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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The 2D occupancy map’s resolution is 5cm. For each single frontier pixel on the 2D map, we add 200
3D Gaussians, which are uniformly distributed in the 3D cube above it. Other parameters like color,
opacity, and scale are generated uniformly between 0 and 1. When there are frontiers on 2D map, we
choose the next frontier to be explored by the area of each frontier divided by the distance. When
no frontier exists, we select the top 20% of Gaussians with the highest score. These Gaussians are
grouped using DBSCAN [9]. The largest cluster is selected for candidate pose generation. Candidates
are uniformly sampled in the range between 0.3m to 1m, facing towards the selected position. Only
the poses in free space are kept for path-level selection. The importance factor ⌘ in Eq. 17 is set
to 5 across all experiments. The source code for this project will be made public no later than the
publication of this paper.

We compute the Expected Information Gain (EIG) for each global candidate and use A* to plan a
path for each of them. In order to prevent a twisted path, we consider locations 0.15m (3 pixels) away
from the current robot position as neighbors and set the robot width to 3 pixels for collision check.
However, the path planned by A* might have redundant waypoints, causing unnecessary turns for
the robot. Therefore, we smooth the path by finding shortcuts. Specifically, for each waypoint wi, if
the path between waypoint wi+2 and wi is collision-free, then we remove the intermediate waypoint
wi+1 from the path. Finally, we use a greedy follower for motion planning. If the angle between the
heading direction of the robot and the relative next waypoint is larger than 5�, then we turn left or
right to decrease the angle. Otherwise, we choose the forward action to approach the next waypoint.
In such a way, we get a sequence of actions {ai}Ti=1 for each path.

Given a sequence of actions {ai}Ti=1 for each path, we use forward dynamics to compute the future
camera poses {ci}Ti=1. Initially, we use an intermediate variable H

00
obs , H

00[w⇤] to help compute
expected information gain along the path. For each camera pose xi, we compute its pose Hessian
H

00
pose and the current model Hessian matrix H

00
cur , H

00[y|xi,w⇤]. H00
cur is then accumulated, and

we update H
00
obs to evaluate the remaining poses on the path. We select the path that minimizes the

objective given by Eq. 17 for execution.

A.2 RESULTS FOR EACH SCENE IN GIBSON AND HM3D DATASET

Following previous literature [61], we use the following scenes for Gibson Dataset: Greigsville,
Denmark, Cantwell, Eudora, Pablo, Ribera, Swormville, Eastville,
Elmira. For HM3D we use the following scenes: DBjEcHFg4oq, mscxX4KEBcB,
QKGMrurUVbk, oPj9qMxrDEa, CETmJJqkhcK. The detailed results for each scene on each
evaluation metric are presented as bar plots in Fig. 6 for Gibson and Fig. 7 for HM3D. We also
present qualitative comparisons on testing views from the Gibson dataset in Fig. 8.
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Figure 6: Per-scene results on Gibson Dataset
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Figure 7: Per-scene results on HM3D Dataset
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Figure 8: Test Rendering Qualitative Visualization on Gibson Dataset All the renderings are from
the test view of the Gibson dataset.
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