
A Appendix

A.1 More details on the fault-aware ranker datasets

Table 12 and Table 13 show additional examples for each execution error and intent error class.

Figure 6 shows the distribution of the various classes of execution and intent errors for the ranker
dataset generated by the Codex model using the APPS training dataset.

Figure 6: Distributions for various classes of execution errors (left) and intent errors (right) in the ranker training
dataset obtained using the Codex code gen. model.

A.2 Additional results

A.2.1 Ablations on different ranker tasks

Table 14 and Table 15 show the various ranked metrics for rankers trained on different fault-aware
tasks when using the Codex and GPT-Neo 125M code generation models respectively. Figure 7
shows 4 training curves, X , showcasing the validation ranked exec@1 curves for the model X when
combined with 5 different rankers R∗DX

.

Figure 7: Training curves (smoothed) measuring ranked exec@1 on the validation set as training progresses for
various rankers on different code generation models.

15



Class Example 1 Example 2

NameError
def bird_code(arr ):

if ’hyphen’ in arr :
return [ arr [ i ][0] + ...

# name ’i’ is not defined in line 2

def args_to_string(args ):
return ’\n’ . join ( sorted(s ,
key=lambda x: x. isdigit ())) + ’\n’

# name ’s’ is not defined in line 2

ValueError

t=int(input ())
for i in range(t ):
s ,g,d,t=map(int,input(). split ())
print (d−1)
print (s∗g)

# Too many values to unpack in
# line 2 (expected 4, got 5)

def capitals_first ( text ):
return ’ {:b}{}’.format(text . lower (),

text .upper(), text . capitalize ())
# Unknown format code ’b’ for object
# of type ’ str ’ in line 1

EOFError

t = int(input ())
for i in range(t ):
s = input()
a = sum(map(int, input(). split ( ’␣’ )))
print (a)

# EOF when reading a line at Line 3
# caused due to duplicated calls
# to input() within the for loop.

_ = input()
s = input()
ans = 1
for i in range(1, len(s )):
if s [ i ] == "?" and s[i − 1] == "?":
ans = (ans ∗ 2) % 1000003

# EOF when reading a line at Line 1

TypeError
def solomons_quest(arr):
return [abs(a) for a in arr ]

# bad operand type for abs ():
# ’ list ’ at Line 1

def negation_value(s , val ):
if val in s : return False
return s [0]

# ’in <string>’ requires string as
# left operand, not bool at Line 1

IndexError

for _ in range( int (input ())):
n,m=map(int,input(). split ())
l=[0]∗n
for i in range(n∗m):
l [ i ]+=1

# List index out of range at Line 4

def get_last_digit (index ):
digits = [x for x in \
range(1, index + 1) if x < 10]
return digits [ index ]

# List index out of range at Line 3

KeyError

def define_suit (card ):
a = {"3C": "clubs", "3D":
"diamonds", "3H": "hearts", "3S":
"spades"}
return a[card]

# KeyError(’QS’) at Line 4

def league_standings(teams):
return {i+1: teams[−i−1] for
i in range(len(teams))}

# KeyError(−1) at Line 1

Function not found
def seemingly( string ):

...
# The test module is expecting a
# function named "apparently"

# Empty code

TimeoutException

def pre_fizz (n):
list = []
while n >= 0:

list .append(n)
n = n//1

return list
# runs into an infinite loop

def fibonacci (n):
return n if n in [0, 1] else
fibonacci (n − 1) +
fibonacci (n − 2)

# inefficient implementation

SyntaxError

def game_winners(gryffindor,
slytherin ):
if slytherin == "yes":
return " It ’ s␣a␣draw!".

...
# Syntax error at Line 3 (extra .)

def process_data(data):
return data [0] ∗ data [1] ∗
data [2] for i in range(len(data))

# Syntax error at Line 1
# ( list comprehension syntax)

Misc

def duplicate_count(text ):
return sum(count for c, count in
text . items() for count in {’a’ , ’A’, ’B’})

# AttributeError at Line 2
# (str has no attribute items)

for _ in range( int (input ())):
n = int(input ())
a = a+1
...

# UnboundLocalError at line 2
# local variable ’a’ is referenced
# before assignment.

Table 12: Examples of different classes of execution errors

A.2.2 Ablations on different ranker datasets

Table 16 shows the ablation results when training rankers on datasets collected from code generation
models. These results show the improvements of rankers on the Codex code generation model. We
can see that a ranker trained on completions from the Codex model is better than a ranker trained
on completions from other models. We can also see that a ranker trained on the mixed-large dataset
(which use all completions from all models) beats the ranker trained on Codex dataset by additional
2.7%.

16



Class Example 1 Example 2

NoneError

def consecutive_sum(num):
sum = 0
n = len( str (num))
for i in range(n−1):
if num % i == 0 and sum > 0:
return sum

# return statement never gets triggered

def start_smoking(bars ,boxes):
rem = boxes ∗ 18 − bars ∗ 10
if rem != 1:
print ((rem + 4) // 5)

else :
print (0)

# no return statement

EmptyError

def grabscrab(word, possible_words ):
if word in possible_words:
return possible_words[word]

else :
return []

# Got [], expected [’ first ’]

def interleave (args ):
return [elem for elem in zip(args)
if len(elem) < len(args )]

# Got [], expected
# [1, ’c ’, 2, ’d ’, 3, ’e ’]

OutputTypeError

def diamonds_and_toads(sentence, fairy):
if fairy == ’good’:
return sum(1 for i in sentence. split ())

elif fairy == ’evil ’ :
return sum(1 for i in sentence. split ())

# Got 3, expected
# [{’ruby ’: 3, ’ crystal ’: 2}])

class Solution :
def longestPrefix ( self , s : str ) −> str:
s = list (s)
s = [i for i , j in zip(s , s [::−1][0:])]
return s[:−2]

# Got [’"’, ’ l ’, ’e ’, ’v ’, ’e ’], expected ’"’

LengthError
def rotate ( arr , n):
return list (range(0, len( arr)+n,n))

# Got [0, 1, 2, 3], expected
# [’c ’, ’a ’, ’b ’]

def diamonds_and_toads(sentence,fairy):
return dict (zip( ’Ruby␣Crystal’ ,

(0, 2, 1, 2, 0)))
# Got {’R’: 0, ’u ’: 2, ’b ’: 1, ’y ’: 2, ’ ’: 0},
# expected {’ruby ’: 3, ’ crystal ’: 2}

IntSmallError
def is_balanced(source , caps):
return all (x. startswith (caps) or x == caps
for x in source)

# Got False, expected True

T = int(input ())
for _ in range(T):
N = int(input())
print (bin(N).count(’0’ ))

# Got [[2], [3]], expected [[1], [2]]

IntLargeError
def missing_angle(h, a, o):
return int ((a∗h+o)/2) if o==0
else int (a∗h+o)

# Got 300, expected 37

class Solution :
def findMedian( self , nums1, nums2):
nums1.sort()
nums2.sort()
return float ( ’−inf’)

# Got −inf, expected 2.0

StringSmallError
def smash(words):
return ’ ’ . join (word for word in words)

# Got ’helloworld ’,
# expected [’ hello world ’]

def solve (st ):
a = st. find ("a")
return a if len(st) == 0
else "". join ( sorted( list (st )))[0]

# Got ’a’, expected ’x’

StringLargeError

def jumping_number(number):
number = str(number)
if len(number)!= 0:
return "Not!!"

else :
return "Jumping!!"

# Got ’Not !!’, expected ’Jumping!!’

def spacify ( string ):
#your code here
return ’ ’ . join ( sorted( string . split ()))

# Got ’Pippi ’, expected ’P i p p i ’

Table 13: Examples of different classes of intent errors

Codex + ranker ranked pass@1 ranked pass@5 ranked exec@1
RB

DCodex
37.6 64.6 83.4

RT
DCodex

39.6 63.5 87.0
RI

DCodex
36.5 64.7 81.8

RE
DCodex

38.6 64.0 87.5
RE+L

DCodex
37.1 61.5 88.3

Table 14: Ablation of the different fault-aware ranker tasks using Codex as the code-generation model (on the
APPS validation dataset).

A.2.3 Alternate ranker architectures

We experimented with a GPT-Neo 125M decoder-based model for the ranker and found it to be
performing suboptimal to a CodeBERT-based ranker (even though both models are roughly the same
size). The GPT-Neo 125M ranker trained on the Codex ranker dataset (RT

Dcodex
) achieved 36.8%

ranked pass@1 when combined with the Codex model while the CodeBERT-based ranker achieved
39.6%.

17



GPT-Neo 125M + ranker ranked pass@1 ranked pass@5 ranked exec@1
RB

DGPT-Neo 125M
4.2 7.7 56.0

RT
DGPT-Neo 125M

5.7 10.4 78.4
RI

DGPT-Neo 125M
6.5 11.4 58.9

RE
DGPT-Neo125M

5.7 11.0 74.7
RE+L

DGPT-Neo 125M
6.5 11.9 87.6

Table 15: Ablation of the different fault-aware ranker tasks using GPT-Neo 125M model as the code-generation
model (on the APPS validation set).

Codex + Ranker ranked pass@1 ranked exec@1
Rbest

DCodex
39.6 87.0

Rbest
DGPT-J

28.3 83.6
Rbest

DGPT-Neo 1.3B
26.9 83.6

Rbest
DGPT-Neo 125M

27.3 81.8
Rbest

Dmixed-small
39.1 88.1

Rbest
Dmixed-large

42.3 91.0

Table 16: Ablation of the different ranker datasets (using the best ranker task for each dataset) on Codex
completions (on APPS validation set).

We further conducted an experiment with a GPT-Neo 1.3B model for the ranker. It took almost 4
days to complete 7 epochs of training with 16 V100 GPUs running in parallel. And still, it didn’t
reach the performance achieved by the CodeBERT model. GPT Neo 1.3B ranker model achieved
ranked pass@1 of 38.6% while CodeBERT ranker achieved 39.6%. We stopped GPT Neo 1.3B
ranker training at 7 epochs because the training became unstable at that point. On the other hand, a
CodeBERT based ranker took only 12 hours to train for 30 epochs (with 16 GPUs).

Table 17 shows the ranked pass@1 and ranked exec@1 performance of these various ranker architec-
tures and Figure 8 shows the smoothed training curves for these three rankers.

We believe that a ranker task is a code understanding task, hence starting with pre-trained encoders
such as CodeBERT are most effective compared to starting with a pre-trained encode-decoder or
decoder only code-generation models. We leave the full study about the impact of various ranker
architectures to future work. We also do not anticipate that just bigger ranker models would fill in the
gap between current ranked pass@1 and pass@100 since a ranker needs to implicitly learn to execute
which is a hard task. For that, we might need new architectures for capturing code structure and
execution. For this future exploration, we hope that our ranker tasks will serve as good benchmarks
for evaluating such architectures.

Codex + Ternary Ranker ranked pass@1 ranked exec@1
CodeBert Ranker 39.6 87.0
GPT-Neo 125M Ranker 36.8 84.4
GPT-Neo 1.3B Ranker 38.6 88.6

Table 17: Ablation of the different ranker architectures on Codex completions (on APPS validation set; trained
on the ternary ranker dataset).

A.2.4 Impact of example unit tests in the prompt

Following prior works, our experiments so far include a small number of unit tests in the task
description of the problem (as seen in Figure 1) so that we can directly compare our results with prior
works. Although our CODERANKER approach does not explicitly use these unit tests (since we do
not assume that an execution environment is given), our rankers can use the given unit tests as part of
their language/code comprehension ability to better solve the tasks. So, in this section, we conduct an
ablation study to measure the impact of the presence of these unit tests in the prompt on the ranking
ability of CODERANKER. We created a best-effort version of the APPS training/validation dataset

18



0 5000 10000 15000 20000
Step

0.15

0.20

0.25

0.30

0.35

Co
de

x 
ra

nk
ed

 p
as

s@
1

gpt-neo-125M
gpt-neo-1.3B
codebert

0 5000 10000 15000 20000
Step

0.4

0.5

0.6

0.7

0.8

Co
de

x 
ra

nk
ed

 e
xe

c@
1

gpt-neo-125M
gpt-neo-1.3B
codebert

Figure 8: CodeBert vs GPT-Neo ranker models: Training curves showing ranked pass@1 and exec@1 on the
APPS validation set with the ternary ranker.

that does not include the unit tests in the prompts and we trained a new ranker on this dataset. This
new ranker only performs slightly worse than the ranker that is trained with the unit tests in the
prompts, but it still significantly outperforms the approach without any ranker (see Table 18).

Codex + Ternary Ranker pass@1 exec@1
Prompts with example unit tests 39.6 87.0
Prompts without example unit tests 38.0 89.1
Without ranker 26.0 69.7

Table 18: Ablation for evaluating the impact of example unit tests in the prompt.

A.2.5 Comparison to ranking using the code gen. model’s predicted probabilities

In this ablation, we compare the impact of ranking using a separate ranker model versus ranking
using the code gen. model’s predicted probabilities for the various generated programs. The results
for the GPT-Neo 125M code gen. model can be found in Table 19; we can see that a separate
CODERANKER produces the best ranking effect and in fact, using the intrinsic code gen. model’s
probabilities to rank results in a slightly worse performance compared to a no ranking approach.

pass@100 pass@1 pass@5 exec@1
GPT-Neo 125M 23.6 1.4 5.2 41.1

+ ranking using generation probability - 1.0 3.7 43.6
+ CODERANKER - 6.5 11.4 58.9

Table 19: Comparing CODERANKER to ranking completions using Code Gen. model’s predicted probabilities
for the generated completions.

A.2.6 Qualitative analysis of CODERANKER

In Table 20, we show various programs generated by the fine-tuned GPT-J model, the actual error
message from the Python compiler upon executing these programs, and the various labels generated
by the different CODERANKERs trained on various ranker tasks.

19



Generated code Actual error message Predicted
def pillow (s ):
for i in range(len(s )):
if s [ i ] == "n":
if s [ i+1:] == "B":
return True

return False

Expected True, but
got False

B: correct
T: intent error
I: IntSmallError
E: intent error
E+L: intent error at Line -1

def camel_case(string ):
return "". join ([x. capitalize () for
x in string . split ("␣")])

Passed all tests

B: correct
T: intent error
I: StrSmallError
E: correct
E+L: correct at Line -1

def sum_it_up(numbers_with_bases):
return sum(int( str (n [0]) ∗ n [1],
base) for n in numbers_with_bases)

NameError(base is
not defined) at Line 1

B: wrong
T: execution error
I: execution error
E: NameError
E+L: NameError at line 1

for _ in range( int (input ())):
n = int(input ())
a = n − 2
b = n − 1
c = n
if n % 2 == 0:
print ((a∗((a−1)∗∗2) + (b∗∗2) −
2∗b + 2∗c)%1000000007)

else :
print ((a∗((a−1)∗∗2) + (c∗∗2) −
2∗c + 2∗b)%1000000007)

Got [[’7’], [’13’]], but
expected [[’1’], [’3’]]

B: wrong
T: intent error
I: IntLargeError
E: intent error
E+L: intent error at Line -1

def bingo(array ):
s = "". join (array )
return "WIN" if "BINGO" == s
else "LOSE"

TypeError(sequence
item 0: expected str
instance, int found) at
Line 1

B: correct
T: intent error
I: StringSmallError
E: intent error
E+L: TypeError at Line 1

T = int(input ())
for _ in range(T):
n = int(input ())
S = sorted( list (map(int,
input (). split ())))

ans = 0
for i in range(1, n+1):
if S[ i ] > S[i−1]:
ans += 1
print (ans)

Passed all tests

B: correct
T: execution error
I: execution error
E: IndexError
E+L: IndexError at Line 6

Table 20: We show various programs sampled from a fine-tuned GPT-J model, the actual error message, and the
labels predicted by various ranker models RX

DGPTJ
. We use the green color to indicate that label is correct, red

to indicate that the label is incorrect, and blue to indicate the case where the label correctly indicates an error in
the program, but it indicates the wrong error type.

20


