A Measuring Diffused Redundancy

A.1 CKA Definition

In all our evaluations we use CKA with a linear kernel which essentially amounts to the follow-
ing steps:

1. Take two representations Y € R"*?! and Z € R"*42

2. Compute dot product similarity within these representation, i.e.compute K = YY7, L =

4
3. Normalize K and Lto get K’ = HKH, L' = HLH where H = I,, — %llT
. HSIC(K,L) o ~
4. Return CKA(Y, Z) = TR AT where HSIC(K, L) = CEE: (flatten(K")
flatten(L’))

We use the publicly available implementation of [37], which provides an implementation that can
be calcuated over multiple mini-batches: https://github.com/nvedant07/STIR

A.2 Additional CKA results

Fig[9]shows CKA comparison between randomly chosen parts of the layer and the full layer for dif-
ferent kinds of ResNet50. We observe that even ResNet50 trained with MRL loss shows a significant
amount of diffused redundancy.

1.0

08 05| :/%'
§ 0.6 < 0.6 T T T
b4
(&} o
0.4 t i 0.4 3 i
~@— resnet50-nonrob-random ~@— resnet50-nonrob-random
resnet50-robustl2eps3-random resnet50-robustl2eps3-random
0.2 ~@~— resnet50_mrl-nonrob-first 0.2 ~@— resnet50_mrl-nonrob-first
~@- resnet50_mrl-nonrob-random ~@- resnet50_mrl-nonrob-random
0.0 0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Fraction of Neurons (Total=2048) Fraction of Neurons (Total=2048)
(a) CIFAR10 (b) CIFAR100
1.0 — : . T ,
0.8
§ 0.6
(S}
0.4 t i 0.4 3 T
~@— resnet50-nonrob-random ~@— resnet50-nonrob-random
resnet50-robustl2eps3-random resnet50-robustl2eps3-random
0.2 ~@- resnet50_mrl-nonrob-first 0.2 ~@- resnet50_mrl-nonrob-first
~@- resnet50_mrl-nonrob-random ~@~ resnet50_mrl-nonrob-random
0.0 0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4
Fraction of Neurons (Total=2048) Fraction of Neurons (Total=2048)
(c) Flowers (d) Oxford-IIIT-Pets

Figure 9: [Comparison of Diffused Redundancy in MRL vs other losses, through the lens of CKA] We see
a similar trend as reported in Fig[7]in the main paper, where even the MRL model shows a significant amount
of diffused redundancy despite being explicitly trained to instead have structured redundancy. The amount of
diffused redundancy however is much lesser than the resnets trained using the standard loss and adv. training
as denoted by a much lower red line across all datasets.

B Training and Pre-Processing Details for Reproducibility

Here we list the sources of weights for the various pre-trained models used in our experiments:

» ResNetl8 trained on ImageNetlk using standard loss: taken from timm v0.6.1.
* ResNet18 trained on ImageNetlk with adv training: taken from Salman et al. [46]:

16

https://github.com/nvedant07/STIR

* ResNet50 trained on ImageNetlk using standard loss: taken from timm v0.6.1.

» ResNet50 trained on ImageNetlk with adv training: taken from Salman et al. [46]: https:
//github.com/microsoft/robust-models-transfer.

* ResNet50 trained on ImageNetlk using MRL and with different final layer widths
(resnet50_ffx): taken from released weights of by Kusupati et al. [26]: https://
github.com/RAIVNLab/MRL,

* WideResNet50-2 on ImageNetlk both standard and avd. training: taken from Salman et
al. [46]: https://github.com/microsoft/robust-models-transfer,

* VGG16 trained on ImageNet1k with standard loss: taken from timm v0.6.1.

* VGGI16 trained on ImageNetlk with adv training: taken from Salman et al. [46]: https:
//github.com/microsoft/robust-models-transfer.

* ViTS32 & ViTS16 trained on ImageNet2 1k & ImageNetlk: taken from weights released by
Steiner et al. [S3]: https://github.com/google-research/vision_transformer.

All linear probes trained on the representations of these models are trained using SGD with a learn-
ing rate of 0.1, momentum of 0.9, batch size of 256, weight decay of 1e — 4. The probe is trained
for 50 epochs with a learning rate scheduler that decays the learning rate by 0.1 every 10 epochs.
Scripts for training can also be found in the attached code.

For pre-processing, we re-size all inputs to 224x224 (size used for pre-training) and apply the
usual composition of RandomHorizontalFlip, ColorJitter(brightness=0.25, contrast=0.25, satura-
tion=0.25, hue=0.25), RandomRotation(degrees=2). All inputs were mean normalized. For ima-
genetlk pre-trained models: mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. For
imagenet21k pre-trained models: mean = [0.5,0.5,0.5], std = [0.5,0.5,0.5].

C Deeper Analysis of Fairness-Efficiency Tradeoff in Section 4]

Analyzing Error Distributions To ensure that the higher gini coefficient shown in Fig|8|as we drop
more neurons is not merely an artifact of lower overall accuracy, we plot class-wise accuracies as
we drop neurons (Figs & [13). We find that for the entire layer, accuracy starts at an almost
uniform distribution, and while overall accuracy deteriorates as we drop neurons, the drop comes at
a larger cost for a few classes resulting in disparate inter-class accuracies.

Coeff of Variation for Measuring Inequality in Inter-Class Accuracy Fig[10| shows results for
the same analysis shown in Fig[8]of the main paper and we find similar takeaways even when using
the coefficient of variation as a measure of inequality.

D Corresponding Diffused Redundancy Estimates For Analyses in Section
& /. Robust Model Results

Corresponding diffused redundancy (DR) ablations for Figures These are shown in Fig-
ures respectively. This should allow for easy comparison of diffused redundancy (lines
that are more outside have higher DR). For example, Figure[I6]clearly shows higher diffused redun-
dancy in models trained on larger upstream datasets (here ImageNet21k) since these curves lie more
on the outside of the same model’s curves for ImageNet1k.

Additionally, we show numbers on x-axis for Figure[d]in Figure[I8] Figures[5|and[7|compare models
with same number of neurons in the final layer and hence trends shown with fraction on the x-axis
will be exactly the same with absolute numbers on the x-axis. However, Figure |18|allows a direct
comparison of the performance of the same absolute number of neurons across different models.

We report results for £, robust models (with € = 4/255) in Fig and find that /5 model generally
shows a greater degree of diffused redundancy.

E Results on Intermediate Layers

We additionally ran our experiment on other intermediate layers and report the results in Fig|19] We
present results for a ResNet50 pretrained on ImageNet1k using the standard CrossEntropy loss. The

17

https://github.com/microsoft/robust-models-transfer
https://github.com/microsoft/robust-models-transfer
https://github.com/RAIVNLab/MRL
https://github.com/RAIVNLab/MRL
https://github.com/microsoft/robust-models-transfer
https://github.com/microsoft/robust-models-transfer
https://github.com/microsoft/robust-models-transfer
https://github.com/google-research/vision_transformer

—
=}
-
=}
| 2

* resnet50-nonrob : * resnet50-nonrob
H * resnet50-robusti2eps3 c resnet50-robusti2eps3
s 0.8 A resnet50_mrl-nonrob-first ‘9.. 0.8 A resnet50_mrl-nonrob-first
]
Fos| o« Tos :
. @ 0. *
> > A
= — *
°_ 0.4 * A O04 A -
o« .
£ * A
@ * A E o,
So2 * Aa So2 e
a Wity
0.0 0.0
01 02 03 04 05 06 07 08 09 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy Accuracy
(a) CIFAR10 (b) CIFAR100
1.0 1.0
. # resnet50-nonrob
g A g resnet50-robusti2eps3
0.8 0.8 R fi
-] *] A resnet50_mrl-nonrob-first
8 A 5 *
P b
@ 0.6 A * m 0.6
> A - >
Y= AN LM Y
%04 0.4
% * t50. b % * :
resnei -nonrol
8 0.2 resnet50-robusti2eps3 8 0.2 AK
A resnet50_mrl-nonrob-first
0.0 0.0
00 01 02 03 04 05 06 0.7 0.0 0.2 0.4 0.6 0.8
Accuracy Accuracy
(c) Flowers (d) Oxford-IIIT-Pets

Figure 10: [Coefficient of Variation As We Drop Neurons] We see a similar trend as reported in Figof the
main paper where inequality increases as we drop neurons for all models on all datasets.

intermediate layers considered are characterized as activations following each residual connection
within distinct ResNet blocks. layerX.Y.act3 means the Yth residual connection in the Xth
ResNet block and act3 indicates that we’re taking the value after the activation (ReLU) has been
applied.

F Results on Harder Downstream Tasks: ImageNetV2 and Places365

We report results on harder downstream tasks such as ImageNetlk, ImageNetV2, and Places365
in Figure We find that when randomly dropping neurons, the model is still able to generalize
to ImageNetlk and Places365 with very few neurons, i.e., the phenomena of diffused redundancy
observed for smaller datasets, also holds for harder datasets. Interestingly we also observe that the
accuracy gap between ImageNetlk and ImageNetV2 is maintained even as we drop neurons.

G Effects of Explicitly Preventing Co-adaptation of Neurons: Analysis of
Dropout and DeCov

Regularizers such as dropout and DeCov, force different parts of the representations to not be cor-
related. Thus these regularizers can be seen as explicitly requiring different, compact parts of the
representation to be self-contained for the downstream task. Thus, intuitively, such methods should
increase diffused redundancy. Here we investigate if our observation about diffused redundancy is
influenced by such regularizers. We evaluate ResNet50 pre-trained on ImageNetlk with dropout
in the penultimate layer ranging from a strength of 0.1 all the way to 0.8. We also train another
ResNet50 model with the DeCov regularizer added to the usual crossentropy loss and put a weight
of 0.0001 on the regularizer to ensure that its numerical range is similar to that of the cross entropy
loss term.

Results in Figures [21| & 22| suggest that such regularizers have almost no effect on diffused redun-
dancy. Trends across datasets remain consistent regardless of the strength of dropout or the weight
given to DeCov regularizer. This observation further adds to the evidence that diffused redundancy
is likely to be a natural property of representations learned by DNNs.

18

airplane
automobile
bird

cat

deer

Classwise Accuracies (mean)

apple
aquariumpf{’sh—
by 1

ear 1

beaver

bed §

ee |

'e,m

1
bri gé

butterHS:
camél]

b
o
bt
bo!

caﬁtle
caterpillar 1
cattle

. cha
chimpanzee
clock

ir {

020 000 020 031 630 033 oan
001 017 019 019 024 024 027 032 040

NS ANMS N
8388555055

nMSTNn0ao

"‘o'goooooa

Fraction/number of neurons

7 [T ———

clou
cockroach |
couch t

cra
crocodile 1

cu

lawn_mower
Teopard
lion

Classwise Accuracies (mean)

sna
spider 1
squirrel {
streetcar §
stunflower'
sweet_pepper |
PR

an
telephone 1
telewsloen 1

lizard 1
lobster 1

maple_tree |

I <t e < =)

HONIDMIINRO0
..... STl i
8950995665069 "0

> ScoS S

Fraction/number of neurons

(a) CIFAR10, Standard

(c) CIFAR100, Standard

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.0

airplane
automobile
bird

cat

deer

Classwise Accuracies (mean)

apple
aquariumpfxl’sh—
ab!

bed 7
ee |

‘e
<]
bri gé
butterfly 1
Camel |

C
caﬁtle
caterpillar 1
cattle

b
gese
bl
bos

0 2 She
ElES

. cha
chimpanzee
clock

ir {

Fraction/number of neurons

o T ———

clou
cockroach 1
couc

cra
crocodile 1
cu

Teopard
lion

Classwise Accuracies (mean)

an|
telephone 1
telewsloen 1

N hale b
willow tre?
“woll
woman 1

worm

lawn_mower ¢

lizard
lobster 1

magle tree |

nooms SISO o

..... SioN
8959955665069 "
>Sc600 S

Fraction/number of neurons

(d) CIFAR100, Adversarial Training

(b) CIFAR10, Adversarial Training

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.0

Figure 11: [Error Distributions As A Function of Fraction of Neurons] We see that accuracy deteriorates
as we drop neurons, however, this drop comes at a larger cost for a few classes and results in near homogenous
predictions for the least number of neurons on the left.

19

hard-leaved :;n‘gc%et‘m% "G | ; hard-leaved r‘;:'é‘c'kg{"u"rﬁfﬁ

oon
giant white arym |1
incushion flower
P nfrﬁ\ Ay
ginger

grapc% rrRacln

prince ofwales eat]
mless gentian

articho
sweet william

arnatiol
&h phiox
lo e In the mist

eSS Pty

rubyipped ca Zeya

great mg sterw
am tulip

barbeto?\n?;aolsr
SWDI’d |tII¥
bolero gefP %‘i

man 90!

é atiol
arden Bl
love n the mis

o tREcE TR
greﬂt m: StefWT‘

barbeton ?fals

commo?\xggr?de?\lg_
fetunia
Y
Brgontion
bishdp of flandaft
gaura

suntlow
bishd of landal

Classwise Accuracies (mean)
Classwise Accuracies (mean)

gaui
geran
Sl y y
P | ' '
californlanergus
osteqepermin
aza
water il
thorn a gﬁe
morning. mam
passion fipwe passion f¢ wer
0.2 0.2
. mal Q.W
mexican pefunia
—o0.0 ia —o0.0
i n keé!é%“’e
“b’F ‘ii,eny ‘L’P Rbery Ty
DONENCNEAN NN, i e nNnmMSineas,
e - ===
Fraction/number of neurons Fractlon/number of neurons
(a) Flowers, Standard (b) Flowers, Adversarial Training

Figure 12: [Error Distributions As A Function of Fraction of Neurons — continued] We see that accuracy
deteriorates as we drop neurons, however, this drop comes at a larger cost for a few classes and results in near
homogenous predictions for the least number of neurons on the left.

Amerlcanegk Eulﬁ?lm vosrmomen 10 Amerlcan?% Eulﬁ"lml% s 10
T it €]
] Bog a@Fr 08 J B° 2 0.8
£ BI’ItISQ: hor%alr £ Brltlslz: }hor%alr: =
; English (.‘Eo ﬁ‘g a |é‘| ; Engllsh %ﬁ?]
2 Germ, n 2 Germ n
5 Glea 06 G Gres 0.6
¥ [v] 1
5 Mlnlﬁtuhr?ling:;zeér g ; 0.4 5 Mlnlﬁtuhr?lﬁg‘l%%eé; ES Z | 0.4
Jan
0 0 Pomera an
H H
,_"', 0.2 ,_"', 0.2
(S} (S}
Stafford: #a ot e
Whssten et | ‘ 00 00
o o
Fraction/number of neurons Fraction/number of neurons
(a) Oxford-IIIT-Pets, Standard (b) Oxford-IIIT-Pets, Adversarial Training

Figure 13: [Error Distributions As A Function of Fraction of Neurons — continued] We see that accuracy
deteriorates as we drop neurons, however, this drop comes at a larger cost for a few classes and results in near
homogenous predictions for the least number of neurons on the left.

20

Z1.0 Z10
a 8
o038 o8
< <
< 3
206 T06
S S
ki 3
Soa Soa
k-] -]
Qo2 202
s s
£ £
Qao0.o Qa 0.0

(b) CIFARI10
© 1.0 z10
8 8
R
?o,s ?0,8 .
3 3
c 0.6 c 0.6 9
S S
3 g
& 0.4 & 0.4
T T
$o2 902
= =
£ E
000 000 08 085 080 085 L00
6
(c) Flowers (d) Oxford-IIIT-Pets
=@ resnet50-nonrob-random @~ resnet50-robusti2eps3-random ~@— resnet50-robustlinfeps4-random

Figure 14: [Results for /., robust model] We show results for ResNet50 trained with 3 different losses:
CrossEntropy (nonrob), Adversarial Training with {5 threat model (robl2eps3), and with the ¢, threat model

(roblinfeps4). We see that the /o threat model shows the most diffused redundancy. All models are trained on
ImageNetlk.

x 1.0 z10
a a
Zos Zos
c c

3 3

T o6 T o6
3 3

T o Toa
el e
° °
202 202
= =

E £
Qao0.0 o o0.0

075 080 085 090 095 1.00 075 080 085 090 0.95 1.00
& o
(a) CIFAR10 (b) CIFAR100

z10 z10
a a

=] e
208 208
c €

< 3

T o6 T o6
H 3
Boa Boa
go. go.
- -
202 202
= =

£ £
no.0 0 o.0

6
(c) Flowers (d) Oxford-IIIT-Pets
—8— vgg16_bn-nonrob-random —&— resnet18-nonrob-random —&— resnet50-nonrob-random wide_resnet50_2-nonrob-random vit_small_patch16_224-nonrob-random
©— vggl6_bn-robusti2eps3-random —@— resnet18-robusti2 d —— resnet50-robusti2eps3-rand —8— wide_resnet50_2-robusti2eps3-random ©— vit_small_patch32_224-nonrob-random

Figure 15: [Comparisons Across Architectures For Downstream Task Accuracy] All models shown here
are pre-trained on ImageNetlk. This Figure shows corresponding diffused redundancy values for Figure [4]
different & values. We see that diffused redundancy exists across architectures, and the trend observed in

Figure |1ci%1a|regarding adversarially trained models also holds here as models curves that are more “inside”
are the ones trained with standard loss.

21

Diffused Redundancy (DR)
o o

o

-
=)

o

o o
o N » Y o

4

Diffused Redundancy (DR)
o g

[
o

o

) N} IS o o

o

Diffused Redundancy (DR)

,_.

o

°

o

°

°

(a) CIFAR10

o

5} N} IS o o

(b) CIFAR100

°©

°

-
o

°

o N IS Y o

°

0.90 0.95 1.00

Diffused Redundancy (DR)
o

0.75

0.80 0.85 0.90 0.95 1.00

6 6

(c) Flowers (d) Oxford-IIIT-Pets

=@ vit_small_patch16_224-imagenet
vit_small_patch16_224-imagenet21k

=@ vit_small_patch32_224-imagenet
=@— vit_small_patch32_224-imagenet21k

Figure 16: [Comparison Across Upstream Datasets] We see that degree of diffused redundancy depends a
great deal on the upstream training dataset, in particular models trained on ImageNet21k exhibit a higher degree
of diffused redundanacy, although the differences in the degree of diffused redundanacy are downstream task
dependent

Z10 Z10

a a

o8 Zos

< <

< 3

206 B06

S 3

3 3

Soa Soa

k-] -]

202 202

= S

£ £

Qao0.o Qao0.o0

0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
6 6
(a) CIFAR10 (b) CIFAR100

x10 z10

=] 8

o8 Zos

c c

3 3

T 06 T 06

H » H

g Soa

So4 So.

k-] -]

202 02

= =

£ E

no0.0 0 o0.0

0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
6 6

(c) Flowers (d) Oxford-IIIT-Pets

=@— resnet50-nonrob-random
resnet50-robustl2eps3-random

=@— resnet50_mrl-nonrob-random
=& resnet50_mrl-nonrob-first

Figure 17: [Comparison of Diffused Redundancy in MRL vs other losses] Here we compare ResNet50
trained using multiple losses including MRL [26]. Red line shows results for part of the representation ex-
plicitly optimized in MRL, whereas green line shows results for parts that are picked randomly from the same
representation. Even the MRL model shows a significant amount of diffused redundancy despite being explic-
itly trained to instead have structured redundancy. This figure shows diffused redundancy (DR) for all plots in

Figure

22

1.0 1.0
Tos * v ¢ Tos
c I
< <
H H
Yos Yos
< <
= =
Loa Qo4
0 n
c c
E 02 g 0.2

0.0 0.0+

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Number of neurons Number of neurons
(a) CIFAR10 (b) CIFAR100

1.0 1.0
Tos Tos .
a - & .2 €
£ 4 £
= =
gos Yos
< <
= =
Loa Qo
n n
< c
g 02 E 0.2

0.0 0.0 —

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Number of neurons Number of neurons
(c) Flowers (d) Oxford-IIIT-Pets
~&— vggl6_bn-nonrob-random ~@— resnetl8-nonrob-random ~@— resnet50-nonrob-random wide_resnet50_2-nonrob-random vit_small_patch16_224-nonrob-random
-~ vgg16_bn-robustl. i —@— resnet18-robustl; d —@— resnet50-robusti2eps3-rand ~&— wide_resnet50_2-robusti2eps3-random ©— vit_small_patch32_224-nonrob-random

Figure 18: [Comparisons Across Architectures For Downstream Task Accuracy] This shows the same plots
as FigureEL except showing absolute number of neurons on the x-axis

1 1 1 1
Zos Zos Zos Zos
§ns §os §os §o,s
< rw < < I" <
Bos R Boa Boa| | po—o—o—e o
G % P . . b co—e — N R
S e | £ 1™ ° | g |t g

02] oo | Eo2 802 02 f¢81:>0-‘==—0=3
Eo2 g FO7 g ~ o | F @Va:hm E

0. 0. 0. 0.

0.0 0.2 .4 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 08 1.0 0.0 0.2 0.4 .6 0.8 1.0
Fraction of neurons Fraction of neurons Fraction of neurons Fraction of neurons
(a) layer1.0.act3 (b) layerl.1.act3 (c) layerl.2.act3 (d) layer2.0.act3

e 1 1 1
> > > >
Bos Zos Zos Zos
£ 4 4 4
a06 305 a06 306
< < < <
™ - oo . e - p-o—0 > >~ ™ pro—e e R I~
Joay |7 Poa Joa Soa
% G % %
g 2 [[
8 g H o2
£ £ £ £

|
|

°

o
=
°
ES

0.0 2 08 10 00 02 08 10 0.0 08 10 00 02 08 10

0. X 0. X 2 0. 04 X
Fraction of neurons Fraction of neurons Fraction of neurons Fraction of neurons

(e) layer2.1.act3 (f) layer2.2.act3 (g) layer2.3.act3 (h) layer3.0.act3
1 1. 1. 1.
Bos Zos Tos Bos
g 4 4 4
5 5 5 5
Sos Sos Sos Sos
< < < <
M M 3 N
Soa Poa Joa Soa
] G]]
2 [g [
fo2 goz goz fo2
o o o 0
00 o2 04 _os 08 10 50 02 04 06 08 10 00 o2 o4 08 10 0 7 o 78 10
Fraction of neurons Fraction of neurons Fraction of neurons Fraction of neurons
(i) layer3.1.act3 (j) layer3.2.act3 (k) layer3.3.act3 (1) layer3.4.act3
1 1 1. 1
Bos Tos Zos Bos
g 4 4 4
5 5 5 5
Sos Sos Soe Sos
< < < <
N : : N
o4 Soa o4 Soa
] G G]
H § H H
0.2 '_. 0.2 # 0.2 ‘n_. 0.2
0 0 o 0.
00 7 oa 08 10 00 0z 04 78 10 00 7 04 08 10 00 7 oa 78 10
Fraction of neurons Fraction of neurons Fraction of neurons Fraction of neurons
(m) layer3.5.act3 (n) layer4.0.act3 (o) layer4.1.act3 (p) layer4.2.act3

-@— cifarl0 @ cifarl00 =@ flowers =@ oxford-iiit-pets

Figure 19: [Middle Layers; ResNet50, trained with CrossEntropy loss on ImageNet1k] We see that as
we go deeper in the network, accuracy progressively increases. We see even middle layers exhibit diffused
redundancy, and accuracy plateaus very quickly for earlier layers. layerX.Y.act3 refers to the Yth residual
connection in the Xth ResNet block and act3 indicates that we’re taking the value after the activation (ReLU)
has been applied.

23

0.8 0.8
Sos Tos
< < =@— Imagenet
h h o o—e—©
g0 g0 @~ ImagenetV2

0.2 0.2 =@— Places365

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Neurons Fraction of Neurons
(a) ResNet50 nonrobust (b) ResNet50 robust £oe = 3

Figure 20: [Performance on ImageNetlk, ImageNetV2, and Places365] We check for the performance of
randomly chosen subsets of neurons on harder tasks like ImageNetlk, ImageNetV2, and Places365. We find
that diffused redundancy holds for all these harder tasks as well. Additionally, we see that randomly dropping
neurons still preserves the accuracy gap between ImageNetlk and ImageNetV2.

Fos Fos Zos Zos

H & H o H A H .

gos v o g goo Goo / —e- cifarlo

Soa { o4 fompfmm =fem oa / Soa @~ cifar100

2 2 2 2 ~@- flowers

o2 b Eo2 L o2 Bo2 1z ~@- oxford-iiit-pets
— Foot it

00 01 02 03 04 05 07 08 00 01 02 03 04 05 07 08 00 .01 02 03 0 07 08 00 01 03 03 04 05 06 07 08
Fraction of Neurons (Total=2048) Fraction of Neurons (Total=2048) Fraction of Neurons (Total=2048) Fraction of Neurons (Total=2048)
(a) Dropout = 0.1 (b) Dropout = 0.2 (c) Dropout = 0.3 (d) Dropout = 0.4

10 10 10 10

Zos Zos Zos Zos

L = .

gos / goe / goe // goe cifarl0

Ew”’/’" = o ,{ - cieil Boa- 7 - cheeb. Boa- 7 - ____ ~e- cifar100

] %]]

H 2 2 H ~@— flowers

So2 So2 Soz Soz .

F F z F ' » ~@— oxford-iiit-pets

Pt m———

0 o—eo— o
00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08
Fraction of Neurons (Total=2048) Fraction of Neurons (Total=2048) Fraction of Neurons (Total=2048) Fraction of Neurons (Total=2048)

(e) Dropout = 0.5 (f) Dropout = 0.6 (g) Dropout =0.7 (h) Dropout = 0.8
1.0
> Y SN IpIpY My SN, Sy Sy Sy, S
=0.B
5 —--—po-e _—
g0 S -e- cifarl0
= ©- cifar100
%U"_ == _-__:__-_--_--__--_P ~@— flowers
E > ~@— oxford-iiit-pets
#0.2__ 4 I I
0.0

00 01 02 03 04 05 06 07 08
Fraction of Neurons (Total=2048)

(i) DeCov Regularization (0.0001)

Figure 21: [Dropout and DeCov regularizer’s effect on Diffused Redundancy]

24

g g e g Teeos g " 23S “veos
H L33 H H g 2]
¢ ; e < \ o~ -.% e ; -..\\ g =) \ -..%
g g g g
H H H H
'Ens \“ 'Eﬂs 'Enﬁ \ 'Eus [@ cifarl0
Soa ™ Soa \ Sos M Sos 1 - cifar100
H \ H \ % \ 3 \ o flowers
$o2 $o2 Qo2 Qo2
g g E E ~@— oxford-iiit-pets
£ £ £ £
aoo 0.0 02 04 06 08 10 aoo 0.0 02 04 06 08 10 goo 00 02 04 06 08 1.0 goo 0.0 02 04 06 08 10
6 6 6 &
(a) Dropout = 0.1 (b) Dropout = 0.2 (c) Dropout = 0.3 (d) Dropout = 0.4
Z10 Z10 Z10 Z10
s R s 3 s Mg ‘N8 s Nes
i L S VPR S =S lal
g g g g
5. \ 1 4. \ 105, \ 105, (I
H T H H T H I\ ~@— cifarl0
Sos Sos o Sos Sos @~ cifar100
H H \ H 3 [l o= fowers
202 202 202 202 —e— oxford-it-pets
£ £ £ £ L ororditp
aoo 00 02 04 0.6 08 10 goo 0.0 02 04 06 08 10 goo 00 0.2 04 06 08 1.0 goo 0.0 02 04 06 08 10
6 6 6 &
(e) Dropout = 0.5 (f) Dropout = 0.6 (g) Dropout = 0.7 (h) Dropout = 0.8
g0 RS e
- “\86 aa | %
o8 v
c
] ‘
Bos .-\ —e- cifar10
E] @ cifar100
&0-4 =@~ flowers
k- \ ~@— oxford-iiit-pets
o2
=
£
aoo 0.0 0.2 0.4 0.6 0.8 1.0
5

(i) DeCov Regularization (0.0001)

Figure 22: [Dropout and DeCov regularizer’s effect on Diffused Redundancy] Same results as Figure
but showing DR estimates (Eq[L). Lines that are more towards the right (i.e.more on the “outside”) mean they
exhibit more diffused redundancy.

25

	Introduction
	Related Work

	The Diffused Redundancy Phenomenon
	Prevalence of Diffused Redundancy in Pre-Trained Models
	Understanding Why Many Random Subsets Work

	Factors Influencing The Degree of Diffused Redundancy
	Effects of Architecture, Upstream Loss, Upstream Datasets, and Downstream Datasets
	Diffused Redundancy as a Function of Layer Width
	Comparison With Methods That Optimize For Lesser Neurons
	Methods That Prevent Co-adaptation of Neurons Also Exhibit Diffused Redundancy

	Possible Fairness-Efficiency Tradeoffs in Efficient Downstream Transfer
	Conclusion and Broader Impacts
	Measuring Diffused Redundancy
	CKA Definition
	Additional CKA results

	Training and Pre-Processing Details for Reproducibility
	Deeper Analysis of Fairness-Efficiency Tradeoff in Section 4
	Corresponding Diffused Redundancy Estimates For Analyses in Section 3 & Robust Model Results
	Results on Intermediate Layers
	Results on Harder Downstream Tasks: ImageNetV2 and Places365
	Effects of Explicitly Preventing Co-adaptation of Neurons: Analysis of Dropout and DeCov

