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Abstract

In this paper, we investigate the necessity of traceability for accurate learning
in stochastic convex optimization (SCO) under ℓp geometries. Informally,
we say a learning algorithm is m-traceable if, by analyzing its output, it
is possible to identify at least m of its training samples. Our main results
uncover a fundamental tradeoff between traceability and excess risk in
SCO. For every p ∈ [1, ∞), we establish the existence of an excess risk
threshold below which every sample-efficient learner is traceable with the
number of samples which is a constant fraction of its training sample. For
p ∈ [1, 2], this threshold coincides with the best excess risk of differentially
private (DP) algorithms, i.e., above this threshold, there exist algorithms
that are not traceable, which corresponds to a sharp phase transition. For
p ∈ (2, ∞), this threshold instead gives novel lower bounds for DP learning,
partially closing an open problem in this setup. En route to establishing
these results, we prove a sparse variant of the fingerprinting lemma, which
is of independent interest to the community.

1 Introduction
Tracing or membership inference informally asks whether it is possible, using only the
output of a learning algorithm, to distinguish samples in the training set from held-out
samples. The existence of a tracer that identifies training examples reveals that the model has
memorized specific examples rather than purely captured the underlying distribution [SSSS17;
CCNSTT22]. In particular, understanding tracing has an important role in generalization
theory, where an algorithm that is not traceable is known to generalize well beyond its
training data [SZ20]. Tracing is also an important technical tool in, e.g., differential privacy
(DP), where tracing attacks are the workhorse behind tight lower bounds for the risk-privacy
trade-offs [BUV14]. From a privacy standpoint, even the leakage of a single example is viewed
as catastrophic. However, from a generalization theory standpoint, we want to understand
the exact relationship between an algorithm’s generalization performance and the number of
traceable examples.
To reason rigorously about tracing, following [DSSUV15], we define the problem of tracing
as follows. Let An be a learning algorithm that, given a training set Sn = (Z1, . . . , Zn) of
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n i.i.d. samples from some underlying distribution D, outputs a learned model θ̂. Then, a
tracer T is a hypothesis tester that, given the model θ̂ and a candidate point Z, outputs In
if it believes Z was in Sn, or Out otherwise. Formally, for some small soundness parameter
ξ ∈ (0, 1) and m ≤ n, we require T to satisfy:

Pr Sn∼D⊗n

Z∼Unif(Sn)
[T (θ̂, Z) = IN] ≥ m

n
Pr Sn∼D⊗n

Z∼D⊥⊥Sn

[T (θ̂, Z) = OUT] ≥ 1 − ξ

When such a tracer exists, we say that An is (ξ, m)-traceable. Equivalently, m is the expected
number of samples in the training set Sn for which the tracer outputs IN, and we refer to m
as recall. (See Definitions 2.3 and 2.4.)
A fundamental problem in learning theory is investigating how an algorithm’s generalization
ability interacts with the information it retains about the training samples (including, in our
language, its traceability). The common wisdom is that any information about the training
set in a learned model is in tension with generalization [XR17; BMNSY18; SZ20]. On the
other hand, non-traceable algorithms, such as differentially private algorithms, are often
unable to reach optimal excess risk. The central question we study in this paper is: what is
the exact tradeoff between the number of traceable examples and achievable excess risk?
This question was considered, first, in the context of mean estimation of a d-dimensional
vector, in the seminal work of [BUV14; DSSUV15]. It was also studied in the context of
Stochastic Convex Optimization (SCO) [SSSS09] in the work of [ADHLR24]. The work of
[DSSUV15] studied the tradeoff between excess risk and the number of traceable examples,
when a mechanism publishes an estimate of the mean that is accurate in every coordinate
(i.e., the output of the algorithm has error of α with respect to ℓ∞ norm to the true mean).
At a high level, they showed that for every algorithm that has accuracy better than that
achievable by a private algorithm, Ω(1/α2) examples are traceable on some hard instance.
Notice that for the task of mean estimation in ℓ∞ norm, the statistical sample complexity is
Θ(log(d)/α2). Thus, for every algorithm, the preceding result only shows that it is possible
to trace out a 1/ log(d) fraction of the input samples. In contrast, [ADHLR24] exhibited
an SCO problem in ℓ2 geometry for which a constant fraction of the training samples are
traceable. An important open problem, then, is to further explore and understand in which
setups we expect a constant fraction of the training sample to be traceable.
In this work, we investigate this question, of traceability, in the fundamental learning setup
of Stochastic Convex Optimization for general ℓp geometries. We show that, in this general
learning setup, when private learning is not possible, there is no meaningful gap between
sample complexity and traceability. That is, in every geometry, there exist a hard problem
for which every (sample-efficient) algorithm is traceable with a recall which is a constant
fraction of its sample size. Due to connections between SCO and mean estimation problems,
our results also extend to the latter settings; in particular, we close the log(d) gap in the
setting of [DSSUV15] and show that optimal traceability is dimension-dependent.
SCO is an ideal testbed for this problem: (1) as in modern machine learning practices,
first-order methods are known to achieve optimal sample-complexity rates in this setting
[Fel16; HRS16; AKL21], and (2) within this framework, we can design provable methods that
mitigate tracing, such as DP algorithms [CMS11; BST14; BFTG19]. Therefore, by studying
the problem of traceability in SCO, we also deepen our understanding of the interaction
between privacy risks and sample-optimal learning.
To present our results, we recall the basic setup of SCO. An SCO problem is characterized
via a triple P = (Z, Θ, f), where Z is the data space, Θ ⊂ Rd is the parameter space, which
must be convex, and f : Θ × Z → R is a loss function such that f(·, z) is convex for all z ∈ Z.
In SCO, data points are drawn from an underlying distribution D over Z, unknown to the
learner. The objective of the learner is to minimize the expected risk based on observed
samples. Then, a learning algorithm An : Zn → Θ receives a sample Sn = (Z1, . . . , Zn)
of n data points from Zn and returns a (perhaps randomized) output in Θ. Then, for
D ∈ M1(Z), expected risk is defined as FD(θ) := EZ∼D [f(Z, θ)] . For an SCO problem to
be learnable, one often assumes that the loss function f is Lipschitz and the diameter of the
space Θ is bounded, both of which can be measured w.r.t. different norms. These bounds
govern the behavior of learnability, but they can be measured in different geometries. A
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canonical class of SCO problems is induced by the ℓp norms, in which case we assume that
Θ has bounded ℓp-diameter and f(·, z) is ℓp-Lipschitz, for a fixed p ∈ [1, ∞].

1.1 Contributions

In this paper, we establish a fundamental tradeoff between traceability and excess risk for
algorithms in the context of SCO in general geometries. Some settings in which tracing is
not possible are already well-understood: in the excess risk regime where DP [DMNS06] is
possible, no samples can be traced. Due to this observation, the problem of traceability is
only meaningful outside the DP risk regime. More formally, let us define minimax statistical
and DP excess risks in ℓp SCO. Specifically, for a family of ℓp Lipschitz problems Ldp, we let

αstat (p, n) = max
P∈Ld

p

min
An

max
D

{
E [FD(An(Sn))] − inf

θ∈Θ
FD(θ)

}
and (1)

αDP (p, n) = max
P∈Ld

p

min
(ε,δ)-DP-An

max
D

{
E [FD(An(Sn))] − inf

θ∈Θ
FD(θ)

}
, (2)

where, for concreteness, we take ε = 0.01 and δ = 1/n2 in the above.

Main Contribution: We show that every sample-efficient algorithm that achieves an
excess risk outside the DP regime (that is, α = o(αDP)) is traceable with recall proportional
to the number of samples. The precise statement of our main contribution varies based on
the geometry of SCO:

Tracing when p = 1. For the case p = 1, we show that any learner whose excess risk is
better, by a small polynomial factor, than the best risk attainable by a DP algorithm with
constant ε and δ = 1/n2 must be traceable. Moreover, we give an essentially optimal lower
bound on the number of samples that can be traced. In more detail, we show that there
exists an ℓ1-SCO problem such that, if an algorithm achieves risk of

α ≲
αDP

d0.01 log2(n)
,

then Ω(log(d)/α2)) of the training samples can be traced (see Theorem 2.6). We note that
the choice of the constant 0.01 above is arbitrary. It is instructive to compare our results
to [DSSUV15]. While the settings of mean estimation and SCO are generally different, our
lower bound for ℓ1 geometry also extends to mean estimation in ℓ∞ norm (see Corollary 2.9
for a formal argument). In both settings, the sample complexity scales like log(d)/α2,
however, [DSSUV15] showed traceability of only 1/ log(d) fraction of the samples. On
the other hand, in our work we show that there is no meaningful gap between sample
complexity and traceability, and every sample-efficient algorithm outside the DP regime must
memorize a constant fraction of its sample. Notably, our results also imply that traceability
is dimension-dependent in this setup.

Tracing when p ∈ (2, ∞). For ℓp SCO with p ≥ 2, in Theorem 2.7, we show that for

α ≲
αDP

log(n) ,

where αDP is set as αDP = Θ
(
d/n2)1/p we can construct an SCO problem such that, if

a learner achieves a risk of α, then Ω(1/αp) of its samples are traceable. Note that, the
non-private sample complexity of learning for p > 2 is precisely Θ(1/αp) in the relevant
parameter regime,∗∗ i.e., the number of traced out samples is of the order of the sample
complexity. Note that, the optimal DP risk in this setup constitutes an open problem, and
the quantity αDP above need not be the optimal DP risk in this setting. Nevertheless, this
quantity can be shown to be a lower bound on the optimal DP risk (in the regime ε ∈ Θ(1)).
We extend this result to other regimes of ε, and another important contribution of our work
is proving such DP lower bounds.

∗∗We point out that, in general, the sample complexity for p ≥ 2 scales as 1/n1/p ∧ d1/2−1/p/
√

n,
however, αstat ≪ αDP only when d ≳ n. Thus, the question of traceability is only non-vacuous in the
overparameterized regime.
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p Recall Range of α Sample
complexity

Minimax DP
rate Refs.

1 log(d)
α2

(√
log(d)

n , d0.49

n
√

log(1/ξ)

)
log(d)

α2

√
log(d)

n +
√

d
εn

Thm. 2.6

(1, 2] 1
α2

(√
1
n ,

√
d

n
√

log(1/ξ)

)
1

α2
1√
n

+
√

d
εn Thm. 2.5

[2,∞) 1
αp

(
min
{

1
n1/p

, d1/2−1/p
√

n

}
,
(

d
n2 log(1/ξ)

)1/p
)

1
αp

† Open Thm. 2.7

Table 1: Summary of traceability results. All results are stated up to constants. The sample
complexity bounds are implied by Theorem A.1. Minimax DP rates are known due to [BFTG19;
BGN21; AFKT21; GLLST23] and are displayed up to log factors and with δ = 1/n2. (†) Although,
in general, the sample complexity in this setting is a minimum of two terms, within the stated range
of α, the term 1/αp dominates.

In particular, we provide an improved lower bound on DP-SCO under ℓp geometries for p > 2
in the high dimensional regime, i.e., d ≥ εn, which is arguably the most interesting regime
as it is more relevant for the modern ML applications. Specifically, we show, in Theorem 2.8,
that for all ε < 1 and small δ we can construct a problem such that for every (ε, δ)-DP
algorithm, An, there exists a data distribution such that:

ESn∼D⊗n,θ̂∼An(Sn)

[
FD(θ̂)

]
− inf
θ∈Θ

FD(θ) ≳
(

d

n2ε2

)1/p
.

In particular, the above implies that when d ≥ εn, the risk due to privacy dominates the
statistical risk. This result improves upon all previous best bounds in the literature when
d ≥ εn [ABGMU22; LLL24]. In particular, Theorem 3.1 of [LLL24] gives a lower bound√

d/n2ε2, which is weaker than our lower bound for every p > 2. Corollary 4 of [ABGMU22]
gives a lower bound of min

{( 1
εn

) 1
p , d

1−1/p

εn

}
which is weaker than our lower bound for d ≥ εn.

Tracing when p ∈ (1, 2]. For each p ∈ (1, 2], we show that there exists an ℓp SCO problem
such that, if an algorithm achieves excess risk of α ≲ αDP

log2(n) , then Ω(1/α2) of its samples
can be traced (see Theorem 2.5). This result uncovers a fundamental dichotomy between
traceability and privacy in ℓp SCO. It is known that p ∈ (1, 2], Θ(1/α2) is precisely the
sample complexity of learning ℓp-Lipschitz problems [AWBR09]. We note that αDP for p = 2
is known due to [BST14]. However, as we discuss in Appendix B.1, combining [BST14] with
the tracing results of [DSSUV15] does not give the optimal tracing of Θ(1/α2) samples.

1.1.1 Traceability beyond SCO: PAC Learning

A natural question is whether a similar phenomenon holds true for other learning setups.
Consider the setting of binary classification PAC learning. We show that, for every class
with VC dimension bounded by dvc, the recall of every tracer is in O(dvc log2(n)), i.e., it is
at most a small fraction of the training sample provided n ≫ dvc. Since many such classes,
including the class of thresholds, are not privately learnable [BNSV15; ALMM19; BLM20],
the sharp transitions between privacy and traceability does not hold in PAC classification.
We also point out that for the class of thresholds, we can remove the log2(n) factor from the
recall upper bound. See Appendix H.

1.2 Technical contributions

Our technical contributions are elaborated on in Section 2.3. In essence, our technical
novelties are twofold. First, we present a novel sparse fingerprinting lemma that, intuitively,
shows that learners over sparse domains must be correlated to their samples. The key novelty
of this result is that the correlation is inversely proportional to the sparsity parameter. This
feature is not present in prior work, since fingerprinting lemmas are most often applied for
learners/estimators over a hypercube domain.
Second, armed with this new fingerprinting result, we present a generic conversion result
using a notion of a subgaussian trace value, which converts any lower bound on correlation
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with the samples into a number of samples that can be traced. While it is well-appreciated
by prior work that, conceptually, a fingerprinting lower bound implies a traceability lower
bound, proving results for our setting of SCO involves complicated sparse domains embedded
into ℓp balls. This makes it more technically challenging to prove the necessary concentration
phenomena holds for a tracer over the corresponding domain, which motivates us to restrict
our attention to tracers that induce a subgaussian process over the domain.

1.3 Related Work

Our work is most similar in spirit to [DSSUV15; ADHLR24]. Our work builds on top of
these results on a number of fronts. A key distinct aspect of our approach is the difference in
the structure of hard problems and the new sparse fingerprinting lemma. Also, our generic
traceability theory of subgussian trace value (Section 2.3) provides an abstract treatment
of the approach in [DSSUV15]. Our approach allows to seamlessly convert fingerprinting
lemmas into traceability results and even non-private sample complexity lower bound.
Our work also makes progress towards closing the gap regarding the optimal excess error for
ℓp DP-SCO for p > 2. The best known upper bounds for DP-SCO in ℓp geometry for p > 2
are due to [BGN21; GLLST23], and Theorem 2.8 is the best lower bound.
To put our sparse fingerprinting lemma into the context of prior work, it can be seen to
generalize the results of [SU17] to sparse sets. Another “sparse fingerprinting lemma” in
the literature is given by [CWZ23]. Our results are distinct by the way sparsity enters the
lemmas: in [CWZ23] the mean vector is sparse (and data is dense), and in our case, the
mean is dense and the data vectors are sparse. The proof techniques also differ substantially.
Our sparse fingerprinting lemma is also an example of a fingerprinting lemma for the setting
where the coordinates of the data vector are not independent, similar to [KMS22; LT24].
Additional related work is discussed in Appendix B.

2 Problem Setup and Main Results
We begin by some definitions. For a (measurable) space R, M1(R) denotes the set of all
probability measures on R. In SCO, an α-learner is defined to be a learner whose expected
excess risk is bounded by α. A formal definition is given below.
Definition 2.1 (α-learner). Fix α > 0, n ∈ N and SCO problem (Θ, Z, f). We say
An : Zn → M1(Θ) is an α-learner for (Θ, Z, f) iff for every D ∈ M1(Z), we have
ESn∼D⊗n,θ̂∼An(Sn)

[
FD(θ̂)

]
− infθ∈Θ FD(θ) ≤ α.

In our work, we focus on learning Lipschitz-bounded families of problems, which are defined
below. For every p ∈ [1, ∞], let Bp(r) = {θ ∈ Rd : ∥θ∥p ≤ r} be the unit ball in ℓp norm.
Definition 2.2 (Lipschitz-bounded problems). Fix p ∈ [1, ∞], and let d < ∞ be a natural
number. We let Ldp denote the set of all ℓp-Lipschitz-bounded SCO problems in d dimensions.
Namely, P = (Θ, Z, f) ∈ Ldp iff (i) Θ ⊂ Bp(1), and (ii) for every θ1, θ2 ∈ Θ and z ∈ Z, we
have |f(z, θ1) − f(z, θ2)| ≤ ∥θ1 − θ2∥p.

2.1 Tracing

The key notion we study here is tracing, and we next introduce our framework for traceability.
We consider families of tracers that assign each candidate point a real-valued score capturing
how likely it is to have been seen during training. Then, the tracer converts these scores into
binary In or Out decisions by thresholding the score. Intuitively the score corresponds to
the likelihood of the event that the learner saw a data point during training.
Definition 2.3 (Tracer). Fix data space Z and parameter space Θ. A tracer’s strategy is a
tuple of T = (ϕ, D) where ϕ : Θ × Z → R and D ∈ M1(Z).
Definition 2.4 ((ξ, m)-traceability). Let n ∈ N, ξ ∈ (0, 1), and m ∈ N. We say a learning
algorithm An is (ξ, m)-traceable if there exists a tracer (ϕ, D) and λ ∈ R such that, if
(Z0, Z1, . . . , Zn) ∼ D⊗(n+1) and θ̂ ∼ An(Z1, . . . , Zn), we have (i) Soundness: Pr

(
ϕ(θ̂, Z0) ≥

λ
)

≤ ξ, and (ii) Recall: E
[∣∣{i ∈ [n] : ϕ(θ̂, Zi) ≥ λ}

∣∣] ≥ m.
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2.2 Main Results

2.2.1 Traceability of α-Learners

In this section, we discuss our traceability results for accurate learners in ℓp geometries.
First, we will state a result that applies to p ∈ [1, 2), and then present its slight refinement
for p = 1. We will then present our result for p ≥ 2. See Appendices F.1 to F.3 for proofs.
Theorem 2.5. There exists a universal constant c > 0 such that, for all p ∈ [1, 2), if d, n,
ξ ∈ (0, 1/e), and α > 0 are such that

c√
n

≤ α ≤ min
{

c ·

√
d

n2 log(1/ξ) ,
1
6

}
, (3)

then there exist an ℓp SCO problem that every α-learner is (ξ, m)-traceable with m ∈ Ω
(
α−2) .

Note that the upper bound on α in Equation (3) is precisely the optimal DP excess risk for
ε ∈ Θ(1) and p ∈ [1, 2] [AFKT21; BGN21], and the lower bound is precisely the optimal
non-private risk (except p = 1; see Theorem A.1). Moreover, for p ∈ (1, 2], the lower bound
on m exactly matches the statistical sample complexity.
As mentioned above, for p = 1, the lower bound on recall in Theorem 2.5 is less than sample
complexity by a factor of log(d). This prompts us to establish the following refinement
Theorem 2.6. There exists a universal constant c > 0 such that, if d is large enough and n,
ξ ∈ (0, 1/e), and α > 0 are such that

c ·
√

log(d)
n

≤ α ≤ min
{

c · d0.49

n
√

log(1/ξ)
,

1
8

}
, then (4)

there exists a ℓ1 SCO problem that every α-learner is (ξ, m)-traceable with m ∈ Ω
(
log(d)/α2) .

Note that the upper bound in Equation (4) is slightly stronger than in Equation (3); however,
the lower bound on recall now matches the sample complexity of learning in ℓ1 geometry.
We now present a result for p ≥ 2.
Theorem 2.7. There exists a universal constant c > 0 such that, for all p ∈ [2, ∞), if d, n,
ξ ∈ (0, 1/e), and α > 0 are such that

1
6 · min

{
1

n1/p ,
d

1
2 − 1

p

√
n

}
≤ α ≤ min

{
c ·
(

d

n2 log(1/ξ)

)1/p
,

1
6

}
, then (5)

there exist an ℓp SCO problem such that every α-learner is (ξ, m)-traceable with m ∈
Ω (1/(6α)p) .

For p ∈ (2, ∞), our results have a different implication, showing that all sufficiently accurate
learners need to memorize a number of samples on the order of the sample complexity.
However, in this case, the upper bound in Equation (5) need not be the optimal DP risk.
Instead, it provides a lower bound on the optimal DP risk, as we will see next.

2.2.2 Improved DP-SCO Lower Bound for p > 2

Theorem 2.8. Let p ∈ [2, ∞). There exist a universal constant c > 0 and an ℓp SCO
problem P = (Θ, Z, f) such that every (ε, δ)-DP learner of P with ε ≤ 1 and δ ≤ c/n
satisfies,

α ≥ c · min
{(

d

ε2n2

) 1
p

,
d1−1/p

εn
, 1
}

.

2.2.3 Consequences for mean estimation

Consider the setting of mean estimation in ℓ∞ norm as in [DSSUV15]. Our results in Theo-
rem 2.6 extend almost verbatim to this setting.
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Corollary 2.9. Let Z = {±1}d, and suppose an estimator is given such that, given access
to i.i.d. samples Z1, . . . , Zn ∈ Z, outputs µ̂ with E ∥µ̂ − E[Z1]∥∞ ≤ α/2. Then, there exists
a universal constant c > 0 such that, if d is large enough and n, ξ ∈ (0, 1/e), and α > 0
satisfy Equation (4), then the estimator µ̂ is (ξ, m)-traceable with m ∈ Ω

(
log(d)/α2) .

2.3 Roadmap of the proof

Our proofs rely on introducing two key technical elements that allow us to generalize tracing
techniques to general ℓp setups. The first element is a generic conversion result involving
a complexity notion which we term the subgaussian trace value of a problem. As we show
in the proof of Theorem 2.8, we can use the subgaussian trace value to prove traceability
results over general domains, establish DP sample complexity lower bounds, and, even to
recover non-private sample complexity lower bounds. While the connection between the first
two aspects is well-known [FS17], we find the ability of trace value to recover non-private
lower bounds surprising.
Our second technical contribution concerns techniques for lower bounding the subgaussian
trace value, which we accomplish through several novel fingerprinting lemmas. Previous works
used the standard fingerprinting lemma, where the learner observes points on a hypercube,
to lower bound DP and traceability in ℓ2 geometry. However, when moving to general ℓp
geometries, this setup no longer captures the hardest settings to learn. For instance, for
p > 2, canonical instances of hard problems involve data drawn from sparse sets [AWBR09].
We thus prove new fingerprinting lemmas that enable us to leverage our framework in such
settings. These fingerprinting lemmas are then applied to carefully constructed instances of
hard problems, and we show that every accurate learner of these problems is traceable.

3 General framework: subgaussian trace value
We next describe more formally the framework of subgaussian tracers. For a random variable
X, the subgaussian norm of X is the quantity ∥X∥ψ2

:= inf{t : E
[
exp(X2/t2)

]
≤ 2} [Ver18].

We use the following definition of a subgaussian process:
Definition 3.1 (Subgaussian process). We call an indexed collection of random variables
{Xθ} a σ-subgaussian process w.r.t a metric space (Θ, ∥·∥) if for every θ, θ′ ∈ Θ, we have (i)
∥Xθ − Xθ′∥ψ2

≤ σ ∥θ − θ′∥ , and (ii) ∥Xθ∥ψ2
≤ σ diam∥·∥(Θ).

For origin symmetric convex body Θ, let ∥·∥Θ denote the Minkowski norm w.r.t. Θ, that is
∥x∥Θ := inf {λ > 0: x ∈ λΘ} . If Θ is not convex or not origin symmetric, we let ∥·∥Θ be the
Minkowski norm w.r.t. convex hull of (Θ ∪ −Θ). Note that ∥·∥Θ is the minimal norm to
contain Θ in its unit ball.
Definition 3.2 (Subgaussian tracer). Fix κ ∈ R to be a constant, and let Θ be a convex body.
We let Tκ be the class of subgaussian tracers at scale κ > 0, that is, a tracer (ϕ, D) ∈ Tκ iff

(i) {ϕ(θ, Z)}θ∈Θ where Z ∼ D is a 1-subgaussian process w.r.t. (Θ, ∥·∥Θ).

(ii) |ϕ(θ, z)| ≤ κ for all θ ∈ Θ and z ∈ Z.
Definition 3.3 (Subgaussian trace value). Fix n ∈ N, α ∈ [0, 1], and κ ∈ R. Consider an
arbitrary SCO problem P = (Θ, Z, f). Let Tκ be as in Definition 3.2. Then, we define the
subgaussian trace value of problem P by

Trκ(P; n, α) = inf
α-learnerAn

sup
T =(ϕ,D)∈Tκ

ESn=(Z1,...,Zn)∼D⊗n,θ̂∼An(Sn)

[
1
n

∑
i∈[n]

ϕ(θ̂, Zi)
]
.

where the inf is taken over all An that achieve excess risk ≤ α on P with n samples.

Traceability via subgaussian trace value. The subgaussian trace value characterizes
the average score the pair (ϕ, D) assigns to the data points in the training set. However, the
definition of recall in Definition 2.3 requires characterizing the number of samples in the
training set that takes a large value. The former can be converted into the latter, provided
the sum of squared scores of samples is not too large. A formal statement, which is a
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consequence of Paley–Zygmund inequality, can be found in Lemma A.11. In the next lemma,
we show how to control the sum of squares of the ϕ(θ̂, Zi) using the subgaussian assumption.

Lemma 3.4. Fix n, d ∈ N. Suppose Θ ⊂ Rd is a subset of a unit ball in some norm ∥·∥.
Let ϕ : Θ × Z → R and D ∈ M1(Z) be such that, as Z ∼ D, {ϕ(θ, Z)} is a σ-subgaussian
process w.r.t. (Θ, ∥·∥). Let (Z1, . . . , Zn) ∼ D⊗n. Then, there is a constant C > 0, such that

Pr

sup
θ∈Θ

√√√√ n∑
i=1

[ϕ(θ, Zi)]2 ≤ Cσ
(√

n +
√

d + t
) ≥ 1 − 4 exp(−t2), ∀t ≥ 0.

Equipped with this lemma, in the next theorem, we show that if, the subgaussian trace value
of a problem is large, then every α-learner is traceable.
Theorem 3.5. Fix n ∈ N, d ∈ N, κ > 0 and α ∈ [0, 1]. Consider an arbitrary SCO problem
P = (Θ, Z, f). Let T = Trκ(P; n, α) be the subgaussian trace value of P. Then, for some
constant c > 0, every α-learner An is (ξ, m)-traceable with

ξ = exp(−cT 2), m = c

[
n2T 2

n + d
− 16κ2n

exp(n + d)

]
.

Privacy lower bounds via subgaussian trace value. In the next theorem, we show
that the notion of subgaussian trace value directly lower bounds the best privacy parameters
achievable by a DP algorithm. The proof is based on [FS17].
Theorem 3.6. There exists a universal constant c > 0, such that the following holds. Fix
p ∈ [1, ∞), n ∈ N, d ∈ N, α ∈ [0, 1], κ > 0 ε > 0, and δ ∈ [0, 1]. Consider an arbitrary SCO
problem P = (Θ, Z, f) in Rd. Let T = Trκ(P ; n, α) be the subgaussian trace value of problem
P. Then, for every (ε, δ)-DP α-learner An, we have exp(ε) − 1 ≥ c (T − 2δκ) .

Non-private sample complexity via subgaussian trace value. Surprisingly, if we
directly use subgaussian trace value, we can recover optimal sample complexity bounds for all
p ∈ [1, ∞) and all regimes of (d, α), thus unifying traceability with private and non-private
sample complexity lower bounds. While we detail the argument formally in Appendix G,
we consider here a helpful example of ℓ2 geometry. First, it can be shown that we always
have Tr(P; n, α) ≲

√
d/n for arbitrary problem P (see Proposition G.1). Also, we will

later show that, for every α > 0, there exist an ℓ2 problem P with Tr(P; n, α) ≳
√

d/nα
(see Theorem 5.1). Combining these two inequalities gives n ≳ 1/α2, which is optimal.

4 The sparse fingerprinting lemma
By introducing the notion of subgaussian trace value, we have reduced the problems of
traceability and privacy lower bounds to the question of lower bounding the subgaussian
trace value. Now, we discuss the techniques to lower bound subgaussian trace value. The
proofs can be found in Appendix D. Due to space limitation, we only discuss the details for
the case of p > 1 and present the details of p = 1 in Appendix E.2.
For ℓ2 geometry, one can lower bound subgaussian trace value using the classical fingerprinting
lemma in [DSSUV15]. While this strategy leads to traceability results in ℓ2 geometry,
examples of hard problems for ℓp geometry with p > 2 are those with sparse sets Z (e.g., as
in [AWBR09]). This motivates us to prove the following sparse fingerprinting lemma, which
is another important contribution of our work. For a vector x ∈ Rd, let supp(x) be the set
of its non-zero coordinates and denote ∥x∥0 = | supp(x)|.
Definition 4.1 (Sparse distributions family). Fix d ∈ N, k ∈ [d] and µ ∈ [−k/d, k/d]d.
Consider the mixture distribution on Zk = {z ∈ {0, ±1}d : ∥z∥0 = k} given by, for all z ∈ Zk,
Dµ,k(z) = E

J∼unif(([d]
k )) [Pµ,k,J(z)] , where

Pµ,k,J(z) = 1(supp(z) = J) ·
∏
j∈J

(
1 + (d/k) · µjzj

2

)
.

Note that, in particular, EZ∼Dµ,k
[Z] = µ. Intuitively, one can think of sampling from Dµ,k

using the following procedure: (i) sample the support coordinates J ∼ unif
([d]
k

)
, (ii) for each

j ∈ J , sample Zj from {±1} with mean d
kµj independently, (iii) for each j ̸∈ J , set Zj = 0.
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With this distribution family at hand, we may state the sparse fingerprinting lemma. For
x, y ∈ Rd and a subset R ⊆ [d] of coordinates, we use ⟨·, ·⟩S to denote the inner product
⟨x, y⟩R :=

∑
i∈R xiyi. Also, for α, β, γ > 0, let s-beta[−γ,γ] (α, β) be the symmetric beta-

distribution, i.e., beta distribution with parameters α, β scaled and shifted to have support
[−γ, γ] (see Definition A.13).
Lemma 4.2 (Sparse fingerprinting). Fix d, n ∈ N and let k ∈ [d]. For each µ ∈ [−k/d, k/d]d,
let Zk and Dµ,k be as in Definition 4.1 . Let π = s-beta[−k/d,k/d] (β, β)⊗d be a prior and set

ϕµ(θ, Z) :=
〈

θ,

(
Z − d

k
µ

)〉
supp(Z)

.

Then, for every learning algorithm An : Zn → M1(Rd) with sample Sn = (Z1, . . . , Zn),

Eµ∼πESn∼D⊗n
µ,k

,θ̂∼An(Sn)

[
n∑
i=1

ϕµ(θ̂, Zi)
]

= 2βd

k
Eµ∼π

〈
µ,ESn∼D⊗n

µ,k
,θ̂∼An(Sn)[θ̂]

〉
.

The key novelty of this lemma is that it provides a way to study the correlation between a
learner’s output and training samples on sparse sets Zk. An important and distinctive feature
of this result is that the right-hand side scales by a factor of d/k, highlighting the fact that
sparse problems correspond to greater subgaussian trace values. Intuitively, this stems from
the fact that each coordinate is seen fewer times by the learning algorithm, meaning it must
retain more information from each training sample in order to learn accurately. Additionally,
for the special case k = d, the result precisely recovers the fingerprinting lemma from [SU17].

5 Final steps: bounding the subgaussian trace value for hard
problems

Finally, we go over the construction of hard problems. To illustrate the difficulty of problem
constructions, we give an example of a problem that requires many samples to learn but
nevertheless is not traceable. Consider learning over ℓ1 ball with linear loss. Let

Θ = B1(1), Z = {±1}d, f(θ, Z) = −⟨θ, Z⟩. (6)

Consider a difficult set of distributions {Di}di=1 where Di is a product distribution on Z
and has mean α on coordinate i and mean zero on all other coordinates. It can be shown
this problem requires Θ(log(d)/α2) samples to learn up to risk of α/3, and ERM is an
optimal learner. However, after seeing Θ(log(d)/α2) samples from Di, the ERM takes the
value θ̂ = ei w.h.p., which is also the population risk minimizer. In other words, it becomes
impossible to trace out any specific samples on which θ̂ was trained.

Generic construction for p ∈ (1, ∞). As mentioned above, to obtain optimal results for
p > 2, problems constructed need to be sparse, and the main subtlety in our constructions is
choosing the sparsity parameter. For some k ∈ [d] to be chosen later, consider the following
ℓp-Lipschitz problem Pk,p.

Θ = B∞(d−1/p), Z = {z ∈ {0, ±1}d : ∥z∥0 = k}, f(θ, z) = −k−1/q⟨θ, z⟩. (7)

Here, the parameter space Θ is the largest ℓ∞ ball inscribed into the unit ℓp ball, and q is
the Hölder conjugate of p, i.e., 1

p + 1
q = 1. The next step is to show that α-learners for the

above problem must be correlated with the mean of the unknown data distribution. Let D
be a distribution with mean µ, and suppose An is an α-learner for Equation (7). Then,

ESn∼D⊗n,θ̂∼An(Sn)

[〈
µ, θ̂
〉]

≥ sup
θ∈Θ

⟨µ, θ⟩ − k1/q · α = d−1/p ∥µ∥1 − k1/qα.

Now, we apply the sparse fingerprinting lemma (Lemma 4.2). A key step is choosing the
scale β ≥ 1 of the beta-prior. On the one hand, β should be small enough to guarantee
Ed−1/p ∥µ∥1 > k1/qα, so that the above lower bound is non-vacuous. On the other hand,
taking β too small decreases the sample complexity of learning the problem, thus, disallowing
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the desired level of recall. The optimal choice is β ∝ α−2 · (k/d)1/p, as long as this quantity
is ≥ 1. This choice yields

Trκ(Pk,p; n, α) ≥ ESn∼D⊗n,θ̂∼An(Sn)

[
1
n

n∑
i=1

ϕ(θ̂, Zi)
]
≳

d1−1/p

k1/2−1/pnα
,

where κ ∈ Θ(1), and, for some universal constant c > 0, we let

ϕ(θ, Z) := cd1/p
√

k

〈
θ,

(
Z − d

k
µ

)〉
supp(Z)

.

Note that the d1/p/
√

k scaling ensures ϕ induces a 1-subgaussian process. Finally, it
remains to choose a suitable value for k, for each pair (p, α). Recall the definition of Pk,p
from Equation (7).
Theorem 5.1. Let Pk,p be the family of problems described in Equation (7). There exist
universal constants c1, c2 > 0 such that, for all α ∈ (0, 1/6] and d ∈ N, the following
subgaussian trace value lower bounds hold for all p ∈ [1, ∞) and κ ≤ c1

√
d:

(i) For p ≤ 2 and k = d, we have Trκ(Pk,p; n, α) ≥ c2
√
d

nα .

(ii) For p ≥ 2 and k = (6α)pd ∨ 1, we have Trκ(Pk,p; n, α) ≥ c2

[ √
d

n(6α)p/2 ∧ d1−1/p

nα

]
.

Using the reduction Theorem 3.5, the above establishes Theorems 2.5 and 2.7.

Refinement for p = 1. While the above construction also yields a traceability result for
p = 1, it is suboptimal for the following simple reason: for k = d, the problem in Equation (7)
only requires Θ(1/α2) samples to learn, thus, it is impossible to trace out Ω(log(d)/α2)
samples. On the other hand, the problem in Equation (6) requires Θ(log(d)/α2) samples
to learn but is not traceable. The intuition we follow here is to modify the construction
in Equation (7) to make Θ “look” more like an ℓ1-ball to drive up the sample complexity
while still avoiding the counterexample with an ERM learner from the beginning of the
section. In particular, we consider the following ℓ1-problem,

Θ = B1(1) ∩ B∞(1/s), Z = {±1}d, f(θ, z) = −⟨z, θ⟩, (8)

for a suitably chosen s ∈ [d]. Note that, if we choose s ≫ 1, Θ above is a polytope with much
more vertices (2s

(
d
s

)
) than an ℓ1 ball (2d), which would intuitively force a learner like an

ERM to reveal more information about the training sample. On a technical level, selecting
large s improves the subgaussian constant of a tracer; however, selecting s that is too large
shrinks the diameter of the set, and thus, the problem becomes easier to learn. We must
trade off these two aspects, and carefully set the value of s. As it turns out, the optimal
choice is s ∝ d1−c for any small c > 0 in order to establish Theorem 2.6. The remainder of
the proof is rather technical and hence is deferred to Appendix F.2.

6 Limitations
We conclude by stating an intriguing open problem. We conjecture Theorem 2.8 is tight,
and the dichotomy between traceability and SCO also holds for p > 2. In particular, we
conjecture that the optimal DP-SCO excess risk for ℓp with p > 2 scales as

min
{

d1/2−1/p
√

n
,

(
1
n

)1/p
}

+ min
{

d1−1/p

nε
,

(
d

ε2n2

)1/p
}

,

ignoring log(1/δ) factors. If the conjecture is true, we have a complete understanding of
traceability in SCO. If it is false, it reveals that there is something fundamentally different
about settings with p > 2, which would also significantly enrich our understanding of
DP-SCO.
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A Additional preliminaries
A.1 Background on SCO

The next proposition summarizes the known minimax rates for learning SCO problems in
general geometries. A proof can be found in [NY83; AWBR09; ST10].
Theorem A.1. Fix p ∈ [1, ∞], d ∈ N, and n ∈ N. Let αstat(Ldp, n) be the minimax excess
risk rate of learning ℓp-Lipschitz-bounded problems, as defined in Equation (1). Then,

1. For p = 1, we have

αstat(Ldp, n) ∈ Θ
(√

log(d)
n

)
.

2. For 1 < p ≤ 2, we have

αstat(Ldp, n) ∈ Θ
(√

log(d)
n

∧ 1
(p − 1)

√
n

)

3. For 2 ≤ p < ∞, we have

αstat(Ldp, n) ∈ Θ
(

d1/2−1/p
√

n
∧ 1

n1/p

)
4. For p = ∞, we have

αstat(Ldp, n) ∈ Θ
(√

d

n

)
.

Remark A.2. Notice that, in the overparameterized regime (d ≥ n), the minimax excess risk
for p ≥ 2 is Θ

(( 1
n

)1/p) which is dimension-independent. This shows that for d ≥ n, in all
geometries except p = {1, ∞}, the minimax excess risk is dimension-free. ◁

This proposition implies the following corollary on the minimum number of samples required
for α-learners.
Corollary A.3. Fix p ∈ [1, ∞], d ∈ N, and α ∈ (0, 1]. Let Nstat(Ldp, n) be the sample
complexity of learning problems Ldp up to excess risk α, i.e.,

Nstat(Ldp, n) = min
{

n : αstat(Ldp, n) ≤ α
}

.

Then,

1. For p = 1, we have

Nstat(Ldp, n) ∈ Θ
(

log(d)
α2

)
.

2. For 1 < p ≤ 2, we have

Nstat(Ldp, n) ∈ Θ
(

log(d)
α2 ∧ 1

((p − 1)α)2

)
.

3. For 2 ≤ p < ∞, we have

Nstat(Ldp, n) ∈ Θ
(

d1−2/p

α2 ∧ 1
αp

)
.

4. For p = 1, we have

Nstat(Ldp, n) ∈ Θ
(

d

α2

)
.
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A.2 Differential Privacy

Definition A.4. Let ε > 0 and δ ∈ [0, 1). A randomized mechanism An : Zn → M1(Θ) is
(ε, δ)-DP, iff, for every two neighboring datasets Sn ∈ Zn and S′

n ∈ Zn (that is, Sn, S′
n differ

in one element), and for every measurable subset M ⊆ Θ, it holds

Prθ̂∼An(Sn)

(
θ̂ ∈ M

)
≤ eε · Prθ̂∼An(S′

n)

(
θ̂ ∈ M

)
+ δ.

Algorithms that satisfy DP are not traceable in the sense of Definition 2.4 [KOV17]. The
following simple proposition formalizes this observation.
Proposition A.5. Fix n ∈ N and ε, δ > 0. Let An be an (ε, δ)-DP algorithm. Then, if An

is (ξ, m)-traceable, it holds that

m ≤ n exp(ε)ξ + nδ.

A.3 Concentration inequalities

First, we collect lemmata on the subgaussian norm, introduced in Section 3, which we use
to derive concentration inequalities. The following is Equation (2.14) in [Ver18], and shows
that a bound on subgaussian norm immediately leads to concentration inequalities.
Lemma A.6 (Subgaussian concentration). There exists a universal constant C such that
the following holds for every random variable X with ∥X∥ψ2

< ∞: for every t ≥ 0,

Pr [|X| ≥ t] ≤ 2 exp
(

− ct2

∥X∥2
ψ2

)

The subgaussian norm behaves nicely under the summation of independent random variables.
The following is Proposition 2.6.1 in [Ver18].
Lemma A.7 (Sum of subgaussian variables). Let C > 0 be a universal constant. Let
X1, . . . , Xn be a collection of arbitrary independent real random variables. Then,∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
2

ψ2

≤ C

n∑
i=1

∥Xi∥2
ψ2

.

Subgaussian norm also behaves nicely under mixtures. In particular, we have the following
proposition.
Proposition A.8 (Subgaussian mixtures). Let {Xα}α∈A be σ-subgaussian random variables,
and let π be a distribution over the index set A. Then, a mixture of {Xα}α∈A under α ∼ π
is also σ-subgaussian.

Proof. Let Y be such mixture. Then, for every t > 0, we have

E[exp(Y 2/t2)] = Eα∼πE[exp(X2
α/t2)].

Plugging in t = σ into above, and using that ∥Xα∥ψ2
≤ σ for all α, we have

E[exp(Y 2/σ2)] = Eα∼πE[exp(X2
α/t2)] ≤ 2,

i.e., ∥Y ∥ψ2
≤ σ, as desired.

It is well-known that bounded random variables are subgaussian (Equation (2.17) of [Ver18]).

Proposition A.9. Suppose X is a random variable such that X ∈ [−b, b] almost surely.
Then,

∥X∥ψ2
≤ Cb,

for some universal constant C > 0.
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We will heavily use the following result for the supremum of subgaussian processes (which
follows from [Ver18, Theorem 8.1.6]). Let N (Θ, ∥·∥ , ε) denote the covering number of Θ in
norm ∥·∥ at scale ε > 0.
Proposition A.10. Let {Xθ}θ∈Θ be a σ-subgaussian process w.r.t. a metric space (Θ, ∥·∥)
as per Definition 3.1, and further assume that Θ is contained in the unit ball of ∥·∥. Let
t ≥ 0 be arbitrary. Then, with probability at least 1 − 4 exp(−t2)

sup
θ

Xθ ≤ Cσ

[∫ 1

0

√
log N (Θ, ∥·∥ , ε)dε + t

]
,

for some universal constant C > 0.

Proof. Fix an arbitrary θ0 ∈ Θ. Using Theorem 8.1.6 [Ver18], we obtain the following bound
for the increment of the subgaussian process {Xθ},

Pr
[
sup
θ∈Θ

|Xθ − Xθ0 | ≤ Cσ

(∫ ∞

0

√
log N (Θ, ∥·∥ , ε)dε + t

)]
≥ 1 − 2 exp(−t2).

First, note that for ε ≥ 1, N (Θ, ∥·∥ , ε) = 1, since Θ lies in the unit ball of ∥·∥. Thus,

Pr
[
sup
θ∈Θ

|Xθ − Xθ0 | ≤ Cσ

(∫ 1

0

√
log N (Θ, ∥·∥ , ε)dε + t

)]
≥ 1 − 2 exp(−t2). (9)

Note that, by triangle inequality, we have
sup
θ∈Θ

|Xθ − Xθ0 | ≥ sup
θ∈Θ

|Xθ| − Xθ0 . (10)

Since {Xθ}θ∈Θ satisfies Definition 3.1, we have
∥Xθ0∥ψ2

≤ 2σ.

From Lemma A.6, we then have
Pr [|Xθ0 | ≤ cσt] ≥ 1 − 2 exp(−t2),

for some constant c > 0. Combining this with Equation (10) and taking a union bound
with Equation (9), we get

Pr
[
sup
θ∈Θ

|Xθ| ≤ C ′σ

(∫ 1

0

√
log N (Θ, ∥·∥ , ε)dε + t

)]
≥ 1 − 4 exp(−t2),

for some absolute constant C ′ > 0.

The following lemma is an anti-concentration inequality based on Paley–Zygmund inequality.
It shows that if the sum of variables is large, one can conclude that many of them are
large given an appropriate control over their sum of squares. It is given as Lemma A.4
in [ADHLR24], and it is also similar to Lemma 25 in [DSSUV15].
Lemma A.11. Fix n ∈ N and (a1, . . . , an) ∈ Rn. Let A1 :=

∑
i∈[n] ai and A2 :=

∑
i∈[n](ai)2.

Then, for every β ∈ R,
∣∣{i ∈ [n] : ai ≥ β/n}

∣∣ ≥ (max{A1−β,0})2

A2
.

A.4 Beta distributions

Next definitions are the versions of beta distributions that we use in this paper. Recall that,
classically, beta distribution is supported on [0, 1]. However, in our results, it is convenient
to consider the rescaled and centered variants.
Definition A.12. Fix β > 0. A (symmetric) beta distribution denoted by s-beta (β, β) is a
continuous distribution, such that, if X ∼ s-beta (β, β), then, for every a ∈ [−1, 1], we have

Pr (X ≤ a) =
∫ a

−1

(
1 − x2)β−1

B(β) dx,

where B(β) = 22β−1Γ(β)2/Γ(2β).
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Definition A.13. Fix β > 0 and γ ∈ (0, 1]. We define rescaled (symmetric) beta distribution,
denoted by s-beta[−γ,γ] (β, β), where for a ∈ [−γ, γ], its distribution is given by

Pr (X ≤ a) = 1
γB(β)

∫ a

−γ

(
1 −

(
x

γ

)2
)β−1

dx,

where B(β) = 22β−1Γ(β)2/Γ(2β).

We have the following result on the first moment of the beta distribution.
Lemma A.14. Fix β > 0. Let X ∼ s-beta (β, β) where β ≥ 1. Then,

E|X| ≥ 1
3
√

β
.

Proof. Let B(β) = 22β−1Γ(β)2/Γ(2β) be the normalization constant. We have

E|X| = 1
B(β)

∫ 1

−1
|x|(1 − x2)β−1dx

= 1
B(β)

∫ 1

0
2x(1 − x2)β−1dx

= 1
β · B(β) .

It remains to upper bound B(β). It follows from Theorem 1.5 of [Bat08] that, for every
x ≥ 1, we have

a

(
x − 1/2

e

)x−1/2
≤ Γ(x) ≤ b

(
x − 1/2

e

)x−1/2
,

where a =
√

2e and b =
√

2π are absolute constants. Thus,

B(β) = 22β−1Γ(β)2

Γ(2β) ≤
22β−1b2

(
β−1/2
e

)2β−1

a
(

2β−1/2
e

)2β−1/2

= b2√
e

a
(2β − 1/2)−1/2

(
2β − 1

2β − 1/2

)2β−1

≤ b2√
e

a
(2β − 1/2)−1/2

= 2π
√

e√
2e

(2β − 1/2)−1/2

= π (β − 1/4)−1/2

≤ π

(
3

4β

)1/2
,

where in the last line we used β − 1/4 ≥ 3
4 β which holds as β ≥ 1. Thus,

E|X| ≥ 1
π(3/4)1/2

1√
β

≥ 1
3
√

β
,

as desired.

Since the density of the rescaled beta distribution is homogeneous w.r.t. γ, we have the
following result.
Corollary A.15. Fix β ≥ 1 and γ ∈ (0, 1]. Let X ∼ s-beta[−γ,γ] (β, β). Then,

E|X| ≥ γ

3
√

β
.
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B Additional Related Work
Necessity of memorization in learning. A parallel line of work investigated memo-
rization using the notion of label memorization in supervised setups. As per this definition,
a learner is said to memorize its training samples if it “overfits” at these points. Feldman
[Fel20] showed that, in some classification tasks, if the underlying distribution is long-tailed,
then a learner is forced to memorize many training labels. Cheng, Duchi, and Kuditipudi
[CDK22] showed this phenomenon also occurs in the setting of linear regression. While this
framework is suitable to study memorization in supervised tasks, the notion of “labels” in
SCO in not well-defined and thus calls for alternative definitions.
Another line of work studied memorization through the lens of information theoretic measures.
Brown, Bun, Feldman, Smith, and Talwar [BBFST21] used input-output mutual information
(IOMI) as a memorization metric and showed that IOMI can scale linearly with the training
sample’s entropy, indicating that a constant fraction of bits is memorized. In the context
of SCO in ℓ2 geometry, lower bounds on IOMI have been studied in [HRTSMK23; Liv24].
Specifically [Liv24] demonstrated that, for every accurate algorithm, its IOMI must scale
with dimension d. Our approach to the study of memorization is conceptually different since
we focus on the number of samples memorized as opposed to the number of bits. Nevertheless,
it can be shown using Lemma H.3 and [HNKRD20, Thm. 2.1] that the recall lower bounds
IOMI of an algorithm (provided that soundness parameter ξ is small enough, e.g., ξ = 1/n2).
However, because of the Lipschitzness of loss functions in ℓp SCO, we can use discretization
of Θ and design algorithms with IOMI that is significantly smaller that the entropy of the
training set, thus, memorization in the sense of [BBFST21] does not arise here.

Membership inference. Membership inference is an important practical problem
[HSRDTMPSNC08; SSSS17; CCNSTT22]. In these works, the focus is on devising strategies
for the tracer in modern machine learning settings, particularly neural networks. Our work
takes a more fundamental perspective, aiming to determine whether membership inference is
inherently unavoidable or simply a byproduct of specific training algorithms. An interesting
aspect of our results is that, for 1 < p ≤ 2, the optimal strategy for tracing depends only on
the loss function, which is in line with empirical studies [SDSOJ19].

Private Stochastic Convex Optimization. DP-SCO has been extensively studied in
ℓ2 geometry (see, for instance, [CMS11; BST14; BFTG19; FKT20]). For ℓp with p ∈ [1, 2),
the optimal DP excess risk was established in [AFKT21; BGN21]. The best known upper
bounds for DP-SCO in ℓp geometry for p > 2 are due to [BGN21; GLLST23]. In this setting,
there is a long-standing gap between upper and lower bounds, and the best known lower
bounds are due to [ABGMU22; LLL24], which our paper improves on.

B.1 Detailed comparison with [DSSUV15; BST14].

One might hope that existing traceability results (such as [DSSUV15]) and a clever reduction
to mean estimation (such as [BST14, Section 5.1]) might yield optimal results for SCO. Here,
we will demonstrate rigorously that merely combining results and techniques of [DSSUV15;
BST14] yields suboptimal results for the setup of SCO, even in the simple setting of ℓ2
geometry. [BST14] considers the following ℓ2 problem:

Θ = B2(1), Z =
{

± 1√
d

}d
, f(θ, Z) = −⟨θ, Z⟩.

To apply fingerprinting to establish traceability, we first need to posit a prior distribution
over the unknown distribution. [DSSUV15] does so by considering product distributions
over Z, and placing a uniform prior over the mean µ ∈ [−1/

√
d, 1/

√
d]d. We now show that

this (Bayesian) problem requires only O(1/α) samples to learn, and thus, tracing Ω(1/α2)
samples is clearly impossible. Consider the ERM learner θ̂. It is easy to see that θ̂ can be
written as:

θ̂ = µ̂

∥µ̂∥2
,
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where µ̂ is the empirical mean of the dataset, that is, µ̂ = 1
n

∑n
i=1 Zi. Similarly, the

population risk minimizer θ⋆ is µ/ ∥µ∥2. The expected excess risk of θ̂ is then:

E
〈

µ

∥µ∥2
, µ

〉
−
〈

µ̂

∥µ̂∥2
, µ

〉
= E

∥µ∥2 ∥µ̂∥2 − ⟨µ̂, µ⟩
∥µ̂∥2

≤(a) E

[
1
2 ∥µ∥2

2 + 1
2 ∥µ̂∥2

2 − ⟨µ̂, µ⟩
∥µ̂∥2

∧ 2
]

= 1
2E
[

∥µ − µ̂∥2
2

∥µ̂∥2
∧ 4
]

,

where in (a) we used the AM-GM inequality, and the fact that the expression on the preceding
line is always bounded by 2. The intuition behind the rest of the argument is that, due to
the uniform prior on µ, we have ∥µ∥ , ∥µ̂∥ ∈ Ω(1) with high probability. At the same time

E
[
∥µ − µ̂∥2

]
= E

1
dn

n∑
i=1

2µi(1 − µi) ≤ 1
2n

,

thus, expected risk will be on the order of O(1/n). To formalize this, note that E ∥µ∥2
2 = 1/3,

and ∥µ∥2 is a sum of d independent random variables bounded by 1/
√

d in absolute value.
Hoeffding’s inequality then yields that we have ∥µ∥2

2 ≥ 1/6 with very high probability.
Similarly, we can obtain ∥µ − µ̂∥2

2 ≤ 1/(2n) + 1/36 ≤ 1/12 for large enough n, with high
probability. Then, with high probability, event

E :=
{

∥µ̂∥ ≥ 1√
6

− 1√
12

≥ 0.1
}

holds Then, the excess risk is upper bounded by

E
〈

µ

∥µ∥2
, µ

〉
−
〈

µ̂

∥µ̂∥2
, µ

〉
≤ 1

2E
[

∥µ − µ̂∥2
2

∥µ̂∥2
∧ 4
]

= 1
2E
[
1(E)

(
∥µ − µ̂∥2

2
∥µ̂∥2

∧ 4
)]

+ 1
2E
[
1(Ec)

(
∥µ − µ̂∥2

2
∥µ̂∥2

∧ 4
)]

≤ 1
2E
[
10 ∥µ − µ̂∥2

2

]
+ 2 Pr(Ec)

∈ O(1/n),

as desired.

C Proofs from Section 3
C.1 Proof of Lemma 3.4

We first prove a slightly more general concentration statement to bound the supremum
in Lemma 3.4, which will be useful to reuse in other proofs. Let N (Θ, ∥·∥ , ε) denote the size
of the minimal cover of Θ in norm ∥·∥ at scale ε > 0. Then, the more general statement is
given below.
Lemma C.1. Fix n, d ∈ N. Suppose Θ ⊂ Rd is a subset of a unit ball in some norm ∥·∥.
Let ϕ : Θ × Z → R and D ∈ M1(Z) be such that, as Z ∼ D, {ϕ(θ, Z)} is a σ-subgaussian
process w.r.t. (Θ, ∥·∥) and for every θ ∈ Θ, E[ϕ(θ, Z)] = 0. Let (Z1, . . . , Zn) ∼ D⊗n. Then,
there exist a universal constant C > 0, such that for every t ≥ 0,

Pr

sup
θ∈Θ

√√√√ n∑
i=1

[ϕ(θ, Zi)]2 ≤ Cσ

(√
n +

∫ 1

0

√
log N (Θ; ∥·∥ , ε)dε + t

) ≥ 1 − 4 exp(−t2).
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Proof. Let Φθ denote the following random vector

Φθ =

ϕ(θ, Z1)
...

ϕ(θ, Zn)

 .

Then, observe that, the desired quantity is equal to

sup
θ∈Θ

√√√√ n∑
i=1

[ϕ(θ, Zi)]2 = sup
θ∈Θ

∥Φθ∥2 = sup
θ∈Θ,x∈Sn−1

⟨x, Φθ⟩ .

Then, ⟨x, Φθ⟩ can be seen to be a random process parameterized by a pair (x, θ). We will
show that it is, in fact, a subgaussian process. Indeed, note that, by triangle inequality,

∥⟨x, Φθ⟩ − ⟨x′, Φθ′⟩∥ψ2
≤ ∥⟨x − x′, Φθ⟩∥ψ2

+ ∥⟨x′, Φθ − Φθ′⟩∥ψ2
. (11)

Since Φiθ is σ-subgaussian for each i, we have by Lemma A.7,

∥⟨x − x′, Φθ⟩∥ψ2
≤ Cσ ∥x − x′∥2 ,

for some universal constant C > 0. Now, for every i, (Φθ − Φθ′)i is σ ∥θ − θ′∥-subgaussian.
Therefore, by Lemma A.7, we have

∥⟨x′, Φθ − Φθ′⟩∥ψ2
=
∥∥∥∥∥
n∑
i=1

(x′)i(Φiθ − Φiθ′)
∥∥∥∥∥
ψ2

≤ Cσ ∥θ − θ′∥ .

Combining the two inequalities, we get

∥⟨x, Φθ⟩ − ⟨x′, Φθ′⟩∥ψ2
≤ Cσ ∥θ − θ′∥ + Cσ ∥x − x′∥2

= 2Cσ · 1
2 [∥θ − θ′∥ + ∥x − x′∥2] .

Thus, ⟨x, Φθ⟩ is (2Cσ)-subgaussian process w.r.t the norm γ, defined as

γ((x, θ)) := 1
2 [∥x∥2 + ∥θ∥] .

Moreover, we can see that Θ × Sn−1 is a subset of a unit ball in γ. By definition of γ, we
have

N
(
Sn−1 × Θ; γ, ε

)
≤ N

(
Sn−1; ∥·∥2 , ε

)
· N (Θ; ∥·∥ , ε) . (12)

Then, using Proposition A.10, we have, for some constant K > 0, that with probability
1 − 4 exp(−t2)

sup
θ

∥Φθ∥2 ≤ Kσ

[∫ 1

0

√
log N (Θ × Sn−1; γ, ε)dε + t

]
≤ Kσ

[∫ 1

0

√
log N (Sn−1; ∥·∥2 , ε) + log N (Θ; ∥·∥ , ε)dε + t

]
≤(a) Kσ

[∫ 1

0

√
n log

(
1 + 4

ε

)
dε +

∫ 1

0

√
log N (Θ; ∥·∥ , ε)dε + t

]

≤ K ′σ

[√
n +

∫ 1

0

√
log N (Θ; ∥·∥ , ε)dε + t

]
,

as desired, where in (a) we used Example 5.8 from [Wai19], and K ′ > 0 is some other
universal constant.

Using Example 5.8 from [Wai19] once again to upper bound
√

log N (Θ; ∥·∥ , ε), we have the
proof of Lemma 3.4.
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Lemma 3.4. Fix n, d ∈ N. Suppose Θ ⊂ Rd is a subset of a unit ball in some norm ∥·∥.
Let ϕ : Θ × Z → R and D ∈ M1(Z) be such that, as Z ∼ D, {ϕ(θ, Z)} is a σ-subgaussian
process w.r.t. (Θ, ∥·∥). Let (Z1, . . . , Zn) ∼ D⊗n. Then, there is a constant C > 0, such that

Pr

sup
θ∈Θ

√√√√ n∑
i=1

[ϕ(θ, Zi)]2 ≤ Cσ
(√

n +
√

d + t
) ≥ 1 − 4 exp(−t2), ∀t ≥ 0.

Proof. From Example 5.8 in [Wai19], we have

log N (Θ; ∥·∥ , ε) ≤ d log
(

1 + 2
ε

)
.

Plugging this into the result of Lemma C.1, with probability at least 1 − 4 exp(−t2), we have

sup
θ∈Θ

√√√√ n∑
i=1

[ϕ(θ, Zi)]2 ≤ Cσ

(√
n +

∫ 1

0

√
log N (Θ; ∥·∥ , ε)dε + t

)

≤ Cσ

(
√

n +
∫ 1

0

√
d log

(
1 + 2

ε

)
dε + t

)
≤ C ′σ

(√
n +

√
d + t

)
,

for some other universal constant C ′ > 0.

C.2 Proof of Theorem 3.5

Theorem 3.5. Fix n ∈ N, d ∈ N, κ > 0 and α ∈ [0, 1]. Consider an arbitrary SCO problem
P = (Θ, Z, f). Let T = Trκ(P; n, α) be the subgaussian trace value of P. Then, for some
constant c > 0, every α-learner An is (ξ, m)-traceable with

ξ = exp(−cT 2), m = c

[
n2T 2

n + d
− 16κ2n

exp(n + d)

]
.

Proof. We set
λ := T

2
First, we show that the soundness condition holds. Since Z and θ̂ are independent, and
using the subgaussian nature of ϕ(θ̂, Z), we have by Lemma A.6

PrZ∼D

[
ϕ(θ̂, Z) ≥ λ

]
≤ exp

(
−cλ2) ≤ exp

(
−cT 2/4

)
,

where c > 0 is some constant. For recall, let’s define the set I as follows

I = {i ∈ [n] : ϕ(θ̂, Zi) ≥ λ}.

Using Lemma A.11, we have

E [|I|] = E
∣∣∣{i ∈ [n] : ϕ(θ̂, Zi) ≥ λ}

∣∣∣
≥ E


(∑n

i=1 ϕ(θ̂, Zi) − nλ
)2

+∑n
i=1 ϕ(θ̂, Zi)2



≥ E


(∑n

i=1 ϕ(θ̂, Zi) − nλ
)2

+

supθ ∥{ϕ(θ, Zi)}ni=1∥2
2

 ,
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where for every x ∈ R, we define (x)+ = max{x, 0}. Then, Lemma 3.4 tells us that, for
t :=

√
n + d, we have with probability 1 − 4 exp(−t2),

sup
θ∈Θ

∥∥∥∥[ϕ(θ̂, Z1), . . . , ϕ(θ̂, Zn)
]⊤
∥∥∥∥2

2
≤ C (n + d) ,

for some constant C > 0. Thus,

Pr
[

E :=
{

sup
θ∈Θ

∥∥∥∥[ϕ(θ̂, Z1), . . . , ϕ(θ̂, Zn)
]⊤
∥∥∥∥2

2
≤ C (n + d)

}]
≥ 1 − 4 exp(−t2).

This implies,

E|I| ≥ E


(∑n

i=1 ϕ(θ̂, Zi) − nλ
)2

+

supθ ∥{ϕ(θ, Zi)}ni=1∥2
2



≥ E


(∑n

i=1 ϕ(θ̂, Zi) − nλ
)2

+

supθ ∥{ϕ(θ, Zi)}ni=1∥2
2
1(E)



= E


(∑n

i=1 ϕ(θ̂, Zi) − nλ
)2

+
C (n + d) 1(E)



≥ E


(∑n

i=1 ϕ(θ̂, Zi) − nλ
)2

+
C (n + d)

− E


(∑n

i=1 ϕ(θ̂, Zi) − nλ
)2

+
C (n + d) 1(Ec)

 .

We know that, almost surely,

ϕ(θ̂, Z)2 ≤ κ2.

Thus, almost surely,

(
n∑
i=1

ϕ(θ̂, Zi) − nλ

)2

+

≤

(
n∑
i=1

(
ϕ(θ̂, Zi) − λ

)
+

)2

≤ n

n∑
i=1

ϕ(θ̂, Zi)2 ≤ κ2n2.

Thus,

E


(∑n

i=1 ϕ(θ̂, Zi) − nλ
)2

+
C (n + d) 1(Ec)

 ≤ Pr[Ec] · κ2n2

C(n + d)

≤ 4κ2n

C exp(n + d) .
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Hence,

E [|I|] ≥ E


(∑n

i=1 ϕ(θ̂, Zi) − nλ
)2

+
C (n + d)

− E


(∑n

i=1 ϕ(θ̂, Zi) − nλ
)2

+
C (n + d) 1(Ec)



≥ E


(∑n

i=1 ϕ(θ̂, Zi) − nλ
)2

+
C (n + d)

− 4κ2n

C exp(n + d)

≥(a)

(∑n
i=1 Eϕ(θ̂, Zi) − nλ

)2

+
C (n + d) − 4κ2n

C exp(n + d)

≥ n2T 2/4
C (n + d) − 4κ2n

C exp(n + d)

= c

[
n2T 2

n + d
− 16κ2n

exp(n + d)

]
,

where (a) follows by Jensen’s inequality and c = 1/4C.

C.3 Proof of Theorem 3.6

Theorem 3.6. There exists a universal constant c > 0, such that the following holds. Fix
p ∈ [1, ∞), n ∈ N, d ∈ N, α ∈ [0, 1], κ > 0 ε > 0, and δ ∈ [0, 1]. Consider an arbitrary SCO
problem P = (Θ, Z, f) in Rd. Let T = Trκ(P ; n, α) be the subgaussian trace value of problem
P. Then, for every (ε, δ)-DP α-learner An, we have exp(ε) − 1 ≥ c (T − 2δκ) .

Proof. Consider an arbitrary distribution D and a function ϕ s.t. {ϕ(θ, Z)}θ∈Θ is a 1-
subgaussian process w.r.t. (Θ, ∥·∥Θ) and |ϕ| ≤ κ almost surely. Consider a sample Sn =
(Z1, . . . , Zn) and let Z0 be a freshly sampled point; let S

(i)
n be a sample with Zi substituted

by Z0. Let θ̂ be a learner trained on Sn and θ̂(i) be a learner trained on S
(i)
n . Then, since

θ̂ is (ε, δ)-DP and noting that ϕ(θ, Z) is supported on [−κ, κ], we may apply Lemma A.1
of [FS17] and get∣∣∣Eϕ(θ̂, Zi) − Eϕ(θ̂(i), Zi)

∣∣∣ ≤ E
∣∣∣ϕ(θ̂(i), Zi)

∣∣∣ (exp(ε) − 1) + 2δκ.

By independence of θ̂ and Zi, we conclude that ϕ(θ̂, Zi) is 1-subgaussian random variable. It
is well-known that E|X| ≤ Cσ if X is σ-subgaussian for some constant C (see part (ii) of
Proposition 2.5.2 of [Ver18] for p = 1), thus the above gives∣∣∣Eϕ(θ̂, Zi)

∣∣∣ ≤ C(exp(ε) − 1) + 2δκ.

Then, for every D and ϕ we get that,

E
1
n

n∑
i=1

ϕ(θ̂, Zi) ≤ C(exp(ε) − 1) + 2δκ.

Thus,
T ≤ C(exp(ε) − 1) + 2δκ,

which, after rearranging, implies the desired result.

D Proofs of fingerprinting lemmas (Section 4)
D.1 Proof of Lemma 4.2

Lemma 4.2 (Sparse fingerprinting). Fix d, n ∈ N and let k ∈ [d]. For each µ ∈ [−k/d, k/d]d,
let Zk and Dµ,k be as in Definition 4.1 . Let π = s-beta[−k/d,k/d] (β, β)⊗d be a prior and set

ϕµ(θ, Z) :=
〈

θ,

(
Z − d

k
µ

)〉
supp(Z)

.
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Then, for every learning algorithm An : Zn → M1(Rd) with sample Sn = (Z1, . . . , Zn),

Eµ∼πESn∼D⊗n
µ,k

,θ̂∼An(Sn)

[
n∑
i=1

ϕµ(θ̂, Zi)
]

= 2βd

k
Eµ∼π

〈
µ,ESn∼D⊗n

µ,k
,θ̂∼An(Sn)[θ̂]

〉
.

Proof. For each j ∈ [d], let Ij := {i ∈ [n] : Zj
i ̸= 0} as the index of the training points such

that their j-th coordinate is non-zero. Then, we have

E

[
n∑
i=1

ϕµ(θ̂, Zi)
]

= E

 d∑
j=1

∑
i∈Ij

(
(θ̂)j

(
Zj
i − d

k
µj
)) (13)

=
d∑
j=1

E

∑
i∈Ij

(θ̂)j
(

Zj
i − d

k
µj
) . (14)

Then, define the following function

gj(µj) := E
[
(θ̂)j

∣∣∣∣{Ir}r∈[d], {Zm
i }m̸=j,i∈[n]

]
.

We claim

E

∑
i∈Ij

(θ̂)j ·
(

Zj
i − d

k
µj
) ∣∣∣∣{Ir}r∈[d], {Zm

i }m ̸=j,i∈[n]

 = k

d

(
1 −

(
d

k
µj
)2
)

d

dµj
gj(µj).

(15)
The proof is based on the following two observations: 1) conditioned on {Zm

i }m̸=j,i∈[n], θ̂ is
a function of {Zj

i }i∈[n], 2) conditioned on {Ir}r∈[d] the non-zero elements in {Zj
i }i∈[n] are

sampled i.i.d from {±1} with mean d
kµj . Then, based on these observations Equation (15)

follows as an straightforward application of [Ste16, Lemma 4.3.7].
Recall the definition of π and notice that π is a product measure. Let πj be the distribution
on the j-th coordinate. By the definition of the prior distribution, we can write

Eµj∼πj

[
k

d

(
1 −

(
d

k
µj
)2
)

d

dµj
gj(µj)

]

= 1
C

∫ + k
d

− k
d

k

d

(
1 −

(
d

k
v

)2
)

d

dv
gj(v)

(
1 −

(
d

k
v

)2
)β−1

dv

= 1
C

∫ + k
d

− k
d

k

d

d

dµj
gj(v)

(
1 −

(
d

k
v

)2
)β

dv

= 2
C

∫ + k
d

− k
d

d

k
βv

(
1 −

(
d

k
v

)2
)β−1

gj(v)dv

= 2β
d

k
Eµj∼πj

[
gj(µj)µj

]
.

(16)
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Therefore, we have

Eµ∼πESn∼D⊗n
µ,k

,θ̂∼An(Sn)

[
n∑
i=1

ϕµ(θ̂, Zi)
]

=
d∑
j=1

E

∑
i∈Ij

(θ̂)j
(

Zj
i − d

k
µj
)

=
d∑
j=1

E

E
∑
i∈Ij

(θ̂)j
(

Zj
i − d

k
µj
) ∣∣∣∣{Ir}r∈[d], {Zm

i }m̸=j,i∈[n]


= 2β

d

k

d∑
j=1

E
[
gj(µj) · µj

]
,

where the last step follow from Equations (15) and (16). Then, notice that

E
[
gj(µj) · µj

]
= E

[
E
[
(θ̂)j · µj

∣∣∣∣{Ir}r∈[d], {Zm
i }m ̸=j,i∈[n]

]]
= E

[
(θ̂)j · µj

]
.

Therefore, by the definition of inner product in Rd, we have

2β
d

k

d∑
j=1

E
[
gj(µj) · µj

]
= 2β

d

k
E
[〈

θ̂, µ
〉]

,

as was to be shown.

D.2 Fingerprinting for ℓ1 setup.

Additionally, to prove Theorem 2.6, we will need the following fingerprinting lemma. It can
be seen as a generalization of beta-fingerprinting lemma in [SU17] using the scaling matrix
technique of [KLSU18].
Lemma D.1 (Fingerprinting lemma with a scaling matrix). Fix d ∈ N. Let Z = {±1}d
and let β > 0 be arbitrary. Consider arbitrary 0 < γ ≤ 1. For every µ ∈ [−γ, γ]d,
let Dµ be the product distribution on Z with mean µ, i.e., for every z ∈ Z, we have
Dµ =

∏d
k=1

(
1+zkµk

2

)
let Λµ be a diagonal matrix of size d where the i-th diagonal element

is given by Λiiµ = 1−(µi/γ)2

1−(µi)2 , and let ϕµ(θ, z) = ⟨θ, Λµ(z − µ)⟩. Let π = s-beta[−γ,γ] (β, β)⊗d

be a prior. Then, for every algorithm An : Zn → M1(Rd), we have

Eµ∼πESn∼D⊗n
µ ,θ̂∼An(Sn)

∑
Z∈Sn

ϕµ(θ̂, Z) = 2β

γ2 Eµ∼π

〈
µ,ESn∼D⊗n

µ ,θ̂∼An(Sn)[θ̂]
〉

.

This fingerprinting lemma is handy for the following reason. To ensure the problem is hard
to learn, entries of µ typically need to inversely scale with α. To achieve this, one can select
small γ in the above to shrink the beta-prior to a smaller scale, while simultaneously having
the freedom to set β to any value. In particular, this allows us to choose β ∈ Θ(log(d)) in
the proof of Theorem 2.6 to leverage the anti-concentration result of [SU17, Prop. 5].
Before we proceed with the proof, we state the necessary lemmata. Throughout this section,
for a real number p ∈ [−1, 1], we will write X ∼ p to denote the fact that X is a random
variable on {±1} with mean p. The following is a classical fingerprinting result.
Lemma D.2 (Lemma 5 of [DSSUV15]). Let f : {±1}n → R be arbitrary. Define g : [−1, 1] →
R by

g(p) = EX∼p⊗n [f(X)].
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Then,

EX∼p⊗n

f(X)
∑
i∈[n]

(Xi − p)

 = (1 − p2)g′(p).

Armed with the above result, we proceed to the proof of Lemma D.1. We will first prove a
per-coordinate version of Lemma D.1. We make a note that the proofs combine techniques for
beta-fingerprinting results of [SU17] and the scaling matrix technique of [KLSU19; ADHLR24].

Lemma D.3 (Per-coordinate version of Lemma D.1). Let f : {±1}n → R be arbitrary. Let
π = s-beta[−γ,γ] (β, β) be a prior distribution. Then,

Ep∼πEX∼p⊗n

[
1 − (p/γ)2

1 − p2 f(X)
n∑
i=1

(Xi − p)
]

= 2β

γ2 Ep∼π
[
p · EX∼p⊗nf(X)

]
.

Proof. Let
g(p) = EX∼p⊗n [f(X)].

Then, by Lemma D.2, we have for every p ∈ [−1, 1],

EX∼p⊗n

1 − (p/γ)2

1 − p2 f(X)
∑
i∈[n]

(Xi − p)

 =
(

1 −
(

p

γ

)2
)

g′(p).

Recalling the definition of scaled symmetric beta distribution from Definition A.13, we have

Ep∼πEX∼p⊗n

1 − (p/γ)2

1 − p2 f(X)
∑
i∈[n]

(Xi − p)


= Ep∼π

[(
1 −

(
p

γ

)2
)

g′(p)
]

= 1
γB(β)

∫ γ

−γ

(
1 −

(
p

γ

)2
)β−1

·

(
1 −

(
p

γ

)2
)

g′(p)dp

= 1
γB(β)

∫ γ

−γ

(
1 −

(
p

γ

)2
)β

g′(p)dp

=(a) 1
γB(β)

(1 −
(

p

γ

)2
)β

g(p)

∣∣∣∣∣∣
γ

−γ

−
∫ γ

−γ

(1 −
(

p

γ

)2
)β′

g(p)dp


= 1

γB(β)

∫ γ

−γ

(
1 −

(
p

γ

)2
)β−1

· 2βp

γ2 g(p)dp


= 2β

γ2 Ep∼π [p · g(p)] ,

where in (a) we used integration by parts. This concludes the proof.

Applying the above results to each coordinate and summing the equalities gives Lemma D.1.

Lemma D.1 (Fingerprinting lemma with a scaling matrix). Fix d ∈ N. Let Z = {±1}d
and let β > 0 be arbitrary. Consider arbitrary 0 < γ ≤ 1. For every µ ∈ [−γ, γ]d,
let Dµ be the product distribution on Z with mean µ, i.e., for every z ∈ Z, we have
Dµ =

∏d
k=1

(
1+zkµk

2

)
let Λµ be a diagonal matrix of size d where the i-th diagonal element
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is given by Λiiµ = 1−(µi/γ)2

1−(µi)2 , and let ϕµ(θ, z) = ⟨θ, Λµ(z − µ)⟩. Let π = s-beta[−γ,γ] (β, β)⊗d

be a prior. Then, for every algorithm An : Zn → M1(Rd), we have

Eµ∼πESn∼D⊗n
µ ,θ̂∼An(Sn)

∑
Z∈Sn

ϕµ(θ̂, Z) = 2β

γ2 Eµ∼π

〈
µ,ESn∼D⊗n

µ ,θ̂∼An(Sn)[θ̂]
〉

.

Proof. For a sample Sn = (Z1, . . . , Zn) and j ∈ [j], we will use Sjn ∈ Rn to denote a vector
(Zj

1 , . . . , Zj
n) of jth coordinates. For each coordinate j ∈ [d], let fj : {±1}n → R the function

such that
fj(Sjn) = Eµ∼πESn∼D⊗n

µ ,θ̂∼An(Sn)

[
θ̂i | Sjn

]
In other words, fj(X) is the expected value of θj , given that jth coordinates of samples in
Sn are given by X. Applying the result of Lemma D.1 to fj , we have

Eµj∼πjESj
n∼(µj)⊗n

[
Λjjµ · fj(Sjn)

n∑
i=1

(Zj
i − µj)

]

= Eµj∼πjESj
n∼(µj)⊗n

[
1 − (µj/γ)2

1 − (µj)2 fj(Sjn)
n∑
i=1

(Zj
i − µj)

]

= 2β

γ2 Eµj∼πj

[
µj · ESj

n∼(µj)⊗nfj(Sjn)
]

.

By the law of total expectation, we get

Eµ∼πESn∼D⊗n
µ ,θ̂∼An(Sn)

[
Λjjµ · θ̂j

n∑
i=1

(Zj
i − µj)

]
= 2β

γ2 Eµ∼π

[
µj · ESn∼D⊗n

µ ,θ̂∼An(Sn)θ̂
j
]

.

Finally, summing the above over all coordinates j ∈ [d], we obtain

Eµ∼πESn∼D⊗n
µ ,θ̂∼An(Sn)

[〈
Λµθ̂,

n∑
i=1

(Zi − µ)
〉]

= 2β

γ2 Eµ∼π

[〈
µ,ESn∼D⊗n

µ ,θ̂∼An(Sn)θ̂
〉]

,

as desired.

E Hard problem constructions and proofs of subgaussian trace
value lower bounds

E.1 Proofs for ℓp-geometries (Theorem 5.1)

First, recall here the construction of the hard problems Pk,p in Equation (7), parameterized
by k ∈ [d]

Θ = B∞(d−1/p), Z = {z ∈ {0, ±1}d : ∥z∥0 = k}, f(θ, z) = −k−1/q⟨θ, z⟩. (Pk,p)
First, we show in the simple proposition below that α-learners for linear problems must
agree with the distribution mean.
Proposition E.1. Let An be an α-learner for Pk,p. Let D ∈ M1(Z) be a distribution with
mean µ = EZ∼D [Z]. Then, we have

ESn∼D⊗n,θ̂∼An(Sn)

[〈
µ, θ̂
〉]

≥ d−1/p ∥µ∥1 − k1/qα.

Proof. Since An is an α-learner, we have
α ≥ E

[
FD(θ̂)

]
− inf
θ∈Θ

FD(θ)

= ESn∼D⊗n,θ̂∼An(Sn)EZ∼D

[
f(θ̂, Z)

]
− inf
θ∈Θ

EZ∼Df(θ, Z)

= k−1/q
[
sup
θ∈Θ

EZ∼D ⟨θ, Z⟩ − ESn∼D⊗n,θ̂∼An(Sn)EZ∼D

〈
θ̂, Z

〉]
= k−1/q

[
sup
θ∈Θ

⟨θ, µ⟩ − ESn∼D⊗n,θ̂∼An(Sn)

〈
θ̂, µ
〉]

,
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which, after rearranging, becomes

ESn∼D⊗n,θ̂∼An(Sn)

[〈
µ, θ̂
〉]

≥ sup
θ∈Θ

⟨µ, θ⟩ − k1/q · α

= d−1/p ∥µ∥1 − k1/qα,

where in the last transition we used duality of ℓ∞ and ℓ1 norms and the fact that Θ =
B∞(d−1/p). This concludes the proof.

In the next lemma, we show that every α-learner for Pk,p needs to have a large correlation
with the training samples in order to achieve small excess risk. The proof is an application
of Lemma 4.2 combined with Proposition E.1.
Lemma E.2. Let α ≤ 1/6, and suppose k ∈ [d] is such that k ≥ (6α)pd. Then, for every
α-learner An for Pk,p, there exists µ ∈ [−k/d, k/d]d and distribution D ∈ M1(Zk) with
mean µ such that the following holds: let

ϕ(θ, Z) := d1/p
√

k

〈
θ,

(
Z − d

k
µ

)〉
supp(Z)

,

then,

ESn∼D⊗n,θ̂∼An(Sn)

[
n∑
i=1

ϕ(θ̂, Zi)
]

≥ d1−1/p

18k1/2−1/pα

Proof. Let

β =
(

k1/p

6d1/pα

)2

≥ 1,

and π = s-beta[−k/d,k/d] (β, β). Then, using Corollary A.15, we have
Eµ∼π[∥µ∥1] = dEµ∼π|µ1|

≥ d · k/d

3
√

β

= k

3(k1/p/6d1/pα)
= 2αd1/pk1−1/p

= 2αd1/pk1/q.

Then, using Lemma 4.2 we have

Eµ∼πESn∼D⊗n
µ,k

n∑
i=1

〈
θ̂,

(
Zi − d

k
µ

)
supp(Zi)

〉
= 2dβ

k
Eµ∼πESn∼D⊗n

µ,k
,θ̂∼An(Sn)

[〈
µ, θ̂
〉]

≥(a) 2dβ

k
Eµ∼π

[
d−1/p ∥µ∥1 − k1/qα

]
≥(b) 2dβ

k

[
d−1/p · 2αd1/pk1/q − k1/qα

]
= 2d

k
·
(

k1/p

6d1/pα

)2

· k1/qα

= 2d

k
·
(

k1/p

6d1/pα

)2

· k1/qα

= d1−2/pk1/p

18α
.

Since the above holds in expectation over draws of µ, there exists at least one value of µ for
which the above holds; let D = Dk,µ. Then, letting

ϕ(θ, Z) := d1/p
√

k

〈
θ,

(
Z − d

k
µ

)〉
supp(Z)

,

31



we obtain

ESn∼D⊗n,θ̂∼An(Sn)

[
n∑
i=1

ϕ(θ̂, Zi)
]

= Eµ∼πESn∼D⊗n
µ,k

n∑
i=1

d1/p
√

k

〈
θ̂,

(
Zi − d

k
µ

)
supp(Zi)

〉

≥ d1−1/p

18k1/2−1/pα
,

as desired.

We now argue that the pair (ϕ, D) from the lemma above (with ϕ scaled by some con-
stant) constitutes a valid subgaussian tracer. In particular, the lemma below shows that
{ϕ(θ, Z)}θ∈Θ induces a O(1)-subgaussian process w.r.t. (Θ, ∥·∥Θ) norm.
Lemma E.3. Fix d ∈ N. Let µ ∈ [−k/d, k/d]d be arbitrary. Let ϕ : Θ × Zk → R be as
in Lemma E.2. Let Dµ,k be the data distribution from Definition 4.1 for some µ, and consider
Z ∼ Dµ,k. Then, {ϕ(θ, Z)}θ∈Θ is a C-subg process w.r.t. to (Θ, ∥·∥Θ) for some universal
constant C > 0.

Proof. Let J ∈
([d]
k

)
be an arbitrary coordinate subset of size k, and, recalling Definition 4.1,

let ZJ be a random variable with PMF given by Pµ,k,J . Then, Z is a uniform mixture of
{ZJ}

J∈([d]
k ).

Fix J ∈
([d]
k

)
, and let θ1, θ2 ∈ Θ be two arbitrary points. First, we upper bound a subgaussian

norm of ϕ(θ1, ZJ) − ϕ(θ2, ZJ). We have

∥ϕ(θ1, ZJ) − ϕ(θ2, ZJ)∥ψ2
= d1/p

√
k

∥⟨θ1 − θ2, ZJ⟩J∥
ψ2

= d1/p
√

k

∥∥∥∥∥∥
∑
j∈J

(θj1 − θj2)Zj
J

∥∥∥∥∥∥
ψ2

≤(a) d1/p
√

k

√
C1
∑
j∈J

∥∥∥(θj1 − θj2)Zj
J

∥∥∥2

ψ2

≤(b) d1/p
√

k

√
C1
∑
j∈J

C2|θj1 − θj2|2

= d1/p
√

k
·
√

C1C2
√

k ∥θ1 − θ2∥∞

=(c)
√

C1C2 ∥θ1 − θ2∥Θ ,

where C1,2 > 0 are universal constants, in (a) we apply Lemma A.7, in (b) we apply Propo-
sition A.9, and in (c) we use that, since Θ = B∞(d−1/p), we have ∥·∥Θ = d1/p ∥·∥∞. Thus,
letting C =

√
C1C2, we have

∥ϕ(θ1, ZJ) − ϕ(θ2, ZJ)∥ψ2
≤ C ∥θ1 − θ2∥Θ .

Now, note that ϕ(θ1, Z) − ϕ(θ2, Z) has the same distribution as a uniform mixture of
{ϕ(θ1, ZJ) − ϕ(θ2, ZJ)}

J∈([d]
k ). Then, by Proposition A.8, we also have

∥ϕ(θ1, Z) − ϕ(θ2, Z)∥ψ2
≤ C ∥θ1 − θ2∥Θ ,

which satisfies the first condition in Definition 3.1. Finally, by plugging θ2 = 0 into the
above, we have

∥ϕ(θ1, Z)∥ψ2
≤ C ∥θ1∥Θ ≤ C,

which satisfies the second condition in Definition 3.1. Thus, {ϕ(θ, Z)}θ∈Θ is a C-subgaussian
process w.r.t. (Θ, ∥·∥Θ), as desired.

Finally, we lower bound the subgaussian trace value of Pk,p.
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Lemma E.4. Let α ≤ 1/6 and d ∈ N be arbitrary, and let k ∈ [d] be such that k ≤ (6α)pd.
Let Pk,p be as in Equation (7). Then, the following subgaussian trace value lower bounds
hold for every p ∈ [1, ∞) and some κ ≤ c1

√
d,

Trκ(Pk,p; n, α) ≥ c2
d1−1/p

k1/2−1/pnα

where c1,2 > 0 are universal constants.

Proof. Let C > 0 be the constant from Lemma E.3, and ϕ be as in Lemma E.2. Then,
{ϕ(θ, Z)/C}θ∈Θ is a 1-subgaussian process w.r.t. (Θ, ∥·∥Θ). Moreover, ϕ(θ, Z)/C ≤

√
k/C ≤√

d/C. Then, letting κ =
√

d/C and using Lemma E.2, the subgaussian trace value of Pk,p
can be lower bounded by

Trκ(Pk,p; n, α) ≥ 1
C
ESn∼D⊗n,θ̂∼An(Sn)

1
n

[
n∑
i=1

ϕ(θ̂, Zi)
]

≥ d1−1/p

18C · k1/2−1/pnα
,

as desired.

Now we are ready to prove Theorem 5.1.
Theorem 5.1. Let Pk,p be the family of problems described in Equation (7). There exist
universal constants c1, c2 > 0 such that, for all α ∈ (0, 1/6] and d ∈ N, the following
subgaussian trace value lower bounds hold for all p ∈ [1, ∞) and κ ≤ c1

√
d:

(i) For p ≤ 2 and k = d, we have Trκ(Pk,p; n, α) ≥ c2
√
d

nα .

(ii) For p ≥ 2 and k = (6α)pd ∨ 1, we have Trκ(Pk,p; n, α) ≥ c2

[ √
d

n(6α)p/2 ∧ d1−1/p

nα

]
.

Proof. The theorem is a direct consequence of Lemma E.4. For p ≤ 2, plug in k = d into the
statement of Lemma E.4. We obtain

Trκ(Pk,p; n, α) ≥ c2
d1−1/p

k1/2−1/pnα
= c2

√
d

nα
.

For p ≥ 2, plug in k = (6α)p ∨ 1. We obtain,

Trκ(Pk,p; n, α) ≥ c2
d1−1/p

k1/2−1/pnα

= c2

[
d1−1/p

nα
∧

√
d

(6α)p(1/2−1/p)nα

]

= c2

[
d1−1/p

nα
∧

√
d

(6α)p/2n

]
,

as desired.

E.2 Proofs for ℓ1-geometry

E.2.1 Intuition

Refinement for p = 1. While the above construction also yields a traceability result for
p = 1, it is suboptimal for the following simple reason: for k = d, the problem in Equation (7)
only requires Θ(1/α2) samples to learn, thus, it is impossible to trace out Ω(log(d)/α2)
samples. On the other hand, the problem in Equation (6) requires Θ(log(d)/α2) samples
to learn but is not traceable. The intuition we follow here is to modify the construction
in Equation (7) to make Θ “look” more like an ℓ1-ball to drive up the sample complexity
while still avoiding the counterexample with an ERM learner from the beginning of the
section. In particular, we consider the following ℓ1-problem,

Θ = B1(1) ∩ B∞(1/s), Z = {±1}d, f(θ, z) = −⟨z, θ⟩, (17)
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for a suitably chosen s ∈ [d]. Note that, if we choose s ≫ 1, Θ above is a polytope with
much more vertices (2s

(
d
s

)
) than an ℓ1 ball (2d), which would intuitively force a learner

like an ERM to reveal more information about the training sample. On a technical level,
selecting large s improves the subgaussian constant of a tracer; however, selecting s that
is too large shrinks the diameter of the set, and thus, the problem becomes easier to learn.
We must trade off these two aspects, and carefully set the value of s. As it turns out, the
optimal choice is s ∝ d1−c for an arbitrary small c > 0 in order to establish Theorem 2.6.
The remainder of the proof is rather technical and hence is deferred to Appendix F.2.

E.2.2 Formal Proof

For technical reasons, we will need the following refinement of Lemma 3.4 for the special
case when the function ϕ is convex and Θ is a polytope. In the proof, we use Lemma C.1.
Lemma E.5. Fix n, d ∈ N. Suppose Θ ⊂ Rd is (i) a subset of a unit ball in some norm ∥·∥,
and (ii) Θ is a polytope with N vertices. Let ϕ : Θ × Z → R be a measurable function that is
convex in its first argument. Let D ∈ M1(Z) be such that ϕ(θ, Z) is a σ-subgaussian process
w.r.t. (Θ, ∥·∥).Let (Z1, . . . , Zn) ∼ D⊗n. Then, for every t ≥ 0,

Pr

sup
θ∈Θ

√√√√ n∑
i=1

[ϕ(θ, Zi)]2 ≤ Cσ
[√

n +
√

log(N) + t
] ≥ 1 − 2 exp(−t2)

where C > 0 is some universal constant.

Proof. Similarly to the proof of Lemma C.1, let Φθ denote the following random vector

Φθ =

ϕ(θ, Z1)
...

ϕ(θ, Zn)

 .

Then, observe that, the desired quantity is equal to

sup
θ∈Θ

√√√√ n∑
i=1

[ϕ(θ, Zi)]2 = sup
θ∈Θ

∥Φθ∥2 = sup
θ∈Θ,x∈Sn−1

⟨x, Φθ⟩ .

Let V be the set of vertices of Θ with |V | ≤ N . Since ϕ is convex in its first argument, the
supremum above is attained in one of the vertices of Θ. Thus,

sup
θ∈Θ

√√√√ n∑
i=1

[ϕ(θ, Zi)]2 = sup
θ∈V,x∈Sn−1

⟨x, Φθ⟩ = sup
θ∈V

√√√√ n∑
i=1

[ϕ(θ, Zi)]2.

Thus, we may apply Lemma C.1 to V instead of Θ. Trivially, we have
N (V, ∥·∥ , ε) ≤ |V | = N.

Then, we have with probability 1 − 2 exp(−t2),

sup
θ∈Θ

√√√√ n∑
i=1

[ϕ(θ, Zi)]2 ≤ Cσ

(√
n +

∫ 1

0

√
log N (Θ; ∥·∥ , ε)dε + t

)
≤ Cσ

(√
n +

√
log(N) + t

)
,

as desired.

Intuitively, in the special case when Θ is a polytope, the log-number of vertices becomes
“effective dimension” instead of d, due to the fact that ϕ satisfies the convexity requirement.
In some cases, we can have d ≫ log(N), in which the above gives a tighter concentration.
In particular, this is a case in our construction for ℓ1 geometry in Equation (17). With the
above result, we can also establish the following refinement of Theorem 3.5.
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Theorem E.6. Fix n ∈ N, d ∈ N, κ > 0 and α ∈ [0, 1]. Consider an arbitrary SCO problem
P = (Θ, Z, f), and suppose Θ is a polytope with N > 0 vertices. Let T be defined as,

T := Trκ(P; n, α).

Then, for some constant c > 0, every α-learner An is (ξ, m)-traceable with

ξ = exp(−cT 2), m = c

[
n2T 2

n + log(N) − 16κ2n

exp(n + log(N))

]
.

Proof. The proof is identical to Theorem 3.5, but using Lemma E.5 instead of Lemma 3.4,
and thus, replacing d with log(N) everywhere. We omit the details.

Now, recall the construction from Equation (17),

Z = {±1}d, Θ = B1(1) ∩ B∞(1/s), f(θ, Z) = − ⟨θ, Z⟩ . (18)

It is easy to see that f(·, Z) above is 1-Lipschitz w.r.t. ℓ1 as Z ⊂ B∞(1). We have the
following claim.
Lemma E.7. Let Ps be as in (18), n ∈ N and 1/8 > α > 0. Then,

Trκ(Ps; n, α) ≥
c
√

s log
(

d
16(s∨14)

)
nα

,

where κ ≤ c′√s for some constants c, c′ > 0

Proof. We aim to use Lemma D.1 to characterize the subgaussian trace value. Consider the
construction of the prior in Lemma D.1 with the following parameters: γ = 8α ≤ 1 and
β = 1 + 1

2 log
(

d
16(s∨14)

)
. Then, by combining Lemma D.1 with and Proposition E.1, there

exist a prior π and a family {Λµ} of diagonal matrices with non-negative diagonal entries
bounded by 1 from above, such that

Eµ∼πEZ∼µ⊗n

〈
θ̂,

n∑
i=1

Λµ(Zi − µ)
〉

= 2β

γ2 Eµ∼π

[
sup
θ

⟨θ, µ⟩ − α

]

≥ 2β

γ2 Eµ∼π

1
s

sup
I⊂[d]
|I|=s

∑
i∈I

|µi| − α


≥(a) β

γ2

(γ

2 − 2α
)

≥
log
(

d
16(s∨14)

)
32α2 · 2α

≥
log
(

d
16(s∨14)

)
16α

,

where in (a) we used Proposition 5 of [SU17]. Since this holds in expectation over µ, it holds
for at least one choice of µ. Let µ be that value. Now, let ϕ(θ, Z) = C−1/2√

s
〈

θ̂, Λ(Z − µ)
〉

,
where C is the absolute constant from Lemma A.7. For all θ, θ′ ∈ Θ, we have

∥ϕ(θ, Z) − ϕ(θ′, Z)∥ψ2
≤ C−1/2√

s ∥⟨θ′ − θ, Λ (Z − µ)⟩∥ψ2

≤(a) C−1/2√
s ∥θ′ − θ∥2 · C1/2 max

i

∥∥Λi
(
Zi − µi

)∥∥
ψ2

≤
√

s ∥θ′ − θ∥2

≤(b) ∥θ′ − θ∥Θ ,
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where in (a) we apply Lemma A.7, and in (b) we use that for every θ ∈ Θ, we have
∥θ∥2 ≤ 1/

√
s, thus,

√
s ∥·∥2 ≤ ∥·∥Θ. Plugging θ′ = 0 gives

∥ϕ(θ, Z)∥ψ2
≤ ∥θ∥Θ ≤ 1.

Thus, {ϕ(θ, Z)}θ∈Θ is a 1-subg process w.r.t. (Θ, ∥·∥Θ). Finally, we have

|ϕ(θ, Z)| ≤ C−1/2√
s

Therefore, setting κ = C−1/2√
s and noting that ϕ is linear (and therefore convex) in its first

argument, we have

Trκ(Ps; n, α) ≥ Eµ∼πEZ∼µ⊗n

n∑
i=1

1
n

ϕ(θ, Zi)

≥
C−1/2√

s log
(

d
16(s∨14)

)
nα

,

as desired.

F Proofs of the main results (Section 2.2)
F.1 Proof of Theorem 2.5

Theorem 2.5. There exists a universal constant c > 0 such that, for all p ∈ [1, 2), if d, n,
ξ ∈ (0, 1/e), and α > 0 are such that

c√
n

≤ α ≤ min
{

c ·

√
d

n2 log(1/ξ) ,
1
6

}
, (3)

then there exist an ℓp SCO problem that every α-learner is (ξ, m)-traceable with m ∈ Ω
(
α−2) .

Proof. We begin by noting that the interval for α in Equation (3) is non-empty only if

c√
n

≤ min
{

c ·

√
d

n2 log(1/ξ) ,
1
6

}
≤ c ·

√
d

n2 ,

where we used ξ < 1/e in the last transition. Via straightforward algebra, the above implies
d ≥ n, thus, we may without loss of generality assume d ≥ n in the remainder of the proof.
Let Pk,p be as in Equation (7), and set k as in Theorem 5.1. Then, Theorem 5.1 gives the
following lower bound on the subgaussian trace value in this case:

T := Trκ(Pk,p; n, α) ≥ c2

√
d

nα
≥ c2

c

√
log
(

1
ξ

)
,

for some κ ≤ c1
√

d. Thus, provided c is small enough (c ≤ c2), by Theorem 3.5, every
α-learner is (ξ, m)-traceable with m satisfying, for some universal constant c′ > 0,

m ≥ c′
[

n2T 2

n + d
− 16κ2n

exp(n + d)

]
≥ c′

[
c2

2d

n + d
· 1

α2 − 16c2
1dn

exp(n + d)

]
≥ c′

[
c2

2
2 · 1

α2 − 16c2
1d2

exp(d)

]
, (19)

where we used d ≥ n in the last inequality. Then, we have

m ∈ Ω
(

1
α2

)
,

as desired.
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F.2 Proof of Theorem 2.6

Then, the proof of Theorem 2.6 follows.
Theorem 2.6. There exists a universal constant c > 0 such that, if d is large enough and n,
ξ ∈ (0, 1/e), and α > 0 are such that

c ·
√

log(d)
n

≤ α ≤ min
{

c · d0.49

n
√

log(1/ξ)
,

1
8

}
, then (4)

there exists a ℓ1 SCO problem that every α-learner is (ξ, m)-traceable with m ∈ Ω
(
log(d)/α2) .

Proof. We begin by noting that the interval for α in Equation (4) is non-empty only if

c ·
√

log(d)
n

≤ c · d0.49

n
√

log(1/ξ)
≤ c · d0.49

n

where we used ξ < 1/e and c < 1/6 in the last transition. Via straightforward algebra, the
above implies d0.98/ log(d) ≥ n, thus, we may without loss of generality assume d0.98/ log(d) ≥
n in the remainder of the proof.
Let s = d0.98. Note that, letting V be the set of vertices of the polytope Θ = B1(1)∩B∞(1/s),
we have

V =
{

z ∈
{

0, ±1
s

}
: ∥z∥0 = s

}
.

The proof of this fact is straightforward and it is based on showing that every point in Θ
can be written as a convex combination of the points in V . Thus,

log |V | = log
(

2s
(

d

s

))
≤ s log(de/s) + s = s log(de2/s).

By the choice of s and using Lemma E.7, we have, for some κ ≤ c1
√

s,

T := Trκ(Ps; n, α) ≥ c2
d0.49 log

(
d

16(s∨14)

)
nα

≥(a) c2
d0.49 log

(
d

16s
)

nα

= c2
d0.49 log

(
d0.02

16

)
nα

= c2
d0.49 (0.02 · log (d) − log(16))

nα

≥(b) c2
d0.49 · 0.01 · log (d)

nα

≥(c) √log(1/ξ),
where (a) and (b) hold provided d (and thus s) is large enough, and (c) holds provided c > 0
in Equation (4) is small enough. By Theorem E.6, every α-learner is (ξ, m)-traceable, where

m ≥ c′
[

n2T 2

n + log |V |
− 16κ2n

exp(n + log |V |)

]
≥ c′

[
0.012c2

2 · d0.98 log(d)
n + log |V |

· log(d)
α2 − 16c2

1 · sn

exp(n + log |V |)

]
.

Recall that d0.98 ≥ n log(d) ≥ n (for d ≥ 3). Moreover, log |V | ≤ s log(de2/s) =
d0.98 log(e2d0.02) ≤ Cd0.98 log(d), for some universal C > 0. Thus, for d large enough,

m ∈ Ω
(

log(d)
α2

)
,

as desired.
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F.3 Proof of Theorem 2.7

Theorem 2.7. There exists a universal constant c > 0 such that, for all p ∈ [2, ∞), if d, n,
ξ ∈ (0, 1/e), and α > 0 are such that

1
6 · min

{
1

n1/p ,
d

1
2 − 1

p

√
n

}
≤ α ≤ min

{
c ·
(

d

n2 log(1/ξ)

)1/p
,

1
6

}
, then (5)

there exist an ℓp SCO problem such that every α-learner is (ξ, m)-traceable with m ∈
Ω (1/(6α)p) .

Proof. Throughout, we assume c is a sufficiently small constant. Assume c < 1/6. Then, we
begin by noting that the interval for α in Equation (5) is non-empty only if

1
6 · 1

n1/p ≤ c ·
(

d

n2 log(1/ξ)

)1/p
≤ 1

6 ·
(

d

n2

)1/p
,

where we used ξ < 1/e and c < 1/6 in the last transition. Via straightforward algebra, the
above implies d ≥ n, thus, we may without loss of generality assume d ≥ n in the remainder
of the proof.
Let Pk,p be as in Equation (7), and set k as in Theorem 5.1. Then, Theorem 5.1 gives the
following lower bound on the subgaussian trace value

T := Trκ(Pk,p; n, α) ≥ c2

[
d1−1/p

nα
∧

√
d

(6α)p/2n

]
(20)

for some κ ≤ c1
√

d. Note that, from (5), we have

α ≥ 1
6 · 1

n1/p ≥ 1
6 · 1

d1/p

Now, note that, the minimum in Equation (20) is achieved in the second term iff α ≥ d−1/p/6.
Then, the lower bound on the subgaussian trace value becomes

T ≥ c2

√
d

(6α)p/2n
≥ c2

(6c)p/2 ·
√

log(1/ξ) ≥
√

log(1/ξ)

where the second transition follows from Equation (5) and the third transition holds whenever
c > 0 is small enough (e.g., when c ≤ c

2/p
2 /6). Then, by Theorem 3.5 every α-learner is

(ξ, m)-traceable with m satisfying, for some universal constant c′ > 0,

m ≥ c′
[

n2T 2

n + d
− 16κ2n

exp(n + d)

]
≥ c′

[
c2

2d

n + d
· 1

(6α)p − 16c2
1dn

exp(n + d)

]
≥ c′

[
c2

2
2 · 1

(6α)p − 16c2
1d2

exp(d)

]
, (21)

where we used d ≥ n in the last transition. Thus,

m ∈ Ω
(

1
(6α)p

)
,

as desired.

F.4 Proof of Theorem 2.8

Theorem 2.8. Let p ∈ [2, ∞). There exist a universal constant c > 0 and an ℓp SCO
problem P = (Θ, Z, f) such that every (ε, δ)-DP learner of P with ε ≤ 1 and δ ≤ c/n
satisfies,

α ≥ c · min
{(

d

ε2n2

) 1
p

,
d1−1/p

εn
, 1
}

.
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Proof. By Theorem 5.1, for some problem P, we have

T := Trκ (P; n, α) ≥ c′

[
d1−1/p

nα
∧

√
d

nαp/2

]
Then Theorem 3.6 implies

exp(ε) − 1 ≥ c′′ [T − 2δκ] ,
Note that for all ε ≤ 1, we have 2ε ≥ exp(ε) − 1. Thus,

2ε ≥ c′ [T − 2δκ] .

which implies,

2(ε/c′′ + δκ) ≥ T ≥ c′

[
d1−1/p

nα
∧

√
d

nαp/2

]
.

Then, for some C > 0,

C(ε ∨ δκ) ≥ d1−1/p

nα
∧

√
d

nαp/2
Rearranging gives

α ≥ d1−1/p

Cn(ε ∨ δκ) ∧

( √
d

Cn(ε ∨ δκ)

)2/p

Note that if ε ≥ δκ, the desired bound is immediate. For δκ ≥ ε, we have, since δ ≤ c/n and
κ ≤ c′

√
d,

α ≥ d1−1/p

C ′
√

d
∧

( √
d

C ′
√

d

)2/p

≥ (C ′)−2/p,

for some C ′ > 0, as desired.

F.5 Proof of Corollary 2.9

Corollary 2.9. Let Z = {±1}d, and suppose an estimator is given such that, given access
to i.i.d. samples Z1, . . . , Zn ∈ Z, outputs µ̂ with E ∥µ̂ − E[Z1]∥∞ ≤ α/2. Then, there exists
a universal constant c > 0 such that, if d is large enough and n, ξ ∈ (0, 1/e), and α > 0
satisfy Equation (4), then the estimator µ̂ is (ξ, m)-traceable with m ∈ Ω

(
log(d)/α2) .

Proof. We will first show that we can use the mean estimation algorithm to solve the
corresponding hard problem for ℓ1-SCO. Specifically, consider the SCO problem as in Equa-
tion (17), and define the following learning algorithm based on the mean estimation. Let µ̂
be the output of mean estimator based on the samples Z1, . . . , Zn, and let

θ̂ := arg max
θ∈Θ

⟨θ, µ̂⟩ .

Let θ⋆ be the population risk minimizer, and let µ be the true mean, that is, µ = E[Z1].
Then, the excess risk of θ̂ can be upper bounded as:

⟨θ⋆, µ⟩ −
〈

θ̂, µ
〉

=
〈

θ⋆ − θ̂, µ
〉

=
〈

θ⋆ − θ̂, µ − µ̂
〉

+
〈

θ⋆ − θ̂, µ̂
〉

≤
∥∥∥θ⋆ − θ̂

∥∥∥
1

∥µ − µ̂∥∞ +
〈

θ⋆ − θ̂, µ̂
〉

≤ 2 ∥µ − µ̂∥∞ +
〈

θ⋆ − θ̂, µ̂
〉

,

where the last transition follows since θ̂, θ⋆ both lie inside Θ ⊂ B1. Now, by the choice of θ̂,
the second term is non-positive. Thus,

⟨θ⋆, µ⟩ −
〈

θ̂, µ
〉

≤ 2 ∥µ − µ̂∥∞ .

Taking expectations on both sides, we get
E ⟨θ⋆, µ⟩ −

〈
θ̂, µ
〉

≤ 2E ∥µ − µ̂∥∞ ≤ α.

Applying the result of Theorem 2.6 to θ̂, we conclude the proof.
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G Connection between subgaussian trace value and non-private
sample complexity

From the main part of the paper, we observe that the subgaussian trace value is typically
inversely proportional to α. We start by proving two innocuous results (Propositions G.1
and G.3) that establish an absolute upper bound on subgaussian trace value. It will then
allow us to extract lower bounds on α by plugging in our lower bounds on subgaussian trace
value (Theorems G.2 and G.4). We start with the p ∈ (1, ∞) case, and then consider p = 1.

G.1 Lower bounds for p ∈ (1, ∞)

Proposition G.1. Fix n ∈ N, d ∈ N, and α ∈ [0, 1]. Consider an arbitrary SCO problem
P = (Θ, Z, f) in Rd. Let Trκ(P; n, α) be the subgaussian trace value of problem P. Then,
we have

Trκ(P; n, α) ·
√

n ≤ C ·
√

d,

for some universal constant C > 0.

Proof. Let (ϕ, D) be an arbitrary subgaussian tracer. Consider the process {Xθ}θ∈Θ defined
as

Xθ := 1
n

n∑
i=1

ϕ(θ, Zi),

where Sn = (Z1, . . . , Zn) ∼ D⊗n. We will argue that {Xθ}θ∈Θ is O(1/
√

n)-subgaussian
process w.r.t. (Θ, ∥·∥Θ). First, consider arbitrary θ1, θ2 ∈ Θ. We have

∥Xθ1 − Xθ2∥ψ2
= 1

n

∥∥∥∥∥
n∑
i=1

(ϕ(Zi, θ1) − ϕ(Zi, θ2))
∥∥∥∥∥
ψ2

≤(a) C

n

√√√√ n∑
i=1

∥ϕ(Zi, θ1) − ϕ(Zi, θ2)∥2
ψ2

≤(b) C

n

√√√√ n∑
i=1

∥θ1 − θ2∥Θ

= C√
n

∥θ1 − θ2∥Θ ,

where in (a) we applied Lemma A.7, and in (b) we used the fact that {ϕ(θ, Zi)}θ∈Θ is
1-subgaussian process w.r.t. (Θ, ∥·∥Θ) for every i ∈ [n]. Moreover, for every θ ∈ Θ, we
similarly have

∥Xθ∥ψ2
= 1

n

∥∥∥∥∥
n∑
i=1

ϕ(Zi, θ)
∥∥∥∥∥
ψ2

≤(a) C

n

√√√√ n∑
i=1

∥ϕ(Zi, θ)∥2
ψ2

≤(b) C

n

√√√√ n∑
i=1

∥θ∥Θ

= C√
n

∥θ∥Θ ,

where in (a) we applied Lemma A.7, and in (b) we used the fact that {ϕ(θ, Zi)}θ∈Θ is
1-subgaussian process w.r.t. (Θ, ∥·∥Θ) for every i ∈ [n]. Thus, {Xθ}θ∈Θ is C/

√
n-subgaussian
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process w.r.t. (Θ, ∥·∥) as per Definition 3.1. Therefore, by Proposition A.10, we have, with
probability at least 1 − 4 exp(−t2)

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ϕ(θ, Zi)
∣∣∣∣∣ ≤ Ct√

n
+ C√

n

∫ 1

0

√
log N (Θ; ∥·∥Θ , ε)dε

≤ Ct√
n

+ C√
n

∫ 1

0

√
d log

(
1 + 2

ε

)
dε

≤ Ct√
n

+ C
√

d√
n

= C√
n

[√
d + t

]
, (22)

where in second inequality we use [Wai19, Example 5.8]. Hence,

E sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ϕ(θ, Zi)
∣∣∣∣∣ =

∫ ∞

0
Pr
[

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ϕ(θ, Zi)
∣∣∣∣∣ > u

]
du

≤ C

√
d

n
+
∫ ∞

0
Pr
[

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ϕ(θ, Zi)
∣∣∣∣∣ > C

√
d

n
+ u

]
du

≤(a) C

√
d

n
+ C√

n

∫ ∞

0
Pr
[

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ϕ(θ, Zi)
∣∣∣∣∣ > C

√
d

n
+ Ct√

n

]
dt

≤(b) C

√
d

n
+ C√

n

∫ ∞

0
4 exp(−t2)dt

≤ C

√
d

n
+ C ′

√
n

≤ 2(C ∨ C ′)
√

d

n
,

where C ′ > 0 is some universal constant, (a) follows by a change of variables u = Ct/
√

n,
and (b) follows from Equation (22). By Definition 2.3, we can write

Trκ(P; n, α) = inf
α-learnerAn

sup
T ∈Tκ

ESn=(Z1,...,Zn)∼D⊗n,θ̂∼An(Sn)

 1
n

∑
i∈[n]

ϕ(θ̂, Zi)


≤ sup

T ∈Tκ

ESn=(Z1,...,Zn)∼D⊗n

sup
θ∈Θ

1
n

∑
i∈[n]

ϕ(θ, Zi)


≤ 2(C ∨ C ′)

√
d

n
.

By rearranging the terms we obtain the desired result.

We now show that Theorem 5.1 implies lower bounds on the sample complexity of learning
ℓp-Lipshitz-bounded problems for every p ∈ [1, ∞). In particular, we show that the problems
considered in Theorem 5.1 require many samples to learn (equivalently, we show a lower
bound on optimal excess risk α).
Theorem G.2. Let α > 0, p ∈ [1, ∞) and n ∈ N be arbitrary. Let Pk,p be as in Equation (7),
and set k as in Theorem 5.1. Suppose there exist an α-learner for Pk,p. Then,

(i) for p ∈ [1, 2], we have
α ≥ c√

n
,
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(ii) for p ∈ (2, ∞), we have

α ≥ c

[
1

n1/p ∧ d1/2−1/p
√

n

]
,

for some universal constant c > 0.

Proof. First, consider an arbitrary k ∈ [d]. We apply Proposition G.1 to the result
of Lemma E.4. We then have the following double inequality

c2
d1−1/p

k1/2−1/pnα
≤ Trκ(Pk,p; n, α) ≤ C

√
d

n
.

Solving for α in the above, we have

α ≥ c2
C

· (d/k)1/2−1/p
√

n
.

First, consider the case p ∈ [1, 2]. Then k = d, and we have

α ≥ c2
C

· 1√
n

,

as desired. Now, consider the case p ∈ (2, ∞). Then k = (6α)pd ∨ 1, and we have

α ≥ c2
C

· (d/k)1/2−1/p
√

n
= c2

C

[
(1/6α)p/2−1

√
n

∧ d1/2−1/p
√

n

]
.

Solving for α, we have

α ≥
[( c2

C6p/2−1

)2/p
· 1√

n

]
∧
[

c2
C

· d1/2−1/p
√

n

]
.

Note that, since 2/p ≤ 1, we have( c2
C6p/2−1

)2/p
= 1

6

(
6c2
C

)2/p
≥ 1

6

[
1 ∧ 6c2

C

]
.

Thus,

α ≥
[

1
6 ∧ c2

C

]
·
[

1√
n

∧ d1/2−1/p
√

n

]
,

as desired.

G.2 Lower bounds for p = 1.

Now, consider the case p = 1. For p = 1, we consider the problem as in Equation (17). We
will need the following refinement of Proposition G.1 in a special case when Θ is a polytope
with few vertices. Intuitively, d in the statement Proposition G.1 can be replaced by log N
where N is the number of vertices of Θ.
Proposition G.3. Fix n ∈ N, d ∈ N, and α ∈ [0, 1]. Consider an arbitrary SCO problem
P = (Θ, Z, f) in Rd, where Θ is a polytope with N vertices. Let Trκ(P; n, α) be the
subgaussian trace value of problem P. Then, we have

Trκ(P; n, α) ·
√

n ≤ C ·
√

log N,

for some universal constant C > 0.

Proof. Let (ϕ, D) be an arbitrary subgaussian tracer. Similarly to the proof of Proposition G.1,
consider the process {Xθ}θ∈Θ defined as

Xθ := 1
n

n∑
i=1

ϕ(θ, Zi),
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where Sn = (Z1, . . . , Zn) ∼ D⊗n. As in the proof of Proposition G.1, {Xθ}θ∈Θ is a C/
√

n-
subgaussian process w.r.t. (Θ, ∥·∥Θ) for some universal constant C > 0.
Let V be the set of vertices of Θ; then |V | = N , as per the proposition statement. Since ϕ is
convex in its first argument, the mapping θ 7→ Xθ is also convex (almost surely). Then,

sup
θ∈Θ

|Xθ| = sup
θ∈V

|Xθ|.

Therefore, by Proposition A.10, we have, with probability at least 1 − 4 exp(−t2)

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ϕ(θ, Zi)
∣∣∣∣∣ ≤ Ct√

n
+ C√

n

∫ 1

0

√
log N (V ; ∥·∥Θ , ε)dε

≤ Ct√
n

+ C√
n

∫ 1

0

√
log Ndε

≤ Ct√
n

+ C
√

log N√
n

.

Hence,

E sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ϕ(θ, Zi)
∣∣∣∣∣ =

∫ ∞

0
Pr
[

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ϕ(θ, Zi)
∣∣∣∣∣ > u

]
du

≤ C

√
log N

n
+
∫ ∞

0
Pr
[

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ϕ(θ, Zi)
∣∣∣∣∣ > C

√
log N

n
+ u

]
du

≤(a) C

√
log N

n
+ C√

n

∫ ∞

0
Pr
[

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ϕ(θ, Zi)
∣∣∣∣∣ > C

√
log N

n
+ Ct√

n

]
dt

≤(b) C

√
log N

n
+ C√

n

∫ ∞

0
4 exp(−t2)dt

≤ C

√
log N

n
+ C ′

√
n

≤ 2(C ∨ C ′)
√

log N

n
,

where C ′ > 0 is some universal constant, (a) follows by a change of variables u = Ct/
√

n,
and (b) follows from Equation (22). By Definition 2.3, we can write

Trκ(P; n, α) = inf
α-learnerAn

sup
T ∈Tκ

ESn=(Z1,...,Zn)∼D⊗n,θ̂∼An(Sn)

 1
n

∑
i∈[n]

ϕ(θ̂, Zi)


≤ sup

T ∈Tκ

ESn=(Z1,...,Zn)∼D⊗n

sup
θ∈Θ

1
n

∑
i∈[n]

ϕ(θ, Zi)


≤ 2(C ∨ C ′)

√
log N

n
.

By rearranging the terms we obtain the desired result.

Then, sample complexity lower bounds for ℓ1 geometry follow.
Theorem G.4. Let α > 0 and n ∈ N be arbitrary. Let Ps be as in Equation (17) and set
s = d0.99. Suppose there exists an α-learner for Ps. Then, for large enough d, we have

α ≥ c

√
log(d)

n
,

for some universal constant c > 0.

43



Proof. Lemma E.7 gives the following lower bound on the subgaussian trace value of Ps,

Trκ(Ps; n, α) ≥
c
√

s log
(

d
16(s∨14)

)
nα

.

At the same time, noting that Θ is a polytope with vertices given by

V =
{

z ∈
{

0, ±1
s

}d
: ∥z∥0 = s

}
,

which has cardinality

|V | =
(

d

s

)
≤
(

de

s

)s
,

we have by Proposition G.3

Trκ(Ps; n, α) ≤ C

√
s log(de/s)

n
,

for some universal C > 0. Combining this with the lower bound on subgaussian trace value,
we have

c
√

s log
(

d
16(s∨14)

)
nα

≤ C

√
s log(de/s)

n
,

which gives

α ≥ c

C

log
(

d
16(s∨14)

)
√

log(de/s)n
.

Recall that s = d0.99. For large enough d, we have s ∨ 14 = s. Also, note that log(d/s) ≥
log(d)/100. Then, for for large enough d, we have

α ≥ c′

√
log(d)

n
,

for some universal c′ > 0, as desired.

H Traceability of VC classes (Section 1.1.1)
First, we state the main result.
Theorem H.1. Fix n ∈ N and ξ < 0.1. Let H be an arbitrary VC concept class with VC
dimension dvc. Then, there exists an optimal algorithm in terms of number of samples such
that it is (ξ/(n log(n), m)-traceable with m ≤ O

(
dvc log2(n)

)
. Moreover, when H is the class

of thresholds, we have m ∈ O(1).

To prove it we use an information-theoretic notion that controls the difficulty of tracing from
[SZ20].
Definition H.2. Fix n ∈ N. Let D be a data distribution, and An be a learning algorithm.
For every n ∈ N, let Z = (Zj,i)j∈{0,1},i∈[n] be an array of i.i.d. samples drawn from D,
and U = (U1, . . . , Un) ∼ Ber

( 1
2
)⊗n, where U and Z are independent. Define training set

Sn = (ZUi,i)i∈[n]. Then, define

CMID (An) := I
(
An(Sn); U

∣∣Z) .

In the next theorem, we show that the existence of a tracer for a learning algorithm provides
a lower bound on the CMI of the algorithm. A similar observation is made in [ADHLR24].
Lemma H.3. Fix n ∈ N such that n ≥ 2 and ξ < 1/2. Let An be an arbitrary learning
algorithm that is (ξ/(n log(n), m)-traceable. Then, it holds supD CMID (An) ≥ m − 3ξ.

The following two results from [SZ20] and [HDMR21] provide upper bounds on the CMI of
sample compression schemes. We skip the formal definitions of sample compression schemes
and refer the reader to [LW86; MY16; BHMZ20].

44



Lemma H.4 (Thm 4.2. [SZ20]). Let H be an arbitrary concept class with VC dimension
dvc. Then, there exists an algorithm such that for every data distribution D, CMID (An) ≤
O(dvc log2(n)).
Lemma H.5 (Thm 3.4. [HDMR21]). Let H be the concept class of threshold in R. Then, there
exists an algorithm such that for every data distribution D and n ≥ 2, CMID (An) ≤ 2 log 2.

Proof of Theorem H.1. The proof is simply by combining Lemma H.4 with Lemma H.3. For
the case of the class of thresholds, we use Lemma H.5.

Proof of Lemma H.3. Assume there exists a tracer with recall of m and soundness parameter
of ξ/(n log(n). Let D denote the distribution used by the tracer (see Definition 2.3). Define
the following random set

V1 = {i ∈ [n] : ∃j ∈ {0, 1} ϕ(θ̂, Zj,i) ≥ λ and ϕ(θ̂, Z1−j,i) < λ}.

Also, for every i ∈ [n], define the following random variable

Gi = 1 {ϕ(θ̂, ZŪi,i
) < λ}.

By the definition of mutual information and U ⊥⊥ Z, we have

CMID(An) = H(U) − H(U |Z, θ̂) (23)
= n − H(U |Z, θ̂). (24)

Therefore, to lower bound CMID(An), we need to upper bound H(U |Z, θ̂). By the sub-
additivity of the entropy, we have

H(U |Z, θ̂) ≤
n∑
i=1

H(Ui|Z, θ̂).

Then, by monotonicity of the entropy and the chain rule, we have

H(Ui|Z, θ̂) ≤ H(Ui, Gi|Z, θ̂)
≤ H(Gi) + H(Ui|Gi, Z, θ̂). (25)

In the next step, by the definition of conditional entropy,

H(Ui|Z, θ̂, Gi) ≤ H(Ui|Z, θ̂, Gi = 1) + Pr (Gi = 0) .

Define the random variable Yi = 1
(
i ∈ V1). Notice that Yi is (θ̂, Z)-measurable random

variable. Then, using the notations for the disintegrated conditional entropy from [HDMR21],
we have

H(Ui|Z, θ̂, Gi = 1) = E
[
HZ,θ̂,Gi=1(Ui)

]
= E

[
HZ,θ̂,Gi=1(Ui)1{Yi = 1}

]
+ E

[
HZ,θ̂,Gi=1(Ui)1{Yi = 0}

]
. (26)

The main observation is that under the events Yi = 1 and Gi = 1, Ui is deterministically
known from (Z, θ̂). It follows because

{Yi = 1} ∧ {Gi = 1} ⇔ {ϕ(θ̂, Zj,i) ≥ λ and ϕ(θ̂, Z1−j,i) < λ} ∧ {ϕ(θ̂, ZŪi,i
) < λ} ⇒ Ui = j.

Therefore, since HZ,θ̂,Gi=1(Ui) ≤ 1 with probability one, by Equation (26)

H(Ui|Z, θ̂, Gi = 1) ≤ Pr (Yi = 0) .

Thus, from Equations (25) and (26), we obtain the following upper bound

H(Ui|Z, θ̂) ≤ Pr (Yi = 0) + Hb (Pr (Gi = 0)) + Pr (Gi = 0) ,
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where Hb (·) : [0, 1] → [0, 1] is the binary entropy function defined as Hb (x) = −x log(x) −
(1 − x) log(1 − x). We can lower bound CMID(An) as follows

CMID(An) ≥ n −
n∑
i=1

H(Ui|Z, θ̂)

≥ n −
n∑
i=1

[Pr (Yi = 0) + Hb (Pr (Gi = 0)) + Pr (Gi = 0)]

=
n∑
i=1

Pr (Yi = 1) −
n∑
i=1

(Hb (Pr (Gi = 0)) + Pr (Gi = 0)) ,

where the last step follows because n −
∑n
i=1 Pr (Yi = 0) =

∑n
i=1 Pr (Yi = 1) as Yi is an

indicator random variable. In the next step, by the definition of soundness from Definition 2.3
and the definition of CMI in Definition H.2, we have

Pr (Gi = 0) = E
[
Pr
(
Gi = 0

∣∣U)]
= PrSn∼D⊗n,Z∼D,θ̂∼An(Sn)

(
ϕ(θ̂, Z) ≥ λ

)
≤ ξ/(n. log(n)),

Therefore,

CMID(An) ≥
n∑
i=1

Pr (Yi = 1) − ξ

log(n) − nHb

(
ξ

n log(n)

)
By the recall condition from Definition 2.3 and the definition of CMI in Definition H.2, we
have

m = ESn=(Z1,...,Zn)∼D⊗n,θ̂∼An(Sn)

[∣∣i ∈ [n] : ϕ(θ̂, Zi) ≥ λ
∣∣]

=
n∑
i=1

Pr
(

ϕ(θ̂, Zi) ≥ λ
)

≤
n∑
i=1

Pr
(

ϕ(θ̂, ZUi,i) ≥ λ ∧ Gi
)

+ Pr (Gci )

=
n∑
i=1

Pr (Yi = 1) +
n∑
i=1

Pr (Gci )

≤
n∑
i=1

Pr (Yi = 1) + ξ

log(n) .

We also use the following well-known inequality, Hb (x) ≤ −x log(x) + x for x ∈ [0, 1]. As a
result, we obtain

CMID(An) ≥
n∑
i=1

Pr (Yi = 1) − ξ

log(n) − nHb

(
ξ

n log(n)

)
≥ m − 2ξ

log(n) − n

(
ξ

n. log(n) − ξ

(n. log(n)) log
(

ξ

(n. log(n))

))
≥ m − ξ

(
1
e

+ 3
log(n)

)
,

where the last step follows because −x log(x) ≤ 1/e for x ∈ [0, 1].
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• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any

theorems.
• The proofs can either appear in the main paper or the supplemental material,

but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be
complemented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data are
provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be

perceived well by the reviewers: Making the paper reproducible is important,
regardless of whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the
steps taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model. In
general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model),
releasing of a model checkpoint, or other means that are appropriate to the
research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it

clear how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should

describe the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results or a
way to reproduce the model (e.g., with an open-source dataset or instructions
for how to construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer:[NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.

cc/public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might

not be possible, so “No” is an acceptable answer. Papers cannot be rejected
simply for not including code, unless this is central to the contribution (e.g., for
a new open-source benchmark).

• The instructions should contain the exact command and environment needed
to run to reproduce the results. See the NeurIPS code and data submission
guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more
details.

• The authors should provide instructions on data access and preparation, in-
cluding how to access the raw data, preprocessed data, intermediate data, and
generated data, etc.

• The authors should provide scripts to reproduce all experimental results for
the new proposed method and baselines. If only a subset of experiments are
reproducible, they should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release
anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended
to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?
Answer: [NA]
Justification: The paper does not include any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level

of detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as

supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include any experiments.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly
stated (for example, train/test split, initialization, random drawing of some
parameter, or overall run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form
formula, call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard

error of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors

should preferably report a 2-sigma error bar than state that they have a 96%
CI, if the hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?
Answer: [NA]
Justification: The paper does not include any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal

cluster, or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the

individual experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more

compute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and found
that the research in this paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code
of Ethics.

• If the authors answer No, they should explain the special circumstances that
require a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?
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Answer: [NA]
Justification: It is a theory paper, and we forsee no such impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no

societal impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended

uses (e.g., disinformation, generating fake profiles, surveillance), fairness consid-
erations (e.g., deployment of technologies that could make decisions that unfairly
impact specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology
is being used as intended and functioning correctly, harms that could arise when
the technology is being used as intended but gives incorrect results, and harms
following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in addition
to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a
system learns from feedback over time, improving the efficiency and accessibility
of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theory paper, and it poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and
make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or
dataset.

• The authors should state which version of the asset is used and, if possible,
include a URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and

terms of service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in

the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?
Answer:[NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part

of their submissions via structured templates. This includes details about
training, license, limitations, etc.

• The paper should discuss whether and how consent was obtained from people
whose asset is used.

• At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research
with human subjects
Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?
Answer: [NA]
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Justification: the paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between insti-
tutions and locations, and we expect authors to adhere to the NeurIPS Code of
Ethics and the guidelines for their institution.

• For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original,
or non-standard component of the core methods in this research? Note that if
the LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research,
declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does
not involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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