
Appendix

A Details of Model Architectures and Implementation
Synthetic Data For the experiments with VAE models, both the encoder and decoder are defined
as a Multi Layer Perceptron (MLP) with a single hidden layer. For all the experiments with CVAE
models except Section 4.6, the encoder first processes conditioning variable c via an MLP, then
concatenates the output and samples x as the input of another MLP. The decoder processes c in the
same way and then uses an MLP to decode the latent variable. In Section 4.4, the attention layer we
use in the decoder is a trainable vector which is applied as the weight of the latent vector at the top
layer. In Section 4.6, both the encoder and decoder are LSTMs with one hidden layer.

Real Data Both the encoder and decoder use two ResNet blocks to process MNIST/ Fashion
MNIST images. Each encoder block is a residual network which contains two 3× 3 Conv-BN-ReLU
modules in its main branch and one 1 × 1 Conv-BN module in its shortcut. The decoder block
contains a single-layer ConvNet residual block followed by a ConvTranspose layer.

Resources We conduct our experiments on an Amazon Web Services g4dn.12xlarge EC2 instance,
which provides 4 T4 GPUs. We estimate that the time to run through all experiments in this paper
once would cost 20 GPU-hours. The research activity for this paper cost around 100 GPU-hours in
total.

B Encoder Variance Illustration
To show the active dimensions visually, here we report the encoder variances both on synthetic data
and the MNIST dataset. Note that when the value of the encoder variance is less than 0.05, we
categorize the corresponding dimension as active for VAE models; for CVAEs we analogously require
that the encoder/prior variance ratio is less than 0.05. Note however in Table 1 and 2 below, the
number of active dimensions is quite obvious given the clear clustering of variance values.

Table 1: VAE encoder variance matrix on synthetic data associated with Table 1 of the main text,
where κ = 20, d = 30, r = 6 and we find the number of active dimensions is 6. The estimated active
dimensions are in blue.

0.0080 0.0018 1.0000 1.0000 1.0000
0.0027 0.0031 1.0000 1.0000 1.0000
1.0000 0.0087 1.0000 0.0141 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000

Table 2: CVAE Encoder variance matrix of the CVAE model on MNIST dataset from Table 4 of the
main text, where κ = 32 and the number of active dimensions is 12. The estimated active dimensions
are labeled in blue.

3.6159e-03 9.6320e-01 7.6566e-04 3.5173e-04
9.8518e-01 9.6739e-01 9.6077e-01 8.1020e-04
9.8065e-01 9.7336e-01 3.7781e-03 7.1394e-04
9.6985e-01 6.1294e-03 9.7449e-01 9.8012e-01
7.8233e-04 9.7318e-01 9.8596e-01 2.4359e-04
9.7785e-01 9.7737e-01 9.7315e-01 9.8431e-01
9.2616e-01 9.8335e-01 9.6775e-01 1.2756e-03
1.0324e-03 9.6723e-01 9.6046e-01 2.1289e-03

C Proof of Theorem 1
Summary of the Proof We define three categories based on the number of active dimensions and
the rate of their encoder variance. Note that any possible VAE optimum has to fall into one of the
following three categories: the number of dimensions whose encoder variance σ2

z(x, ϕ
∗
γ) = O(γ) is

either greater than r, equal to r or less than r. The proof’s logic flow is:
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1. When the number of active dimensions whose encoder variance σ2
z(x) = O(γ) is less than

r, the reconstruction error will increase at a rate of O( 1γ ), thus the cost cannot reach the
optimum. This is proven in Section C.1;

2. When the stated dimension number equals r, the optimal cost is exactly (d−r) log γ+O(1).
The corresponding proof is in Section C.2;

3. When the stated dimension number is greater than r, denoted as m > r, the cost is
(d−m) log γ +O(1) > (d− r) log γ +O(1) as shown in Section C.3.

The O(γ) rate of the reconstruction error also follows naturally from these results.

C.1 The number of active dimensions whose encoder variance σ2
z(x) = O(γ) is less than r

The main idea is to link the gap between a large σz and large reconstruction error. For a given z0,
µx(z0) will equal some x0 such that ||x0−µx(z0)||2 = 0. But for other choices from X where x ̸= x0,
we have ||x− µx(z0)||2 > 0 leading to the positive expectation term

∫
z
q(z|x)||x− µx(z)||2dz. To

minimize such positive error, we need to lower the density q(z|x) where x ̸= x0, which is a function
of σz .

Suppose that the number of active dimensions whose encoder variance σ2
z(x) = O(γ) is less than r.

In this section, we will show that under this assumption the model can’t reach its global optimum, i.e.
L ↛ −∞. Remind that the cost of VAE is

L(θ, ϕ) =
∫
X
{−Eqϕ(z|x)[log pθ(x|z)] +KL[qϕ(z|x)||p(z)]}ωgt(dx)

We have

2L(θ, ϕ) =
∫
X
{−2Eqϕ(z|x)[log pθ(x|z)] + 2KL[qϕ(z|x)||p(z)]}ωgt(dx)

= d log(2πγ) +

∫
X

{
γ−1Eqϕ(z|x)[||x− µx(z)||2] + 2KL(qϕ(z|x)||p(z))

}
ωgt(dx)

= d log(2πγ) + γ−1

∫
X

∫
z

qϕ(z|x)[||x− µx(z)||2]dz ωgt(dx)

+

∫
X
2KL(qϕ(z|x)||p(z))ωgt(dx)

(1)

Following the two facts:

1. Lebesgue measure on the real numbers is σ-finite.

2. z ∈ Rκ and x ∈ X , where X is a r-dimensional manifold embedded in Rd.

and referring to Fubini’s theorem, we can switch the integration order of ωgt(dx) and dz. Assume
the components of z ∈ Zκ ⊆ Rκ is permutable. For a r-dimensional manifold, we can always use
the first r dimensions of z to get φ(x), i.e. once given r-dimensional information, there always exists
a decoder, s.t. µx(z1:r) = µx(z). Denote by µz(x)1:r and σ2

z(x)1:r the mean and covariance matrix
of the first r dimension of z. After switching the integration order, we have

∫
X

1

γ

∫
z

qϕ(z|x)[||x− µx(z)||2]dz ωgt(dx) +

∫
X
[d log(2πγ) + 2KL(qϕ(z|x)||p(z))]ωgt(dx)

=
1

γ

∫
z

∫
X
qϕ(z|x)[||x− µx(z1:r)||2]ωgt(dx)dz +

∫
X
[d log γ + 2KL(qϕ(z|x)||p(z)) +O(1)]ωgt(dx)

=
1

γ

∫
z∈Zr

∫
X

1√
(2π)r|σ2

z(x)1:r|
e−

1
2 (z−µz(x)1:r)

Tσ−2
z (x)1:r(z−µz(x)1:r)[||x− µx(z)||2]ωgt(dx)dz+∫

X
[d log γ + 2KL(qϕ(z|x)||p(z)) +O(1)]ωgt(dx)

(2)
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C.1.1 Analyze the density with respect to σz(x)1:r and z1:r − µz(x)1:r

Next, for the integral over X in the first term in (2), we examine a certain z1:r ∈ Zr and view it as a
constant. Since µx is a deterministic function, µx(z1:r) is also constant. The log-density on z1:r is

r

2
log(

1

2π
) +

1

2
log

1

|σ2
z |

− 1

2
(z1:r − µz(x)1:r)

Tσ−2
z (z1:r − µz(x)1:r)

Take the derivative of σ2
z , we have

−σ−2
z

2
+

1

2
σ−2
z (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)

Tσ−2
z

When σ2
z is smaller than (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)

T , the second term’s rate is larger.
Thus the density is monotonically increasing when σ2

z ≺ (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)
T and

monotonically decreasing when σ2
z ≻ (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)

T . Note that µx is L-
Lipschitz continuous, so we have L|z1:r − µz(x)1:r| ≥ |µx(z1:r)− µx(µz(x)1:r)| = |µx(z1:r)− x|.
The equality comes from the fact that we can choose optimal µz and µx, s.t. µx(µz(x)1:r) = x.

Now we can divide x ∈ X into four cases and we assume all the four disjoint cases exist when
analyzing, otherwise the integration over corresponding domain is 0 which would not affect our result.
The four cases are as follows:

1. X1(z1:r) = {x : σ2
z(x)1:r ≺ (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)

T } ∩ {x : ||z1:r −
µz(x)1:r|| = +∞}

2. X2(z1:r) = {x : σ2
z(x)1:r ≺ (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)

T } ∩ {x : ||z1:r −
µz(x)1:r|| < +∞}

3. X3(z1:r) = {x : (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)
T ⪯ σ2

z(x)1:r < ∞}

4. X4(z1:r) = {x : (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)
T ⪯ σ2

z(x)1:r = ∞}

We have X1(z1:r)∪X2(z1:r) = {x : σ2
z(x)1:r ≺ (z1:r−µz(x)1:r)(z1:r−µz(x)1:r)

T } and X3(z1:r)∪
X4(z1:r) = {x : σ2

z(x)1:r ⪰ (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)
T }. Thus X1(z1:r) ∪ X2(z1:r) ∪

X3(z1:r) ∪ X4(z1:r) cover the whole space of x related to z1:r, i.e. X (z1:r).

(i) X1(z1:r) = {x : σ2
z(x)1:r ≺ (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)

T } ∩ {x : ||z1:r − µz(x)1:r|| =
+∞}

Denote σ2
l as the lower bound of σ2

z ’s eigenvalues, which cannot approach 0 by our assumption.
σz < +∞. The integral over X1(z1:r)

∫
X1(z1:r)

1√
|σ2

z |
e−

1
2 (z1:r−µz(x)1:r)

Tσ−2
z (z1:r−µz(x)1:r)[||x− µx(z1:r)||2]ωgt(dx)r

≤
∫
X1(z1:r)

1

σr
l

e−
1
2 (z1:r−µz(x)1:r)

Tσ−2
z (z1:r−µz(x)1:r)[L2||z1:r − µz(x)1:r)||2]ωgt(dx)r

will approach 0 as ||z1:r − µz(x)1:r|| = +∞. Thus
∫
z1:r

0dz = 0

(ii) X2(z1:r) = {x : σ2
z(x)1:r ≺ (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)

T } ∩ {x : ||z1:r − µz(x)1:r|| <
+∞}

Denote N = maxx{||z1:r − µz(x)1:r||2} and Xα
2 (z1:r) = {x : ||x− µx(z1:r)||2 > α} ∩ X2(z1:r),

where α ↛ 0. If for any α, Xα
2 (z1:r) = ∅, we have for all x ∈ X2(z1:r), x = µx(z1:r). How-

ever, if µx(x)r ∈ X2(z1:r), i.e. µx(z1:r) satisfies σ2
z(µx(z1:r)) ≺ (z1:r − µz(µx(z1:r)))(z1:r −

µz(µx(z1:r)))
T . We can find a pair of µx and µz , e.g. identity mapping, s.t. µz(µx(z1:r)) = z1:r and

σ2
z(µx(z1:r)) < 0, which is impossible. Thus µx(z1:r) /∈ X2(z1:r) and X2(z1:r) = ∅. Thus, once

X2(z1:r) ̸= ∅, there exists an α, s.t. Xα
2 (z1:r) ̸= ∅. The integral over X2(z1:r)
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∫
X2(z1:r)

1√
|σ2

z |
e−

1
2 (z1:r−µz(x)1:r)

Tσ−2
z (z1:r−µz(x)1:r)[||x− µx(z1:r)||2]ωgt(dx)r

≥
∫
X2(z1:r)

1

σr
l

e−
1
2σ

−2r
l N [||x− µx(z1:r)||2]ωgt(dx)r

=
1

σr
l

e−
1
2σ

−2r
l N [

∫
Xα

2 (z1:r)

[||x− µx(z1:r)||2]ωgt(dx)r +

∫
(Xα

2 (z1:r))c
[||x− µx(z1:r)||2]ωgt(dx)r]

≥ α

σr
l

e−
1
2σ

−2r
l N

The last inequality comes from the fact that ϖ(Xα
2 (z1:r)) ≥ 1 where ϖ is a counting measure and

the non-negativity of the second term.

(iii) X3(z1:r) = {x : (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)
T ⪯ σ2

z(x)1:r < ∞}
In this case the density is monotonically decreasing with σz . Since σz ̸= +∞, denote σ2

u as the upper
bound of the eigenvalues of σ2

z . It can also bound ||z1:r − µz(x)1:r||2. Use the same strategy in (ii),
define Xα′

3 (z1:r) = {x : ||x− µx(z1:r)||2 > α′} ∩ X3(z1:r). If X3(z1:r) ̸= ∅, we have

∫
X3(z1:r)

1√
|σ2

z |
e−

1
2 (z1:r−µz(x)1:r)

Tσ−2
z (z1:r−µz(x)1:r)[||x− µx(z1:r)||2]ωgt(dx)r

≥
∫
X3(z1:r)

1

σr
u

e−
r
2σ

−2r+2
u [||x− µx(z1:r)||2]ωgt(dx)r

=
1

σr
u

e−
r
2σ

−2r+2
u [

∫
Xα′

3 (z1:r)

[||x− µx(z1:r)||2]ωgt(dx)r +

∫
(Xα′

3 (z1:r))c
[||x− µx(z1:r)||2]ωgt(dx)r]

≥ α′

σr
u

e−
r
2σ

−2r+2
u

(iv) X4(z1:r) = {x : (z1:r − µz(x)1:r)(z1:r − µz(x)1:r)
T ⪯ σ2

z(x)1:r = ∞}
In this case the density is monotonically decreasing with σz , and the dominant factor is 1√

|σ2
z(x)1:r|

.

Since σz is arbitrarily large, it is obvious that
√
|σ2

z | > tr(σ2
z) ≥ ||z1:r − µz(x)1:r||2 ≥ 1

L2 ||x −
µx(z1:r)||2. Note that | · | = det(·).
The integral over X4(z1:r)∫

X4(z1:r)

1√
|σ2

z |
e−

1
2 (z1:r−µz(x)1:r)

Tσ−2
z (z1:r−µz(x)1:r)[||x− µx(z1:r)||2]ωgt(dx)r

≤
∫
X4(z1:r)

L2||z1:r − µz(x)1:r)||2√
|σ2

z(x)1:r|
ωgt(dx)r

will approach 0 as σ2
z → ∞.

C.1.2 Analyze the existence of the above cases and get a lower bound
We have X = X1 ∪X2 ∪X3 ∪X4, where Xi = ∪z1:rXi(z1:r), i = 1, 2, 3, 4. In X1 ∪X4, the integral
is 0. To get a lower bound of (2), we need to prove X2 ∪ X3 ̸= ∅, i.e. there must exists z1:r such that
x ∈ {σ2

z(x)1:r < ∞} ∩ {||z1:r − µz(x)1:r|| < ∞} exists.

For σz(x)r, if σz(x)r = ∞, then in the KL term the trace tr(σ2
z(x)1:r) = +∞ which cannot be

offset by − log |σ2
z(x)1:r|. Thus to minimize loss, σz < ∞.

For ||z1:r − µz(x)1:r|| < ∞, with L-Lipschitz continuity, for any z∗1:r, we can find a x∗ ∈ X , s.t.
||z∗1:r − µz(x

∗)1:r|| = 0. Denote Uδ(x)r as a neighborhood of x with the radius of δ. For any
x ∈ Uδ(x

∗) , we have
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||µz(x)1:r − z∗1:r|| = ||µz(x)1:r − µz(x
∗)1:r|| ≤ L||x− x∗|| ≤ Lδ

So Uδ(x
∗) ⊂ X2 ∪ X3. To get a positive lower bound, we need to prove there exists x′ and δ, s.t. the

image of µz(x
′) for x ∈ Uδ(x

′) is with positive measure. If for any x ∈ Uδ(x
1), µz(x)1:r = z11:r, and

for any x ∈ Uδ(x
2), µz(x)1:r = z21:r, which satisfy δ < ||x2 − x1|| ≤ 3

2δ, and z11:r ̸= z21:r. Note that
can always choose a larger δ to get such pair of {x1, x2}. Then there exists x3 ∈ Uδ(x

1) ∩ Uδ(x
2),

µz(x
3) should equals z11:r and z21:r simultaneously which is impossible. Thus, there must exists x∗,

s.t. µz(Uδ(x
∗)) has a positive measure.

With the existence of x∗, such that Uδ(x
∗) ⊂ X2 ∪ X3 and positive measured µz(Uδ(x

∗)), we have

1

γ

∫
z1:r

∫
X

1√
(2π)r|σ2

z |
e−

1
2 (z1:r−µz(x)1:r)

Tσ−2
z (z1:r−µz(x)1:r)[||x− µx(z1:r)||2]ωgt(dx)rdz1:r+∫

X
[d log γ + 2KL(qϕ(z|x)||p(z)) +O(1)]ωgt(dx)

=
1

γ

∫
z1:r

∫
X2∪X3

1√
(2π)r|σ2

z |
e−

1
2 (z1:r−µz(x)1:r)

Tσ−2
z (z1:r−µz(x)1:r)[||x− µx(z1:r)||2]ωgt(dx)rdz1:r+∫

X
[d log γ + 2KL(qϕ(z|x)||p(z)) +O(1)]ωgt(dx)

≥ 1

γ

∫
z1:r

min{ α

σr
l

e−
1
2σ

−2r
l N ,

α′

σr
u

e−
r
2σ

−2r+2
u }dz1:r+∫

X
[d log γ + 2KL(qϕ(z|x)||p(z)) +O(1)]ωgt(dx)

=
C

γ
+

∫
X

[
d log γ − log |σ2

z(x)|+O(1)
]
ωgt(dx)

(3)

Here denote C =
∫
z1:r

min{ α
σr
l
e−

1
2σ

−2r
l N , α′

σr
u
e−

r
2σ

−2r+2
u }dz1:r for simplicity.

C.1.3 Analyze the rate of the lower bound
The first term C

γ grows at a rate of O( 1γ ). Because σ2
z is at a lower rate than γ, we have

O(d log γ − log |σ2
z(x)|) < O(−(d− κ) log

1

γ
)

and the right part decreases at a rate of log 1
γ . When γ → 0, O( 1γ ) > O(log 1

γ ), which means the
increase from reconstruction term cannot be offset by the decrease from the KL term. Moreover, from
the fact that O( 1γ ) > O(log 1

γ ), when γ is small enough, the loss is monotonically decreasing with γ.

Therefore, when γ → 0, the lower bound cannot approach −∞, which means at this case, the model
can never achieve optimum. Thus, there must exist some active dimensions whose variance σ2

z(x)
satisfies σ2

z(x) = O(γ) as γ → 0 to reach the global optimum. We can learn from the expression
of C that as long as the number of such active dimensions whose encoder variance σ2

z(x) = O(γ)
exceeds r, as γ approaches zero, the reconstruction term is at most at the rate of O(1). Next, we will
show that when there exist at least r such active dimensions, the VAE model’s optimum is achievable.

C.2 The number of active dimensions whose encoder variance σ2
z(x) = O(γ) equals r

In this section, we get an upper bound and a lower bound and show that both case the cost is
(d− r) log γ +O(1).

C.2.1 An Upper Bound of ELBO
Get an upper bound by Lipschitz We can write z = µz(x) + ε ∗ σz(x), where ε ∼ N(0, I).
Since decoder mean function µx(z; θ) is L-Lipschitz continuous, we have:
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Ez∼qϕγ (z|x)[||x− µx(z)||2]

=Eε∼N(0,I)[||µx(µz(x)1:r)− µx(z1:r)||2]
≤Eε∼N(0,I)[||L(µz(x)1:r − µz(x)1:r − σz(x)1:rε)||2]
=Eε∼N(0,I)[||Lσz(x)1:rε||2]

(4)

where the first equality comes from the fact that we can choose optimal encoder-decoder pairs such
that µx(µz(x)1:r) = x. Take it into L,

2L(σz(x)1:r, γ)

=

∫
X

[
Ez∼qϕ(z|x)[

1

γ
||x− µx(z)||22] + d log 2πγ − log |σ2

z(x)1:r| − log |σ2
z(x)r+1:κ|+O(1)

]
ωgt(dx)

≤L2

γ

∫
X

[
Eε∼N(0,I)[||σz(x)1:rε||2] + d log 2πγ − log |σ2

z(x)1:r| − log |σ2
z(x)r+1:κ|+O(1)

]
ωgt(dx)

(5)

We get an upper bound of L, denoted as L̃.

Analysis of the Upper Bound L̃ Now we only pay attention to the upper bound L̃ and try to prove
that it is at a rate of O((d− r) log γ).

We can get implicit optimal values of L̃: γ∗ and σ∗(x)21:r by taking the derivative of L̃ separately.

We have optimal γ∗

γ∗ = argmin
γ

L̃(θ, ϕ) = L2

d
Eε∼N(0,I)[||σz(x)1:rε||2] (6)

and

∂2L̃(σz(x)1:r, γ)

∂σz(x)1:r
=

2L2σz(x)1:r
γ

Eε∼N(0,I)[εε
T ]− 2σz(x)

−1
1:r

=
2L2σz(x)1:r

γ
− 2σz(x)

−1
1:r = 0

we have the optimal variance of L̃:

σ∗
z(x)

2
1:r = γ

I

L2
(7)

It shows that 1√
γσ

∗
z(x)1:r = O(1) when it reaches the optimal value.

Take the optimal values into L̃, then we get L̃ as a function of γ∗ and σ∗
z(x)1:r:

2L̃(γ∗, σ∗
z(x)1:r)

=

∫
X

[
L2

γ∗ Eε∼N(0,I)[||σz(x)1:rε||2] + d log 2πγ∗ − log |σ∗
z(x)

2
1:r| − log |σz(x)

2
r+1:κ|+O(1)

]
ωgt(dx)

=

∫
X

[
d+ d log(2πγ∗)− log |γ∗ I

L2
| − log |σz(x)

2
r+1:κ|+O(1)

]
ωgt(dx)

=d log(2πγ∗)− r log γ∗ − log |σz(x)
2
r+1:κ|+O(1)

(8)

Define {λi}κi=1 as the eigenvalues of σz(x). Denote r̃ as the number of {λi}κi=r+1 that will go to 0
as γ∗ → 0. We have
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2L̃(γ∗) = d log γ∗ − r log γ∗ − 2

r+r̃∑
i=r+1

log λi − 2

κ∑
i=r̃+r+1

log λi +O(1) (9)

To minimize (9), we want r̃ to be as small as possible and at the best equals 0 which is achievable.
Since the rest κ− r − r̃ = κ− r dimensions are irrelevant to γ, at least will not approach 0 when
γ → 0, we can view them as constants. We have the loss equals

(d− r) log γ +O(1) (10)

C.2.2 A Lower Bound of ELBO
From C.1 we have analyzed the loss performance when there are less than r active dimensions
whose variance goes to zero at a rate no lower than γ. In this part, we focus on the case that r
latent dimensions are such active dimensions whose encoder variance goes to zero at a rate of O(γ).
Without loss of generality, we assume the first r latent dimensions satisfy σ2

z(x)1:r = O(γ) as γ → 0.
We have

2L(θ, ϕ) =
∫
X
{−2Eqϕ(z|x)[log pθ(x|z)] + 2KL[qϕ(z|x)||p(z)]}ωgt(dx)

=

∫
X

{
1

γ
Eqϕ(z|x)[||x− µx(z)||2] + d log(2πγ) + 2KL(qϕ(z|x)||p(z))

}
ωgt(dx)

≥
∫
X

{
d log(2πγ)− log |σ2

z(x)|+O(1)
}
ωgt(dx)

=

∫
X

{
d log γ − log |σ2

z(x)1:r| − log |σ2
z(x)r+1:κ|+O(1)

}
ωgt(dx)

≥
∫
X

{
(d− r) log γ − log |σ2

z(x)r+1:κ|+O(1)
}
ωgt(dx)

=(d− r) log γ +O(1)

(11)

The inequalities come from the fact that the norm term is non-negative and the active dimensions’
rate is no less than γ. For the last equality, we can use the strategy in (9). To minimize the lower
bound, there should not be any active dimensions in these r + 1 : κ dimensions.

We get an upper bound and a lower bound at the same rate, i.e. log γ with r active latent dimensions.
Therefore, the original loss is also with r active dimensions. We have the optimal cost for each x
equals

(d− r) log γ +O(1) (12)

So far, we have get the conclusion in Theorem 1 about the form of ELBO when γ → 0, as well as the
number and rate of active dimensions. Next, we show that the number of active dimensions can’t be
greater than r.

C.3 When the number of active dimensions is greater than r

Denote now there are m active dimensions and m > r. From (8), in this case r̃ = m− r, and the
loss is

1

γ
Eqϕγ (z|x)[||x− µx(z)||2] + d log(2πγ)− 2

r∑
i=1

log λi − 2

r+r̃∑
i=r+1

log λi +O(1) (13)

since here limγ→0 λi = 0, −2
∑r+r̃

i=r+1 log λi is monotonically increases as r̃ increases at the rate of
Ω(log 1

γ ). For the reconstruction term, it is unaffected since we only use the first r latent dimensions
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for reconstruction. Therefore, the loss will increase at the rate of Ω(log 1
γ ), which is larger than the

loss when m = r.

In conclusion, only when the number of active dimensions equals r, and these active dimensions’
encoder variance σ2

z(x) = O(γ) as γ → 0, the optimal cost is (d− r) log γ +O(1).

D Proof of Theorem 2
Summary of the proof We focus on analyzing the loss conditioned on a specific c, which is defined
as Lc(θ, ϕ). We then first construct the proof when pθ(z|c) = p(z), i.e. a parameter free prior, and
then extend to the case when the prior involves the conditioning variable. The logic flow is as follows:

1. The prior is independent of c

(a) Following the same proof idea as in Theorem 1, when the number of active dimensions
whose encoder variance σ2

z(x, c;ϕ) = O(γ) is less than r − k, where k is the number
of effective dimensions of c used in the decoder, the reconstruction error will grow at a
rate of O( 1γ ). This is proven in Section D.1.1;

(b) In Section D.1.2 we show that both the upper bound and the lower bound are (d− r +
t) log γ and the exact number of active dimensions is r − t.

2. The prior is a function of c

(a) Since involving c in the prior will not affect the reconstruction term, we extend the
conclusion in Section D.1.1 to the general case;

(b) Show that both the upper bound and the lower bound are (d− r+ t) log γ and the exact
number of active dimensions is r − t. The proof is in Section D.2.

Under CVAE setting, we first make some denotations for proof. Since the encoder, prior, and decoder
share the same condition c, the model has flexibility to use part of each c from the three networks.
Denote t as the number of effective dimensions of c, and k as the number of effective dimensions of c
used in the decoder pθ(x|z, c), i.e. there exists a pair of encoder and decoder, s.t. µx(c) = φ−1(u1:k),
where 0 ≤ k ≤ t and is a learnable parameter. The encoder and prior use the rest t − k effective
dimensions, i.e. µx(µz(c)) = φ−1(uk+1:t), and this part of information will be included in the latent
variable z.

D.1 When the prior is independent of c, i.e. pθ(z|c) = p(z)

In this case, we can write the cost as:

2Lc(θ, ϕ) =2

∫
Xc

{−Eqϕ(z|x,c)[log pθ(x|z, c)] +KL[qϕ(z|x, c)||p(z)]}ωc
gt(dx)

=

∫
Xc

1

γ
Eqϕ(z|x,c)[||x− µx(z, c)||2] + d log(2πγ) + 2KL(qϕ(z|x, c)||p(z))ωc

gt(dx)

=
1

γ

∫
Xc

Eqϕγ (z|x,c)[||φ−1(u1:k)− µx(c)||2 + ||φ−1(uk+1:r)− µx(zk+1:r)||2+

d log(2πγ) + 2KL(qϕ(z|x, c)||p(z))ωc
gt(dx)

=
1

γ

∫
Xc

Eqϕγ (z|x,c)[||φ−1(uk+1:r)− µx(zk+1:r)||2 + d log(2πγ) + 2KL(qϕ(z|x, c)||p(z))ωc
gt(dx)

D.1.1 The number of active dimensions whose encoder variance σ2
z(x, c;ϕ) = O(γ) is less

than r − k

Following the same proof idea in Theorem 1, assume there is no active dimension in σz(x;ϕ). For
the reconstruction term, it is equivalent to reconstruct a (r − k)-dimensional manifold. Thus we can
find an lower bound of the cost
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2Lc(θ, ϕ) ≥
C ′

γ
+

∫
Xc

[d log γ + 2KL(qϕ(z|x, c)||p(z)) +O(1)]ωc
gt(dx)

=
C ′

γ
+

∫
Xc

[
d log γ − log |σ2

z(x, c;ϕ)1:k| − log |σ2
z(x, c;ϕ)k+1:κ−t+k|+O(1)

]
ωc
gt(dx)

(14)

where C ′ =
∫
z1:r−k

min{ α

σr−k
l

e−
1
2σ

−2(r−k)
l N , α′

σr−k
u

e−
r−k
2 σ−2(r−k)+2

u }dz1:r−k.

The first term C′

γ grows at a rate of O( 1γ ). Because σ2
z is at a lower rate than γ, we have

O(d log γ − log |σ2
z(x, c;ϕ)|) < O(−(d− κ) log

1

γ
)

and the right part decreases at a rate of log 1
γ . When γ → 0, O( 1γ ) > O(log 1

γ ), which means the
increase from reconstruction term cannot be offset by the decrease from the KL term. Moreover, from
the fact that O( 1γ ) > O(log 1

γ ), when γ is small enough, the loss is monotonically decreasing with γ.

Therefore, when γ → 0, the lower bound cannot approach −∞, which means at this case, the model
can never achieve optimum. Thus, there must exist some active dimensions whose variance satisfies
σ2
z(x, c;ϕ)i = O(γ), i = 1, . . . , κ as γ → 0 to reach the global optimum, and it is showed in C ′

that as long as the number of such active dimensions exceeds r − k, as γ approaches zero, the
reconstruction term is at most at the rate of O(1). Next, we will show that when there exist at least
r − k such active dimensions, the CVAE model’s optimum is achievable.

D.1.2 Bounds of CVAE cost
The upper bound We have z1:t−k = µz(x, c;ϕ)1:t−k + σz(x, c;ϕ)1:t−kε1 and zt−k+1:r =
µz(x, c;ϕ)t−k+1:r−k + σz(x;ϕ)t−k+1:r−kε2, where ε1 ∼ N(0, It−k), ε2 ∼ N(0, Ir−t).

The loss is:

1

γ
Eqϕγ (z|x,c)[||x− µx(z, c)||2] + d log(2πγ) + 2KL(qϕ(z|x, c)||p(z))

=
1

γ
Eqϕγ (z|x,c)[||φ−1(u1:k)− µx(c)||2 + ||φ−1(uk+1:t)− µx(z1:t−k)||2+

||φ−1(ut+1:r)− µx(zt−k+1:r−k)||2] + d log(2πγ) + 2KL(qϕ(z|x, c)||p(z))

≤ 1

γ
Eε1∼N(0,It−k)[||Lσz(x, c;ϕ)1:t−kε1||2] +

1

γ
Eε2∼N(0,Ir−t)[||Lσz(x, c;ϕ)t−k+1:r−kε2||2]+

d log γ − log |σ2
z(x, c;ϕ)1:t−k| − log |σ2

z(x, c;ϕ)t−k+1:r−k|+O(1)
(15)

Denote σ2
z(x, c;ϕ)1:t−k as σ2

z(c, ϕ) for simplicity, and denote the upper bound of loss as Lu
c . Take

the derivative of σz(c;ϕ) and σz(x, c;ϕ)t−k+1:r−k separately. Because the diagonal elements in
σz(x, c;ϕ) are independent, we can make both achieve optimum. We have:

Lu
c (γ, k) =− (t− k) log γ − (r − t) log γ + d log γ +O(1) (16)

To minimize Lu
c (γ, k), the optimal k is t, thus the upper bound is:

Lu
c (γ) =(d− r + t) log γ +O(1) (17)

The lower bound We have show that there must be at least r − k active dimension at a rate of
O(γ), otherwise the loss will increase at a rate of O(γ). We can get a lower bound
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1

γ
Eqϕγ (z|x,c)[||x− µx(z, c)||2] + d log(2πγ) + 2KL(qϕ(z|x, c)||p(z))

≥d log γ − log |σ2
z(x, c;ϕ)1:r−k| − log |σ2

z(x, c;ϕ)r−k+1:κ|+O(1)

≥d log γ − (r − k) log γ − log |σ2
z(x, c;ϕ)r−k+1:κ|+O(1)

≥(d− r + k) log γ +O(1)

(18)

Denote the lower bound as Ll
c(γ, k), to minimize it, we have k = t, thus the lower bound is

Ll
c(γ) = (d− r + t) log γ +O(1)

Both Lu
c and Ll

c are at a rate of O(log γ), we come to the conclusion that the ELBO is (d − r +
t) log γ +O(1) and the number of active dimensions is r − t when pθ(z|c) = p(z).

D.2 The general case
Define a trainable parametric prior of z, i.e. z ∼ N(µz(c; θ), σ

2
z(c; θ)). Since involving c in the prior

doesn’t affect the reconstruction term, we have the conclusion in Section D.1.1 that there are at least
r− k active latent dimensions at a rate of O(γ). Without loss of generality, we assume the first r− k
dimension of σ2

z(x, c;ϕ), i.e. σ2
z(x, c;ϕ)1:r−k = O(γ).

The upper bound The loss is:

1

γ
Eqϕγ (z|x,c)[||x− µx(z, c)||2] + d log(2πγ) + 2KL(qϕ(z|x, c)||p(z|c))

≤ 1

γ
Eε1∼N(0,It−k)[||Lσz(c;ϕ)ε1||2] +

1

γ
Eε2∼N(0,Ir−k)[||Lσz(x, c;ϕ)t−k+1:r−kε2||2] + d log(2πγ)−

log |σ2
z(c, ϕ)| − log |σ2

z(x, c;ϕ)t−k+1:r−k| − log |σ2
z(x, c;ϕ)r−k+1:κ|+ log |σ2

z(c; θ)1:t−k|+ log |σ2
z(c; θ)t−k+1:κ|

+ (µzϕ(1:t−k) − µzθ(1:t−k))
Tσ2

z(c; θ)
−1
1:t−k(µzϕ(1:t−k) − µzθ(1:t−k))

+ (µzϕ(t−k+1:κ) − µzθ(t−k+1:κ))
Tσ2

z(c; θ)
−1
t−k+1:κ(µzϕ(t−k+1:κ) − µzθ(t−k+1:κ))

− κ+ tr(σ2
z(c, ϕ)/σ

2
z(c; θ)1:t−k) + tr(σ2

z(x;ϕ)/σ
2
z(c; θ)t−k+1:κ)

(19)

Since we can only control k dimensions of the prior when training, take the derivative of µz(c; θ)1:k
and σz(c; θ)1:k, we have

µz(c; θ)
∗
1:t−k = µz(c;ϕ)

σ2
z(c; θ)

∗
1:t−k = (µz(c;ϕ)− µz(c; θ)

∗
1:t−k)(µz(c;ϕ)− µz(c; θ)

∗
1:t−k)

T + σ2
z(c, ϕ) = σ2

z(c, ϕ)
(20)

Let them achieve the optimal values. The loss becomes

1

γ
Eε1∼N(0,It−k)[||Lσz(c;ϕ)ε1||2] +

1

γ
Eε2∼N(0,Ir−k)[||Lσz(x, c;ϕ)t−k+1:r−kε2||2] + d log(2πγ)

− log |σ2
z(x, c;ϕ)t−k+1:r−k| − log |σ2

z(x, c;ϕ)r−k+1:κ|+ log |σ2
z(c; θ)r−k+1:κ|+ tr(σ2

z(x;ϕ)/σ
2
z(c; θ)k+1:κ)

+ (µzϕ(t−k+1:κ) − µzθ(t−k+1:κ))
Tσ2

z(c; θ)
−1
t−k+1:κ(µzϕ(t−k+1:κ) − µzθ(t−k+1:κ)) + t− k − κ

(21)

From (21) we observe that if we have a flexible enough prior, there are t− k latent dimensions that
won’t provide any loss both in reconstruction and kl term. To minimize (21), σ2

z(c, ϕ)
∗ = 0 and

σ2
z(x;ϕ)

∗
t−k+1:r−k = γ I

L2 . Let them be the optimums, and view the terms that are irrelevant with γ
when it approaches 0 as constants, we have

Lu′

c = (d− r + t) log γ +O(1) (22)
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The lower bound to get the lower bound, we have

1

γ
Eqϕγ (z|x,c)[||x− µx(z, c)||2] + d log(2πγ) + 2KL(qϕ(z|x, c)||p(z|c))

≥d log γ − log |σ2
z(x, c;ϕ)t−k+1:r−k| − log |σ2

z(x, c;ϕ)r−k+1:κ|+ log |σ2
z(c; θ)r−k+1:κ|+

tr(σ2
z(x;ϕ)/σ

2
z(c; θ)k+1:κ) + (µzϕ(t−k+1:κ) − µzθ(t−k+1:κ))

Tσ2
z(c; θ)

−1
t−k+1:κ(µzϕ(t−k+1:κ) − µzθ(t−k+1:κ)) +O(1)

=d log γ − log |σ2
z(x, c;ϕ)t−k+1:r−k|+O(1)

≥d log γ − (r − t) log γ +O(1)

=(d− r + t) log γ +O(1)
(23)

The last inequality comes from the conclusion that there are at least r − k active dimensions at a rate
of O(γ) and the loss is monotonously increase with γ. In this case k can be any integer in [0, t], thus
we cannot determine how many dimensions are used by the encoder and decoder separately. But no
matter what value k is, the cost of CVAE is

(d− r + t) log γ +O(1)

In conclusion, after integrating over C, we have

L(θ∗, ϕ∗) =

∫
C
Lc(θ

∗, ϕ∗)νgt(dc) = (d− r + t) log γ +O(1)

E Proof of Theorem 3
Summary of the proof We first define a space of sequences, and then separate the sequences into
two categories according to the performance of the KL term. In Section E.1, we analyze the case
when the Kl term equals O(log 1

γ ), and in Section E.2, the rate of KL term is higher than O(log 1
γ ).

In both categories, we prove that the whole cost cannot go to −∞.

Let θ∗, ϕ∗ = argminθ,ϕ L(θ, ϕ). Define S ⊂ X as the set of the sequences, and the sequence is
defined as {xl}∞l=1 ∈ S.

Consider when l equals to a constant l0, we have the prior as qϕ∗(z|x<l0), and encoder as qϕ∗(z|x≤l0).
Next, consider l = l0 +1, we have the prior as qϕ∗(z|x≤l0), which is exactly the same as the encoder
at l = l0, and the encoder as qϕ∗(z|x≤l0+1). The cost function at these two points are

L(l0)
c (θ∗, ϕ∗) = −Eqϕ∗ (z|x≤l0

)[log pθ∗(xl0 |z, x<l0)] +KL[qϕ∗(z|x≤l0)||qϕ∗(z|x<l0)]

and

L(l0+1)
c (θ∗, ϕ∗) = −Eqϕ∗ (z|x≤l0+1)[log pθ∗(xl0+1|z, x≤l0)] +KL[qϕ∗(z|x≤l0+1)||qϕ∗(z|x≤l0)]

respectively.

Next, we separate the sequences with varied values into two cases.

E.1 KL term is at a rate of O(log 1
γ ) when γ → 0.

Denote log qϕ(z|x≤l) − log qϕ(z|x<l) = fl(γ) = O(log 1
γ ). In this setting, we analyze the recon-

struction term

− Eqϕ∗ (z|x≤l0
)[log pθ∗(xl0 |z, x<l0)]

=

∫
Z
qϕ∗(z|x≤l0) log pθ∗(xl0 |z, x<l0)dz

=
1

γ

∫
Z
qϕ∗(z|x≤l0)[||xl0 − µ∗

x(z)||2]dz + d log(2πγ)

(24)
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Similarly we have

− Eqϕ∗ (z|x≤l0+1)[log pθ∗(xl0+1|z, x≤l0)]

=
1

γ

∫
Z
qϕ∗(z|x≤l0+1)[||xl0+1 − µ∗

x(z)||2]dz + d log(2πγ)
(25)

With the condition that log qϕ(z|x≤l)− log qϕ(z|x<l) = fl(γ) = O(log 1
γ ), we have

KL[qϕ(z|x≤l)||qϕ(z|x<l)]

=Eqϕ(z|x≤l) [log qϕ(z|x≤l)− log qϕ(z|x<l)]

≤Eqϕ(z|x≤l)[fl(γ)] = fl(γ)

(26)

That shows KL term is either small than a constant or goes to infinity at a slower rate than rate of
log 1

γ when γ → 0. We can also get qϕ(z|x<l) ≥ 1
efl(γ) qϕ(z|x<l), from which we have

qϕ(z|x<l)− qϕ(z|x≤l) ≥qϕ(z|x≤l)(
1

efl(γ)
− 1) (27)

Together we have

− Eqϕ∗ (z|x≤l0
)[log pθ∗(xl0 |z, x<l0)]− Eqϕ∗ (z|x≤l0+1)[log pθ∗(xl0+1|z, x≤l0)]

=
1

γ

[∫
Z
qϕ∗(z|x≤l0)||xl0 − µ∗

x(z)||2dz +
∫
Z
qϕ∗(z|x≤l0+1)||xl0+1 − µ∗

x(z)||2dz
]
+ 2d log(2πγ)

=
1

γ
[

∫
Z
qϕ∗(z|x≤l0+1)

[
||xl0 − µ∗

x(z)||2 + ||xl0+1 − µ∗
x(z)||2

]
dz+∫

Z
[qϕ∗(z|x≤l0)− qϕ∗(z|x≤l0+1)] ||xl0 − µ∗

x(z)||2dz] + 2d log(2πγ)∫
Z
[qϕ∗(z|x≤l0)− qϕ∗(z|x≤l0+1)] ||xl0 − µ∗

x(z)||2dz] + 2d log(2πγ)

≥ 1

γ
[

∫
Z
qϕ∗(z|x≤l0+1)

[
||xl0 − µ∗

x(z)||2 + ||xl0+1 − µ∗
x(z)||2

]
dz+

(
1

efl0 (γ)
− 1)

∫
Z
qϕ(z|x≤l0+1)||xl0 − µ∗

x(z)||2]dz + 2d log(2πγ)

=
1

γ

∫
Z
qϕ∗(z|x≤l0+1)

[
1

efl0 (γ)
||xl0 − µ∗

x(z)||2 + ||xl0+1 − µ∗
x(z)||2

]
dz + 2d log(2πγ)

(28)

For any l0 = 1, 2, . . . and all z ∈ Z , we have the following cases:

1. For any z ∈ Z1, µ∗
x(z) = xl0 and µ∗

x(z) ̸= xl0+1. We have ||xl0
−µ∗

x(z)||
2

γ → ∞ at a rate
of O( 1γ ).

2. For any z ∈ Z2, µ∗
x(z) = xl0+1 and µ∗

x(z) ̸= xl0 . We have ||xl0+1−µ∗
x(z)||

2

γe
fl0

(γ) → ∞ at a rate

of O( 1

γe
fl0

(γ) ).

3. For any z ∈ Z3, µ∗
x(z) ̸= xl0 and µ∗

x(z) ̸= xl0+1. Both cases above cause the norm term
equal Ω(1).
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With the setting, the lower bound of reconstruction term is

1

γ

∫
Z
qϕ∗(z|x≤l0+1)

[
1

efl0 (γ)
||xl0 − µ∗

x(z)||2 + ||xl0+1 − µ∗
x(z)||2

]
dz + 2d log(2πγ)

=
1

γ

∫
Z1

qϕ∗(z|x≤l0+1)||xl0+1 − µ∗
x(z)||2dz +

1

γefl0 (γ)

∫
Z2

qϕ∗(z|x≤l0+1)||xl0 − µ∗
x(z)||2dz+

1

γ

∫
Z3

qϕ∗(z|x≤l0+1)

[
1

efl0 (γ)
||xl0 − µ∗

x(z)||2 + ||xl0+1 − µ∗
x(z)||2

]
dz + 2d log(2πγ)

≥ 1

γ

∫
Z1∪Z3

qϕ∗(z|x≤l0+1)||xl0+1 − µ∗
x(z)||2dz + 2d log(2πγ)

(29)

Since the probability mass of xl conditioned on x<l lies on a manifold with at least 1 dimen-
sion, i.e. we exclude deterministic sequences, there must exist a sequence {xl}i0 , in which∑∞

l=1

∫
Z qϕ∗(z|x≤l+1)||xl+1 − µ∗

x(z)||2dz ≥ C, where C is a constant, otherwise all the sequences
{xl}i ∈ S, i = 1, 2, . . . share the same values which violates our assumption.

Then for (29), there must exist a constant C ′, such that∫
Z1∪Z3

qϕ∗(z|x≤l0+1)||xl0+1 − µ∗
x(z)||2dz ≥ C ′

Thus, the lower bound of the cost is
C ′

γ
− 2d log

1

2πγ

When γ goes to zero, O( 1γ ) > O(log 1
γ ). We get the conclusion that Lc(θ, ϕ) =

∫
X Ω(1)ωgt(dx) for

any θ and ϕ.

E.2 KL term goes to infinity at a rate higher than O(log 1
γ ).

In this case, we have

2KL[qϕ∗(z|x≤l0+1)||qϕ∗(z|x≤l0)]

= log
|σ2

z(x≤l0)|
|σ2

z(x≤l0+1)|
− κ+ (µz(x≤l0+1)− µz(x≤l0))

Tσ−2
z (x≤l0)(µz(x≤l0+1)− µz(x≤l0))

+ tr(σ−2
z (x≤l0)σ

2
z(x≤l0+1))

(30)

Thus it can only happen when there are some dimensions where σ2
z(x≤l0) is active while σ2

z(x≤l0+1)
is not, which indicate that tr(σ−2

z (x≤l0)σ
2
z(x≤l0+1)) → ∞ at a rate of Ω( 1γ ). We have

− 2Eqϕ∗ (z|x≤l0+1)[log pθ∗(xl0+1|z, x≤l0)] + 2KL[qϕ∗(z|x≤l0+1)||qϕ∗(z|x≤l0)]

≥d log(2πγ) + tr(σ−2
z (x≤l0)σ

2
z(x≤l0+1)) + log

|σ2
z(x≤l0)|

|σ2
z(x≤l0+1)|

− κ+ (µz(x≤l0+1)− µz(x≤l0))
Tσ−2

z (x≤l0)(µz(x≤l0+1)− µz(x≤l0))

(31)

Because d log(2πγ) + log
|σ2

z(x≤l0
)|

|σ2
z(x≤l0+1)| → −∞ at a rate of O(log γ) while

tr(σ−2
z (x≤l0)σ

2
z(x≤l0+1)) → ∞ at a rate of Ω( 1γ ), the whole loss will go to infinity.

In summary, in both cases, when summing over l, L(θ, ϕ) will go to infinity.
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F Justification of Remark 1
Consider a κ-simple CVAE model with encoder qϕ(z|x, c), prior pθ(z|c) and decoder pθ(x|z, c).
Further, let µq(x, c), σq(x, c) be the distributional parameters for z ∼ qϕ(z|x, c), µp(c), σp(c) be the
distributional parameters for z ∼ pθ(z|c). Name this model as M , and we have its cost with regard
to (θ, ϕ) being

2Lc(M ; θ, ϕ) =

∫
X
{−2Eqϕ(z|x,c)[log pθ(x|z, c)] + 2KL[qϕ(z|x, c)||pθ(z|c)]}ωc

gt(dx)

=
1

γ

∫
X

∫
Z
N (z;µq(x, c), σq(x, c))||x− µx(z)||2dzωc

gt(dx)

+ log(2πγ) +

∫
X
2KL[qϕ(z|x, c)||pθ(z|c)]ωc

gt(dx)

=
1

γ

∫
X

∫
Z

1√
(2πγ)d

exp{−||z − µq||2

2σ2
q

}||x− µx(z)||2dzωgt(dx)

+ log(2πγ) +

∫
X
[log σp − log σq − κ+ ||µq − µp||2/σp + tr(σq/σp)]ω

c
gt(dx)

(32)

Next, we construct another κ-simple CVAE, M ′, with a standard Gaussian prior, only using computa-
tion modules in M . Specifically, the new prior, decoder, and encoder are defined as:

• Prior: p′(z′) = N (0, I)

• Decoder: p′(x|z′, c) = pθ(x|z′ ∗ σp(c) + µp(c), c)

• Encoder: q′(z|x, c) = N (µ′
q, σ

′
q), where

– µ′
q = (µq(x, c)− µp(c))/σp(c)

– σ′
q = σq(x, c)/σp(c)

With M ′ defined, we are going to show that it has the exact same cost value as the above one during
training, i.e. L(M ′; θ, ϕ) = L(M ; θ, ϕ), and the generated data distribution during generation, i.e.
p′(x|z′, c)N (z′; 0, I) ≡ pθ(x|z, c)pθ(z|c).
During training, we have z′ ∼ N (µ′

q, σ
′
q), thus z′ ∗ σp(c) + µp(c) ∼ N ((µq(x, c)− µp(c))/σp(c) ∗

σp(c) + µp(c), σq(x, c)/σp(c) ∗ σp(c)) = N (µq(x, c), σq(x, c)). Thus, we have

Eq(z′|x,c)[log pθ(x|z′ ∗ σp(c) + µp(c), c)]

=
1

γ

∫
Z
N (z′;µ′, σ′)||x− µx(z

′ ∗ σp(c) + µp(c))||2dz′ + log(2πγ)

=
1

γ

∫
Z
N (z;µq(x, c), σq(x, c))||x− µx(z)||2dz + log(2πγ)

=Eqϕ(z|x,c)[log pθ(x|z, c)]

(33)

Besides, we also have

KL[q′(z′|x, c)||N (0, I)]
=KL[N (µq(x, c)− µp(c))/σp, σq(x, c)/σp(c)||N (0, I)]

=
1

2
[||µq(x, c)− µp(c))/σp||2 + tr(σq/σp)− κ− log(σq/σp)]

=
1

2
[log σp − log σq − κ+ ||µq − µp||2/σp + tr(σq/σp)]

=KL[qϕ(z|x, c)||pθ(z|c)]

(34)
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In terms of generation equivalence, for any z′p ∼ N (0, I), we have

p′(x|z′, c)p(z′; 0, I)

=pθ(x|z′ ∗ σp(c) + µp(c))p(z
′; 0, I)

=pθ(x|z)p(z;µp(c), σp(c))

=pθ(x|z)pθ(z|c)

(35)

Therefore we conclude that M ′ and M share the same cost value, i.e. Lc(M
′; θ, ϕ) = Lc(M ; θ, ϕ),

and equivalent data generation distributions.
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