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ABSTRACT

Entropy-based objectives are widely used to perform state space exploration in
reinforcement learning (RL) and dataset generation for offline RL. Behavioral en-
tropy (BE), a rigorous generalization of classical entropies that incorporates cog-
nitive and perceptual biases of agents, was recently proposed for discrete settings
and shown to be a promising metric for robotic exploration problems. In this work,
we propose using BE as a principled exploration objective for systematically gen-
erating datasets that provide diverse state space coverage in complex, continuous,
potentially high-dimensional domains. To achieve this, we extend the notion of
BE to continuous settings, derive tractable k-nearest neighbor estimators, provide
theoretical guarantees for these estimators, and develop practical reward functions
that can be used with standard RL methods to learn BE-maximizing policies. Us-
ing standard MuJoCo environments, we experimentally compare the performance
of offline RL algorithms for a variety of downstream tasks on datasets generated
using BE, Rényi, and Shannon entropy-maximizing policies, as well as the SMM
and RND algorithms. We find that offline RL algorithms trained on datasets col-
lected using BE outperform those trained on datasets collected using Shannon en-
tropy, SMM, and RND on all tasks considered, and on 80% of the tasks compared
to datasets collected using Rényi entropy.

1 INTRODUCTION

Reinforcement learning (RL) methods can successfully solve challenging tasks in complex envi-
ronments, even outperforming humans in a variety of cases (Mnih et al., 2015; Silver et al., 2018).
However, due to the online nature of standard RL algorithms and their reliance on informative, often
hand-engineered reward signals, RL methods are typically sample-inefficient and lack generalizabil-
ity to new tasks. Offline RL (Levine et al., 2020; Prudencio et al., 2023) is an alternative approach
that applies RL-based techniques to train policies entirely offline using static datasets of trajectories
collected from the target domain. The key innovation is that a single offline dataset can be relabeled
with a variety of different reward functions, enabling reuse of datasets to learn a variety of down-
stream tasks. This paradigm magnifies the importance of learning to generate datasets with diverse
coverage of the state space in hopes of covering regions that correspond to a wide a variety of down-
stream tasks Yarats et al. (2022). The design of existing algorithms for dataset generation (Pathak
et al., 2017; Eysenbach et al., 2018; Lee et al., 2019; Burda et al., 2019; Liu & Abbeel, 2021; Yarats
et al., 2021) relies on uncertainty metrics, such as entropy, to quantify the quality and control the
variety of state space coverage. This renders the choice of uncertainty metrics critical to the diversity
of datasets that can be achieved. While Shannon entropy (SE) and Rényi entropy (RE) have been
widely used as exploration objectives in RL Hazan et al. (2019); Liu & Abbeel (2021); Yarats et al.
(2021); Zhang et al. (2021); Yuan et al. (2022), the variety of datasets that can be achieved using
them is limited. In the SE case this is due to the fact that SE provides just a single objective and
thus a single notion of optimal coverage (see Figure 2b). In the RE case, though its parametric form
provides a variety of notions of coverage, this coverage remains partial (see Figure 2b) and comes at
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Figure 1: (Left) Comparison of Shannon entropy, Rényi entropy, and behavioral entropy (ours) and their
effects on dataset generation, shown in PHATE plots, when used as an exploration objective. (Right) Perfor-
mance comparison of an offline RL algorithm (CQL) for three downstream tasks on datasets generated using
Shannon, behavioral entropy (ours), and Rényi entropy for the parameter q = 1.1 shown in the left-hand figure.

the cost of instability arising due to its inherent discontinuity in parameter space (Suresh et al., 2024)
and poor coverage for many parameter values (see Figure 1). Developing a family of exploration
objectives overcoming these issues remains an open question.

Recently, Suresh et al. (2024) proposed behavioral entropy (BE), a novel generalization of classi-
cal entropies that composes SE with the probability weighting functions widely used in behavioral
economics to model human decision making (Dhami, 2016). In Suresh et al. (2024), the authors rig-
orously established two key facts: (i) BE is a valid generalization of the classical notion of entropy,
and (ii) BE provides the most general notion of entropy to date in the sense that its parametric form
captures a wider range of valid generalized entropies than existing parametric families of entropies,
such as RE. The first property guarantees BE is smooth in its parameter and attains its maximum on
the uniform distribution, which is critical for exploration and data generation applications aiming for
uniform coverage. The second property stems from BE’s definition in terms of probability weight-
ing functions (Prelec, 1998), the use of which allows it to achieve a broader range of entropies than
comparable methods (see Figure 1). As Suresh et al. (2024) experimentally demonstrated on robotic
exploration problems, when BE is used as an objective this flexibility induces diverse exploration
policies ranging from those providing coarse and widespread coverage of the environment to dense
and focused coverage, achieving the best performance and the widest variety of coverages in discrete
probability spaces compared with SE and RE. Together, these results establish BE as a principled al-
ternative to existing exploration objectives that provides a rich variety of exploration behaviors and
state space coverage. However, the current formulation of BE is restricted to discrete probability
distributions and the experimental evaluation provided in Suresh et al. (2024) is limited to classical,
planning-based solutions to discretized, two-dimensional robotic exploration tasks. This impedes
the applicability of BE to more complex problems.

In this paper we propose using BE as a principled exploration objective for systematically gener-
ating datasets that provide diverse state space coverage in complex, continuous, potentially high-
dimensional domains. We hypothesize that using BE in this way will lead to superior offline RL
performance on BE-generated datasets compared with objectives providing an inferior diversity of
coverage, particularly SE and RE, but also the widely used Random Network Distillation (RND)
(Burda et al., 2019) and State Marginal Matching (SMM) (Lee et al., 2019) algorithms. There are
three primary challenges to using BE in this way: (i) a continuous-spaces version of BE must be for-
mulated; (ii) principled estimators for BE that enjoy theoretical guarantees while remaining tractable
in continuous, potentially high-dimensional settings must be developed; (iii) practical RL methods
for training BE-maximizing policies must be derived. We address all three of these challenges in
this work, then use the resulting RL method to generate datasets providing a rich variety of state
space coverage for subsequent offline RL. We experimentally confirm our hypothesis, demonstrat-
ing that BE-generated datasets lead to superior offline RL performance over SE, RE, RND, and
SMM datasets, and that offline RL methods enjoy better data- and sample-efficiency when applied
to BE- and RE-generated datasets compared with existing benchmarks.
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(a) Perception of normal distribution (N (0, 1)) un-
der Prelec weighting function. Black dotted line
shows standard normal density, f . For α ≈ 0 the per-
ceived density is uniform, indicating over-weighting
of uncertainty over entire support of f . For α ≫
0 the perceived density approaches a step function
around the mean, indicating under-weighting of un-
certainty near f ’s tails. α = 1 recovers original f .

(b) Diversity of Shannon, Rényi and BE values as
a function of Bernoulli trial parameter p. Behav-
ioral entropy HB captures entire behavior spectrum
from overvaluing uncertainty (light blue, α ≈ 0) to
highly undervaluing uncertainty (dark blue, α ≫ 0).
Rényi, HR, captures the former (light red, q ≈ 0),
but cannot capture the latter. Dotted red curve shows
HR as q → ∞. Shannon, HS, is dotted black curve.

Figure 2: Visualizations of probability weightings (left) and superior expressiveness of BE (right).

Our main contributions are:

• Behavioral entropy estimation in continuous spaces. We propose a version of BE applicable
to continuous probability distributions, derive k-nearest neighbor (k-NN) estimators for BE with
general probability weighting functions, and provide convergence guarantees and probabilistic
bounds characterizing the bias and variance of these estimators.

• Exploration and data generation via RL-based BE maximization. We derive practical BE-
maximizing exploration objectives and experimentally illustrate their effectiveness to generate
datasets with diverse levels of state space coverage in unsupervised RL settings.

• Offline RL performance on BE-generated data. We experimentally evaluate the performance of
offline RL algorithms for a variety of downstream tasks on BE, RE, SE, RND, and SMM datasets.
We find that BE datasets lead to superior offline RL performance over SE, RE, RND, and SMM,
and that offline RL methods enjoy better data- and sample-efficiency when applied to BE- and
RE-generated datasets compared with existing benchmarks.

2 BEHAVIORAL ENTROPY IN CONTINUOUS SPACES

Behavioral Entropy. The various notions of entropy that have been studied in the literature since the
initial work by Shannon (1948) quantify the uncertainty inherent in a random variable by measuring
how evenly distributed its associated probability density is over its support. Let X be a discrete
random variable over a finite set of M elements, and let p denote its probability mass function
(p.m.f.). Two classical and widely used entropies are the Shannon and Rényi entropies (Shannon,
1948; Rényi, 1961), given respectively by

HS(X) = −
M∑
i=1

log(pi)pi, (1) HR
q (X) =

1

1− q
log

M∑
i=1

pqi , q > 0, q ̸= 1. (2)

These entropy functionals, along with others such as Tsallis entropy (Tsallis, 1988), belong to the
class of admissible generalized entropies satisfying the first three Shannon-Khinchin axioms (see
(Amigó et al., 2018) for details). These axioms ensure that an entropy functional is well-behaved
by ensuring their continuity, stability with respect to addition or removal of known outcomes, and
maximality of the uniform distribution.

As mentioned in the introduction, the recent work (Suresh et al., 2024) proposed composing Shan-
non’s entropy with the probability weighting functions widely used in behavioral economics to en-
code human cognitive and perceptual biases. The composition of Shannon’s entropy with Prelec’s
probability weighting function Prelec (1998) yielded BE, an admissible generalized entropy that
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provides a tractable mathematical formalism for incorporating helpful human biases into uncer-
tainty quantification via entropy. The probability weighting functions used to encode human biases
are defined as follows (see (Dhami, 2016, Ch. 2.2)).
Definition 1. A function w : [0, 1] → [0, 1] is said to be a probability weighting function if it is
continuous, strictly increasing, satisfies w(0) = 0 and w(1) = 1, and has a unique, continuous, and
strictly increasing inverse.

The most widely used probability weighting function, and that which was the focus of Suresh et al.
(2024), is Prelec’s probability weighting, given by

w(x) = e−β(− log x)α , α, β > 0. (3)
Prelec’s function is smooth in both the probability and parameter space and has the ability to control
the fixed point and shape of the weighting function (see (Prelec, 1998; Dhami, 2016) for details).
Figure 2a illustrates its effect on a Gaussian density. Equipped with equation 3, Suresh et al. (2024)
proposed and studied the following.
Definition 2. Letting w be as in equation 3, behavioral entropy is given by

HB(X) = −
M∑
i=1

w(pi) log(w(pi)). (4)

The parameter α controls the shape of the perceived probability curve, enabling a wide range of
probability perceptions (see Figure 2a) and the resulting perceived entropies, as illustrated in Figure
2b. Under the condition that β = e(1−α) log(log(M)), equation 4 was shown in Suresh et al. (2024)
to belong to the class of admissible generalized entropies. With this conditioning, equation 3 allows
control of the third fixed point of w, which is critical for ensuring BE remains an admissible entropy,
whereas other probability weighting functions lack this property (Dhami, 2016) and do not generate
meaningful, admissible generalized entropies.

Interestingly, it was shown in (Suresh et al., 2024) that using BE over other approaches led to sig-
nificant acceleration of robotic exploration tasks as well as emergent search behaviors similar to
breadth-first and depth-first search, depending on choice of α. These results indicate that BE holds
promise as an objective for a broad range of exploration tasks in complex environments, yet Suresh
et al. (2024) only applied BE to discrete, binary random variables. To pave the way for the applica-
tion of BE to more complex problems, we now extend it to continuous settings.

Differential Behavioral Entropy. In this subsection we extend the definition of BE to that of
differential BE, providing a novel entropy functional that is applicable in continuous, potentially
high-dimensional spaces. Let f ∈ ∆(X ) be a p.d.f. over X ⊂ Rd, where d ∈ N+. We first recall
the differential versions of Shannon’s entropy and Rényi entropy of order q, where q > 0, q ̸= 1,
which are defined, respectively, by

HS(f) = −
∫
X
log(f(x))f(x)dx, (5) HR

q (f) =
1

1− q
log

∫
X
fq(x)dx. (6)

We will use these expressions in our experimental comparisons below and thus include them here
for easy reference. We next state the definitions of our continuous-spaces analogues of equation 4.
Definition 3. For an arbitrary probability weighting function w, differential generalized behavioral
entropy is given by

HB,w(f) = −
∫
X
log(w(f(x)))w(f(x))dx. (7)

In particular, substituting Prelec’s probability weighting from equation 3 into equation 7 yields
differential behavioral entropy, given by

HB,α,β(f) = β

∫
X
e−β(− log(f(x)))α(− log f(x))αdx. (8)

It is important to note that, unlike Definition 1 for probability weightings in the discrete setting,
where w : [0, 1] → [0, 1] in the continuous setting w must be generalized to w : [0,∞) → [0,∞)
to accommodate arbitrary densities, f . Desirable structural properties of w are described in the
detailed statement of Theorem 2 in the appendix. We will henceforth abuse both terminology and
notation by omitting “differential” when referring to differential entropies and by suppressing the
dependence of equation 8 on α, β when these are clear from context.
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3 k-NEAREST NEIGHBOR BEHAVIORAL ENTROPY ESTIMATION

We next turn to the problem of BE estimation in continuous, potentially high-dimensional spaces.
To accomplish this, we derive k-nearest neighbor (k-NN) estimates of BE along the lines of the
estimates studied in (Kozachenko & Leonenko, 1987; Singh et al., 2003; Leonenko et al., 2008;
Sricharan et al., 2012; Singh & Póczos, 2016) and others for Shannon and Rényi entropy. The k-NN
family of nonparametric estimators enables estimation of arbitrary densities from a finite number
of i.i.d. samples in continuous and potentially high-dimensional settings, making them particularly
well-suited to the RL context considered in the following section. Let f ∈ ∆(Rd) be a probability
density function (p.d.f.) over Rd, where d ∈ R+. Let X1, X2, . . . , Xn ∼ f(·) be n ∈ N+ i.i.d.
samples drawn from f . In (Loftsgaarden & Quesenberry, 1965; Devroye & Wagner, 1977) and
subsequent works it was established that, for suitably chosen n and k, a reasonable approximation
of f is provided by the k-NN density estimator

f̂(x) =
kΓ(d/2 + 1)

nπd/2Rd
k,n(x)

, (9)

where Rk,n(x) = ∥x−NNk(x)∥2 is the Euclidean distance between x and its kth nearest neighbor
among {X1, . . . , Xn} and Γ(x) =

∫∞
0

tx−1e−tdt is the gamma function. When x = Xi, we will
write Ri,k,n = Rk,n(Xi) for simplicity. A natural first approximation to Shannon entropy of f is
given by the plug-in estimator

ĤS
k,n(f) = − 1

n

n∑
i=1

log f̂(Xi) ≈ EXi∼f(·)

[
− log f̂(Xi)

]
= −

∫
Rn

log f̂(x) · f(x)dx. (10)

With this in mind, the naı̈ve approach to estimating equation 7 for general w is via

H̃B,w
k,n (f) = − 1

n

n∑
i=1

w(f̂(Xi)) logw(f̂(Xi)). (11)

Since Xi ∼ f(·), however, the estimator of equation 11 is biased, since

H̃B,w
k,n (f) ≈ EXi∼f(·)

[
−w(f̂(Xi)) logw(f̂(Xi))

]
= −

∫
Rn

w(f̂(x)) logw(f̂(x)) · f(x)dx. (12)

Dividing by the approximation f̂ yields the alternative, importance sampling-corrected estimator

ĤB,w
k,n (f) = − 1

n

n∑
i=1

1

f̂(Xi)
w(f̂(Xi)) logw(f̂(Xi)) (13)

≈ EXi∼f(·)

[
1

f̂(Xi)
w(f̂(Xi)) logw(f̂(Xi))

]
= −

∫
Rn

w(f̂(x)) logw(f̂(x))
f(x)

f̂(x)
dx.

Though this importance sampling-corrected plug-in estimator will be biased for the same reasons
detailed in (Singh et al., 2003, Thm. 8) for ĤS

k,n(f), for large n and suitable k equation 13 provides
a reasonable estimator of equation 8, as characterized by the following results.

Theorem 1. Suppose that k := kn → ∞, kn

n → 0, and kn

logn → ∞ as n → ∞. Assume that w is
Lipschitz, that f is absolutely continuous, and that there exist c1, c2 > 0 such that 0 < c1 ≤ f(x) ≤
c2 < ∞, for all x ∈ X . Then ĤB,w

k,n (f) → HB,w(f) both uniformly and in probability.

The result follows from the strong uniform consistency of f̂ (Devroye & Wagner, 1977).

Though asymptotic guarantees like Theorem 1 are somewhat reassuring, in practice we will use
finite k in our k-NN estimators and therefore need a more fine-grained characterization of the bias
and variance. Unfortunately, for finite k, the approximator ĤB,w

k,n (f) remains biased as n → ∞
due to the biasedness of f̂ for fixed k and the lack of a known bias correction procedure for our
BE approximator ĤB,w

k,n (f). This contrasts with the situation for simpler estimators like those for
Shannon and Rényi entropies, for which explicit bias correction terms are known (see Singh et al.
(2003); Leonenko et al. (2008); Singh & Póczos (2016)). Nonetheless, we establish probabilistic
guarantees on the bias and variance of our proposed BE estimator in the following main result.
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Theorem 2. Suppose f and w satisfy suitable differentiability and continuity conditions. Then, for
ε > 0, it holds with probability 1− ε that

∣∣∣E [
ĤB,w

k,n (f)
]
−HB,w(f)

∣∣∣ =

O
(
k
n

) ξ
d +O

((
k
n

) 2
d log n+

√
log(n/ε)

k

)
if d > 2,

O
(
k
n

) ξ
d +O

(
k
n log n+

√
log(n/ε)

k

)
if d = 1, 2,

(14)

Var
(
ĤB,w

k,n (f)
)
= O

(
1

n

)
. (15)

The proof and a precise statement are provided in the appendix. Equipped with the k-NN estimators
and theoretical guarantees derived above, we next turn to their application in the RL setting.

4 BEHAVIORAL ENTROPY IN THE REINFORCEMENT LEARNING CONTEXT

In this section we leverage the k-nearest neighbor generalized behavioral entropy estimates devel-
oped in the previous section for general probability weightings to derive a practical reward function
that can be used in conjunction with standard RL methods to maximize behavioral entropy of an RL
agent’s state occupancy measure.

Behavioral Entropy as an RL Objective. State occupancy measure entropy has been used as an
exploration objective for RL in a wide range of previous works (Hazan et al., 2019; Liu & Abbeel,
2021; Yarats et al., 2021; Zhang et al., 2021; Yuan et al., 2022). In order to formally define behavioral
entropy for state occupancy measures in this context, we first provide preliminary background on
Markov decision processes (MDPs). Let an average-reward MDP M = (S,A, p, r) be given, where
S is the state space, A is the action space, p : S × A → ∆(S) is the transition probability kernel
mapping state-action pairs (s, a) ∈ S × A to probability distributions p(·|s, a) ∈ ∆(S) over the
state space, and r : S × A → R is the reward function. Given a policy π : S → ∆(A) mapping
states to probability distributions over the action space, M evolves as follows: at timestep t ∈ N,
the system is in state st, action at ∼ π(·|st) is selected and executed, a reward rt = r(st, at) is
received, the state transitions according to st+1 ∼ p(·|st, at), and the process repeats. To each
policy π is associated the long-run average reward J(π) = limT→∞

1
T Eπ[

∑T−1
i=0 ri], and the goal

is to determine an optimal policy π∗ = argmaxπ J(π).

Under mild conditions on the transition kernel and policy (see (Puterman, 2014)), each policy π
induces a state occupancy measure dπ(·) ∈ ∆(S) capturing the long-run state visitation behavior
induced by π over S. When S is continuous, for a measurable subset B ⊂ S we have dπ(B) =
limt→∞ P (st ∈ B). We will henceforth assume that each measure dπ has a corresponding p.d.f.
and abuse notation by denoting the value of this p.d.f at s by dπ(s). 1 State occupancy measure
entropies can be obtained by directly substituting f = dπ and X = S in the entropy definitions in
equation 5, equation 6, and equation 8. In particular, the behavioral entropy induced by π resulting
from this substitution in equation 8 is given by

HB,α,β(dπ) = β

∫
S
e−β(− log(dπ(s)))

α

(− log dπ(s))
αds. (16)

We propose to use equation 16 as an exploration objective. To achieve this, we leverage the k-NN
estimator of equation 13 developed in the preceding section to derive a reward function r such that
J(π) ≈ HB,α,β(dπ) in the following subsection.

Behavioral Entropy Reward Derivation. We next build on the k-NN estimator of equation 13
to derive a practical reward function r such that J(π) ≈ HB,α,β(dπ). Our derivation is similar to
the reward derivations followed in (Liu & Abbeel, 2021; Yarats et al., 2021) for Shannon entropy
and (Yuan et al., 2022) for Rényi entropy. Once we are equipped with this reward, we can leverage
existing RL methods to learn behavioral entropy-maximizing exploration policies. Let s1, . . . , sn ∼
dπ(·). Substituting f = dπ and si = Xi into equation 9, for i = 1, . . . , n, we have that d̂π(si) =

1Similarly, π induces a state-action occupancy measure λπ(s, a) = dπ(s)π(a|s). In this work we focus
on state occupancy measures, but all results and methods can be extended to apply to state-action occupancy
measures in a straightforward manner.
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kΓ(d/2 + 1)/nπd/2Rd
i,k,n, where Ri,k,n = ∥si −NNk(si)∥2 and NNk(s) denotes the k-NN of si

within {si}i=1,...,n. Recalling that w(x) = e−β(− log(x))α , we can write

w(d̂π(si)) = e−β(−[log(kΓ(d/2+1))−log(nπd/2Rd
i,k,n)])

α

(17)

= e−β(d logRi,k,n+Dk,n)
α

, (18)

where Dk,n = − log(kΓ(d/2 + 1)) + log(nπd/2) = log
(
(nπd/2)/(kΓ(d/2 + 1))

)
. Substituting

equation 18 into equation 13 gives

ĤB,α,β
k,n (dπ) = − 1

n

n∑
i=1

1

d̂π(si)
w(d̂π(si)) logw(d̂π(si)) (19)

=
β

n

n∑
i=1

nπd/2Rd
i,k,n

kΓ(d/2 + 1)
e−β(d logRi,k,n+Dk,n)

α

(d logRi,k,n +Dk,n)
α (20)

∝ 1

n

n∑
i=1

Rd
i,k,ne

−β(d logRi,k,n+Dk,n)
α

(d logRi,k,n +Dk,n)
α (21)

∝∼
1

n

n∑
i=1

Rd
i,k,ne

−β(d logRi,k,n)
α

(d logRi,k,n)
α
. (22)

where the approximate proportionality in equation 22 follows from the fact that, under suitable
conditions on n, k (see, e.g., Theorem 1) the contribution of Dk,n to the value of equation 21 is
negligible. Since Eπ[Ĥ

B,α,β
k,n (dπ)] ≈ HB,α,β(dπ) by Theorems 1 and 2, and since equation 22 is

approximately proportional to ĤB,α,β
k,n (dπ), equation 22 suggests

r̃(s, a) = ∥s−NNk(s)∥d2 e
−β(d log∥s−NNk(s)∥2)

α

(d log ∥s−NNk(s)∥2)
α (23)

as a suitable proxy reward for maximizing behavioral entropy in an RL context. For numerical
stability, we follow (Yarats et al., 2021; Liu & Abbeel, 2021) by making the additional simplification
of setting d = 1 and adding a constant c > 0 inside the logarithms to obtain

r(s, a) = ∥s−NNk(s)∥2 e
−β(log(∥s−NNk(s)∥2+c))α (log(∥s−NNk(s)∥2 + c))

α
. (24)

A visualization of equation 24 with a comparison to the SE reward function is provided in Fig. 13
in the appendix. Armed with this reward, any standard RL method can be applied to learn explo-
ration policies approximately maximizing BE using equation 16. We illustrate its application in
data generation for offline RL in the next section. We note that implementing the k-NN estimator
in equation 24 can be computationally challenging in high dimensions for large k values due to the
well-known curse of dimensionality of suffered by k-NN estimators Beyer et al. (1999). To address
this, in practice k ≤ 15 is selected and dimension reduction to a feature space of manageable di-
mensions is performed before k-NN estimation is carried out, thereby limiting computational costs
Liu & Abbeel (2021); Yarats et al. (2021).

5 EXPERIMENTAL RESULTS

Environment Task BE RE SE RND SMM
Walker Stand 990.38 988.93 954.93 947.89 496.09

Walk 904.66 878.20 895.89 735.77 409.46
Run 385.07 440.53 360.64 341.03 140.29

Quadruped Walk 845.31 776.64 755.79 699.22 425.11
Run 522.32 490.75 490.46 490.66 275.38

Table 1: Comparison of best offline RL performance across all datasets, training
seeds, and offline RL algorithms.

The experiments pre-
sented in this section
(i) provide qualita-
tive insights into the
state space coverage
achieved by policies
that maximize BE,
RE, and SE, and (ii)
examine the utility
of BE-maximizing
policies for performing offline dataset generation for subsequent offline RL compared with datasets
generated using the SE and RE objectives and datasets generated using the RND and SMM
algorithms. The state space coverage visualizations that we present suggest that BE-generated
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datasets achieve a wider variety of coverage than RE- and SE-generated datasets, and that the RE
objective is unstable as a function of q and provides poor coverage for q > 1. We provide coverage
visualizations for RND and SMM in the appendix. In our offline RL experiments, we demonstrate
that offline learning on BE datasets leads to superior performance over SE, RND, and SMM datasets
on all five tasks, and superior performance to RE datasets on four out of five tasks (see Table 1).

Experimental Setup. For our experiments, we generated BE, RE, SE, RND, and SMM datasets for
the Walker and Quadruped environments using the Unsupervised Reinforcement Learning Bench-
mark (URLB) framework (Laskin et al., 2021)2. We subsequently generated t-SNE plots (Hinton
& Roweis, 2002) and PHATE plots (Moon et al., 2019) from the BE, RE, SE, RND, and SMM
datasets to visualize their varying state space coverage. Finally, we performed offline RL training
on all datasets using the Exploratory Data for Offline RL (ExORL) framework (Yarats et al., 2022)3.
We emphasize that the datasets we generated contained just 500K elements, only 5% as many as the
10M-element datasets considered in the ExORL framework (Yarats et al., 2022), and that we per-
formed just 100K offline training steps, only 20% of the 500K performed in ExORL. Despite these
limitations, we achieved comparable performance to that achieved in (Yarats et al., 2022), indicating
that using BE-generated data for subsequent offline RL leads to significant improvements in both
data- and sample-efficiency.

(a) PHATE plots for BE for Walker.

(b) PHATE plots for Renyi for Walker. Coverage
for q = 3.0, 5.0 similar to q = 2.0.

Figure 3: PHATE plots for Walker tasks.

Dataset Generation and Visualization. For dataset
generation, we used the Active Pre-Training (APT)
algorithm (Liu & Abbeel, 2021) implemented in
the URLB framework to maximize BE using the
reward proposed in equation 24 for various val-
ues of α, RE using the reward proposed in Zhang
et al. (2021) for various values of q, and SE
using the default reward from Liu & Abbeel
(2021). Specifically, for behavioral and RE we
considered α ∈ {0.2, 0.5, 0.7, 0.9, 1.5, 2.0, 3.0, 5.0}
and q ∈ {0.2, 0.5, 0.7, 0.9, 1.1, 2.0, 3.0, 5.0}. To
ensure admissibility of the behavioral entropies
we considered, we used the conditioning β =
e(1−α) log(log(M)) from Suresh et al. (2024), where
M is the dimensions of the representation space.
See the discussion following equation 4 in Section
2 for details. For each of the α and q values, as
well as for SE, we trained APT on the correspond-
ing reward for 500K pretraining steps on both the
Walker and Quadruped environments, collecting the
resulting trajectories to form our datasets. This re-
sulted in 17 datasets for each environment, for a total
of 34 datasets. To ensure a fair comparison across
entropies, for the APT hyperparameters we used
the default URLB pretraining hyperparameter val-
ues across all datasets (see Table 2 in the appendix).
For the datasets generated using the Random Net-
work Distillation (RND) (Burda et al., 2019) and
State Marginal Matching (SMM) Lee et al. (2019)
algorithms, we similarly trained for 500K pretrain-
ing steps and for consistency we used the same RND
and SMM hyperparameters considered in URLB.

To provide qualitative insight into the state space coverage of the SE, RE, and BE datasets, we
generated two-dimensional t-SNE (Hinton & Roweis, 2002) and PHATE (Moon et al., 2019) plots
of the trajectories they contain.4 We also generated t-SNE and PHATE plots for the RND and SMM

2https://github.com/rll-research/url_benchmark
3https://github.com/denisyarats/exorl
410K representative samples from each dataset were gathered uniformly, totaling 170K samples for each

domain from 17 datasets. t-SNE and PHATE were implemented on this aggregated 170K-element dataset to
ensure uniformity in projections for each dataset and then correspondingly represented individually for clarity.
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datasets, pictured in Figure 12 in the appendix. While t-SNE has been previously used to visualize
RL trajectory data (Zhang et al., 2021), to our knowledge this is the first time PHATE plots have
been used to visualize such data. PHATE tends to better retain global structure such as the temporal
nature of trajectory data, while t-SNE obscures it (Moon et al., 2019). Figure 3 indicates that while
both BE and RE-generated datasets provide more flexible levels of state space coverage than SE,
BE-generated datasets achieve a wider variety of coverage than RE. See the appendix for t-SNE
and PHATE plots for the remaining datasets. Importantly, these plots indicate that the RE objective
is unstable as a function of q and provides poor coverage for q > 1, while the level of coverage
provided by BE varies smoothly in α. We provide experimental support for this in the following
section, where highly unstable offline RL performance on RE datasets and the contrasting stability
on BE datasets is illustrated in Figure 4.

Figure 4: Comparison of offline RL performance over the entropy objectives used in dataset generation. Plots
show mean and standard deviation over five seeds. Dotted line shows performance of RL policy trained online
until approximate optimality.

Offline RL Experiments. We compared the TD3, CQL, and CRR offline RL algorithms (Fujimoto
et al., 2018; Kumar et al., 2020; Wang et al., 2020) implemented in the ExORL framework on the
datasets generated as described above for all eight α values and for q ∈ {0.2, 0.5, 0.7, 0.9, 1.1}.
We omitted offline RL training for RE datasets with q ∈ {2.0, 3.0, 5.0} after observing in initial
trials that performance was no better than for q = 1.1 and typically worse (see poor performance

9
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on q = 1.1 datasets in Figure 4). To gain insight into the effect of using larger datasets, we also
considered a 3M-element SE-generated dataset. Altogether we considered 17 datasets: eight BE,
five BE, two SE, and one each for RND and SMM. On the Walker datasets we considered the Stand,
Walk, and Run tasks, while on Quadruped we considered the Walk and Run tasks. For each of the
5 × 17 = 85 task-dataset combinations, we trained each of TD3, CQL, and CRR for 100K offline
training steps, evaluating performance every 10K training steps. For each of the 255 task-dataset-
algorithm combinations, we repeated this training process for a total of 5 different seeds, resulting
in our training 1275 offline RL policies altogether. To ensure a fair comparison across all entropies,
we used default ExORL hyperparameter values across all datasets (see Table 3 in the appendix).

As summarized in Table 1, offline RL training on BE-generated datasets leads to superior perfor-
mance over SE-, RND-, and SMM-generated datasets on all five tasks we considered, and superior
performance to RE-generated datasets on four out of five tasks. Figure 4 provides a detailed overview
of the experimental results for α ∈ {0.2, 0.5, 0.7, 0.9, 1.5} and q ∈ {0.2, 0.5, 0.7, 0.9, 1.1} (com-
plete results for all α values are shown in the appendix). This figure illustrates that BE-generated
datasets lead to significantly better performance over the other methods on Quadruped Walk and
Walker Walk for the best-performing α values, while offline RL performance on RE datasets for
the best-performing values of q is only slightly below that of BE datasets in Quadruped Run and
Walker Stand. These trends hold across all algorithms for each of the tasks. On Walker Run, the
best-performing RE parameter clearly leads to superior offline RL performance over both BE and
SE datasets in the TD3 and CQL trials, but performance on BE datasets is again better than on RE
datasets in the CRR trials. Performance on SMM datasets is clearly inferior across all tasks consid-
ered. Performance on RND datasets is inferior on Walker tasks, but is almost competitive with BE on
Quadruped tasks. Interestingly, the 3M-element SE datasets lead to strong downstream performance
on Walker Stand and improved downstream performance over the 500K-element SE datasets on the
Walker Stand and Run tasks, but the 3M-element SE datasets actually lead to worse performance
compared with the 500K-element SE datasets on both Quadruped tasks and TD3 performance on
Walker Walk. Overall, best offline RL performance on BE-generated datasets clearly exceeds best
performance on RE datasets on 13 out of 15 task-algorithm combinations and best performance on
SE, RND, and SMM datasets on 15 out of 15 task-algorithm combinations.

We observed sensitivity of performance to parameters α and q as well as choice of offline RL algo-
rithm. Regarding the latter, notice in Figure 7 in the appendix that on Walker Walk the SE-generated
datasets are competitive with the average and best-performing BE datasets in the TD3 trials, while
BE datasets significantly outperform SE ones in both the CQL and CRR trials. On Quadruped Run,
on the other hand, performance on BE and SE datasets remains roughly the same across all algo-
rithms, while average RE performance is significantly worse (see appendix for average performance
plots for all tasks). These results suggest that offline RL algorithm performance depends in a com-
plex way on the choice of exploration objective used in dataset generation. Well-performing, flexible
objectives such as BE – and to a lesser but still significant extent, RE – therefore merit additional
study as tools for dataset generation for offline RL.

6 CONCLUSION

In this work we developed the theory and practice of behavioral entropy in continuous spaces, en-
abling the incorporation of human cognitive and perceptual biases into uncertainty perception in
complex, real-world scenarios. We first developed and analyzed k-nearest neighbor estimators for
BE with general probability weightings. We subsequently derived practical reinforcement learning-
based methods for maximizing BE under Prelec’s probability weighting in sequential decision-
making problems, enabling the use of BE as a state space exploration objective in the RL context.
Leveraging these algorithmic developments, we experimentally investigated the utility of BE for
dataset generation for offline RL. Our experiments demonstrate that BE-generated datasets lead to
superior offline RL performance over both Shannon and Rényi entropy-generated datasets, that BE
is stabler and therefore easier to use as an exploration objective compared with Rényi entropy, and
that BE-generated datasets lead to improved data- and sample-efficiency for offline RL over exist-
ing methods. As a limitation, due to the computational burden of dataset generation and offline RL
training for a nontrivial variety of α and q values additional environments and offline RL algorithms
were not considered. These limitations are important directions for future work.
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A APPENDIX

A.1 PROOFS

Fix a probability weighting function w and let g(y) = − 1
y log(w(y))w(y). Fix a p.d.f. f ∈ ∆(X ),

where X ⊂ Rd is compact. Fix n, k ∈ N, and let X1, . . . , Xn ∼ f(·). Recall the definition of f̂
from equation 9. Let µ denote the Lebesgue measure and Br(x) = {x′ ∈ Rd | ∥x′ − x∥2 < r}.
Define

HB,w(f) = −
∫
X
log(w(f(x)))w(f(x))dx

∫
X
g(f(x))f(x)dx, (25)

HB,w
n (f) = −

n∑
i=1

1

f(x)
log(w(f(Xi)))w(f(Xi)) =

1

n

n∑
i=1

g(f(Xi)), (26)

ĤB,w
k,n (f) = −

n∑
i=1

1

f̂(x)
log(w(f̂(Xi)))w(f̂(Xi)) =

1

n

n∑
i=1

g(f̂(Xi)). (27)

Our goal is to establish a bound on the error∣∣∣E [
ĤB,w

k,n (f)
]
−HB,w(f)

∣∣∣ . (28)

In general, for finite k, even as n → ∞ the approximator ĤB,w
k,n (f) will remain biased due to the

biasedness of f̂ for fixed k and the lack of a known bias correction procedure for our BE approx-
imator ĤB,w

k,n (f). This contrasts with the situation for simpler estimators like Shannon and Rényi
entropies, for which explicit bias correction terms are known (see Singh et al. (2003); Leonenko
et al. (2008); Singh & Póczos (2016)). Nonetheless, in Theorem 2 we are able to build on existing
results to establish a probabilistic bound on equation 28. We first recall the following result.
Lemma 1 ((Singh & Póczos, 2016)). Suppose that, for some ξ ∈ (0, 2], f is ξ-Hölder continuous
and strictly positive on X . Suppose furthermore that there exists a function f∗ : X → R+ and
a constant f∗ such that 0 < f∗(x) ≤

∫
Br(x)

f(y)dy/µ(Br(x)) ≤ f∗ < ∞, for all x ∈ X , r ∈
(0,

√
d], and assume that

∫∞
0

e−xxkf(x)dx < ∞. Then∣∣∣E [
HB,w

n (f)
]
−HB,w(f)

∣∣∣ = O
(
k

n

) ξ
d

, (29) Var
(
HB,w

n (f)
)
= O

(
1

n

)
. (30)

The proof of this result follows directly from that of (Singh & Póczos, 2016, Thm. 5) due to the
fact that HB,w

n (f) is an unbiased estimator of HB,w(f). Also note that the variance bound can be
trivially strengthened to apply to ĤB,w

k,n (f) due to the fact that the latter is simply the sample average
of n i.i.d., bounded random variables:

Corollary 1. Under the conditions of Lemma 1, Var
(
ĤB,w

k,n (f)
)
= O

(
1
n

)
.

It remains to characterize equation 28. We first recall another useful result from the literature. For
a given set S ⊂ X , radius r, and m > 0, let N (S, r) denote the covering number, the minimum
number of balls of radius r needed to cover S. Let ∥·∥op denote the operator norm.

Lemma 2 ((Zhao & Lai, 2022)). Suppose there exist C1, C2, C3,N0 > 0 and β ∈ (0, 1] such that
the following conditions hold:

(i)
∥∇f(x)∥2

f(x)
≤ C1; (ii)

∥∥∇2f(x)
∥∥
op

f(x)
≤ C2; (iii) ∀t > 0, P (f(x) < t) ≤ C3t

β ;

(iv) N ({x|f(x) > m}, r) ≤ N0

mγrd
, for some γ > 0 and all m > 0.

Then, for ε > 0, it holds with probability (w.p.) 1− ε that

sup
x

∣∣∣f̂(x)− f(x)
∣∣∣ =


O
((

k
n

) 2
d log n+

√
log(n/ε)

k

)
if d > 2,

O
(

k
n log n+

√
log(n/ε)

k

)
if d = 1, 2.

(31)
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We are now in a position to prove our main result.
Theorem 2. Suppose f satisfies the conditions of Lemmas 1 and 2. Assume w is Lipschitz continu-
ous. Then, for ε > 0, it holds w.p. 1− ε that

∣∣∣E [
ĤB,w

k,n (f)
]
−HB,w(f)

∣∣∣ =

O
(
k
n

) ξ
d +O

((
k
n

) 2
d log n+

√
log(n/ε)

k

)
if d > 2,

O
(
k
n

) ξ
d +O

(
k
n log n+

√
log(n/ε)

k

)
if d = 1, 2.

(32)

Proof. First notice that∣∣∣E [
ĤB,w

k,n (f)
]
−HB,w(f)

∣∣∣ ≤ ∣∣∣E [
ĤB,w

k,n (f)−HB,w
n (f)

]∣∣∣+ ∣∣E [
HB,w

n (f)
]
−HB,w(f)

∣∣ . (33)

The second term can be bounded using Lemma 1, so it just remains to bound the first term. Recall
that X is compact, f is bounded strictly away from 0 on X , and w is Lipschitz. We therefore have
that g is the product of Lipschitz, bounded functions and is therefore itself Lipschitz on its domain.
Let K denote the minimal Lipschitz parameter of g. Rewriting equation 33 in terms of g, we obtain∣∣∣E [

ĤB,w
k,n (f)−HB,w

n (f)
]∣∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

E
[
g(f̂(Xi))− g(f(Xi))

]∣∣∣∣∣ (34)

≤ 1

n

n∑
i=1

E
[∣∣∣g(f̂(Xi))− g(f(Xi))

∣∣∣] (35)

(a)
= E

[∣∣∣g(f̂(X1))− g(f(X1))
∣∣∣] (36)

≤ KE
[∣∣∣f̂(X1)− f(X1)

∣∣∣] (37)

≤ KE
[
sup
x

∣∣∣f̂(x)− f(x)
∣∣∣] (38)

where equation a follows from the fact that the X1, . . . , Xn are i.i.d. An application of the law of
total probability and Lemma 2 to the last term completes the proof.
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A.2 HYPERPARAMETERS

Optimization hyperparameter Value
replay buffer capacity 106

mini-batch size 1024
agent update frequency 2

discount factor (γ) 0.99
optimizer Adam

learning rate 10−4

critic target rate (τ ) 0.01
exploration stddev clip 0.3

exploration stddev value 0.2
APT hyperparameter

forward net architecture (512 + dim(A)) → 1024 → 512 ReLU MLP
inverse net architecture (2× 512) → 1024 → dim(A) ReLU MLP

representation dimension 512
k in NN approximator 12
average top k in NN True

RND hyperparameter
representation dimension 512

predictor, target network architecture dim(S) → 1024 → 1024 → 512 ReLU MLP
normalized observation clipping 5

SMM hyperparameter
skill dimension 4

skill discriminator learning rate 10−3

VAE learning rate 10−2

Table 2: Data generation hyperparameters

Shared hyperparameter Value
replay buffer capacity 106

mini-batch size 1024
agent update frequency 2

discount factor (γ) 0.99
optimizer Adam

number of hidden layers 2
hidden dimension 1024

learning rate 10−4

critic target rate (τ ) 0.01
training steps 105

TD3 hyperparameter
stddev clip 0.3

CQL hyperparameter
CQL-specific α 0.01

Lagrange False
number of sample actions 3

CRR hyperparameter
number of samples to estimate V 10

transformation indicator

Table 3: Offline RL hyperparameters
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A.3 ADDITIONAL OFFLINE RL EXPERIMENTS

Figure 5: Offline RL results for all α and q values evaluated. Initial trials showed q ∈ {2.0, 3.0, 5.0}
led to performance no better (and usually worse) than q = 1.1, so offline RL training for these q
values was not performed.
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Figure 6: Ablation result comparing the effect of performing 100K vs. 200K offline RL training
steps on a 3M-element dataset generated using Shannon entropy as exploration objective. These
results suggest that performing additional offline RL training has only a marginal effect on down-
stream task performance.
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Figure 7: Offline RL results averaged over all α, q values.

A.4 QUANTITATIVE COVERAGE EXPERIMENTS
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(a) Volumetric coverage for data generation on Walker

(b) Volumetric coverage for data generation on Quadruped

Figure 8: Visualization of evolution of smallest hypersphere radius r (normalized by the maximum
radius achieved over all datasets) over the course of data generation training step T for the Walker
and Quadruped domains. We refer to this coverage metric as volumetric coverage. Welzl’s algorithm
was used to determine the radius r. 10K data points were sampled uniformly from every 50K
iteration increment and cumulatively added to get a total of 100K samples for 500K iterations.
Volumetric coverage varies considerably with the choice of parameters and data generation methods.
For the range of parameters α and q that we considered, BE exhibits higher volumetric coverage than
RE on average on the problems under consideration. SE volumetric coverage was about average,
while RND and SMM volumetric coverage differed sharply across domains: RND outperformed all
other data generation methods on Walker, while SMM was not far behind; on Quadruped, on the
other hand, both underperformed. Values of q < 1 enjoy higher volumetric coverage for RE on
both tasks, while values of α < 1 enjoy higher volumetric coverage for BE on Quadruped; since
q < 1, α < 1 tend to correspond to superior downstream offline RL performance (see Fig. 5), this
suggests volumetric may be positively correlated with performance on downstream tasks. We also
note note that RE with q > 1 in general shows both poor volumetric coverage and poor qualitative
coverage (PHATE and t-SNE), which might correspond to its poor performance in all tasks. These
relationships are not conclusive, however, and further investigation is needed.
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A.5 ADDITIONAL QUALITATIVE VISUALIZATIONS

(a) TSNE plots for GBE for Walker

(b) TSNE plots for Renyi for Walker

Figure 9: TSNE plots for Walker
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(a) PHATE plots for GBE for Quadruped

(b) PHATE plots for Renyi for Quadruped

Figure 10: PHATE plots for Quadruped
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(a) TSNE plots for GBE for Quadruped

(b) TSNE plots for Renyi for Quadruped

Figure 11: TSNE plots for Quadruped
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(a) t-SNE plots for RND and SMM for Walker (b) t-SNE plots for RND and SMM for Quadruped

(c) PHATE plots for RND and SMM for Walker (d) PHATE plots for RND and SMM for Quadruped

Figure 12: Qualitative visualization of SMM and RND for data generation

A.6 BE REWARD FUNCTION VISUALIZATION

Figure 13: Visualization of the BE reward function equation 24 by varying the parameter α with β
conditioned according to (4) from (Suresh et al., 2024) with M = 512, denoting the representation
dimensions. These visualizations highlight the diversity and variety of rewards that can be obtained
by a BE-maximizing reward function (blue region) as compared to the single SE objective (dotted
black line).
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