A Measuring Diffused Redundancy

A.1 CKA Definition

In all our evaluations we use CKA with a linear kernel which essentially amounts to the follow-
ing steps:

1. Take two representations Y € R"*?! and Z € R"*42

2. Compute dot product similarity within these representation, i.e.compute K = YY7, L =

4
3. Normalize K and Lto get K’ = HKH, L' = HLH where H = I,, — %llT
. HSIC(K,L) o ~
4. Return CKA(Y, Z) = TR AT where HSIC(K, L) = CEE: (flatten(K")
flatten(L’))

We use the publicly available implementation of [37], which provides an implementation that can
be calcuated over multiple mini-batches: https://github.com/nvedant07/STIR

A.2 Additional CKA results

Fig[9]shows CKA comparison between randomly chosen parts of the layer and the full layer for dif-
ferent kinds of ResNet50. We observe that even ResNet50 trained with MRL loss shows a significant
amount of diffused redundancy.
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Figure 9: [Comparison of Diffused Redundancy in MRL vs other losses, through the lens of CKA] We see
a similar trend as reported in Fig[7]in the main paper, where even the MRL model shows a significant amount
of diffused redundancy despite being explicitly trained to instead have structured redundancy. The amount of
diffused redundancy however is much lesser than the resnets trained using the standard loss and adv. training
as denoted by a much lower red line across all datasets.

B Training and Pre-Processing Details for Reproducibility

Here we list the sources of weights for the various pre-trained models used in our experiments:

» ResNetl8 trained on ImageNetlk using standard loss: taken from timm v0.6.1.
* ResNet18 trained on ImageNetlk with adv training: taken from Salman et al. [46]:
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* ResNet50 trained on ImageNetlk using standard loss: taken from timm v0.6.1.

» ResNet50 trained on ImageNetlk with adv training: taken from Salman et al. [46]: https:
//github.com/microsoft/robust-models-transfer.

* ResNet50 trained on ImageNetlk using MRL and with different final layer widths
(resnet50_ffx): taken from released weights of by Kusupati et al. [26]: https://
github.com/RAIVNLab/MRL,

* WideResNet50-2 on ImageNetlk both standard and avd. training: taken from Salman et
al. [46]: https://github.com/microsoft/robust-models-transfer,

* VGG16 trained on ImageNet1k with standard loss: taken from timm v0.6.1.

* VGGI16 trained on ImageNetlk with adv training: taken from Salman et al. [46]: https:
//github.com/microsoft/robust-models-transfer.

* ViTS32 & ViTS16 trained on ImageNet2 1k & ImageNetlk: taken from weights released by
Steiner et al. [S3]: https://github.com/google-research/vision_transformer.

All linear probes trained on the representations of these models are trained using SGD with a learn-
ing rate of 0.1, momentum of 0.9, batch size of 256, weight decay of 1e — 4. The probe is trained
for 50 epochs with a learning rate scheduler that decays the learning rate by 0.1 every 10 epochs.
Scripts for training can also be found in the attached code.

For pre-processing, we re-size all inputs to 224x224 (size used for pre-training) and apply the
usual composition of RandomHorizontalFlip, ColorJitter(brightness=0.25, contrast=0.25, satura-
tion=0.25, hue=0.25), RandomRotation(degrees=2). All inputs were mean normalized. For ima-
genetlk pre-trained models: mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. For
imagenet21k pre-trained models: mean = [0.5,0.5,0.5], std = [0.5,0.5,0.5].

C Deeper Analysis of Fairness-Efficiency Tradeoff in Section 4]

Analyzing Error Distributions To ensure that the higher gini coefficient shown in Fig|8|as we drop
more neurons is not merely an artifact of lower overall accuracy, we plot class-wise accuracies as
we drop neurons (Figs & [13). We find that for the entire layer, accuracy starts at an almost
uniform distribution, and while overall accuracy deteriorates as we drop neurons, the drop comes at
a larger cost for a few classes resulting in disparate inter-class accuracies.

Coeff of Variation for Measuring Inequality in Inter-Class Accuracy Fig[10| shows results for
the same analysis shown in Fig[8]of the main paper and we find similar takeaways even when using
the coefficient of variation as a measure of inequality.

D Corresponding Diffused Redundancy Estimates For Analyses in Section
& /. Robust Model Results

Corresponding diffused redundancy (DR) ablations for Figures These are shown in Fig-
ures respectively. This should allow for easy comparison of diffused redundancy (lines
that are more outside have higher DR). For example, Figure[I6]clearly shows higher diffused redun-
dancy in models trained on larger upstream datasets (here ImageNet21k) since these curves lie more
on the outside of the same model’s curves for ImageNet1k.

Additionally, we show numbers on x-axis for Figure[d]in Figure[I8] Figures[5|and[7|compare models
with same number of neurons in the final layer and hence trends shown with fraction on the x-axis
will be exactly the same with absolute numbers on the x-axis. However, Figure |18|allows a direct
comparison of the performance of the same absolute number of neurons across different models.

We report results for £, robust models (with € = 4/255) in Fig and find that /5 model generally
shows a greater degree of diffused redundancy.

E Results on Intermediate Layers

We additionally ran our experiment on other intermediate layers and report the results in Fig|19] We
present results for a ResNet50 pretrained on ImageNet1k using the standard CrossEntropy loss. The
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Figure 10: [Coefficient of Variation As We Drop Neurons] We see a similar trend as reported in Figof the
main paper where inequality increases as we drop neurons for all models on all datasets.

intermediate layers considered are characterized as activations following each residual connection
within distinct ResNet blocks. layerX.Y.act3 means the Yth residual connection in the Xth
ResNet block and act3 indicates that we’re taking the value after the activation (ReLU) has been
applied.

F Results on Harder Downstream Tasks: ImageNetV2 and Places365

We report results on harder downstream tasks such as ImageNetlk, ImageNetV2, and Places365
in Figure We find that when randomly dropping neurons, the model is still able to generalize
to ImageNetlk and Places365 with very few neurons, i.e., the phenomena of diffused redundancy
observed for smaller datasets, also holds for harder datasets. Interestingly we also observe that the
accuracy gap between ImageNetlk and ImageNetV2 is maintained even as we drop neurons.

G Effects of Explicitly Preventing Co-adaptation of Neurons: Analysis of
Dropout and DeCov

Regularizers such as dropout and DeCov, force different parts of the representations to not be cor-
related. Thus these regularizers can be seen as explicitly requiring different, compact parts of the
representation to be self-contained for the downstream task. Thus, intuitively, such methods should
increase diffused redundancy. Here we investigate if our observation about diffused redundancy is
influenced by such regularizers. We evaluate ResNet50 pre-trained on ImageNetlk with dropout
in the penultimate layer ranging from a strength of 0.1 all the way to 0.8. We also train another
ResNet50 model with the DeCov regularizer added to the usual crossentropy loss and put a weight
of 0.0001 on the regularizer to ensure that its numerical range is similar to that of the cross entropy
loss term.

Results in Figures [21| & 22| suggest that such regularizers have almost no effect on diffused redun-
dancy. Trends across datasets remain consistent regardless of the strength of dropout or the weight
given to DeCov regularizer. This observation further adds to the evidence that diffused redundancy
is likely to be a natural property of representations learned by DNNs.
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Figure 11: [Error Distributions As A Function of Fraction of Neurons] We see that accuracy deteriorates
as we drop neurons, however, this drop comes at a larger cost for a few classes and results in near homogenous
predictions for the least number of neurons on the left.
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Figure 12: [Error Distributions As A Function of Fraction of Neurons — continued] We see that accuracy
deteriorates as we drop neurons, however, this drop comes at a larger cost for a few classes and results in near
homogenous predictions for the least number of neurons on the left.
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Figure 13: [Error Distributions As A Function of Fraction of Neurons — continued] We see that accuracy
deteriorates as we drop neurons, however, this drop comes at a larger cost for a few classes and results in near
homogenous predictions for the least number of neurons on the left.
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Figure 18: [Comparisons Across Architectures For Downstream Task Accuracy] This shows the same plots
as FigureEL except showing absolute number of neurons on the x-axis
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Figure 19: [Middle Layers; ResNet50, trained with CrossEntropy loss on ImageNet1k] We see that as
we go deeper in the network, accuracy progressively increases. We see even middle layers exhibit diffused
redundancy, and accuracy plateaus very quickly for earlier layers. layerX.Y.act3 refers to the Yth residual
connection in the Xth ResNet block and act3 indicates that we’re taking the value after the activation (ReLU)
has been applied.
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Figure 20: [Performance on ImageNetlk, ImageNetV2, and Places365] We check for the performance of
randomly chosen subsets of neurons on harder tasks like ImageNetlk, ImageNetV2, and Places365. We find
that diffused redundancy holds for all these harder tasks as well. Additionally, we see that randomly dropping
neurons still preserves the accuracy gap between ImageNetlk and ImageNetV2.
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(i) DeCov Regularization (0.0001)

Figure 21: [Dropout and DeCov regularizer’s effect on Diffused Redundancy]

24



g g e g Teeos g " 23S “veos
H L33 H H g 2]
¢ ; e < \ o~ -.% e ; -..\\ g =) \ -..%
g g g g
H H H H
'Ens \“ 'Eﬂs 'Enﬁ \ 'Eus [ @ cifarl0
Soa ™ Soa \ Sos M Sos 1 - cifar100
H \ H \ % \ 3 \ o flowers
$o2 $o2 Qo2 Qo2
g g E E ~@— oxford-iiit-pets
£ £ £ £
aoo 0.0 02 04 06 08 10 aoo 0.0 02 04 06 08 10 goo 00 02 04 06 08 1.0 goo 0.0 02 04 06 08 10
6 6 6 &
(a) Dropout = 0.1 (b) Dropout = 0.2 (c) Dropout = 0.3 (d) Dropout = 0.4
Z10 Z10 Z10 Z10
s R s 3 s Mg ‘N8 s Nes
i L S VPR S =S lal
g g g g
5. \ 1 4. \ 105, \ 105, (I
H T H H T H I\ ~@— cifarl0
Sos Sos o Sos Sos @~ cifar100
H H \ H 3 [l o= fowers
202 202 202 202 —e— oxford-it-pets
£ £ £ £ L ororditp
aoo 00 02 04 0.6 08 10 goo 0.0 02 04 06 08 10 goo 00 0.2 04 06 08 1.0 goo 0.0 02 04 06 08 10
6 6 6 &
(e) Dropout = 0.5 (f) Dropout = 0.6 (g) Dropout = 0.7 (h) Dropout = 0.8
g0 RS e
- “\86 aa | %
o8 v
c
] ‘
Bos .-\ —e- cifar10
E] @ cifar100
&0-4 =@~ flowers
k- \ ~@— oxford-iiit-pets
o2
=
£
aoo 0.0 0.2 0.4 0.6 0.8 1.0
5

(i) DeCov Regularization (0.0001)

Figure 22: [Dropout and DeCov regularizer’s effect on Diffused Redundancy] Same results as Figure
but showing DR estimates (Eq[L). Lines that are more towards the right (i.e.more on the “outside”) mean they
exhibit more diffused redundancy.

25



	Introduction
	Related Work

	The Diffused Redundancy Phenomenon
	Prevalence of Diffused Redundancy in Pre-Trained Models
	Understanding Why Many Random Subsets Work

	Factors Influencing The Degree of Diffused Redundancy
	Effects of Architecture, Upstream Loss, Upstream Datasets, and Downstream Datasets
	Diffused Redundancy as a Function of Layer Width
	Comparison With Methods That Optimize For Lesser Neurons
	Methods That Prevent Co-adaptation of Neurons Also Exhibit Diffused Redundancy

	Possible Fairness-Efficiency Tradeoffs in Efficient Downstream Transfer
	Conclusion and Broader Impacts
	Measuring Diffused Redundancy
	CKA Definition
	Additional CKA results

	Training and Pre-Processing Details for Reproducibility
	Deeper Analysis of Fairness-Efficiency Tradeoff in Section 4
	Corresponding Diffused Redundancy Estimates For Analyses in Section 3 &  Robust Model Results
	Results on Intermediate Layers
	Results on Harder Downstream Tasks: ImageNetV2 and Places365
	Effects of Explicitly Preventing Co-adaptation of Neurons: Analysis of Dropout and DeCov

