=1 h=1 i=1 i=1

H
h

u:
L
m
L

H—

23 (exp(8H) = )ef + > [ Bs(RT (sh)eh + [T Es(R7 (1))
h=1 h=1 i=1 i=1

IN

It follows that

K K
36k < 2exp(B(H+1)-1) S
k=1

<23 (exp(B(H + 1)~ Dexp(30h~ D)k + Y T[Es(RT (5 + [T Bo(RI G

= 3(exp(B(H + 1)) — 1)V2S2AK..

Observe that

h
[T B5(RT (s5)ek € exp(8h) D1 = exp(8)[1 — exp(B(H +1— b)), exp(B(H +1— 1)) ~ 1]

C [1 —exp(B(H + 1)), exp(B(H + 1)) — 1],

thus we can bound the second term by Azuma-Hoeffding inequality: with probability at least 1 — ¢,
the following holds

[1 Es(RT (s1))ef < (exp(B(H + 1)) — 1)v/2K H1og(1/5).

28



728

729

730

731

732

733
734

735

736

737
738

739
740

741

742
743

744
745

i 1 S
< ;exp(ﬁ(H - 1))(6Xp(ﬁ) - 1) (\/Q(N}]f v 1)L + \/(N;]f V1) L)
< 1.5(exp(BH) — 1)V2S2AK..

Using a union bound and let § = ¢’ = %, we have that with probability at least 1 — 6,

memg%@amwmﬂJWJWmMKw@me+m—nQKm)

where ¢ £ log(4SAT/5).

In contrast, if we use non-distributional analysis, we will arrive at

Regret(K) < O (eXp(ﬂﬂH)vHSQAT> )

which blows up as 5 — 0.

D.3 Proof for regret lower bounds

Notations. We define kl(p, q) := plog § + (1 —p)log % as the KL divergence between two
Bernoulli distributions with parameters p and q.
D.3.1 Correction of Lower Bound

[23] presents the following lower bound.
Proposition 3 (Theorem 3,[23]]). For sufficiently large K and H, the regret of any algorithm obeys

BIH/2 _q

e

- /TlogT.
18|

However, the lower bound itself and the proof are incorrect. The major mistake appears at the second
inequality of the following statements in their proof

_ exp(BH/2) 1

E[Regret(K)] 2

E[Regret(K)| 2 3 Klog(K)
> % KHlog(KH).

The authors establish the second inequality based on the following fact

Fact 2 (Fact 5,[23]] ). For any a > 0, the function f, = eaifl ,x > 0 is increasing and satisfies
limrﬂ() fa = Q.

In fact, we can only use Factto derive % 2> H, which combined with the first inequality
yields

E[Regret(K)|] 2 H\/KH log(KH).

It is a weaker lower bound and does not feature the dependence on 3. The best result we can get
based on the original proof is that

Proposition 4 (Correction of Theorem 3,[23]] ). For sufficiently large K and H, the regret of any

algorithm obeys
v Klog K.

ClBIH/2 _ 4

E[Regret(K)] 2 7]
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D.3.2 Proof of Theorem[3|

We introduce some notations here. We define the probability measure induced by an algorithm .o/
and an MDP instance M as

K
Pt (FEHY) o= ] Pazeyma (ZhlsT),
k=1

where P o4 is the probability measure induced by a policy 7 and M, which is defined as

H

Prm(Za|s1) = H 7n(an|sn) PP (shat|sn, an).
h—1

Note that the probability measure for the truncated history ”H,fl can be obtained by marginalization

P m(HE) = Py st (F*)Pos, (7201 (Th)-
We denote by P o and E /¢ the probability measure and expectation induced by ¢ and M. For
the sake of simplicity, the dependency on .7 and M may be dropped if it is clear in the context.
Fact 3 (Lemma 1, [26])). Consider a measurable space (0, F) equipped with two distributions Py
and Py. For any F-measurable function Z : Q0 — [0, 1], we have
KL (P1,P2) > kI (E4[Z], E2[Z]),
where Eq and Eq are the expectations under Py and Py respectively.

Fact 4 (Lemma 5, [2Q]). Let M and M’ be two MDPs that are identical except for their transition
probabilities, denoted by Py, and P}, respectively. Assume that we have ¥(s,a), Pp(- | s,a) <
P/ (- | s,a). Then, for any stopping time T with respect to (Ik)k21 that satisfies a7 < o0] =1

KL (Pag, Pag) = > Ep [NF (s,a)] KL (Py(- | s,a), PL(- | s,a)).
(s,a,h)eESX AX[H—1]
Lemma 14. Ife > 0,p > Oandp+ ¢ € [0, 3], then kl(p,p + ¢) < QP(;Q_M <<,

Proof. Fix q € [0,1], let h(p) := kl(p, q). It is immediate that

P L—p
B (p) = log = — log ,
(p) . -

n"(p) = > 0.

~ p(1-p)
Therefore h(p) is strictly convex, increasing in (g, 1) and decreasing in (0, ¢). By Taylor’s expansion,
we have that

o) = hia) + 1@~ ) + 310~ 0 = 20

for some r € [p, q] (p < q) orr € [g,p] (p > ). In particular, for any ¢ > 0 such thatg = p+ ¢ <
it follows that

1
2

(v -0 & e &

-~ =7 | _ = < < —
2r(1—r) lo=p+e 2r(l—r) ~ 2p(1—p) — p’

kl(p,p+¢€) =

where the first inequality follows from the fact that r + (1 — ) is increasing in [p, p + €] C [0, 3]
and the second inequality is due to that 1 — p > % O

The proof of Theorem 3] adopts the same construction of hard MDP class C as [20]].

Proof. We consider the case that 5 > 0. Fix an arbitrary algorithm 7. We introduce three types of
special states for the hard MDP class: a waiting state s,, where the agent starts and may stay until
stage H, after that it has to leave; a good state s, which is absorbing and is the only rewarding state;
a bad state sy, that is absorbing and provides no reward. The rest S — 3 states are part of a A-ary tree
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775
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779
780

781

782

784

786
787

of depth d — 1. The agent can only arrive s,, from the root node s,...; and can only reach s, and s;
from the leaves of the tree.

Let H € [H — d] be the first parameter of the MDP class. We define H:=H+d+1and

H' := H +1— H. We denote by L := {s1,55,..., 57} the set of L leaves of the tree. For each
u* = (h*,0*,a*) € ld+1: H+d] x L x A we define an MDP M~ as follows. The transitions
in the tree are deterministic, hence taking action a in state s results in the a-th child of node s. The
transitions from s,, are defined as

Py, (s | Sw,a) := ]I{a = Qw,h < FI} and  Pp (S0t | Swy @) i =1 — P (8y | Sw,a).
The transitions from any leaf s; € L are specified as
Py (sg | siya) :=p+ Ay« (h,s;,0)  and Py (sp | si,a) :=p — Ay (R, 84,a),
where A« (h,s;,a) = €el{(h,s;,a) = (h*,s4-,a*)} for some constants p € [0,1] and € €
[0, min(1—p, p)] to be determined later. p and € are the second and third parameters of the MDP class.
Observe that s, and s;, are absorbing, therefore we have Va, Py, (s, | sq,a) := Py (s | sp,a) :== 1.
The reward is a deterministic function of the state

ri(s,a) :=1{s = s5,h > H}.

Finally we define a reference MDP M, which differs from the previous MDP instances only in that
Ag(h, s;,a) := 0 forall (h, s;,a). For each €, p and H, we define the MDP class

CFI,p,e =MoU {Mu*}u*e[d+1:f{+d]><£><.A-

The total expected ERM value of <7 is given by

K H
Ew - Z (Z ru(sy,af)|m k)]
=1 h=1
- K .
1
= Eg{,Mu* Z B IOg]Eg{ Mo |FXp (ﬂz Th sh, a£)>‘|‘|
Lk=1 h=1
- 1 .
=Eg M, Z B logE ik Aq,. |€XP B8 Z ]I{sﬁ = Sg}
| k=1 h=H
MK
1
=Eot Mo | D 5108 Ersaa,.. [oxp(BH'I{sy = sg}ﬂl
Lk=1
MK
1
=EBum,. |, 3 log(exp(BH" )Pk . (5% = $g) + P pa,. (% = sb))] ,
Lk=1

where the second equality follows from the fact that the reward is non-zero only after step H, the

third equality is due to that the agent gets into absorbing state when h > H. Define z¥ P (sl,j, a’,?b)
for each (k, h) and x* := (s;+,a*), then it is not hard to obtain that

H+d
Pk gy [s’;;[ = 54| = Z PPk gy (sﬁ €L)+1{h=h"}Prk (zF = 2*)e
h=1+d
P+ €ePrr y» (zF. = 2%).

For an MDP M,,, the optimal policy 7**Mu* starts to traverse the tree at step h* — d then chooses

to reach the leaf s;« and performs action a*. The corresponding optimal value in any of the MDPs
is VrMur = %log(exp(,BH’)(p +€) +1—p—c¢). Define pf. := Prx ,(xf. = z*), then the
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788 expected regret of &7 in M~ can be bounded below as

E.Q{,Mu* [Regret(%v Mu* ) K)]

MK H
=Eu m,. ZV*’M“* —Up (Zrh(a:ﬁ)ﬁk>1

L k=1 h=1
MK
_ 1, epBH)pto+1-p-c
= Eo M, kgﬁ exp(BH')(p+ eph) +1—p epﬁ*]
) L (1 = pk)(exp(BH') — 1)
=Eo M, ;E ( exp(BH')(p + epk. )+1—p—€P5*>
MK

1 (1 —ph.)(exp(BH') — 1)
ZE@{,MH* ;B ( 1+1 )]

H’ -1 &
> By, |22 5 B ey (- ph)
k=1

N K
= exp(ﬁié)l 2:1 (1 =Ewom,.[pE])
eXp BH’

_ B V)]

789 The first inequality holds by setting

P BH'). The second inequality holds by letting
790 € < 2exp(—FH’) since log(1 + x) >

+e<e p(
% for € [0, 1]. The last equality follows from the fact that

Eo/ Moo [Phr] = Bt Mo [Prb e (20 = 27)] = Py e (22 = 27) = Egy e [[{ (2. = 2%)}]
791 and the definition of Ny (u*) := Zszl ak, = z*}.
792 The maximum of the regret can be bounded below by the mean over all instances as

1
max Regret(of , My, K) > —— Regret(o/, M+, K
uw*€ld+1:H+d]x Lx A gret( ) HLA Z gret( )
u*€[d+1:H+d] X LX A

>%K6 1 1 Z

= 13 T TAKH By [NK(U*)}

*Cld+1:H+d]xLx A
793 Observe that it can be further bounded if we can obtain an upper bound on

79 3 celdt1:A+d)xcx A Bur [Nk (u)], which can be done by relating each expectation to the
795 expectation under the reference MDP M.

796 By applying Factwith 7 = % € [0, 1], we have

1 *
K1 (B0 [V (0")] e Vi (7)] ) < KL (Po, Prc).
797 By Pinsker’s inequality, it implies that

1

1 1
?]Eu* [Nk (u*)] < E]EO [Nk (u*)] + 3 KL (Pg, P+ ).

798 Since M and M~ only differs at stage h* when (s, a) = z*, it follows from Fact@that

KL (Po, Py-) = Eo [Nk (u*)] Kl(p, p + €).
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By Lemma we have kl(p,p +€) < % fore > 0andp+ € € [0, %] Consequently,

1 *
u*€[d+1:H+d]x LXA

1 " € "

< - Eo Z Ng(u*)| + 75 Z Eo [Nk (u*)]
u*€[d+1:H+d]x Lx A u*€[d+1:H4+d] x Lx A
€ — —
<14+ —VLAKH,
V2p

where the second inequality is due to the Cauchy-Schwartz inequality and that

DweldttA+dxcxa N (') = K.
It follows that

exp(BH') — 1 1 \/;—pv LAKH
Regret(o/ , My, K) > ——2——Ke[1 - ——= — _
weclar i o Reerell ) 48 “\' T Iam LAH
Choosing € = /(1 — ﬁ) % maximizes the lower bound
2
VD exp(BH') — 1 1 = —
Regret(o', M+, K) > 1-—— ) VLAKH.
u*e[d+11:%a-|>—(d]x£xA gret( ) 82 B8 LAH
Since § > 6and A > 2, wehave L = (1-4)(S—3)+4 > S and 1— 47 > 1—% = 2. Choose

H = % and use the assumption that d < £ to obtain that H' = H — d — H > £. Now we choose

p=exp(—BH') and e = /E(1 — i)\ /242 < 515 exp(—BH'/2)\/ L42 < exp(-BH')
if K > 2exp(BH')LAH. Such choice of p and ¢ guarantees the assumption of Lemmaand that
p+e<exp(—BH'), e < 2exp(—BH'). Finally we use the fact that VLAK H > ﬁ\/SAKH to
obtain

1 H/6) —1
max Regret(o/', M+, K) > exp(BH/6) VSAKH.
wreld+1:H+d]x Lx A 72v/6 B
O
E Proof for Propositions
For notational simplicity, we write 7y, .h, = {7h,, Thy+1," ** , Th, } fOr two positive integers hi <
ho < H.

Proof of Proposition[I] Notice that there exists some optimal policy for sub-problems at each step,
which will be shown in Proposition 2} Suppose that the truncated policy 7. ;; is not optimal for this
subproblem, then there exists an optimal policy 7.z such that

33, occurring with positive probability, V™ (5;,) > VhW;‘H(éh).

There exists a state 55,1 which occurs with positive probability and Py,_1(5p,|5p-1, 7} _(8r-1) >0
such that

Us (s ™" (3n-1) = Us(Ri-1 i, mhoaue1))) + U ([Pacavf™ ] Gnors mioa i)
> Up(Rio1 ity i1 (Gu))) + U ([Prcavi | G mi_a(5a)
= Uﬁ (V;iil:H(ghfl)) 5

where the inequality is due to the strict monotonicity preserving property of Ug. It follows that
{7} _1 T,y ..., T} is a strictly better policy than {n}_,, 7}, ,..., 75} for the subproblem from
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h —1to H. Suppose for b’ + 1 € [2,h — 1], {7}, 1, .., Tn,, .., TH } is a strictly better policy
than {7}, ..., 7}, , ..., } for the sub-problem from A’ 4 1 to H. Similarly we can obtain
that {7}, ..., Ts,, ..., T } is also a strictly better policy than {77}, ..., 7}, , ..., 7}; }. Repeating the
above arguments finally yields that {7}, 73, ..., 7s,,..., T } is a strictly better policy than 7* =
{n},m5,...,m5 }. This is contradicted to the assumption that 7* = {x}, 73, ..., 7}, } is an optimal
policy.

Proof of Proposition|2] Throughout the proof we drop the dependence on * for the ease of notation.
The proof follows from induction. Notice that by distributional Bellman equation, 1y, (s5,) and V4, (sp,)
are the return distribution at state s;, at step h following policy 7. ;7 and value function respectively.
At step H, it is obvious that 7y is the optimal policy that maximizes the ERM value at the final
step for each state sy € S. Now fix h € [H — 1], assume that 7, 11.5 is the optimal policy for the
subproblem
Vil 75 (shg1) = max VhﬂJ’rLf:H (Sh1), VSpy1-
Tht1:H

In other words,
Us(Vhy1(sn41)) = Us(vp 1" (sny1)) = max Ua(vgfﬁ”’(shﬂ))
Th+1:H
> Uﬁ(l/;:rilﬂ(5h+1))vV7T;z+1:HaV5h+l~

It follows that Vsy,,
Vi(sn) = Qn(sn, mn(sn)) = Us(vp " (sn)) = max Us(nn(sh,an))
= max{Us(R(sn, an)) + Us ([Puvni1] (s, an))}

> rr(lz:%x {UB(T\’,h(sh,ah)) + max Ug ({Phl/;flw] (sh,ah))}

Thil:H

Th Tht1:H

—mgx{Ug(Rh(sh,W;l(sh))) + max Up ([Phy,’['igw} (sh,ah))}

= max {U/g(Rh(sh,wfl(sh))) +Us ([Pthiﬁl;H} (Shvﬂ;l(sh»)}

Thin
7.‘_I
— h+1:H
= max Us (l/h (sh)) .
h:H

Hence V}, is the optimal value function at step h and 7. is the optimal policy for the sub-problem
from h to H. The induction is completed. O

Definition 1. For two algorithms <7 and o, we say that of is equivalent to o (vice versa) if for any

k € [K], any Fy it holds that <f (Fy,) = o (Fy,).

It follows from the induction that the whole history/trajectory Fx ;1 generated by the interaction
between each of two equivalent algorithms and any MDP instance follows the same distribution.
Moreover, the two algorithms possess equal regret.

Proposition 5 (Equivalence between ROVI and RODI-MB). Algorithm[3|(Algorithm2)) is equivalent
to Algorithm[6](Algorithm 3).

Proof. We only prove the case that 5 > 0. The case that 3 < 0 follows analogously. Fix an
arbitrary k € [K] and Fy, = {s},a}, R}, ---,s% ' ak " RE"1}. Denote by o (&) and {n}}
({fr,’i}) Algorithm@ (Algorithm and the associated policy sequence. It suffices to prove that 7%
coincides with 7* for the same history F},. By the definition of the two algorithms, we have

74 (s) = argmax Qf (s, @) = Us (i (s, a)), 75 (s) = arg max Jf (s, a).
If JF(s,a) = Eg(nf(s,a)) = exp(BQ¥% (s, a)) for any (s, a), then 7F = #¥ due to the monotonicity
of the exponential function. We will prove that Jf (s, a) = Eg(n}(s,a)) by the induction. Notice
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that J¥ (s,a) = Eg(n¥(s,a)). Assume that J¥(s,a) = Eg(nF(s,a)) for some h € [H]. It follows
that 7 = 77 and

W (s) = max JE (s,a) = T (s, 7 (5)) = Bs(f (s, 7§ (5)) = Bs(f(s, 7 (5)))
— Bs(vf(s)).

Given the same history F}, the two algorithms share the empirical transition model P,itl, the

empirical reward distribution 7%271, the count IV, ,’1“71, and the optimism constants cfkl 1 0271 9
Therefore they also share the optimistic transition model ]5,5_1 as well as the optimistic reward
distribution Rﬁ_l. According to the update formula of Algorithm@ we have that for any (s, a)

Tha(s,0) = By (RE_y(s,0)) | Py WE| (s,0) = B (RE_y(s,0)) By (| P_svk] (s,0))

= B (B RE ] (5,0)
= By (1 _1(5,0)).

Thus the proof for the case of random reward is completed. The proof for the case of deterministic
reward follows analogously.

O
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