Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 IMPLEMENTATION DETAILS

The 2D occupancy map’s resolution is Scm. For each single frontier pixel on the 2D map, we add 200
3D Gaussians, which are uniformly distributed in the 3D cube above it. Other parameters like color,
opacity, and scale are generated uniformly between 0 and 1. When there are frontiers on 2D map, we
choose the next frontier to be explored by the area of each frontier divided by the distance. When
no frontier exists, we select the top 20% of Gaussians with the highest score. These Gaussians are
grouped using DBSCAN [9]. The largest cluster is selected for candidate pose generation. Candidates
are uniformly sampled in the range between 0.3m to 1m, facing towards the selected position. Only
the poses in free space are kept for path-level selection. The importance factor 7 in Eq.[I7 is set
to 5 across all experiments. The source code for this project will be made public no later than the
publication of this paper.

We compute the Expected Information Gain (EIG) for each global candidate and use A* to plan a
path for each of them. In order to prevent a twisted path, we consider locations 0.15m (3 pixels) away
from the current robot position as neighbors and set the robot width to 3 pixels for collision check.
However, the path planned by A* might have redundant waypoints, causing unnecessary turns for
the robot. Therefore, we smooth the path by finding shortcuts. Specifically, for each waypoint w;, if
the path between waypoint w; ;o and w; is collision-free, then we remove the intermediate waypoint
w;+1 from the path. Finally, we use a greedy follower for motion planning. If the angle between the
heading direction of the robot and the relative next waypoint is larger than 5°, then we turn left or
right to decrease the angle. Otherwise, we choose the forward action to approach the next waypoint.
In such a way, we get a sequence of actions {a;}._, for each path.

Given a sequence of actions {a; }_; for each path, we use forward dynamics to compute the future
camera poses {c;}_ ;. Initially, we use an intermediate variable H’, = H"[w*] to help compute
expected information gain along the path. For each camera pose x;, we compute its pose Hessian
H). and the current model Hessian matrix H,, £ H"[y|z;, w*]. H, is then accumulated, and
we update H/,  to evaluate the remaining poses on the path. We select the path that minimizes the

objective giveﬁ by Eq. [17]for execution.

A.2 RESULTS FOR EACH SCENE IN GIBSON AND HM3D DATASET

Following previous literature [61]], we use the following scenes for Gibson Dataset: Greigsville,
Denmark, Cantwell, Eudora, Pablo, Ribera, Swormville, Eastville,
Elmira. For HM3D we use the following scenes: DBJjEcHFg4oq, mscxX4KEBcB,
QKGMrurUVbk, oPj9qMxrDEa, CETmJJgkhcK. The detailed results for each scene on each
evaluation metric are presented as bar plots in Fig. [6 for Gibson and Fig. [7 for HM3D. We also
present qualitative comparisons on testing views from the Gibson dataset in Fig.
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Figure 6: Per-scene results on Gibson Dataset
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Figure 7: Per-scene results on HM3D Dataset
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Figure 8: Test Rendering Qualitative Visualization on Gibson Dataset All the renderings are from
the test view of the Gibson dataset.
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