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Appendix I1

This Appendix contains mathematical definitions.2

Definition 1 (simplex) A k-simplex is a k-dimensional polytope which is the convex hull of its k + 13

vertices. i.e. the set of all convex combinations λ0v0 +λ1v1 + ...+λkvk where λ0 +λ1 + ...+λk = 14

and 0≤ λ j ≤ 1 ∀ j ∈ {0,1, ...,k}.5

Some examples of simplices are:6

• 0-simplex is a point.7

• 1-simplex is a line segment.8

• 2-simplex is a triangle.9

• 3-simplex is a tetrahedron.10

Definition 2 (simplicial complex) A simplicial complex K is a set of simplices that satisfies the11

following conditions:12

1. Every subset (or face) of a simplex in K also belongs to K .13

2. For any two simplices σ1 and σ2 in K , if σ1∩σ2 6= /0, then σ1∩σ2 is a common subset, or14

face, of both σ1 and σ2.15

Definition 3 (directed flag complex) Let G = (V,E) be a directed graph. The directed flag complex16

FC(G) is defined to be the ordered simplicial complex whose k-simplices are all ordered (k+ 1)-17

cliques, i.e., (k+1)-tuples σ = (v0,v1, . . . ,vk), such that vi ∈V ∀i, and (vi,v j) ∈ E for i < j.18

We define the boundary, ∂ , as a function that maps i-simplex to the sum of its (i-1)-dimensional faces.19

Formally speaking, for an i-simplex σ = [v0, . . . ,vi], its boundary (∂ ) is:20

∂iσ =
i

∑
j=0

[v0, . . . , v̂ j, . . . ,vi] (1)

where the hat indicates the v j is omitted.21

We can expand this definition to i-chains. For an i-chain c = ciσi, ∂i(c) = ∑i ci∂iσi.22

We can now distinguish two special types of chains using the boundary map that will be useful to23

define homology:24
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• The first one is an i-cycle, which is defined as an i-chain with empty boundary. In other25

words, an i-chain c is an i-cycle if and only if ∂i(c) = 0, i.e. c ∈ Ker(∂i).26

• An i-chain c is i-boundary if there exists an (i+ 1)-chain d such that c = ∂i+1(d), i.e.27

c ∈ Im(∂i+1).28

Definition 4 (graph) A graph G is a pair (V,E), where V is a finite set referred to as the vertices or29

nodes of G, and E is a subset of the set of unordered pairs e = {u,v} of distinct points in V , which30

we call the edges of G. Geometrically the pair {u,v} indicates that the vertices u and v are adjacent31

in G. A directed graph, or a digraph, is similarly a pair (V,E) of vertices V and edges E, except the32

edges are ordered pairs of distinct vertices, i.e.,the pair (u,v) indicates that there is an edge from u to33

v in G. In a digraph, we allow reciprocal edges, i.e., both (u,v) and (v,u) may be edges in G, but we34

exclude loops, i.e., edges of the form (v,v).35

Definition 5 (homology group) Given these two special subspaces, i-cycles Zi(K) and i-boundaries36

Bi(K) of Ci(K), we now take the quotient space of Bi(K) as a subset of Zi(K). In this quotient space,37

there are only the i-cycles that do not bound an (i+1)-complex, or i-voids of K. This quotient space38

is called i-th homology group of the simplicial complex K:39

Hi(K) =
Zi(K)

Bi(K)
=

Ker(∂i)

Im(∂i+1)
(2)

where Ker and Im are the function kernel and image respectively.40

The dimension of i-th homology is called the i-th Betti number of K, βi(K), where:41

βi(K) = dim(Ker(∂i))−dim(Im(∂i+1)) (3)

Definition 6 (Wasserstein distance) The p-Wasserstein distance between two PDs D1 and D2 is the42

infimum over all bijections: γ : D1→ D2 of:43

dW (D1,D2) =
(

∑
x∈D1

||x− γ(x)||p∞
)1/p

(4)

where || − ||∞ is defined for (x,y) ∈ R2 by max{|x|, |y|}. The limit p→ ∞ defines the Bottleneck44

distance. More explicitly, it is the infimum over the same set of bijections of the value45

dB(D1,D2) = sup
x∈D1

||x− γ(x)||∞. (5)

Definition 7 (Persistence landscape) Given a collection of intervals {(bi,di)}i∈I that compose a46

PD, its persistence landscape is the set of functions λk : R→ R defined by letting λk(t) be the k-th47

largest value of the set {Λi(t)}i∈I where:48

Λi(t) = [min{t−bi,di− t}]+ (6)

and c+ := max(c,0). The function λk is referred to as the k-layer of the persistence landscape.49

Now we define a vectorization of the set of real-valued function that compose PDs on N×R. For50

any p = 1, . . . ,∞ we can restrict attention to PDs D whose associated persistence landscape λ is51

p-integrable, that is to say,52

||λ ||p =

(
∑
i∈N
||λi||pp

)1/p

(7)

is finite. In this case, we refer to Equation (7) as the p-landscape norm of D. For p = 2, we define the53

value of the landscape kernel or similarity of two vectorized PDs D and E as54

〈λ ,µ〉=

(
∑
i∈N

∫
R
|λi(x)−µi(x)|2 dx

)1/2

(8)

where λ and µ are their associated persistence landscapes.55
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λk is geometrically described as follows. For each i ∈ I, we draw an isosceles triangle with base the56

interval (bi,di) on the horizontal t-axis, and sides with slope 1 and −1. This subdivides the plane57

into a number of polygonal regions that we label by the number of triangles contained on it. If Pk is58

the union of the polygonal regions with values at least k, then the graph of λk is the upper contour of59

Pk, with λk(a) = 0 if the vertical line t = a does not intersect Pk.60

Definition 8 (Weighted silhouette) Let D = {(bi,di)}i∈I be a PD and w = {wi}i∈I a set of positive61

real numbers. The silhouette of D weighted by w is the function φ : R→ R defined by:62

φ(t) =
∑i∈I wiΛi(t)

∑i∈I wi
, (9)

where63

Λi(t) = [min{t−bi,di− t}]+ (10)

and c+ := max(c,0) When wi = |di− bi|p for 0 < p ≤ ∞ we refer to φ as the p-power-weighted64

silhouette of D. It defines a vectorization of the set of PDs on the vector space of continuous65

real-valued functions on R.66

Definition 9 (Heat vectorizations) Considering PD as the support of Dirac deltas, one can con-67

struct, for any t > 0, two vectorizations of the set of PDs to the set of continuous real-valued function68

on the first quadrant R2
>0. The heat vectorization is constructed for every PD D by solving the heat69

equation:70

∆x(u) = ∂tu on Ω×R>0

u = 0 on {x1 = x2}×R≥0

u = ∑
p∈D

δp on Ω×0
(11)

where Ω = {(x1,x2) ∈ R2 | x1 ≤ x2}, then solving the same equation after precomposing the data of71

Equation (11) with the change of coordinates (x1,x2) 7→ (x2,x1), and defining the image of D to be72

the difference between these two solutions at the chosen time t.73

We recall that the solution to the heat equation with initial condition given by a Dirac delta supported74

at p ∈ R2 is:75

1
4πt

exp
(
−||p− x||2

4t

)
(12)

To highlight the connection with normally distributed random variables, it is customary to use the the76

change of variable σ =
√

2t.77

For a complete reference on vectorized persistence summaries and PH approximated metrics, see78

Tauzin et al. [2], Berry et al. [1] and Giotto-TDA package documentation appendix1.79

Figure 1 shows a neural network filtration example. Note that most of the edges have been omitted80

for clarity and, for the same reason, ε evolution has been discretized.81

1https://giotto-ai.github.io/gtda-docs/0.3.1/theory/glossary.html#
persistence-landscape
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Figure 1: MLP Simplicial complex filtration example.
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Figure 2: A Persistence Homology diagram.
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(c) Frobenius norm distance means.
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Figure 3: Norm distances among control experiments. 5 runs × 5 randomizations.

Norm Minimum Maximum Mean Standard deviation

1-Norm 0.6683 4.9159 1.9733 1.5693
Frobenius 0.0670 0.9886 0.4514 0.3074

Table 1: Normalized difference comparison of self-norm against the maximum mean distance of the
experiment.
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(a) Heat distance.
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(b) Silhouette distance.
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(c) Landscape distance.
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Figure 4: Topological distance means of control experiments.
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(c) Landscape distance.
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Figure 5: Topological distance standard deviations of control experiments.
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Appendix III83

This Appendix contains statistics about experiment groups by dataset.84

Experiment group Experiment Value Index

1 Layer size

128 1
256 2
512 3

1024 4

2 Number of layers

2 5
4 6
6 7
8 8

10 9
3 Input order NA 10-14

4 Number of labels

2 15
4 (M, FM, C), 6 (R), 3 (L) 16

6 (M, FM, C), 12 (R), 4 (L) 17
8 (M, FM, C), 23 (R), 6 (L) 18

10 (M, FM, C), 46 (R), 7 (L) 19
Table 2: Indices of the experiments of the distance matrices. M is for MNIST, FM for Fashion
MNIST, C for CIFAR-10, R for Reuters and L for Language Identification.
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Figure 6: MNIST neural networks’ Persistent Homology distance matrices means.
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Figure 7: MNIST neural networks’ Persistent Homology distance matrices standard deviations.
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Figure 8: Fashion MNIST neural networks’ Persistent Homology distance matrices means.
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Figure 9: Fashion MNIST neural networks’ Persistent Homology distance matrices standard devia-
tions.
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Figure 10: CIFAR-10 neural networks’ Persistent Homology distance matrices means.
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Figure 11: CIFAR-10 neural networks’ Persistent Homology distance matrices standard deviations.
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Figure 12: Language Identification neural networks’ Persistent Homology distance matrices means.
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Figure 13: Language Identification neural networks’ Persistent Homology distance matrices standard
deviations.
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Figure 14: Reuters neural networks’ Persistent Homology distance matrices means.
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Figure 15: Reuters neural networks’ Persistent Homology distance matrices standard deviations.

Discretization Experiment Mean Standard deviation

Heat Layer size 0.5128 0.3391
Heat Number layers 0.3633 0.1933
Heat Input order 0.0291 0.0100
Heat Number labels 0.2279 0.1352
Landscape Layer size 0.3077 0.0727
Landscape Number layers 0.3776 0.1096
Landscape Input order 0.2719 0.0822
Landscape Number labels 0.4266 0.1705
Silhouette Layer size 0.2110 0.0552
Silhouette Number layers 0.2681 0.1953
Silhouette Input order 0.1115 0.0364
Silhouette Number labels 0.4126 0.2270

Table 3: MNIST statistics of experiment groups.

Discretization Experiment Mean Standard deviation

Heat Layer size 0.5380 0.3487
Heat Number layers 0.1774 0.0739
Heat Input order 0.0308 0.0132
Heat Number labels 0.2679 0.1427
Landscape Layer size 0.2976 0.0482
Landscape Number layers 0.2886 0.0631
Landscape Input order 0.3583 0.1114
Landscape Number labels 0.5301 0.2149
Silhouette Layer size 0.1265 0.0409
Silhouette Number layers 0.2592 0.2024
Silhouette Input order 0.0824 0.0353
Silhouette Number labels 0.4150 0.1940

Table 4: Fashion MNIST statistics of experiment groups.
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Discretization Experiment Mean Standard deviation

Heat Layer size 0.5414 0.3319
Heat Number layers 0.1314 0.0529
Heat Input order 0.0243 0.0068
Heat Number labels 0.1084 0.0870
Landscape Layer size 0.1907 0.0630
Landscape Number layers 0.2967 0.0789
Landscape Input order 0.3119 0.0584
Landscape Number labels 0.5193 0.2803
Silhouette Layer size 0.2705 0.0964
Silhouette Number layers 0.3885 0.3626
Silhouette Input order 0.0769 0.0204
Silhouette Number labels 0.2049 0.1341

Table 5: CIFAR-10 statistics of experiment groups.

Discretization Experiment Mean Standard deviation

Heat Layer size 0.2856 0.1771
Heat Number layers 0.4396 0.1811
Heat Input order 0.0159 0.0040
Heat Number labels 0.2374 0.1243
Landscape Layer size 0.3246 0.1254
Landscape Number layers 0.5643 0.1643
Landscape Input order 0.2320 0.0982
Landscape Number labels 0.3519 0.1671
Silhouette Layer size 0.1501 0.0384
Silhouette Number layers 0.3374 0.1420
Silhouette Input order 0.0699 0.0159
Silhouette Number labels 0.3737 0.1719
Table 6: Language Identification statistics of experiment groups.

Discretization Experiment Mean Standard deviation

Heat Layer size 0.4004 0.2220
Heat Number layers 0.0412 0.0211
Heat Input order 0.0166 0.0051
Heat Number labels 0.2927 0.3185
Landscape Layer size 0.3950 0.0733
Landscape Number layers 0.5265 0.1678
Landscape Input order 0.3060 0.1028
Landscape Number labels 0.4534 0.1651
Silhouette Layer size 0.1104 0.0470
Silhouette Number layers 0.1596 0.0922
Silhouette Input order 0.0387 0.0112
Silhouette Number labels 0.3206 0.3158

Table 7: Reuters statistics of experiment groups.
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