
Online 3D Scene Reconstruction Using Neural Object Priors

Supplementary Material

The supplementary material is organized as follows:
we discuss limitations of our method and possible direc-
tions to explore in Sec. 1, provide additional comparisons
with state-of-the-art methods both quantitatively and quali-
tatively in Sec. 2 and introduce more implementation details
in Sec. 3.

1. Limitations
We have identified three main limitations of our method.
First, our models are highly sensitive to the quality of input
masks, which define object bounding boxes extension and
may severely worsen reconstructions. Correcting masks on-
line from multiple views and the fitted models should robus-
tify the whole model. Second, our retrieval and registration
often struggle when seeing objects from too different view-
points from those used for the database models. Further re-
search on this part, e.g. using stronger image feature models
for efficient retrieval [14, 23] and 6D object pose estimation
for registration [15, 21], should allow for more systematic
object reuse and reduce computations. Third, our method
focuses on mapping objects given camera poses provided
by an external SLAM system without correcting them. Ex-
tending it to a complete object-level SLAM is an interesting
future direction.

2. Additional comparisons with the state of the
art

Comparison to RO-MAP. We evaluate here our method
in the setting of RO-MAP [7]. While the RO-MAP [7]
paper does not provide all the details about their evalua-
tions and no code has been released to reproduce results
on the Replica dataset, we reproduce the closest setting to
their work for fair comparison, following discussion with
RO-MAP authors. In this way, we extract meshes for each
object using marching cubes [11] on a grid of size 643 as
detailed in their paper. We evaluate two scenes with the
same objects, i.e., 23 objects for the scene room-0 and 14
for office-1 as shared by RO-MAP authors. We present our
quantitative results in Table 1 and qualitative examples of
a scene and close-ups on few objects in Fig. 1 and Fig. 2.
The meshes presented here for RO-MAP were shared by the
authors. Our evaluations show that our models computed
without any object prior are more accurate and have a better
completion ratio at 1cm than RO-MAP, though the metric
of completion distance is not so good. However, as shown
in Fig. 1, RO-MAP objects possess numerous artefacts due
to their uniform sampling of points along rays and different
losses used, which explains their high accuracy error, very

Object
prior Scene Whole objects

Acc. ↓ Comp. ↓ CR 1cm ↑ CR 5cm ↑

RO-MAP†[7] — room-0 3.65 0.93 69.3 98.5
office-1 3.74 1.15 67.9 97.7

Ours

— room-0 2.04 2.02 73.8 90.0
office-1 2.34 1.32 74.6 95.3

3D meshes room-0 1.31 0.58 86.2 99.9
office-1 1.27 0.57 86.0 100.0

Prior video room-0 2.09 1.75 74.9 91.2
office-1 2.43 1.11 76.4 96.3

Table 1. Object-level reconstruction performance compared to
RO-MAP [7], using the scenes and settings of RO-MAP’s eval-
uations. Our results with object priors rely on full 3D meshes and
shapes from previously viewed videos. Retrieval and registration
in these cases are ground truth. CR stands for Completion Ratio.
Results for RO-MAP are taken from the original paper.

Object
prior

Whole objects
Acc. ↓ Comp. ↓ CR 1cm ↑ CR 5cm ↑

vMAP†[10] — 2.23 1.44 69.2 94.6
vMAP∗[10] — 1.84 2.32 63.6 91.5

Ours
— 1.52 2.58 73.9 91.0

3D meshes 1.00 0.61 86.4 99.7
Prior video 1.54 1.62 77.1 93.3

Table 2. Object-level reconstruction performance compared to
vMAP [10], reproducing as closely as possible the evaluation set-
ting of vMAP. Our results with object priors rely on full 3D meshes
and shapes from previously viewed videos. Retrieval and registra-
tion in these cases are ground truth. CR stands for Completion Ra-
tio. Results with † are taken from the original paper and with ∗ are
reproduced. The validity of the difference between the published
and reproduced results for vMAP was confirmed by the authors of
vMAP.

low completion distance and high completion ratio at 5cm,
though large parts of objects are unseen in the input videos.
In contrast, our object models are sampled only close to
the surface during fitting, leading to much fewer outliers.
Our method also extracts more faithful geometry on con-
tours of objects as shown on Fig. 2. Leveraging object pri-
ors significantly improves the completion of objects in our
method. While RO-MAP accumulates numerous views be-
fore computing a bounding box and restarts optimization
from scratch each time these boxes change, our interpo-
lation strategy allows us to reconstruct objects as soon as
we observe them, even very partially, and then update their
models at each frame without any reinitialization.

Comparison to vMAP. We further compare our method
with vMAP on the same objects, metrics and evaluation pro-



Object
prior

Seen parts Whole mesh
Objects Acc. ↓ Comp. ↓ Acc. ↓ Comp. ↓ CR 5cm ↑ CR 1cm ↑

TSDF* [3] ✗ — 0.55 0.41 2.66 4.31 87.0 81.8
iMAP* [20] ✗ — 0.92 0.91 1.89 2.42 90.1 74.7
ESLAM* [9] ✗ — 0.69 0.59 0.71 4.33 86.1 76.3

Point-SLAM* [18] ✗ — 0.67 0.59 0.67 4.76 85.3 79.5

vMAP* [10] ✓ — 1.03 0.91 2.85 2.49 91.2 75.0

Ours
✓ — 0.81 0.72 2.96 2.39 91.5 78.3
✓ 3D meshes 0.82 0.70 2.08 1.71 95.3 86.3
✓ Prior video 0.80 0.70 2.69 2.25 92.3 79.3

Table 3. Averaged scene-level reconstruction metrics on the
Replica dataset [19], focusing on the ground truth mesh parts ob-
servable in the input sequence (left) and whole scene (right). Our
results with object priors rely on full 3D meshes and shapes from
previously viewed videos. CR stands for Completion Ratio. Meth-
ods with * are reproduced results from the official code bases.

cedure as used by vMAP [10], to provide fair comparison
to their published results and confirm that our updated setup
proposed in the main paper does not artificially improve our
performances over other baselines. Differing from the eval-
uations of the main paper, we consider here all objects in
each scene, regardless of their size or presence of noise.
We still extract object meshes at a 5mm resolution but set a
maximum of 256 points per size and subsample 10k points
in the GT and reconstructed meshes to compute metrics in-
stead of considering full meshes. Results are presented in
Tab. 2. For vMAP, we provide results taken from the orig-
inal paper as well as reproduced results from the released
code. Though these reproduced results differ from the pub-
lished ones, we confirmed the validity of this difference
with the main authors of vMAP. Reconstruction results with
our models also confirm the trend observed in the main pa-
per with our other evaluation setup: our models optimized
from scratch are again more accurate than vMAP and have
a higher completion ratio at 1cm. Their performances are
similarly further increased by leveraging object shape pri-
ors. We finally present in Fig. 3 few visualizations of object
meshes extracted after only 50 frames processed in the input
sequence. In that setting, vMAP [10] tends to produce over-
smoothed meshes which lack geometric and appearance de-
tails, e.g., the texture of wood on the first row or the cush-
ion’s colored leaves on the last row. Conversely, our model
from scratch recovers more faithful geometry and early tex-
ture for these objects. Adding object shape and texture prior
further boosts the representations, leading to more complete
and better textured models, in particular for our models ob-
tained from a previous video.

Scene-level comparisons. For scene-level comparisons,
our baselines are TSDF [3] (or rather its reimplementa-
tion [22]) with a grid resolution of 1cm, vMAP [10] and
its reimplementation of iMAP [20], ESLAM [9] and Point-
SLAM [18]. Again, we run all the compared methods with
their released codes and the provided ground-truth camera
poses for fair comparison. We extract scene meshes at a res-

olution of 1cm for all methods using marching cubes [11],
and disable any mesh post-processing. Each method is run
with 5 different initializations on each environment, and we
present results averaged over all runs.

Results on the Replica dataset are presented in Table 3.
As we reuse vMAP’s background model, our method out-
performs vMAP on the scene-level as well, aligning with
the observed trend in object-level evaluation. Despite the
improvement we achieve in object-level methods, our best
object-level method with separate models per object still
lags behind the best scene-level methods that consider
scenes as a single entity when considering metrics on the
seen parts or accuracy on whole meshes. Since the scene
metrics depend heavily on the background quality, our
background model which oversmoothes surfaces does not
capture well details and explains this gap. Using a more ac-
curate background model would benefit our method. How-
ever, our models present better completion distance and ra-
tios on whole meshes than scene-level baselines, showing
the interest of decomposing scenes in objects and reusing
priors. In addition, it is worth noting that all the neural im-
plicit model-based approaches perform worse on seen parts
than the traditional TSDF [3], although they showcase ad-
vantages on the whole mesh.

We show meshes reconstructed by each of these meth-
ods on a Replica scene in Figure 4. The ground truth
mesh is displayed here only for the parts that are seen in
the input sequence. Methods relying on TSDF representa-
tions, i.e., TSDF [3, 22] and Point-SLAM for its mesh ex-
traction [18], are highly accurate for both objects and the
background, though they do not reuse any prior informa-
tion about the scene and are therefore unable to fill unseen
parts. iMAP [20] and vMAP [10] extract oversmooth sur-
faces with some plausible completion for all objects and for
the background, but they miss details of all reconstructed
objects. ESLAM, which relies on a single tri-plane repre-
sentation for the whole scene, proposes some completion
for unseen parts of objects and for the background, but it
misses important details about thin structures like pouf feet
or the basket on the ground (left of the image). While our
background model has limited ability to capture scene de-
tails, we obtain the highest level of details for all objects
in the scene while being able to leverage prior knowledge
to complete some parts, see for instance the back of poufs
in the last image. We believe that further improvements in
the background representation should make our method a
strong competitor for online scene-level reconstructions.

Additional visualizations on Replica. As textures may
prevent the reader from observing the geometry details of a
mesh, we provide a textureless version of ?? from the main
paper in Fig. 5. These textureless images emphasize on the
higher level of details recovered by our method compared



to vMAP [10]. In particular, thin structures, e.g., table and
chair feet or handles, are more challenging for vMAP but
are correcly recovered by our approach.

Object meshes on ScanNet. We show some recon-
structed objects on the ScanNet dataset in Fig. 6, using our
method as well as vMAP [10] and a TSDF [3, 22] imple-
mented with object grids of 5mm resolution. All meshes
for these visualizations are extracted at a 1cm resolution us-
ing marching cubes [11]. Unlike other methods, we provide
TSDF with knowledge of each object extent before start-
ing the reconstruction since it is a static representation. Our
method, run with no object prior, is able to reconstruct ob-
ject geometries that are more accurate than vMAP [10] on
these real world sequences. However, these sequences have
very noisy depth and segmentation masks, resulting in arte-
facts in TSDF’s reconstructions for ScanNet and slightly
noisier ones for our method. The update time for TSDF rep-
resentations also grows significantly with the resolution of
the grid and number of objects, making the access to finer
reconstructions much more costly than coarse resolutions,
unlike our representations which keep a constant computa-
tion speed for any object resolution.

Additional results on sequences captured in our labora-
tory. We show in Figure 7 additional reconstructions on a
scene with 3 objects, with views from the front and the back
of the objects. As in the main paper, TSDF reconstructs ob-
jects with some floating artefacts around their borders. This
objects are incomplete for parts unseen in the current video.
vMAP outputs more complete but inaccurate object geom-
etry with oversmoothed texture. Conversely, our approach
produces more faithful shapes and textures for both seen
and unseen parts of objects, in particular thanks to object
initializations from a prior video.

Computation time. On Replica’s room-0, our average
times per frame are 740ms for objects reconstructed from
scratch and 1.4s for models reused from the library. On the
same hardware, vMAP and iMAP take 420ms per frame,
ESLAM takes 445ms, Point-SLAM needs 32s and the
scene-level TSDF runs at 18ms per frame. Our implemen-
tation is however not yet parallelized, unlike vMAP, which
would yield important time savings. Important time savings
can be obtained in several ways. First, improving the im-
plementation to parallelize the fitting of all object models
instead of optimizing them sequentially should lead to sig-
nificant speed gains. Second, our retrieval and registration
(R&R) currently operate in the same thread as model op-
timization, which stops at each R&R attempt, and require
around 200ms per retrieval and registration attempt. Per-
forming this stage in a separate thread should allow model
optimization to run faster. Third, as object models are fitted

separately, their optimization can be paused after converg-
ing on the currently stored keyframes. This is particularly
useful for objects leaving the field of view for a long time,
with no new stored keyframe. In this case, fewer objects are
optimized, which benefits both computation time and GPU
memory. Pausing the optimization is not feasible when con-
sidering the scene as a single entity. Note that these times do
not include segmentation and mask tracking times, which
are assumed to be run separately.

3. Implementation details

3.1. Object-centric model and optimization

Sampling points. At each frame and for each object, we
perform 3 successive optimization steps, sampling 9600
rays among 6 keyframes for each step and 14 points per
ray, 13 close to the surface and 1 closer to the camera. As
explained in Section 3.1 of the main paper, the surface sam-
pling consists in drawing points close to the surface on rays
u following a normal distribution centered at the depth mea-
surement N (D(u), σ). We take 3σ = 5cm for Replica
scenes and a larger σ = 10cm on ScanNet. The latter
was observed to give better reconstructions due to Scan-
Net’s noisy depth measurements and outliers that grow ex-
cessively object bounding boxes, representing large empty
spaces.

Bounding boxes. We compute our bounding boxes us-
ing axis-aligned boxes in the world frame defined for each
scene. Such bounding boxes are more efficient to compute
than randomly aligned ones, though they may encompass
larger empty space. When updating a bounding box, we
add a 10% margin to the box extent in order to avoid doing
this update too often as parts of objects are discovered at
each frame. For each object, we only consider frames for
which the object mask contains at least 100 pixels to avoid
updating models based on too few observations.

Keyframe criterion. We reuse the same keyframe crite-
rion as vMAP [10], which consists in considering every
25-th frame as a keyframe for objects and every 50-th for
the background. We store keyframes in a buffer of up to
20 keyframes for both objects and background. Storing
keyframes represents the largest memory usage of our ap-
proach, our object feature grids consisting in only around
65k parameters for shape and appearance respectively.

Volume rendering details We provide here more details
about the rendering formulas and losses used for the online
reconstruction. For each ray u, we compute ray termination



weights wk,i at each point as:

wk,i = ôk,i

i−1∏
j=1

(1− ôk,j), (1)

We then render the pixel color Ĉk, depth D̂k, mask M̂k and
depth variance V̂k of object Ok as:

Ĉk(u) =

N∑
i=1

wk,iĉk,i, D̂k(u) =

N∑
i=1

wk,idi, (2)

M̂k(u) =

N∑
i=1

wk,i, V̂k(u) =

N∑
i=1

wk,i(di − D̂k(u))
2.

(3)

For each object Ok, the losses used during fitting penalize
the difference between the inputs and the renderings:

Lcol(k, u) = Mk(u)∥C(u)− Ĉk(u)∥1, (4)

Ldepth(k, u) = Mk(u)
∥D(u)− D̂k(u)∥1√

V̂k(u)
, (5)

Lmask(k, u) = ∥Mk(u)− M̂k(u)∥1, (6)

where Mk is the binary mask of Ok.

Optimization details. We implement our feature grids
and MLP using the tiny-cuda-nn library [13]. Our object
models are optimized with AdamW [12] with learning rates
5 × 10−3 and 3.5 × 10−4 respectively for the feature grids
and MLPs, and weight decay 0.1 for both. For the back-
ground model, we reuse the same parameters as the vMAP
paper [10].

3.2. Integrating object shape priors

Constructing the object library. As explained in ?? of
the main paper, we build object models offline from either
full 3D meshes or video sequences. We detail here the first
case. For each object 3D mesh, we render 40 images from
random viewpoints around the object using the Blender-
Proc [5] renderer, each image being of size 1024 × 1024.
We show examples of these renders in Fig. 8. 3D meshes for
the Replica dataset are ground-truth object meshes and have
been obtained by extracting a closed surface from a single
volumetric representation. The latter extraction of object
meshes performed by vMAP [10] consists in splitting this
closed surface in objects according to vertex instance Ids,
resulting in all objects being open surfaces. Thus, if cam-
era poses are randomly sampled all around an object for
our renders, the same part of a surface may be observed
from two opposite viewpoints, which in turn causes prob-
lems during reconstruction. To avoid that issue, we use

normal information to only retain one side of the surface.
From these rendered images, we fit an object model with
the method explained in ?? of the main paper, with the only
difference that all inputs are known at the beginning of the
fitting. Hence, we do not need to perform the online op-
timization but instead sample all frames at each optimiza-
tion step. We perform 500 optimization steps per object
and store the model at the last step for our database.

Retrieval and registration. For retrieval, we use the
CLIP [16] version ViT-bigG-14 from OpenClip [2, 8] and
filter out retrieved objects for which the cosine similar-
ity score is larger than 0.7. For the registration part, the
FPFH [17] features, Ransac [6] and point-to-plane ICP [1]
algorithms are reused from Open3D’s implementation [24].
We filter the fitness with a threshold of 0.8 and keep regis-
tered poses for which at least 90% of reprojected points in
the camera frame belong to the input object mask and have
a depth larger than the depth measurement, with a tolerance
of 2cm.

Synthesizing keyframes on the fly. Once an object
model has been initialized from the object library, we use
the retrieved model to render additional views to fit the cur-
rent object model. In this way, we sample half of the camera
poses at each optimization step among the poses stored in
the object library. We then render color, depth and mask
using 24 points per ray, which we sample uniformly in the
whole bounding box. This sampling contains more points
than the one from current views (i.e., 14 points) to cope
with the absence of depth information that would otherwise
guide the sampling around the actual object surface.

3.3. Evaluation datasets

Replica. Objects considered for the evaluations of the
main paper slightly differ from those used in vMAP [10].
We clean few noisy meshes to remove vertices that are out-
liers and discard a few other tiny objects, i.e., with fewer
than 50 vertices. Examples of such objects are shown on
Figure 9. Following this cleaning, Replica scenes contain
on average 50 objects each.

ScanNet. For the ScanNet dataset, we additionally pre-
process each depth image to remove outliers. More specifi-
cally, at each frame and for each object Ok, we compute the
mean mk and standard deviation sk of depth values falling
in the object mask and discard points whose depth is outside
the range [mk−αsk,mk+αsk], where we choose α = 1.5,
making this interval close to the 90% confidence interval of
normal distributions. We also compute a histogram of depth
points belonging to mask k with 15 values in the camera
depth range ([0m, 6m]) and keep only bins that contain at



least 5% of points. This removes a large number of out-
liers, though some remain that may have a strong impact
on our object bounding boxes. Further joint pre-processing
of depth maps and segmentation masks would benefit our
reconstructions on real world images. For fair comparison
in the real world reconstructions, we also apply this pre-
processing to TSDF [3, 22] and vMAP [10].

Real-world sequences. For our videos, we apply the
same depth image processing as for ScanNet sequences and
additionally erode object masks by few pixels to remove
outliers and obtain better geometry.

3.4. Evaluation metrics

For evaluation on seen parts of meshes, we first cull ver-
tices that are not seen in any input frame. We reuse ES-
LAM’s culling script [9] and remove points at a depth
Drec > Dinput + τ , where Drec is the depth of repro-
jected mesh points in camera frames, Dinput is the mea-
sured depth for that frame and τ is a tolerance. We choose
τ = 3cm for the scene meshes and 2cm for object meshes
which we found to be a good trade-off between keeping all
seen reconstructed vertices that may be inaccurately posi-
tioned and discarding all unseen ones. When evaluating re-
constructions on the whole objects, including parts that are
not seen in the input video sequence, we consider the full
ground truth meshes, without applying this culling opera-
tion.



Figure 1. Comparison of object meshes from Replica [19] obtained by RO-MAP [7] and our method, using two different viewpoints.
Meshes for RO-MAP were provided by the authors. Our meshes are extracted using marching cubes [11] on a grid of size 643 following
RO-MAP’s methodology and are restricted to objects reconstructed by RO-MAP. Regions of interest are highlighted in red.



Figure 2. Comparison of object meshes obtained by RO-MAP [7] and our method. Meshes for RO-MAP were provided by the authors.
Our meshes are extracted using marching cubes [11] on a grid of size 643 following RO-MAP’s methodology. Regions of interest are
highlighted in red. Note that the back of the vase on the first row is never seen in the first input sequence and only mapped in the second
video which we use for our model shown in the last column.



Figure 3. Comparison of meshes between vMAP [10] and the variants of our method on objects from the Replica dataset [19] after only
50 frames of optimization. Meshes are extracted with a resolution of 5mm and our models using object priors rely on ground truth retrieval
and registration. While our reconstructions from scratch are more accurate than vMAP, adding object priors helps recovering faster the
geometry and, optionally, texture of an object.



Figure 4. Visualization of reconstructed meshes at the scene level using TSDF-Fusion [3], iMAP [20] (through its reimplementation
in [10]), vMAP [10], ESLAM [9], Point-SLAM [18] and our method, with or without object prior, on scene room-0 of the Replica
dataset [19].



Figure 5. Textureless meshes reconstructed with vMAP [10] and our method on scenes of the Replica dataset [19]. The textured version
is presented in ?? of the main paper.



Figure 6. Comparison of meshes between TSDF [3, 22], vMAP [10] and our method on objects from the ScanNet dataset [4]. Meshes
are extracted with a resolution of 1cm. Our reconstructions are more accurate than vMAP while being more sensitive about depth and
segmentation errors than TSDF.



Figure 7. Additional reconstruction of a self-captured sequence with object-level TSDF, vMAP and our method using models from ground
truth meshes, viewed from the front and the back.



Figure 8. Examples of rendered images of ground truth meshes using the Blenderproc [5] renderer. Our object models that leverage prior
knowledge of GT meshes are fitted on these images.



Figure 9. Examples of meshes cleaned before running our evaluations in the main paper. (Left): few objects are cleaned to remove outliers,
highlighted in red here. (Right): other small and flat objects like product tags, colored in red, are also discarded.
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