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ABSTRACT

The world is understood from various modalities, such as appearance, sound,
and language. Since each modality only partially represents objects in a cer-
tain meaning, leveraging additional ones is beneficial in both theory and prac-
tice. However, exploiting novel modalities normally requires cross-modal pairs
corresponding to the same instance, which is extremely resource-consuming and
sometimes even impossible, making knowledge exploration of novel modalities
largely restricted. To seek practical multi-modal learning, here we study Out-
of-Modal (OOM) Generalization as an initial attempt to generalize to an un-
known modality without given instance-level modal correspondence. Specifi-
cally, we consider Semi-Supervised and Unsupervised scenarios of OOM Gen-
eralization, where the first has scarce correspondences and the second has none,
and propose Connect&Explore (COX) to solve these problems. COX first con-
nects OOM data and known In-Modal (IM) data through a variational information
bottleneck framework to extract shared information. Then, COX leverages the
shared knowledge to create emergent correspondences, which is theoretically jus-
tified from an information-theoretic perspective. As a result, the label information
on OOM data emerges along with the correspondences, which helps explore the
OOM data with unknown knowledge, thus benefiting generalization results. We
carefully evaluate the proposed COX method under various OOM generalization
scenarios, verifying its effectiveness and extensibility. The code is available at
https://github.com/tmllab/2025 ICLR COX.

1 INTRODUCTION

Figure 1: AI is enhanced
as more modalities are in-
corporated, so how can we
teach AI to learn from
novel modalities based on
the ones it already know?

To understand the world, we use various data modalities, such as im-
age (He et al., 2016; 2017; Ren et al., 2015) and text (Devlin et al.,
2018; Vaswani et al., 2017). Each modality describes objects through
a certain physical perspective, thus contributing to understanding ob-
jects. Therefore, multi-modal learning (MML) (Alayrac et al., 2022;
Ngiam et al., 2011; Radford et al., 2021; Socher et al., 2013) which
learns from multiple modality data has been a core research topic in
AI. Thanks to the utilization of various modalities, the learning per-
formance has shown to be beneficial on various tasks compared to
uni-modal learning (Huang et al., 2021; Lu, 2024; Radford et al.,
2021; Sun et al., 2020), such as cross-modal retrieval and genera-
tion (Yasunaga et al., 2023; Zhang et al., 2021; Zhen et al., 2019),
human-computer interaction (Pantic & Rothkrantz, 2003; Rahman
et al., 2022), and robotics (Jiang et al., 2023; Yu et al., 2023).

However, existing states of the art are not satisfactory, and emerging modalities need to be leveraged
effectively just like the relatively new data modalities of geomagnetic fields (Hashimoto, 1926),
sound waves (Harley et al., 2003), and electromagnetic waves (Weinstein, 1988). Therefore, emerg-
ing technologies have constantly leveraged new sensors to enhance their performance. For example,
Embodied AIs (Savva et al., 2019) already possess abilities like 3D vision and language, but they
are still exploring novel skills, such as tactile and bio-sensing. Since it is hard to leverage such un-
common and inexperienced skills in practice, adapting the knowledge from common modalities to
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understand the novel ones could be beneficial, as shown in Figure 1. In practice, most existing MML
investigations (Radford et al., 2021; Girdhar et al., 2023; Wang et al., 2024d; Zhu et al., 2023) re-
quire instance-level modal correspondence, i.e., multi-modal data are paired with the same instance,
which is often hard to satisfy in real-world scenarios when facing novel modalities (Liang et al.,
2023; 2021; Sun et al., 2020; Xia et al., 2024). For a robotic example, some modalities are common
and easy to acquire, e.g., vision and language. However, others like tactility need special sensors
to resample from the same objects seen or spoken. Unfortunately, the resample could no longer
be accessible in practice. As a result, the new modalities usually have incomplete or even no cor-
respondence, which could seriously block the knowledge interaction across modalities and hinder
the benefits brought by MML. Hence, a question naturally occurs: Do we really need instance-level
modal correspondence to explore novel modalities?

This paper studies a practical yet unexplored problem named Out-of-Modal (OOM) Generalization.
Particularly, given several modalities, i.e., In-Modal (IM) data, the goal is to generalize to an un-
known modality without or sometimes only with scarce correspondence. Such a setting implies
the real-world utilization of novel modalities: Even though human perception is limited to certain
modalities, e.g., touch, sight, sound, and smell, we can still understand unperceivable ones such as
magnetism by utilizing inherently-possessed senses, e.g., feel the force when pulling two magnets
together; or see the magnetic field by observing the alignment of iron filings around a magnet.

Based on this insight, we utilize IM perceptors that contain prior knowledge to encode known IM
data, which can be implemented using existing MML models (Radford et al., 2021; Girdhar et al.,
2023; Zhu et al., 2023; Wang et al., 2024d), and an OOM learner which learns novel modalities
without any prior knowledge. By analyzing the interactions between latent features, we show the-
oretically and empirically that the OOM learner can be trained to gradually discover the OOM
knowledge, as shown in Figure 2. First, we consider semi-supervised OOM generalization where
few correspondences are given. Based on the correspondence, we can capture the prior probability
distribution and learn mappings that connect OOM data and IM data. Through an information-
theoretic perspective, we propose Connect&Explore (COX), which encourages the agreement on
mappings across modalities, further sharing the cross-modal knowledge and exploring OOM knowl-
edge. Then, we extend COX to an unsupervised OOM generalization scenario where there is no
instance-level correspondence at all. To tackle such a challenge, we enhance the OOM-IM connec-
tions by maximizing cross-modal interaction. First, we select data pairs from cross-modal mappings
according to feature similarity. By assuming that the data pairs closing to OOM mappings can
be considered as correspondence, we can create emerging correspondence and solve the unsuper-
vised case via the semi-supervised solution. To validate the proposed COX, we carefully design
experiments using various multi-modal datasets to validate its effectiveness. Moreover, we provide
extensive analyses in various scenarios to understand our method and inspire future research. To
sum up, our contributions are three-fold:

• We discover a novel and practical problem named Out-of-Modal Generalization, which
aims to explore a novel modality using the knowledge from known modalities.

• We consider two typical situations: Semi-Supervised OOM generalization and Unsuper-
vised OOM generalization, and propose a Connect&Explore framework to tackle both
problems from an information-theoretic perspective.

• We conduct extensive experiments to tackle the OOM generalization on various datasets
and provide intuitive insights to help inspire future research.

2 RELATED WORK

Modality Generalization (Liu et al., 2024) generally focuses on leveraging the knowledge from
some modalities and generalizing to another one. Existing studies are conducted in different set-
tings and with various tasks. Cross-modal fine-tuning mimics transfer learning by adapting the
distribution of IM data to OOM data using the same model. Shen et al. (2023) proposed to conduct
distribution alignment to achieve this goal which requires both pre-trained knowledge and labeled
target modality data. Based on a similar problem setting, Cai et al. (2024c) designed a gradual
modality generation scheme that selects the top-k active feature patches from target modalities, and
replaces them with source modalities patches. Such a progressive strategy can align target modal
data to ensure generalization. Cross-Modal Generalization uses separate encoders and focus on gen-
eralizing to a different modality data from the same instance. Liang et al. (2021) used meta-learning
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Table 1: A comparison of different MML problems and their corresponding settings.
Problem References IM Knowledge OOM Knowledge Correspondence

Cross-Modal Fine-Tuning Shen et al. (2023); Cai et al. (2024c) pre-trained & labeled labeled %

Cross-Modal Generalization Liang et al. (2021) pre-trained & labeled pre-trained "

Xia et al. (2024) pre-trained & labeled pre-trained & labeled "

MML w/o labeled Multi-Modal Data Liang et al. (2023) partially labeled partially labels "

OOM Generalization Semi-Supervised case (Section 3.3) pre-trained & labeled scarcely labeled A few
Unsupervised case (Section 3.4) pre-trained & labeled % %

to align OOM data to IM space and generalize to OOM tasks dynamically. Xia et al. (2024) studied a
different setting where IM and OOM data are both known during training. Then, a unified represen-
tation space is learned to help with the downstream generalization of OOM data. Some other stud-
ies consider generalization when all modalities are available, Ma et al. (2019) studied cross-modal
generalization without paired data, Wang et al. (2023) applied the information bottleneck to CLIP
training, Fang et al. (2024) conducted multi-modal fusion under limited clinical data, and Dong et al.
(2023) considered domain generalization with fully-paired multi-modal data. A recent study MML
without Labeled Multi-Modal Data (Liang et al., 2023) proposed a different setting where both IM
and OOM data have labels, but they are not paired. Instead, additional unlabeled paired multi-modal
data is given for learning the interaction between modalities. Moreover, Xue et al. (2022) understood
the interactions and applied it to knowledge distillation. Except for cross-modal fine-tuning which
follows transfer learning, existing MML works mostly require instance-level correspondence. This
work proposes OOM Generalization, where there is no correspondence and the OOM knowledge is
barely provided. The comparison of related works is shown in Table 1.

Modality Binding aims to learn a joint embedding space across different modalities. Contrastive
Language-Image Pre-training CLIP (Radford et al., 2021) is the first work that aligns image with
language data. Then, ImageBind (Girdhar et al., 2023) proposed to use vision modalities to bind
various modalities into the same representation space. Further, LanguageBind (Zhu et al., 2023)
proposed using language as an alternative solution, which binds various modalities similarly. Re-
cently, FreeBind (Wang et al., 2024d) extended the existing unified space into an additional expert
space. Specifically, two types of binding were considered, namely space displacement bond and
space combination bind. Since modality binding often requires a large amount of data with cor-
respondence, the selected modalities are often quite common. Therefore, the OOM generalization
problem can take advantage of the development of modality binding by leveraging the encoders as
our IM perceptors to learn novel modalities.

3 OOM GENERALIZATION

In this section, we first formalize the OOM generalization setting. Then, we demonstrate the pro-
posed method. Further, we consider a Semi-Supervised case where a few correspondences are avail-
able and an Unsupervised scenario where there is no correspondence, showing that the proposed
method can successfully tackle both settings and effectively leverage unpaired OOM data.

3.1 PROBLEM SETTING

In OOM generalization, we are given a set of known modalities {MI
1, . . . ,MI

K} where
MI

k∈{1,...,K} = {(xI
k,i, y

I
k,i)

N
i=1 ∈ X × Y} is composed of N number of labeled IM exam-

ples with its subscript i denoting the correspondence across different modalities. Moreover, we
have an unknown modality MO = {(xO

j )
M
j=1} containing M unlabeled OOM examples. In some

cases, it is possible to obtain few correspondences with IM data, then our OOM data could be
MO = {(xO

i , y
O
i )}Li=1∪{(xO

j )}Mj=L+1, where L ≪ M and the subscript i traces the corresponding
IM data instance and label.

… …
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Figure 2: Learning framework of our OOM generalization.

To tackle OOM generalization, we
propose a learning framework as
shown in Figure 2. Particularly,
we use a set of IM perceptors
{gI1, . . . , gIK} to perceive IM data,
which can be realized by many ex-
isting modality-binding models, such
as ImageBind (Girdhar et al., 2023)
and LanguageBind (Zhu et al., 2023).
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Then, the features of IM data are obtained via zIk = gIk(x
I
k). Moreover, we use an OOM learner gO

to learn features zO from OOM data through zO = gO(xO). Our goal is to effectively generalize to
OOM data by exploring the relationships between the OOM feature zO and IM features {zIk}Kk=1.
Note that we only focus on the generalization performance of OOM data, the improvement of learn-
ing IM data is not the goal of this paper. Therefore, we freeze the parameters of all IM perceptors
and only train the OOM learner during experiments. On top of the above models, we further define
classifiers hO(xO) := hO(xO; gO) and hk(x

I
k) := hk(x

I
k; g

I
k) that make predictions.

3.2 METHODOLOGY: CONNECT&EXPLORE (COX)

Here we elucidate the proposed method based on the interactive relationship between modalities
(Liang et al., 2023; Williams & Beer, 2010). Specifically, the total information of two modali-
ties under a certain task is decomposed into 1) commonality1 which indicates common attributes
across modalities, 2) uniqueness that is only presented in each modality, and 3) synergy denoting
the emerging information when modalities are presented together. Note that we do not consider 3)
in this paper as our goal is generalizing to OOM data.

To generalize to an unknown modality based on common ones, we aim to extract the commonality
that can help partially comprehend OOM data based on IM data. Then, we model the posterior
distribution of OOM data by selecting anchor points with minimum uniqueness. To this end, the
OOM generalization can be successfully established. The proposed COX method comprises two
steps: 1) learning connections by mapping IM data to OOM data to extract commonality, and 2)
exploring high uniqueness OOM data by matching their posterior to high-commonality OOM data.

Connection through Commonality aims to capture common knowledge across modalities using
generative models (Lu, 2024). Here we follow the variational information bottleneck (VIB) frame-
work (Alemi et al., 2016) to achieve this goal. We assume that given IM data XI and OOM data
XO, the latent variable V extracted from XI2, and label Y , the joint distribution is factorized as

p(XI, XO, V, Y ) = p(V, Y |XO, XI)p(XO|XI)P (XI), (1)
where we assume p(V, Y |XO, XI) = p(V |XI)p(Y |XI), corresponding to the Markov chains
V ↔ XI ↔ XO and XI ↔ Y ̸↔ XO. Such an assumption means that V is not related to
XO (Alemi et al., 2016) and the given label Y is not directly connected to XO under our OOM
setting. Intuitively, given an IM datum, i.e., dog image, it is sufficient to infer the label “dog”, and
the same for inferring from an unknown OOM datum, i.e., dog bark. Thus, in common multi-modal
settings, the label prediction using IM information dog image is not further conditioned on OOM
knowledge dog bark, because here the OOM knowledge is redundant when IM data is given.

Our goal is to extract valuable knowledge from IM data to leverage OOM data by maximizing the
information commonality (Liang et al., 2023; Williams & Beer, 2010):

max I(XO;XI;Y ) = I(XO;XI)− I(XO;XI|Y ), (2)
where I(XO;XI;Y ) denotes the mutual information between XO and XI regarding the task Y ,
i.e., the label; and I(XO;XI|Y ) indicates the conditional mutual information irrelevant to Y . We
start with the first term:

I(XO;XI)=

∫
dxOdxIp(xO, xI) log

p(xO, xI)

p(xO)p(xI)
=

∫
dxOdxIp(xO, xI) log

p(xO|xI)

p(xO)
, (3)

where p(xO|xI) =
∫
dvp(xO, v|xI) =

∫
dvp(xO|v)p(v|xI) can be approximated via a de-

coder q(xO|v). Since the Kullback Leibler (KL) divergence is always non-negative, we have
KL[p(XO|V ) ∥ q(XO|V )] ≥ 0 ⇒

∫
dxOp(xO|v) log p(xO|v) ≥

∫
dxOp(xO|v) log q(xO|v), and

leveraging Jensen’s inequity, we can have

I(XO;XI)≥
∫

dxOdxIp(xO, xI) log

∫
dvq(xO|v)p(v|xI)

p(xO)
(4)

≥
∫

dxOdxIdvp(xO, xI) log q(xO|v)p(v|xI) +H(XO), (5)

1It is originally termed “redundancy” which is negative. However, such property is quite positive for tackling
our problem, and hence we rename it “commonality”.

2Note that the latent variable V here is different from the feature representation zI and zO.
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where the last term is independent of our optimization process. Further, we rewrite p(xO, xI) =∫
dvp(xO, xI, v) =

∫
dvp(xI)p(xO|xI)p(v|xI). Then, we have the following lower bound:

I(XO;XI)≥
∫

dxOdxIdvp(xI)p(xO|xI)p(v|xI) log q(xO|v)p(v|xI), (6)

which is realized by sampling from the joint data distribution, the latent variable from our encoder
p(v|xI), and the tractable variational approximation q(xO|v).
Similarly, we can upper-bound the second term I(XO;XI|Y ) (details shown in Appendix A):

I(XO;XI|Y )≤
∫
dxOdxIdyp(xO, xI, y) log p(y|xI)p(xO|xI)p(xI)−log hO(y|xO), (7)

where hO(y|xO) is our classifier model for predicting OOM data. To this end, we can lower-bound
our objective by combining Eqs. 6 and 7:

I(XO;XI;Y ) ≥
∫
dxOdxIdvp(xI)p(xO|xI)p(v|xI) log q(xO|v)p(v|xI)

−
∫
dxOdxIdyp(xO, xI, y) log p(y|xI)p(xO|xI)p(xI)+log hO(y|xO) = Lcon.

(8)

The above lower bound contains two parts: 1) OOM data reconstruction where we reconstruct XO

using the latent V and 2) OOM data label prediction where we model the label distribution Y . In
practice, we can approximate p(xO, xI, y) using empirical samples from IM and OOM data. More-
over, we use encoder p(v|xI) without any prior assumptions because we can leverage the feature
distribution from the pre-trained IM perceptors. Additionally, a classifier h(y|xO) is optimized to
categorize OOM data based on given labels. Empirically, we can minimize

Lcon :=
1

M

M∑
i=1

∥xO
i − q(xO

i |vi)p(vi|xI
i)∥22 − log hO(yi|xO

i ), (9)

where we use the reconstruction error ∥ · ∥223 to realize the log-likelihood q(xO|v)p(v|xI), as sim-
ilarly done by Kingma & Welling (2013). After building the connections, we can ensure the task-
relevant information shared across modalities is learned, which helps partially understand OOM
data regarding its commonality. However, note that the second term in Eq. 8 is not fully lever-
aged which contains p(y|xI) modeled by the IM perceptors. Take a step further, we can obtain
−
∫
dxOdxIdyp(xO, xI, y) log p(y|xI)p(xO|xI)p(xI)

hO(y|xO) . Since p(xO|xI)p(xI) is fixed in label prediction,
we can derive −KL(p(y|xI) ∥ hO(y|xO)) which implies that the label information related IM data
can be harnessed to explore commonality. Next, we demonstrate how the commonality helps OOM
generalization, and provide a solution to explore uniqueness.

Exploration of Uniqueness can be achieved via selecting and exploring the OOM data with high
uniqueness. To identify these data, we can leverage the agreement and disagreement achieved by
the optimal classifiers from various IM data. Our final goal is to optimize via

min
hO

KL(hO(y|xO
d ) ∥ hO(y|xO

a )),where xO
d ∈ D, xO

a ∈ A, (10)

in which h∗
1 and h∗

2 denote the optimal classifiers found in two IM data xI
1 and xI

2, respectively,
and xO

d and xO
a are selected from OOM data with modality disagreement D := {xO : h∗

1(x
O) ̸=

h∗
2(x

O)} and agreement A := {xO : h∗
1(x

O) = h∗
2(x

O)}, respectively. Here we use two in-
modalities for simplicity, but the conclusion can be extended to multiple modalities. Moreover, the
data with agreement is considered anchor points that guide the exploration of those with disagree-
ment. This objective aims to match the posterior of OOM data with uniqueness hO(y|xO

d ) to the one
of anchor points hO(y|xO

a ). To justify this, we first define modality disagreement:
Definition 1 (Modality disagreement). Given X1, X2 and target Y , as well as their corre-
sponding optimal classifiers h∗

1 and h∗
2, their modality disagreement is defined as α(h∗

1, h
∗
2) =

Ep(x1,x2)[d(h
∗
1, h

∗
2)] where d : Y × Y → R+ is a distance function in the label space scoring

the disagreement between h∗
1 and h∗

2.
3Though training generative models in input space is computationally inefficient, we propose to connect

modalities in the feature space in experiments. Therefore, the raw data x is replaced by latent feature z.
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Theorem 1. Given two Bayes’ optimal classifiers h∗
1 and h∗

2 from two in-modalities, under relaxed
triangle inequality, inverse Lipschitz condition, and classifier optimality assumptions (Sridharan &
Kakade, 2008), the modalities disagreement is upper-bounded by (see details in Appendix B)

α(h∗
1, h

∗
2) ≤ I(XO, XI

2, Y |XI
1) + I(XO, XI

1, Y |XI
2) + 2I(XO, Y |XI

1, X
I
2). (11)

Finally, based on the decomposition of the task-related mutual information of XO: I(XO, Y ) =
I(XO, XI

2, Y |XI
1) + I(XO, XI

1, Y |XI
2) + I(XO, Y |XI

1, X
I
2) + I(XO, XI

1, X
I
2, Y ), as shown in

Figure 3, we can achieve

α(h∗
1, h

∗
2) ≤ I(XO, Y )− I(XO, XI

1, X
I
2, Y ) + I(XO, Y |XI

1, X
I
2), (12)

𝐼(𝑋! , 𝑌|𝑋"# , 𝑋$#)

𝐼(𝑋! , 𝑋"# , 𝑌|𝑋$#) 𝐼(𝑋! , 𝑋$# , 𝑌|𝑋"#)

𝐼(𝑋! , 𝑋"# , 𝑋$# , 𝑌)

𝑋!

𝑋"# 𝑋$#

Figure 3: Decomposition of I(XO, Y ).

where the first term denotes the overall information,
the second term indicates the commonality shared be-
tween all modalities, and the third term stands for the
uniqueness only preserved in OOM data. Intuitively,
when we try to increase the modality disagreement, the
commonality is decreased and OOM uniqueness is in-
creased, which successfully justifies our learning objec-
tive: In order to explore the uniqueness of OOM data,
we can explore the ones with high modality disagree-
ment; conversely, the OOM data with high common-
ality and low uniqueness is found where agreement is
achieved among h∗

1 and h∗
2. Therefore, we select such

data as anchor points that provide informative guidance to help explore uniqueness.

Next, we consider two realistic scenarios of OOM generalization and demonstrate how the proposed
COX method can tackle them.

3.3 SEMI-SUPERVISED OOM GENERALIZATION

𝑧!

𝑧"#

𝑧$#
𝑧!𝑧$#(a)                                                              (b)

… …

𝑧"#

�̂�$#

�̂�"#

Figure 4: Two scenarios: (a) Semi-Supervised OOM Gen-
eralization and (b) Unsupervised OOM Generlaizaiton.

We start with a semi-supervised case
where a few correspondences are
available in OOM data, as shown
in Figure 4 (a). Based on the
VIB framework proposed in Sec-
tion 3.2, we first leverage the OOM
data {(xO

i , y
O
i )}Li=1 corresponding

to IM data {(xI
k,i, y

O
k,i)}Li=1,∀k ∈

{1, . . . ,K} to build K connections
using additional generative models
that can be trained via a point-to-
point mapping. As a result, the map-
pings on the OOM feature space can successfully match the OOM feature distribution, which allows
us to directly apply IM data posteriors to select and explore the uniqueness of OOM data. Hence,
we formulate our objective as

min
hO

Lssl :=
1

L

L∑
i=1

CE(hO(xO
i ), y

O
i ) +

1

L+|D|
∑

xd,j∈D

∑
xL
i=1

KL(hO(xO
d,j)∥hO(xO

i );h
∗
1, h

∗
2), (13)

where the first term exploits labeled OOM data with correspondence and the second term explores
OOM data D with modality disagreement by minimizing its KL divergence from the label posterior.
Through the above objective, we can maximally exploit the uniqueness of OOM data to achieve
effective OOM generalization.

3.4 UNSUPERVISED OOM GENERALIZATION

As for the unsupervised case, we propose two-phase training: 1) we first conduct a warm-up training
to initialize the OOM feature space and the connection, and 2) then, we enhance the connection by
creating emergent correspondence and further exploring OOM data.
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Specifically, we select anchor points from OOM data by directly applying modality agreement
among all Bayes’ optimal classifiers from IM data via

Asorted=SORTT (A,
1

K

K∑
k=1

maxh∗
k(x

O)),where A={∀xO∈MO: h∗
1(x

O)= · · ·=h∗
K(xO)}, (14)

where the SORTT (·, ·) is a sort function, which ranks each element xO in A based on the value
of 1

K

∑K
k=1 maxh∗

k(x
O) from large to small. Here, we select anchor points with the top-T largest

likelihood averaged over all K IM classifiers. Then, we warm up the OOM learner via minimizing
cross-entropy loss min 1

T

∑
xO∈Asorted

CE(hO(xO), argmaxh∗
k(x

O)). Additionally, we also warm
up the connection by leveraging class-wise information. Specifically, we compute the cluster cen-
troids for each modality via 1

|Cy|
∑

xO
i ∈Cy :={xO:hO(xO)=y,y∈Y} z

O
i and pair them to each IM centroid

correspondingly. To this end, we can build up initial connections by following the VIB framework.

After the warm-up, we aim to further enhance both our connection and OOM exploration by creating
emergent correspondence, as shown in Figure 4 (b). To tackle this, we map all IM data into the
OOM feature space. If an OOM feature is close to all mappings vk,i,∀k = {1, . . . ,K}, then they
can form a strong correspondence. Further, we select such OOM data as anchor points, which is
further labeled the same as the corresponding IM data. Formally, we optimize OOM learners via

min
hO

Luns :=
1

|A|
∑

(xO
a ,y)∈A

CE(hO(xO
a ), y)+

1

|A|+|D|
∑

xO
d ∈D

∑
xO
a ∈A

KL(hO(xO
d )∥hO(xO

a );h
∗
1, h

∗
2), (15)

where A denotes the updated anchor points which are realized by sorting the Euclidean distance:
A := SORTS({(xO

j , y
I
i)}Mj=1,−mini∈{1,...,N}

1
K

∑K
k=1 ∥zOj −vk,i∥), where the first term computes

the cross-entropy loss from the anchor points, and the second term calculates the KL divergence
between the OOM data with modality disagreement and the OOM anchor points.

After these two steps, we can effectively tackle the unsupervised OOM generalization. In practice,
we connect modalities and select anchor points in the feature space, and hence our application to
both two scenarios can be efficient. In the next section, we carefully conduct extensive experiments
to justify the effectiveness and extendibility of the proposed COX method under various settings.

4 EXPERIMENTS

In our experiments, we first elucidate the experimental details. Then, we provide performance com-
parisons to various baseline methods on different datasets. Finally, we conduct empirical analyses
to provide an intuitive understanding of the proposed method.

4.1 IMPLEMENTATION DETAILS

Datasets. We consider datasets with at least three modalities: 1) TVL dataset (Fu et al., 2024)
contains tactile sensing, RGB image, and class name which can be transformed into language; 2)
LLVIP (Jia et al., 2021) dataset has infrared thermal data, RGB image, and annotations for pedestrian
detection. We follow Zhu et al. (2023) to crop the pedestrian and background which stand for two
classes. Further, we use the OpenAI template (Radford et al., 2021) to create language description;
3) NYU-D dataset (Silberman et al., 2012) contains RGB image, depth data, and class name that
can be transformed into language description as well; 4) VGGS dataset (Chen et al., 2020a) includes
video data, corresponding sound, and the language description; 5) MSR-VTT (Xu et al., 2016)
includes videos and text description, we break down the videos into video frames and the audio
data; 6) MOSEI dataset (Zadeh et al., 2018) contains videos from 7 classes of emotions, we extract
audio data from the videos and use the emotion type to create language descriptions.

Models. We employ two types of IM perceptors, namely ImageBind (Girdhar et al., 2023) and
LanguageBind (Zhu et al., 2023) which correspondingly contain 6 and 5 encoders to process differ-
ent modalities. We select one modality for each experiment as OOM and then choose the rest as IM.
For IM data, we use the existing encoders to extract their features. As for OOM data, we conduct
preprocessing to ensure its compatibility. Then, we initialize an OOM learner from scratch using
ViT-T/16 to learn from the OOM data using the guidance from IM perceptors. Note that for the
TVL dataset, there are no existing encoders to process tactile modality. Therefore, when the tactile
modality is chosen as IM data, we fine-tune the encoder using contrastive learning on the training
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Table 2: Classification performance comparison of different methods across multiple datasets with
different OOM modalities.

Setting IM Perceptor Method TVL LLVIP NYU-D VGGS
RGB Lan Tac RGB Lan The RGB Dep Lan Aud Vid Lan

Se
m

i-S
up

er
vi

se
d ImageBind

Random 0.4 0.3 0.2 48.2 47.3 51.0 10.2 11.3 10.2 0.3 0.3 0.3
ERM 23.1 19.5 22.7 54.6 53.1 54.1 45.2 44.5 38.1 9.3 10.2 8.4

EntMin 24.0 21.8 23.6 56.7 57.0 55.4 48.0 46.3 39.3 10.5 13.3 8.9
COX 31.2 25.3 26.5 59.2 58.3 58.3 52.3 50.7 44.2 16.8 18.4 11.7

aligned 79.5 29.8 35.8 65.4 61.8 63.4 61.8 54.0 52.7 27.8 29.3 19.1

LanguageBind

Random 0.4 0.3 0.2 48.2 47.3 51.0 10.2 11.3 10.2 0.3 0.3 0.3
ERM 23.6 20.1 22.6 56.5 54.9 58.3 44.8 44.5 39.9 9.8 13.7 9.9

EntMin 25.7 23.1 25.1 59.8 60.0 62.2 49.4 47.3 42.7 11.9 14.5 12.8
COX 33.5 26.3 27.3 61.2 62.3 66.4 58.8 53.5 48.4 18.3 22.1 13.4

aligned 81.6 31.2 38.3 74.1 73.2 87.2 68.6 65.1 57.7 38.6 32.5 20.9

U
ns

up
er

vi
se

d ImageBind

Random 0.4 0.3 0.2 48.2 47.3 51.0 10.2 11.3 10.2 0.3 0.3 0.3
SSL 6.3 4.3 5.1 52.3 56.1 52.4 14.6 13.6 18.9 2.5 6.9 3.8
COX 18.9 15.4 17.1 54.8 57.2 53.8 21.7 22.0 19.5 9.3 10.2 10.5

aligned 79.5 29.8 35.8 65.4 61.8 63.4 61.8 54.0 52.7 27.8 29.3 19.1

LanguageBind

Random 0.4 0.3 0.2 48.2 47.3 51.0 10.2 11.3 10.2 0.3 0.3 0.3
SSL 6.8 6.5 5.1 54.6 57.8 53.8 16.9 18.1 16.3 7.2 5.6 4.8
COX 19.3 19.2 18.6 55.0 56.4 55.7 24.5 23.1 20.4 10.0 11.6 10.4

aligned 81.6 31.2 38.3 74.1 73.2 87.2 68.6 65.1 57.7 38.6 32.5 20.9

set. For ImageBind, the tactile encoder is aligned with the image encoder, and for LanguageBind, it
is aligned with the language encoder, which is the same as the original training process. For training
the connection between modalities, we employ multi-layer perceptrons to realize the variational in-
formation bottleneck framework. Moreover, to obtain the optimal classifier from each in-modality,
we utilize the extracted features and train a linear layer as classification heads.

Setup. We consider two scenarios of OOM generalization: For the semi-supervised case, we sam-
ple 10% of the training data as labeled data with each class having a balanced number of labels.
For the unsupervised case, we have no labels at all. For selecting the number of anchor points, we
choose the same number of examples for the warm-up and training phases, which is 10% of the total
training set. To train the OOM learner, we use the Adam optimizer with an initial learning rate of
1e− 3 with weight decay 1e− 5, and train the model for 50 epochs.

Baseline methods. Since there is no existing baseline method to compare with under our setting,
we implement four methods for comparison, namely: Random where the model is randomly initial-
ized, ERM where only labeled data is used to minimize the empirical risk, EntMin (Grandvalet &
Bengio, 2004) which minimize the entropy of unlabeled data meanwhile conduct ERM, SSL which
conducts self-supervised learning using Gaussian noise perturbation on the input, and MoCo He
et al. (2020) which updates model parameters with ensembling and meanwhile conducts contrastive
learning. Note that we use MoCo for comparison for the retrieval task in Table 3 because it is not for
classification, and it is combined with EntMin in the semi-supervised case. Moreover, we use a pre-
trained encoder as an upper-limit baseline “aligned”. Next, we carefully compare the performance
of our COX to these baseline methods.

4.2 PERFORMANCE COMPARISON

For performance comparisons, we conduct classification and cross-modal retrieval to validate the
proposed COX. There are seven modalities are considered, namely RGB image, language, tactile,
thermal, depth, audio, and video which are simplified as RGB, Lan, Tac, The, Dep, Aud, and Vid, re-
spectively. For each column, we choose one modality as OOM data, the rest modalities are selected
IM data. For the retrieval task, we report the recall rate in both top 1 (R@1) and top 5 (R@5). The
results are shown in Tables 2 and 3. We can see that the proposed COX clearly shows the best per-
formance in both scenarios. Specifically, COX can achieve more than 5% performance improvement
for most of the OOM setting, which justifies that leveraging the knowledge from IM perceptors can
indeed help OOM generalization compared to using OOM data alone. Moreover, even though the
performance is relatively limited compared to the fully pre-trained baseline under the unsupervised
case, considering it is an extremely challenging setting, we can still largely improve the performance
for over 10% compared to the Random baseline, which demonstrates that the unsupervised OOM
generalization is indeed learnable further leads to a novel research direction for improving the gen-
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Table 3: Cross-modal retrieval performance comparison of different methods across multiple
datasets with different OOM modalities.

Setting IM Perceptor Method
MSR-VTT MOSEI

Aud Lan Vid Aud Lan Vid
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Random 5.4 25.1 5.0 25.4 5.4 24.2 14.3 42.5 14.4 42.8 14.1 42.1
ERM 15.6 30.3 16.1 35.2 18.5 38.2 28.0 45.3 29.3 47.1 33.4 48.2

EntMin 18.5 32.4 19.2 38.5 21.0 39.4 29.6 46.7 32.0 48.7 35.4 50.5
MoCo 20.5 33.9 21.1 38.9 23.4 43.5 30.1 47.3 32.7 50.1 36.2 51.0
COX 23.3 35.8 23.4 39.1 26.5 48.8 32.4 48.0 33.8 50.4 38.8 53.7ImageBind

Aligned 35.5 51.5 32.3 52.4 36.8 61.8 42.9 66.4 48.2 69.4 50.5 71.6

Random 5.2 24.3 5.4 25.1 5.0 25.6 13.5 43.1 14.2 42.7 14.6 41.9
ERM 16.3 31.1 16.5 36.2 18.7 37.9 27.3 45.5 28.4 47.6 33.4 49.3

EntMin 19.6 33.4 19.8 38.6 22.4 37.9 30.2 45.5 33.5 49.0 36.0 49.7
MoCo 21.1 34.8 20.9 39.2 24.5 38.6 31.1 46.7 34.5 50.5 37.0 51.7
COX 25.2 36.0 24.1 40.0 28.7 49.5 34.6 49.8 34.6 50.2 39.2 55.4Se

m
i-S

up
er

vi
se

d

LanguageBind

Aligned 42.0 53.6 38.8 58.6 44.8 70.0 44.6 68.9 49.5 67.4 51.1 68.3

Random 5.4 25.1 5.0 25.4 5.4 24.2 14.3 42.5 14.4 42.8 14.1 42.1
SSL 8.9 28.4 9.3 28.1 10.1 29.5 17.4 48.8 16.2 45.2 16.0 45.0

MoCo 9.2 28.9 9.5 28.4 10.6 30.0 17.8 50.3 16.6 45.8 17.1 44.4
COX 13.5 30.4 16.5 32.4 15.2 34.8 20.8 53.7 18.7 46.7 18.2 48.9ImageBind

Aligned 35.5 51.5 32.3 52.4 36.8 61.8 42.9 66.4 48.2 69.4 50.5 71.6

Random 5.2 24.3 5.4 25.1 5.0 25.6 13.5 43.1 14.2 42.7 14.6 41.9
SSL 9.2 28.9 11.0 28.8 10.3 28.7 18.0 48.9 18.4 45.0 17.8 45.6

MoCo 9.6 29.4 11.1 28.5 11.0 29.3 18.8 50.7 18.5 45.2 18.0 45.5
COX 14.8 31.1 18.4 34.4 15.4 35.0 23.1 52.8 19.4 47.2 20.4 49.9U

ns
up

er
vi

se
d

LanguageBind

Aligned 42.0 53.6 38.8 58.6 44.8 70.0 44.6 68.9 49.5 67.4 51.1 68.3

eralization performance. Additionally, note that the performance of COX is affected by the quality
of IM perceptors, as using LanguageBind shows relatively higher performance compared to using
ImageBind. Thus, it would be potentially helpful to leverage sophisticated IM perceptors to benefit
the generalization performance.

4.3 EMPIRICAL ANALYSIS

To provide an intuitive justification for the proposed method, here we conduct empirical analyses
using the MSR-VTT dataset on various OOM scenarios and modalities.

Figure 5: Connection effect on maximum mean discrepancy and accuracy across modalities.

Connection mitigates modality gap. To understand the performance of our VIB-based connec-
tion learning, here we show its effect on generalization out-of-modal. Specifically, during connec-
tion training, we compute the maximum mean discrepancy (MMD) between the mapping of each
IM data and the OOM data. Meanwhile, we evenly select 6 points during the training and extract
the IM mappings which are used to learn a classification head as the optimal classifier. Based on our
theoretical result, we apply the classifiers to OOM data and compute their accuracies, as shown in
Figure 5. We can see that as training goes on, the MMD between each IM mapping and OOM data
is decreasing and the corresponding accuracy is increasing, which shows that: 1) our connection can
indeed close the modality gap between their features and 2) as the mappings of IM data getting close
to OOM data, the optimal classifier shows better classification results on OOM data, which benefits
the knowledge transfer from known modalities to unknown ones.

Modality disagreement identifies uncertainty. To understand the effect of modality disagree-
ment, we conduct an analysis under the semi-supervised scenario by training the OOM learner to
use only labeled data for 10 epochs. Then, we leverage the modality disagreement criteria to sepa-
rate OOM data into those with disagreement and agreement and show their prediction accuracies in
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Figure 6 (a). We can see that the accuracy for OOM data with disagreement is significantly lower
than those with agreement, meaning that the prediction uncertainty, i.e., data with low accuracy, is
effectively identified by the proposed modality disagreement.

(a) (b)

Figure 6: Prediction accuracy of OOM data with modality dis-
agreement and modalities agreement, respectively. (a) Before ex-
ploration. (b) After exploration.

Modality agreement alleviates
uncertainty. Further, we con-
duct training by following the
procedure proposed in Section
3.3 and again show the accu-
racies of OOM data with dis-
agreement and agreement in
Figure 6 (b). We can see
that the performance gap be-
tween the two types of data is
largely mitigated, which justi-
fies the methodology of explor-
ing OOM data using the guid-
ance of modality agreement. As a result, we can achieve almost comparable performance on both
types of data, benefiting the overall generalization performance.

Table 4: Ablation study on various settings.

Setting Ablation MSR-VTT R@1

Aud Lan Vid

Semi
w/o connection 8.7 7.9 10.3
w/o exploration 16.4 16.5 18.8

COX 25.2 24.1 40.0

Unsup. w/o warm-up 7.4 11.5 10.5
COX 14.8 18.4 15.4

Ablation study. Additionally, we conduct an abla-
tion study to justify the effect of our methodology.
Specifically, we consider three ablations: 1) “w/o
connection” where we remove the connection and
directly apply the modality disagreement criteria on
the original features of IM data and OOM data, 2)
“w/o exploration” where we only leverage the OOM
data with agreement for training, 3) For unsuper-
vised scenario, we consider “w/o warm-up” where
we do not conduct the warm-up phase and directly
training the model. The results in Table 4 show that all modules are essential for achieving effective
OOM generalization. Specifically, the connection is vital for the knowledge transduction of IM data
to OOM data, without which the generalization performance is largely degraded. The conclusion
is consistent with the connection analysis where directly applying optimal classifiers across modal-
ities leads to poor accuracy. Moreover, removing exploration also hinders the performance because
the uniqueness of OOM data is largely ignored. Additionally, we find that the warm-up phase is
essential for the unsupervised case. As initialized models have no classification capability, we need
pre-training to form basic feature clusters that are consistent with IM data, further enabling effective
OOM generalization.

Discussion on computational efficiency. Note that we conduct the feature connection mostly on
the feature space, the computational cost of training VIB framework work is quite acceptable. The
main cost is training the OOM learner which is the basic training with cross-entropy loss optimiza-
tion and can be implemented on a single NVIDIA 3090/4090 GPU.

5 CONCLUSION AND LIMITATION

In this paper, we study a novel and promising research direction dubbed Out-of-Modal (OOM) Gen-
eralization which aims to leverage knowledge from existing modalities to generalize to an unknown
modality without instance-level correspondence. We consider two scenarios where there are a few
correspondences and there is no correspondence, i.e., semi-supervised and unsupervised cases, re-
spectively. To tackle these problems, we propose a Connect&Explore (COX) method which first
learns connections across modalities to extract common knowledge and then explores the unique
knowledge of OOM data based on modality disagreement. Extensive experiments are conducted to
justify the proposed method and intuitive insights are provided to inspire future studies. However,
our research is limited to several aspects which we hope to address in the future. First, although
challenging as it is, the performance is relatively limited compared to fully-aligned models, which
requires more investigations to enhance generalization. Second, our OOM generalization is mostly
conducted within the modalities from the same dataset. In the future, we hope to discover scenarios
where the OOM data is from a different dataset with a large modality gap.
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In the appendix, we first provide a detailed derivation of our VIB framework. Then, we carefully
prove the modality disagreement in Theorem 1. Further, we provide additional experiments to eval-
uate our method. Finally, we give a discussion on the relationship between existing studies and
provide a prospective outlook for future research.

A LOWER BOUND OF OUR VIB FRAMEWORK

Recall that we have the following factorization:

p(XI, XO, V, Y ) = p(V, Y |XO, XI)p(XO|XI)P (XI), (16)

with Markov chains V ↔ XI ↔ XO and XI ↔ Y ̸↔ XO. Our goal is to maximize the information
redundancy (Liang et al., 2023; Williams & Beer, 2010):

max I(XO;XI;Y ) = I(XO;XI)− I(XO;XI|Y ), (17)

where the first term is lower-bounded by:

I(XO;XI)≥
∫

dxOdxIdvp(xI)p(xO|xI)p(v|xI) log q(xO|v)p(v|xI), (18)

Then, we consider the second term I(XO;XI|Y ):

I(XO;XI|Y )=

∫
dxOdxIdyp(xO, xI, y) log

p(xO, xI|y)
p(xO|y)p(xI|y)

(19)

=

∫
dxOdxIdyp(xO, xI, y) log

p(xO, xI, y)

p(y|xO)
−H(Y )+H(Y |XI)+H(XO)+H(XI). (20)

Note that we use the factorization p(xO, xI, y) = p(y|xI)p(xO|xI)p(xI), and further ignore the en-
tropy terms4, then we have:

I(XO;XI|Y )≤
∫
dxOdxIdyp(y|xI)p(xO|xI)p(xI) log p(y|xI)p(xO|xI)p(xI)−log h(y|xO), (21)

which is based on the positivity of KL divergence between our classifier h(y|xO) and p(y|xO).

To this end, we can lower-bound our objective by combining Eqs. 18 and 21:

I(XO;XI;Y ) ≥
∫
dxOdxIdvp(xI)p(xO|xI)p(v|xI) log q(xO|v)p(v|xI) (22)

−
∫
dxOdxIdyp(y|xI)p(xO|xI)p(xI) log p(y|xI)p(xO|xI)p(xI)+log h(y|xO) = Lcon. (23)

B PROOF OF THEOREM 1

Proof.

Assumption 1 (Relaxed triangle inequality). For the distance function d : Y × Y → R+, there
exists cd ≥ 1 such that ∀ŷ1, ŷ2, ŷ3 ∈ Ŷd(ŷ1, ŷ2) ≤ cd(d(ŷ1, ŷ3) + d(ŷ2, ŷ3)).

Assumption 2 (Inverse Lipschitz condition). For the function d, it holds that ∀h,
E[d(h(x1, x2), h

∗(x1, x2))] ≤ |L(h) − L(h∗)|, where h∗ is the Bayes optimal classifier on both
x1 and x2; and E[d(h(x), h∗(x))] ≤ |L(h)−L(h∗)|, where h∗ is the Bayes optimal classifier on x.

Assumption 3 (Classifier optimality). For any classifiers h in comparison to the Bayes’ optimal
classifier h∗, there exists constants ϵ > 0 such that |L(h)− L(h∗)|2 ≤ ϵ.

4We focus on the optimization of p(Y |XO), and p(Y |XI) is given and frozen in our setting.
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To bridge h∗
1 and h∗

2, we use h∗
1,2 and h∗ to denote the Bayes’ optimal classifier on both IM data and

all data, respectively. Then, we capture the relationship between the uniqueness of OOM data given
both IM data and the difference in their Bayes’ optimal prediction errors:

|L(h∗
1,2)− L(h∗)|2 = |EXEY |XI

1,X
I
2,X

Oℓ(h∗(xI
1, x

I
2, x

O), y)− EXI
1,X

I
2
EY |XI

1,X
I
2
ℓ(h∗

1(x
I
1, X

I
2), y)|2

(24)

≤ |EY |XI
1,X

I
2,X

Oℓ(h∗(xI
1, x

I
2, x

O), y)− EY |XI
1,X

I
2
ℓ(h∗

1(x
I
1, X

I
2), y)|2 (25)

≤ KL(p(y|xI
1, x

I
2, x

O) ∥ p(y|xI
1, x

I
2)) (26)

≤ EXKL(p(y|xI
1, x

I
2, x

O) ∥ p(y|xI
1, x

I
2)) (27)

= I(XO, Y |XI
1, X

I
2). (28)

Then, we first capture the redundancy between one IM data and OOM data given another IM data:

|L(h∗
1)− L(h∗)|2 = |EXEY |XI

1,X
I
2,X

Oℓ(h∗(xI
1, x

I
2, x

O), y)− EXI
1
EY |XI

1
ℓ(h∗

1(x
I
1), y)|2 (29)

≤ |EY |XI
1,X

I
2,X

Oℓ(h∗(xI
1, x

I
2, x

O), y)− EY |XI
1
ℓ(h∗

1(x
I
1), y)|2 (30)

≤ KL(p(y|xI
1, x

I
2, x

O) ∥ p(y|xI
1)) (31)

≤ EXKL(p(y|xI
1, x

I
2, x

O) ∥ p(y|xI
1)) (32)

= I(XO, XI
2, Y |XI

1). (33)

Further leveraging triangle inequality through the Bayes’ optimal classifier h∗ and the inverse Lips-
chitz condition, we have:

Ep(xI
1,x

I
2,x

O)[d(h
∗
1, h

∗
1,2)] ≤ Ep(xI

1,x
I
2,x

O)[d(h
∗
1, h

∗)] + Ep(xI
1,x

I
2,x

O)[d(h
∗, h∗

1,2)] (34)

≤ |L(h∗
1)− L(h∗)|2 + |L(h∗)− L(h∗

1,2)|2 (35)

≤ I(XO, XI
2, Y |XI

1) + I(XO, Y |XI
1, X

I
2). (36)

Symmetrically, we can have |L(h∗
2) − L(h∗)|2 ≤ I(XO, XI

1, Y |XI
2) and further obtain

Ep(xI
2,x

I
2,x

O)[d(h
∗
2, h

∗
1,2)] ≤ I(XO, XI

1, Y |XI
2) + I(XO, Y |XI

1, X
I
2). Then combining with Eq. 36:

Ep(xI
1,x

I
2)
[d(h∗

1, h
∗
2)] ≤ I(XO, XI

2, Y |XI
1) + I(XO, XI

1, Y |XI
2) + 2I(XO, Y |XI

1, X
I
2) (37)

Finally, based on the decomposition of the task-related mutual information of XO: I(XO, Y ) =
I(XO, XI

2, Y |XI
1) + I(XO, XI

1, Y |XI
2) + I(XO, Y |XI

1, X
I
2) + I(XO, XI

1, X
I
2, Y ), as shown in

Figure 3, we can achieve:

α(h∗
1, h

∗
2) := Ep(xI

1,x
I
2)
[d(h∗

1, h
∗
2)] ≤ I(XO, Y )− I(XO, XI

1, X
I
2, Y ) + I(XO, Y |XI

1, X
I
2), (38)

C ADDITIONAL EXPERIMENTS

We conduct additional experiments to further justify the proposed COX. First, we study the per-
formance benefits brought by COX under various correspondence rates in OOM data. Specifically,
we choose MSR-VTT and NYU-D datasets and use Vid and Dep as OOM modalities, respectively,
and show the result in Figure 7. First of all, we observe that COX brings more benefits when
correspondence is more scarce. This is because sufficient correspondence can maximally uncover
the knowledge of OOM data. As correspondence gets less, the knowledge that can be explored
from correspondence decreases. However, COX leverages the knowledge from IM data which
brings more benefits even with less correspondence. Thus, the increased benefits of COX under
low-correspondence scenarios demonstrate its effectiveness in tackling OOM generalization with-
out correspondence.

Moreover, we testify how varied performance levels of IM perceptors could affect the OOM perfor-
mance. To achieve this, we change the number of IM data in each dataset as 10%, 40%, 70%, and
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Figure 7: Performance benefits brought by COX under various correspondence rate in OOM data.

Figure 8: Effect of Varying IM Perceptor Performance Level.

MSR-VTT Vision NYU-D Language

FreeMatch 45.2 MixText 21.2
COX 52.3 COX 23.4

Table 5: Comparison with competitive uni-
modal methods from Vision and Language.

Setting Method MSR-VTT NYU-D

Unsup MoCo 30.0 15.7
MoCo+COX 35.4 23.8

Table 6: Combining COX with MoCo for
knowledge extraction from OOM to IM data.

100%, and test the OOM performance of COX, as shown in Figure 8. We can see that the OOM
performance is significantly affected by the accuracy level of IM perceptors. When the performance
of IM perceptors improves, the OOM performance of COX is also enhanced. Therefore, improving
the performance of IM perceptors is vital for OOM generalization using COX.

Further, to understand the contribution of COX on uni-modal study, we conduct comparison and
combination with uni-modal methods. First, we consider two uni-modalities vision and language
from MSR-VTT and NYU-D datasets, respectively. By comparing to FreeMatch (Wang et al.,
2022) and MixText (Chen et al., 2020b), two competitive semi-supervised learning methods that
correspondingly deal with vision and language data, we show the performance of COX in Table 5.
Even though the two baselines were effective under their original setting, their performance is still
limited when applied to challenging multi-modal datasets with scarce knowledge. As we can see,
COX still shows very effective performance compared to them, again justifying the benefits from
COX by leveraging IM data.

Then, we consider combining COX with the well-known unsupervised method MoCo (He et al.,
2020) and show the performance benefits brought by COX for enhancing unknown modality. We
show the result in Table 6. Delightfully, we observe significant performance improvement on both
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Vid from MSR-VTT and RGB from the NYU-D dataset. This is because COX unleashes the po-
tential label information from IM data to enhance label prediction of OOM data, i.e., Vid and RGB
here. Such a finding implies that COX can extract knowledge from other modalities to enhance new
ones, which is the main goal of this study.

D RETROSPECTIVE AND PROSPECTIVE DISCUSSION

OOM generalization without instance-level correspondence presents challenges that could be related
to existing studies but differentiates from them. Here we identify the relationship between OOM
generalization and existing fields and discuss how we can be inspired to solve OOM generalization
in future studies.

• Out-of-Distribution (OOD) Generalization (Hendrycks et al., 2021; Chen et al., 2023c;
Huang et al., 2023b; 2024; Wang et al., 2025) where the goal is generalizing to unknown
data distributions given several existing ones. The difference between OOM and OOD
generalization lies in the data gap: the former faces modality gap while the latter deals with
distribution gap. Intuitively, the modality gap demonstrates the change of learning space,
thus it is more challenging than the distribution gap where data is still sampled within the
same learning space, i.e., same dimension and formats. To solve OOM generalization, a
comprehensive understanding of how modalities are generated is required. For example,
the surface of an object affects the reflection of light, thus deciding its visual information.
Meanwhile, the texture of the surface also influences its tactile sensing. Therefore, we
hypothesize that some modalities are commonly influenced by a hidden factor (Glymour
et al., 2016; Li et al., 2024b; 2025; Li & Liu, 2025; Lin et al., 2023c; 2025; Zheng et al.,
2024). By identifying such a factor, the shared information across modalities could be
discovered, further benefiting OOM generalization.

• Trustworthy Machine Learning aims to develop reliable, robust, explainable models under
realistic scenarios, which considers various types of problems, such as Semi-Supervised
Learning (SSL) (Berthelot et al., 2019; Sohn et al., 2020; Huang et al., 2023a; He et al.,
2025; Li et al., 2023; 2024a; Wang et al., 2024b), Learning with Noisy Labels (LNL) (Xia
et al., 2019; 2020; 2022; Yao et al., 2021; 2020; Yuan et al., 2023; 2024; Wang et al., 2024a;
Wu et al., 2024b;a), and Robustness (Rice et al., 2020; Lin et al., 2023a;b; 2024; Hong
et al., 2024). Compared to the existing studies, OOM generalization without instance-
level correspondence requires linking between data across modalities. During this process,
unpaired data and noisy correspondence could occur, further hindering the generalization
performance. To solve this problem, progressively generating pseudo correspondence and
denoising the noisy ones as done by SSL and LNL might be helpful to complement the
correspondence. Therefore, future studies for pairing multi-modal data through trustworthy
machine learning techniques could be a promising direction.

• Foundation Models (Chen et al., 2023b;a; Radford et al., 2021; Touvron et al., 2023; Bom-
masani et al., 2021; Liu et al., 2023; Cai et al., 2024b;a) are pre-trained on large-scale
data to possess powerful zero-shot generalization abilities (Wang et al., 2024c; Hong et al.,
2022; Chen et al., 2022b;a; Tu et al., 2023; 2024a;b; Zheng et al., 2022) have been widely
used in practice nowadays. In OOM generalization, we rely on existing foundation models
to encode modalities into a shared latent space. Therefore, the performance of our study is
highly related to the capabilities of the foundation models. Common strategies either fuse
all modalities into a uni-modal model or separately encode and align. Because of the cost
of multi-modal correspondence, the former multi-modal fusion strategy might be impracti-
cal for large-scale applications. Therefore, alignment between pre-trained encoders could
be a promising direction. To effectively organize multiple foundation models to achieve
OOM generalization, more comprehensive studies on addressing the modality gap, modal-
ity imbalance, and alignment strategy are needed in future research.
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