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A Proofs for the single layer case (Theorem 1)378

In this section, we prove our characterization of global minima for the single layer case (Theorem 1).379

We begin by simplifying the loss into a more concrete form.380

A.1 Rewriting the loss function381

Recall the in-context loss f (P,Q) defined in (6):382

f (P,Q) = EZ0,w⋆

[[
Z0 +

1

n
AttnP,Q(Z0)

]
(d+1),(n+1)

+ w⊤
⋆ x

(n+1)

]2
Using the notation Z0 = [z(1) z(2) · · · z(n+1)], one can rewrite Z1 as follows:383

Z1 = Z0 +
1

n
AttnP,Q(Z0)

= [z(1) · · · z(n+1)] +
1

n
P [z(1) · · · z(n+1)]M

(
[z(1) · · · z(n+1)]⊤Q[z(1) · · · z(n+1)]

)
.

Thus, the last token of Z1 can be expressed as384

z(n+1) +
1

n

n∑
i=1

Pz(i)(z(i)
⊤
Qz(n+1)) =

[
x(n+1)

0

]
+

1

n
P

n∑
i=1

z(i)z(i)
⊤
Q

[
x(n+1)

0

]
,

where note that the summation is for i = 1, 2, . . . , n due to the mask matrix M . Letting b⊤ be the385

last row of P , and A ∈ Rd+1,d be the first d columns of Q, then f(P,Q) only depends on b, A and386

henceforth, we will write f(P,Q) as f(b, A). Then, f(b, A) can be rewritten as387

f(b, A) = EZ0,w⋆

b⊤ 1

n

∑
i

z(i)z(i)
⊤

︸ ︷︷ ︸Ax(n+1) + w⊤
⋆ x

(n+1)


2

=: EZ0,w⋆

[
b⊤MAx(n+1) + w⊤

⋆ x
(n+1)

]2
= EZ0,w⋆

[
(b⊤MA+ w⊤

⋆ )x
(n+1)

]2
, (13)

where we used the notationM := 1
n

∑
i z

(i)z(i)
⊤

to simplify. We now analyze the global minima of388

this loss function.389

To illustrate the proof idea clearly, we begin with the proof for the simpler case of isotropic data.390
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A.2 Warm-up: proof for the isotropic data391

As a warm-up, we first prove the result for the special case where x(i) is sampled from N (0, Id) and392

w⋆ is sampled from N (0, Id).393

Step 1: Decomposing the loss function into components394

Writing A = [a1 a1 · · · ad], and use the fact that E[x(n+1)[i]x(n+1)[j]] = 0 for i ̸= j, we get395

f (b, A) =

d∑
j=1

EZ0,w⋆

[
b⊤Maj + w⋆[j]

]2
E[x(n+1)[j]2] =

d∑
j=1

EZ0,w⋆

[
b⊤Maj + w⋆[j]

]2
.

Hence, we first focus on characterizing the global minima of each component in the summation396

separately. To that end, let us formally define each component in the summation as follows.397

fj(b, A) := EZ0,w⋆

[
b⊤Maj + w⋆[j]

]2
= EZ0,w⋆

[
Tr(Majb

⊤) + w⋆[j]
]2

= EZ0,w⋆

[〈
M, ba⊤j

〉
+ w⋆[j]

]2
,

where we use the notation ⟨X,Y ⟩ := Tr(XY ⊤) for two matrices X and Y here and below.398

Step 2: Characterizing global minima of each component399

To characterize the global minima of each objective, we prove the following result.400

Lemma 6. Suppose that x(i) is sampled from N (0, Id) and w⋆ is sampled from N (0, Id). Consider401

the following objective (⟨X,Y ⟩ := Tr(XY ⊤) for two matrices X and Y )402

fj(X) = EZ0,w⋆
[⟨M, X⟩+ w⋆[j]]

2
.

Then a global minimum is given as403

Xj = −
1(

n−1
n + (d+ 2) 1n

)Ed+1,j ,

where Ei1,i2 is the matrix whose (i1, i2)-th entry is 1, and the other entries are zero.404

Proof of Lemma 6. Note first that fj is convex in X . Hence, in order to show that a matrix X0 is405

the global optimum of fj , it suffices to show that the gradient vanishes at that point, in other words,406

∇fj(X0) = 0 .

To verify this, let us compute the gradient of fj :407

∇fj(X0) = 2E [⟨M, X0⟩M] + 2E [w⋆[j]M] ,

where we recall thatM is defined as408

M =
1

n

∑
i

[
x(i)x(i)⊤ y(i)x(i)

y(i)x(i)⊤ y(i)
2

]
.

To verify that the gradient is equal to zero, let us first compute E [w⋆[j]M]. For each i = 1, . . . , n,409

note that E[w⋆[j]x
(i)x(i)⊤] = O because E[w⋆] = 0. Moreover, E[w⋆[j]y

(i)2] = 0 because w⋆ is410

symmetric, i.e., w⋆
d
= −w⋆, and y(i) =

〈
w⋆, x

(i)
〉
. Lastly, for k = 1, 2, . . . , d, we have411

E[w⋆[j]y
(i)x(i)[k]] = E[w⋆[j]

〈
w⋆, x

(i)
〉
x(i)[k]] = E

[
w⋆[j]

2x(i)[j]x(i)[k]
]
= 1[j=k] (14)

because E[w⋆[i]w⋆[j]] = 0 for i ̸= j. Combining the above calculations, it follows that412

E [w⋆[j]M] = Ed+1,j + Ej,d+1 . (15)

We now compute compute E [⟨M, Ed+1,j⟩M]. Note first that413

⟨M, Ed+1,j⟩ =
∑
i

〈
w⋆, x

(i)
〉
x(i)[j] .
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Hence, it holds that414

E

[
⟨M, Ed+1,j⟩

(∑
i

x(i)x(i)⊤
)]

= E

[(∑
i

〈
w⋆, x

(i)
〉
x(i)[j]

)(∑
i

x(i)x(i)⊤
)]

= O .

because E[w⋆] = 0. Next, we have415

E

[
⟨M, Ed+1,j⟩

(∑
i

y(i)
2

)]
= E

[(∑
i

〈
w⋆, x

(i)
〉
x(i)[j]

)(∑
i

y(i)
2

)]
= 0

because w⋆
d
= −w⋆. Lastly, we compute416

E

[
⟨M, Ed+1,j⟩

(∑
i

y(i)x(i)⊤
)]

.

To that end, note that for j ̸= j′,417

E
[〈

w⋆, x
(i)
〉
x(i)[j]

〈
w⋆, x

(i′)
〉
x(i′)[j′]

]
=

{
E[
〈
x(i), x(i′)

〉
x(i)[j]x(i′)[j′]] = 0 if i ̸= i′,

E[
∥∥x(i)

∥∥2 x(i)[j]x(i)[j′]] = 0 if i = i′,

and418

E
[〈

w⋆, x
(i)
〉
x(i)[j]

〈
w⋆, x

(i′)
〉
x(i′)[j]

]
=

{
E[x(i)[j]2x(i′)[j]2] = 1 if i ̸= i′,

E
[〈
w⋆, x

(i)
〉2

x(i)[j]2
]
= d+ 2 if i = i′,

(16)

where the last case follows from the fact that the 4th moment of Gaussian is 3 and419

E

[〈
w⋆, x

(i)
〉2

x(i)[j]2
]
= E

[ ∥∥∥x(i)
∥∥∥2 x(i)[j]2

]
= 3 + d− 1 = d+ 2.

Combining the above calculations together, we arrive at420

E [⟨M, Ed+1,j⟩M] =
1

n2
· (n(n− 1) + (d+ 2)n) (Ed+1,j + Ej,d+1)

=

(
n− 1

n
+ (d+ 2)

1

n

)
(Ed+1,j + Ej,d+1) . (17)

Therefore, combining (15) and (17), the results follows.421

Step 3: Combining global minima of each component422

Now we finish the proof. From Lemma 6, it follows that423

Xj = −
1(

n−1
n + (d+ 2) 1n

)Ed+1,j ,

is the unique global minimum of fj . Hence, b and A = [a1 a1 · · · ad] achieve the global minimum424

of f(b, A) =
∑d

j=1 fj(b, Aj) if they satisfy425

ba⊤j = − 1(
n−1
n + (d+ 2) 1n

)Ed+1,j for all i = 1, 2, . . . , d.

This can be achieve by the following choice:426

b⊤ = ed+1, aj = −
1(

n−1
n + (d+ 2) 1n

)ej for i = 1, 2, . . . , d ,

where ej is the j-th coordinate vector. This choice precisely corresponds to427

b = ed+1, A = − 1(
n−1
n + (d+ 2) 1n

) [Id
0

]
.
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Proof of uniqueness: Suppose X1 and X2 are two minimizers of fj , then ⟨M, X1⟩ = ⟨M, X2⟩428

almost surely for allM. If ⟨M, X1⟩ ≠ ⟨M, X2⟩, then fj(
1
2X1 +

1
2X2) < min fj holds since the429

1-dimensional quadratic function is strongly convex in its input. This concludes that the minimizer of430

fj are a linear combination of Ej,d+1 with its transpose. Since the constraint X = ba⊤j ensures X is431

rank-one, then there are two possible solutions for X: Ej,d+1 or Ed+1,j . Given b is shared among all432

fj , the only unique solution for X is Ed+1,j . This ensures the uniqueness of solutions for b and aj433

up to scaling.434

We next move on to the non-isotropic case.435

A.3 Proof for the non-isotropic case436

Step 1: Diagonal covariance case437

We first consider the case where x(i) is sampled from N (0,Λ) where Λ = diag(λ1, . . . , λd) and w⋆438

is sampled from N (0, Id). We prove the following generalization of Lemma 6.439

Lemma 8. Suppose that x(i) is sampled from N (0,Λ) where Λ = diag(λ1, . . . , λd) and w⋆ is440

sampled from N (0, Id). Consider the following objective441

fj(X) = EZ0,w⋆
[⟨M, X⟩+ w⋆[j]]

2
.

Then a global minimum is given as442

Xj = −
1

n+1
n λj +

1
n · (

∑
k λk)

Ed+1,j ,

where Ei1,i2 is the matrix whose (i1, i2)-th entry is 1, and the other entries are zero.443

Proof of Lemma 8. Similarly to the proof of Lemma 6, it suffices to check that444

2E [⟨M, X0⟩M] + 2E [w⋆[j]M] = 0 ,

where we recall thatM is defined as445

M =
1

n

∑
i

[
x(i)x(i)⊤ y(i)x(i)

y(i)x(i)⊤ y(i)
2

]
.

A similar calculation as the proof of Lemma 6 yields446

E [w⋆[j]M] = λj(Ed+1,j + Ej,d+1). (18)
Here the factor of λj comes from the following generalization of (14):447

E[w⋆[j]y
(i)x(i)[k]] = E[w⋆[j]

〈
w⋆, x

(i)
〉
x(i)[k]] = E

[
w⋆[j]

2x(i)[j]x(i)[k]
]
= λj1[j=k] .

Next, we compute E [⟨M, Ed+1,j⟩M]. Again, we follow a similar calculation to the proof of448

Lemma 6 except that this time we use the following generalization of (16):449

E
[〈

w⋆, x
(i)
〉
x(i)[j]

〈
w⋆, x

(i′)
〉
x(i′)[j]

]
=

{
E[x(i)[j]2x(i′)[j]2] = λ2

j if i ̸= i′,

E
[〈
w⋆, x

(i)
〉2

x(i)[j]2
]
= λj

∑
k λk + 2λ2

j if i = i′,

where the last line follows since450

E

[〈
w⋆, x

(i)
〉2

x(i)[j]2
]
= E

[ ∥∥∥x(i)
∥∥∥2 x(i)[j]2

]
= E

[
x(i)[j]2

∑
k

x(i)[k]2

]
= λj

∑
k

λk + 2λ2
j .

Therefore, we have451

E [⟨M, Ed+1,j⟩M] =
1

n2
·

(
n(n− 1)λ2

j + nλj

∑
k

λk + 2nλ2
j

)
(Ed+1,j + Ej,d+1)

=

(
n+ 1

n
λ2
j +

1

n
(λj

∑
k

λk)

)
(Ed+1,j + Ej,d+1) . (19)

Therefore, combining (18) and (19), the results follows.452
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Now we finish the proof. From Lemma 6, it follows that453

Xj = −
1

n+1
n λj +

1
n · (

∑
k λk)

Ed+1,j

is the unique global minimum of fj . Hence, b and A = [a1 a1 · · · ad] achieve the global minimum454

of f(b, A) =
∑d

j=1 fj(b, Aj) if they satisfy455

ba⊤j = Xj = −
1

n+1
n λj +

1
n · (

∑
k λk)

Ed+1,j for all i = 1, 2, . . . , d.

This can be achieve by the following choice:456

b⊤ = ed+1, aj = −
1

n+1
n λj +

1
n · (

∑
k λk)

ej for i = 1, 2, . . . , d ,

where ej is the j-th coordinate vector. This choice precisely corresponds to457

b = ed+1, A = −

diag
({

1
n+1
n λj+

1
n ·(

∑
k λk)

}
j

)
0

 .

Step 2: Non-diagonal covariance case (the setting of Theorem 1)458

We finally prove the general result of Theorem 1, namely x(i) is sampled from a Gaussian with459

covariance Σ = UΛU⊤ where Λ = diag(λ1, . . . , λd) and w⋆ is sampled from N (0, Id). The460

proof works by reducing this case to the previous case. For each i, define x̃(i) := UTx(i). Then461

E[x̃(i)(x̃(i))⊤] = E[U⊤(UΛU⊤)U ] = Λ. Now let us write the loss function (13) with this new462

coordinate system: since x(i) = Ux̃(i), we have463

f(b, A) = EZ0,w⋆

[
(b⊤MA+ w⊤

⋆ )Ux̃(n+1)
]2

=

d∑
j=1

λjEZ0,w⋆

[(
(b⊤MA+ w⊤

⋆ )U
)
[j]
]2

.

Hence, let us consider the vector (b⊤MA+ w⊤
⋆ )U . By definition ofM, we have464

(b⊤MA+ w⊤
⋆ )U =

1

n

∑
i

b⊤
[

x(i)〈
x(i), w⋆

〉]⊗2

AU + w⊤
⋆ U

=
1

n

∑
i

b⊤
[

Ux̃i〈
Ux(i), w⋆

〉]⊗2

AU + w⊤
⋆ U

=
1

n

∑
i

b⊤
[
U 0
0 1

] [
x̃i〈

Ux(i), w⋆

〉]⊗2 [
U⊤ 0
0 1

]
AU + w⊤

⋆ U

=
1

n

∑
i

b̃⊤
[

x̃i〈
x(i), w̃⋆

〉]⊗2

Ã+ w̃⊤
⋆

where we define b̃⊤ := b⊤
[
U 0
0 1

]
, Ã :=

[
U⊤ 0
0 1

]
AU , and w̃⋆ := U⊤w⋆. By the rotational465

symmetry, w̃⋆ is also distributed as N (0, Id). Hence, this reduces to the previous case, and a global466

minimum is given as467

b̃ = ed+1, Ã = −

diag
({

1
n+1
n λj+

1
n ·(

∑
k λk)

}
j

)
0

 .

From the definition of b̃, Ã, it thus follows that a global minimum is given by468

b⊤ = ed+1, A = −

Udiag

({
1

n+1
n λi+

1
n ·(

∑
k λk)

}
i

)
U⊤

0

 ,

as desired.469
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B Proofs for the multi-layer case470

B.1 Proof of Theorem 3471

The proof is based on probabilistic methods (Alon and Spencer, 2016). According to Lemma 9, the472

objective function can be written as (for more details check the derivations in (20))473

f(A1, A2) = ETr

(
E

[
2∏

i=1

(I −X⊤
0 AiX0M)X⊤

0 w⋆w
⊤
⋆ X0

2∏
i=1

(I −MXT
0 AiX0)

])

= ETr

E

 1∏
i=2

(I −X⊤
0 AiX0M)X⊤

0 X0

2∏
j=1

(I −MXT
0 AjX0)

 ,

where we use the isotropy of w⋆ and the linearity of trace to get the last equation. Suppose that A∗
0474

and A∗
1 denote the global minimizer of f over symmetric matrices. Since A∗

1 is a symmetric matrix,475

it admits the spectral decomposition A1 = UD1U
⊤ where D1 is a diagonal matrix and U is an476

orthogonal matrix. Remarkably, the distribution of X0 is invariant to a linear transformation by an477

orthogonal matrix, i.e, X0 has the same distribution as X0U
⊤. This invariance yields478

f(UD1U
⊤, A∗

2) = f(D1, U
⊤A∗

2U).

Thus, we can assume A∗
1 is diagonal without loss of generality. To prove A∗

2 is also diagonal, we479

leverage a probabilistic proof technique. Consider the random diagonal matrix S whose diagonal480

elements are either 1 or −1 with probability 1
2 . Since the input distribution is invariant to orthogonal481

transformations, we have482

f(D1, A
∗
2) = f(SD1S, SA

∗
2S) = f(D1, SA

∗
2S).

Note that we use SD1S = D1 in the last equation, which holds due to D1 and S are diagonal matrices483

and S has diagonal elements in {+1,−1}. Since f is convex in A2, a straightforward application of484

Jensen’s inequality yields485

f(D1, A
∗
2) = E [f(D1, SA

∗
2S)] ≥ f(D1,E [SA∗

2S]) = f(D1,diag(A∗
2)).

Thus, there are diagonal D1 and diag(A∗
2) for which f(D1,diag(A∗

2)) ≤ f(A∗
1, A

∗
2) holds for an486

optimal A∗
1 and A∗

2. This concludes the proof.487

B.2 Proof of Theorem 4488

Let us drop the factor of 1
n which was present in the original update (51). This is because the489

constant 1/n can be absorbed into Ai’s. Doing so does not change the theorem statement, but reduces490

notational clutter.491

Let us consider the reformulation of the in-context loss f presented in Lemma 9. Specifically, let Z0492

be defined as493

Z0 =

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) y(n+1)

]
∈ R(d+1)×(n+1),

where y(n+1) =
〈
w⋆, x

(n+1)
〉
. Let Zi denote the output of the (i−1)th layer of the linear transformer494

(as defined in (51), initialized at Z0). For the rest of this proof, we will drop the bar, and simply495

denote Z̄i by Zi.2 Let Xi ∈ Rd×n+1 denote the first d rows of Zi and let Yi ∈ R1×n+1 denote the496

(d+ 1)th row of Zk. Under the sparsity pattern enforced in (9), we verify that, for any i ∈ {0...k},497

Xi = X0,

Yi+1 = Yi + YiMX⊤
i AiXi = Y0

i∏
ℓ=0

(
I +MXT

0 AℓX0

)
. (20)

2This use of Zi differs the original definition in (1). But we will not refer to the original definition anywhere
in this proof.
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where M =

[
In×n 0
0 0

]
. We adopt the shorthand A = {Ai}ki=0.498

We adopt the shorthand A = {Ai}ki=0. Let S ⊂ R(k+1)×d×d, and A ∈ S if and only if for all499

i ∈ {0...k}, there exists scalars ai ∈ R such that Ai = aiΣ
−1 and Bi = biI . We use f(A) to refer500

to the in-context loss of Theorem 4, that is,501

f(A) := f

({
Qi =

[
Ai 0
0 0

]
, Pi =

[
0d×d 0
0 1

]}k

i=0

)
.

Throughout this proof, we will work with the following formulation of the in-context loss from502

Lemma 9:503

f(A) =E(X0,w⋆)

[
Tr
(
(I −M)Y ⊤

k+1Yk+1 (I −M)
)]

. (21)

The theorem statement is equivalent to the following:504

inf
A∈S

k∑
i=0

∥∇Ai
f(A)∥2F = 0, (22)

where ∇Ai
f denotes derivative wrt the Frobenius norm ∥Ai∥F . Towards this end, we establish the505

following intermediate result: if A ∈ S , then for any R ∈ R(k+1)×d×d, there exists R̃ ∈ S , such that,506

at t = 0,507

d

dt
f(A+ tR̃) ≤ d

dt
f(A+ tR). (23)

In fact, we show that R̃i := riI , for ri = 1
dTr

(
Σ1/2RiΣ

1/2
)
. This implies (22) via the following508

simple argument: Consider the "S-constrained gradient flow": let A(t) : R+ → R(k+1)×d×d be509

defined as510

d

dt
Ai(t) = −ri(t)Σ−1, ri(t) := Tr(Σ1/2∇Ai

f(A(t))Σ1/2)

for i = 0...k. By (23), we verify that511

d

dt
f(A(t)) ≤ −

k∑
i=0

∥∇Ai
f(A(t))∥2F . (24)

We verify from its definition that f(A) ≥ 0; if the infimum in (22) fails to be zero, then inequality512

(24) will ensure unbounded descent as t → ∞, contradicting the fact that f(A) is lower-bounded.513

This concludes the proof.514

Step 0: Proof outline515

The remainder of the proof will be devoted to showing (23), which we outline as follows:516

• In Step 1, we reduce the condition in (24) to a more easily verified layer-wise condition. Specifically,517

we only need to verify (24) when Ri are all zero except for Rj for some fixed j (see (25))518

At the end of Step 1, we set up some additional notation, and introduce an important matrix G,519

which is roughly "a product of attention layer matrices". In (26), we study the evolution of f(A(t))520

when A(t) moves in the direction of R, as X0 is (roughly speaking) randomly transformed.521

• In Step 2, we use the results of Step 2 to to study G (see (27)) and d
dtG(A(t)) (see (28)) under522

random transformation of X0. The idea in (28) is that "randomly transforming X0" has the same523

effect as "randomly transforming S" (recall S is the perturbation to B).524

• In Step 3, we apply the result from Step 2 to the expression of d
dtf(A(t)) in (26). We verify that R̃525

in (23) is exactly the expected matrix after "randomly transforming S". This concludes our proof.526

Step 1: Reduction to layer-wise condition527

To prove (23), it suffices to show the following simpler condition: Let j ∈ {0...k}. Let Rj ∈528

Rd×d be arbitrary matrices. For C ∈ Rd×d, let A(tC, j) denote the collection of matrices, where529
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[A(tC, j)]j = Aj+tC, and for i ̸= j, A(tC, j)i = Ai. We show that for all j ∈ {0...k} , Rj ∈ Rd×d,530

there exists R̃j = rjΣ
−1, such that, at t = 0,531

d

dt
f(A(tR̃j , j)) ≤

d

dt
f(A(tRj , j)) (25)

We can verify that (23) is equivalent to (25) by noticing that for any R, at t = 0, d
dtf(A + tR) =532 ∑k

j=0
d
dtf(A(tRj , j)). We will now work towards proving (25) for some index j that is arbitrarily533

chosen but fixed throughout.534

By (20) and (21),535

f(A(tRj , j))

=E
[
Tr
(
(I −M)Y ⊤

k+1Yk+1 (I −M)
)]

=E
[
Tr
(
(I −M)G(X0, Aj + tRj)

⊤w⊤
⋆ w⋆G(X0, Aj + tRj) (I −M)

)]
=E

[
Tr
(
(I −M)G(X0, Aj + tRj)

⊤Σ−1G(X0, Aj + tRj) (I −M)
)]

where G(X,Aj + C) := X
∏k

i=0

(
I −MX⊤

0 [A(tC, j)]i X
)
. The second equality follows from536

plugging in (20). For the rest of this proof, let U denote a uniformly randomly sampled orthogonal537

matrix. Let UΣ := Σ1/2UΣ−1/2. Using the fact that X0
d
= UΣX0, we can verify538

d

dt
f(A(tRj , j))

∣∣∣∣
t=0

=
d

dt
E
[
Tr
(
(I −M)G(X0, Aj + tRj)

⊤Σ−1G(X0, Aj + tRj) (I −M)
)]∣∣∣∣

t=0

=
d

dt
EX0,U

[
Tr
(
(I −M)G(UΣX0, Aj + tRj)

⊤Σ−1G(UΣX0, Aj + tRj) (I −M)
)]∣∣∣∣

t=0

=2EX0,U

[
Tr
(
(I −M)G(UΣX0, Aj)

⊤Σ−1 d

dt
G(UΣX0, Aj + tRj)

∣∣∣∣
t=0

(I −M)

)]
. (26)

Step 2: G and d
dt
G under random transformation of X0539

540

We will now verify that G(UΣX0, Aj) = UΣG(X0, Aj):541

G(UΣX0, Aj)

=UΣX0

k∏
i=0

(
I +MXT

0 U
⊤
Σ AiUΣX0

)
=UΣG(X0, Aj), (27)

where we use the fact that U⊤
Σ AiUΣ = U⊤

Σ (aiΣ
−1)UΣ = Ai. Next, we verify that542

d

dt
G(UΣX0, Rj) =UΣX0

(
j−1∏
i=0

(I +MXT
0 AiX0)

)
MXT

0 U
⊤
Σ RjUΣX0

k∏
i=j+1

(I +MXT
0 AiX0)

=UΣ
d

dt
G(X0, U

⊤
Σ RjUΣ) (28)

where the first equality again uses the fact that U⊤
Σ AiUΣ = Ai.543

Step 3: Putting everything together544

545

Let us continue from (26). Plugging (27) and (28) into (26),546

d

dt
f(A(tRj , j))

∣∣∣∣
t=0

=2EX0,U

[
Tr
(
(I −M)G(UΣX0, Aj)

⊤Σ−1 d

dt
G(UΣX0, Aj + tRj)

∣∣∣∣
t=0

(I −M)

)]
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(i)
=2EX0,U

[
Tr
(
(I −M)G(X0, Aj)

⊤Σ−1 d

dt
G(X0, Aj + tU⊤

Σ RjUΣ)

∣∣∣∣
t=0

(I −M)

)]
=2EX0

[
Tr
(
(I −M)G(X0, Aj)

⊤Σ−1EU

[
d

dt
G(X0, Aj + tU⊤

Σ RjUΣ)

∣∣∣∣
t=0

]
(I −M)

)]
(ii)
= 2EX0

[
Tr
(
(I −M)G(X0, Aj)

⊤Σ−1 d

dt
G(X0, Aj + tEU

[
U⊤
Σ RjUΣ

]
)

∣∣∣∣
t=0

(I −M)

)]
=2EX0

[
Tr
(
(I −M)G(X0, Aj)

⊤Σ−1 d

dt
G(X0, Aj + t · rjΣ−1)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
f(A(t · rjΣ−1, j))

∣∣∣∣
t=0

,

where rj := 1
dTr

(
Σ1/2RjΣ

1/2
)
. In the above, (i) uses 1. (27) and (28), as well as the fact that547

U⊤
Σ Σ−1UΣ = Σ−1. (ii) uses the fact that d

dtG(X0, Aj + tC)
∣∣
t=0

is affine in C. To see this, one548

can verify from the definition of G, e.g. using similar algebra as (28), that d
dtG(X0, Aj +C) is affine549

in C. Thus EU

[
G(X0, Aj + tU⊤

Σ RjUΣ)
]
= G(X0, Aj + tEU

[
U⊤
Σ RjUΣ)

]
.550

B.3 Proof of Theorem 5551

The proof of Theorem 5 is similar to that of Theorem 4, and with a similar setup. However to keep552

the proof self-contained, we will restate the setup. Once again, we drop the factor of 1
n which was553

present in the original update (51). This is because the constant 1/n can be absorbed into Ai’s. Doing554

so does not change the theorem statement, but reduces notational clutter.555

Let us consider the reformulation of the in-context loss f presented in Lemma 9. Specifically, let Z0556

be defined as557

Z0 =

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) y(n+1)

]
∈ R(d+1)×(n+1),

where y(n+1) =
〈
w⋆, x

(n+1)
〉
. Let Zi denote the output of the (i−1)th layer of the linear transformer558

(as defined in (51), initialized at Z0). For the rest of this proof, we will drop the bar, and simply559

denote Z̄i by Zi.3 Let Xi ∈ Rd×n+1 denote the first d rows of Zi and let Yi ∈ R1×n+1 denote the560

(d+ 1)th row of Zk. Under the sparsity pattern enforced in (11), we verify that, for any i ∈ {0...k},561

Xi+1 = Xi +BiXiMX⊤
i AiXi

Yi+1 = Yi + YiMX⊤
i AiXi = Y0

i∏
ℓ=0

(
I +MXT

ℓ AℓXℓ

)
. (29)

We adopt the shorthand A = {Ai}ki=0 and B = {Bi}ki=0. Let S ⊂ R2×(k+1)×d×d, and (A,B) ∈ S562

if and only if for all i ∈ {0...k}, there exists scalars ai, bi ∈ R such that Ai = aiΣ
−1 and Bi = biI .563

Throughout this proof, we will work with the following formulation of the in-context loss from564

Lemma 9:565

f(A,B) := E(X0,w⋆)

[
Tr
(
(I −M)Y ⊤

k+1Yk+1 (I −M)
)]

. (30)

(note that the only randomness in Z0 comes from X0 as Y0 is a deterministic function of X0). The566

theorem statement is equivalent to the following:567

inf
(A,B)∈S

k∑
i=0

∥∇Ai
f(A,B)∥2F + ∥∇Bi

f(A,B)∥2F = 0 (31)

where ∇Aif denotes derivative wrt the Frobenius norm ∥Ai∥F .568

3This use of Zi differs the original definition in (1). But we will not refer to the original definition anywhere
in this proof.
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Our goal is to show that, if (A,B) ∈ S , then for any (R,S) ∈ R2×(k+1)×d×d, there exists (R̃, S̃) ∈569

S, such that, at t = 0,570

d

dt
f(A+ tR̃, B + tS̃) ≤ d

dt
f(A+ tR,B + tS). (32)

In fact, we show that R̃i := riI , for ri = 1
dTr

(
Σ1/2RiΣ

1/2
)

and S̃i = siI , for si =571

1
dTr

(
Σ−1/2SiΣ

1/2
)
. This implies (31) via the following simple argument: Consider the "S-572

constrained gradient flow": let A(t) : R+ → R(k+1)×d×d and B(t) : R+ → R(k+1)×d×d be573

defined as574

d

dt
Ai(t) = −ri(t)Σ−1, ri(t) := Tr(Σ1/2∇Aif(A(t), B(t))Σ1/2)

d

dt
Bi(t) = −si(t)Σ−1, si(t) := Tr(Σ−1/2∇Bi

f(A(t), B(t))Σ1/2),

for i = 0...k. By (32), we verify that575

d

dt
f(A(t), B(t)) ≤ −

(
k∑

i=0

∥∇Ai
f(A(t), B(t))∥2F + ∥∇Bi

f(A(t), B(t))∥2F

)
. (33)

We verify from its definition that f(A,B) ≥ 0; if (31) does not hold then (33) will ensure unbounded576

descent as t→∞, contradicting the fact that f(A,B) is lower-bounded. This concludes the proof.577

Step 0: Proof outline578

The remainder of the proof will be devoted to showing (32), which we outline as follows:579

• In Step 1, we reduce the condition in (32) to a more easily verified layer-wise condition. Specifically,580

we only need to verify (32) in one of the two cases: (I) when Ri, Si are all zero except for Rj for581

some fixed j (see (35)), or (II) when Ri, Si are all zero except for Sj for some fixed j (see (34)).582

We focus on the proof of (II), as the proof of (I) is almost identical. At the end of Step 1, we set583

up some additional notation, and introduce an important matrix G, which is roughly "a product of584

attention layer matrices". In (36), we study the evolution of f(A,B(t)) when B(t) moves in the585

direction of S, as X0 is (roughly speaking) randomly transformed. This motivates the subsequent586

analysis in Steps 2 and 3 below.587

• In Step 2, we study how outputs of each layer (29) changes when X0 is randomly transformed.588

There are two main results here: First we provide the expression for Xi in (37). Second, we provide589

the expression for d
dtXi(B(t)) in (38).590

• In Step 3, we use the results of Step 2 to to study G (see (42)) and d
dtG(B(t)) (see (43)) under591

random transformation of X0.592

The idea in (43) is that "randomly transforming X0" has the same effect as "randomly transforming593

S" (recall S is the perturbation to B).594

• In Step 4, we use the results from Steps 2 and 3 to the expression of d
dtf(A,B(t)) in (36). We595

verify that S̃ in (32) is exactly the expected matrix after "randomly transforming S". This concludes596

our proof of (II).597

• In Step 5, we sketch the proof of (I), which is almost identical to Steps 2-4.598

Step 1: Reduction to layer-wise condition599

To prove (32), it suffices to show the following simpler condition: Let j ∈ {0...k}. Let Rj , Sj ∈600

Rd×d be arbitrary matrices. For C ∈ Rd×d, let A(tC, j) denote the collection of matrices, where601

A(tC, j)j = Aj + tC, and for i ̸= j, A(tC, j)i = Ai. Define B(tC, j) analogously. We show that602

for all j ∈ {0...k} and all Rj , Sj ∈ Rd×d, there exists R̃j = rjΣ
−1 and S̃j = sjΣ

−1, such that, at603

t = 0,604

d

dt
f(A(tR̃j , j), B) ≤ d

dt
f(A(tRj , j), B) (34)

and
d

dt
f(A,B(tS̃j , j)) ≤

d

dt
f(A,B(tSj , j)). (35)
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We can verify that (32) is equivalent to (34)+(35) by noticing that for any (R,S) ∈ R2×(k+1)×d×d,605

at t = 0, d
dtf(A+ tR,B + tS) =

∑k
j=0

(
d
dtf(A(tRj , j), B) + d

dtf(A,B(tSj , j))
)
.606

We will first focus on proving (35) (the proof of (34) is similar, and we present it in Step 5 at the607

end), for some index j that is arbitrarily chosen but fixed throughout. Notice that Xi and Yi in (29)608

are in fact functions of A,B and X0. For most of our subsequent discussion, Ai (for all i) and Bi609

(for all i ̸= j) can be treated as constant matrices. We will however make the dependence on X0 and610

Bj explicit (as we consider the curve Bj + tS), i.e. we use Xi(X,C) (resp Yi(X,C)) to denote the611

value of Xi (resp Yi) from (29), with X0 = X , and Bj = C.612

By (30) and (29),613

f(A,B(tSj , j))

=E
[
Tr
(
(I −M)Yk+1(X0, Bj + tS)⊤Yk+1(X0, Bj + tSj) (I −M)

)]
=E

[
Tr
(
(I −M)G(X0, Bj + tSj)

⊤w⊤
⋆ w⋆G(X0, Bj + tSj) (I −M)

)]
=E

[
Tr
(
(I −M)G(X0, Bj + tSj)

⊤Σ−1G(X0, Bj + tSj) (I −M)
)]

where G(X,C) := X
∏k

i=0

(
I −MXi(X,C)TAiXi(X,C)

)
. The second equality follows from614

plugging in (29).615

For the rest of this proof, let U denote a uniformly randomly sampled orthogonal matrix. Let616

UΣ := Σ1/2UΣ−1/2. Using the fact that X0
d
= UΣX0, we can verify617

d

dt
f(A,B(tSj , j))

∣∣∣∣
t=0

=
d

dt
EX0

[
Tr
(
(I −M)G(X0, Bj + tSj)

⊤Σ−1G(X0, Bj + tSj) (I −M)
)]∣∣∣∣

t=0

=
d

dt
EX0,U

[
Tr
(
(I −M)G(UΣX0, Bj + tSj)

⊤Σ−1G(UΣX0, Bj + tSj) (I −M)
)]∣∣∣∣

t=0

=2EX0,U

[
Tr
(
(I −M)G(UΣX0, Bj)

⊤Σ−1 d

dt
G(UΣX0, Bj + tSj)

∣∣∣∣
t=0

(I −M)

)]
. (36)

Step 2: Xi and d
dt
Xi under random transformation of X0618

In this step, we prove that when X0 is transformed by UΣ, Xi for i ≥ 1 are likewise transformed in a619

simple manner. The first goal of this step is to show620

Xi(UΣX0, Bj) = UΣXi(X0, Bj). (37)

We will prove this by induction. When i = 0, this clearly holds by definition. Suppose that (37) holds621

for some i. Then622

Xi+1(UΣX0, Bj)

=Xi(UΣX0, Bj) +BiXi(UΣX0, Bj)MXi(UΣX0, Bj)
TAiXi(UΣX0, Bj)

=UΣXi(X0, Bj) + UΣBiXi(X0, Bj)MXi(X0, Bj)
TAiXi(X0, Bj)

=UΣXi+1(X0, Bj)

where the second equality uses the inductive hypothesis, and the fact that Ai = aiΣ
−1, so that623

UT
ΣAiUΣ = Ai, and the fact that Bi = biI , from the definition of S and our assumption that624

(A,B) ∈ S. This concludes the proof of (37).625

We now present the second main result of this step. Let U−1
Σ := Σ1/2UTΣ−1/2, so that it satisfies626

UΣU
−1
Σ = U−1

Σ UΣ = I . For all i,627

U−1
Σ

d

dt
Xi(UΣX0, Bj + tSj)

∣∣∣∣
t=0

=
d

dt
Xi(X0, Bj + tU−1

Σ SjUΣ)

∣∣∣∣
t=0

. (38)

To reduce notation, we will not write ·|t=0 explicitly in the subsequent proof. We first write down the628

dynamics for the right-hand-side term of (38): From (29), for any ℓ ≤ j, and for any i ≥ j + 1, and629
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for any C ∈ Rd×d,630

d

dt
Xℓ (X0, Bj + tC) = 0

d

dt
Xj+1 (X0, Bj + tC) = CXj (X0, Bj)MXj (X0, Bj)

⊤
AjXj (X0, Bj)

d

dt
Xi+1 (X0, Bj + tC) =

d

dt
Xi (X0, Bj + tC)

+Bi

(
d

dt
Xi (X0, Bj + tC)

)
MXi (X0, Bj)

⊤
AiXi (X0, Bj)

+BiXi (X0, Bj)M

(
d

dt
Xi (X0, Bj + tC)

)⊤

AiXi (X0, Bj)

+BiXi (X0, Bj)MXi (X0, Bj)
⊤
Ai

(
d

dt
Xi (X0, Bj + tC)

)
(39)

We are now ready to prove (38) using induction. For the base case, we verify that for ℓ ≤ j,631

U−1
Σ

d
dtXℓ (UΣX0, Bk + tSj) = 0 = d

dtXℓ

(
X0, Bj + tU−1

Σ SjUΣ

)
(see first equation in (39)). For632

index j + 1, we verify that633

U−1
Σ

d

dt
Xj+1 (UΣX0, Bj + tSj) =U−1

Σ SjUΣXj(X0, Bj)MXj(UΣX0, Bj)
⊤Aj

=
d

dt
Xj+1

(
UΣX0, Bj + tU−1

Σ SjUΣXj

)
(40)

where we use two facts: 1. Xi(UΣX0, Bj) = UΣXi(X0, Bj) from (37), 2. Ai = aiΣ
−1,634

so that U⊤
Σ AiUΣ = Ai. We verify by comparison to the second equation in (39) that635

U−1
Σ

d
dtXj (UΣX0, Bj + tSj) = 0 = d

dtXj

(
X0, Bj + tU−1

Σ SjUΣ

)
. These conclude the proof636

of the base case.637

Now suppose that (38) holds for some i. We will now prove (38) holds for i+ 1. From (29),638

U−1
Σ

d

dt
Xi+1 (UΣX0, Bj + tSj)

=U−1
Σ

d

dt
(Xi (UΣX0, Bj + tSj))

+ U−1
Σ

d

dt

(
BiXi (UΣX0, Bj + tSj)MXi (UΣX0, Bj + tSj)

⊤
AiXi (UΣX0, Bj + tSj)

)
=U−1

Σ

d

dt
(Xi (UΣX0, Bj + tSj))

+ U−1
Σ Bi

(
d

dt
Xi (UΣX0, Bj + tSj)

)
MXi (UΣX0, Bj)

⊤
AiXi (UΣX0, Bj)

+ U−1
Σ BiXi (UΣX0, Bj)M

(
d

dt
Xi (UΣX0, Bj + tSj)

)⊤

AiXi (UΣX0, Bj)

+ U−1
Σ BiXi (UΣX0, Bj)MXi (UΣX0, Bj)

⊤
Ai

(
d

dt
Xi (UΣX0, Bj + tSj)

)
(i)
=U−1

Σ

d

dt
Xi (UΣX0, Bj + tSj)

+Bi

(
U−1
Σ

d

dt
Xi (UΣX0, Bj + tSj)

)
MXi (X0, Bj)

⊤
AiXi (X0, Bj)

+BiXi (X0, Bj)M

(
U−1
Σ

d

dt
Xi (UΣX0, Bj + tSj)

)⊤

AiXi (X0, Bj)

−BiXi (X0, Bj)MXi (X0, Bj)
⊤
Ai

(
U−1
Σ

d

dt
Xi (UΣX0, Bj + tSj)

)
(ii)
=

d

dt
Xi

(
X0, Bj + tU−1

Σ SjUΣ

)
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+Bi

(
d

dt
Xi

(
X0, Bj + tU−1

Σ SjUΣ

))
MXi (X0, Bj)

⊤
AiXi (X0, Bj)

+BiXi (X0, Bj)M

(
d

dt
Xi

(
X0, Bj + tU−1

Σ SjUΣ

))⊤

AiXi (X0, Bj)

+BiXi (X0, Bj)MXi (X0, Bj)
⊤
Ai

(
d

dt
Xi

(
X0, Bj + tU−1

Σ SjUΣ

))
(41)

In (i) above, we crucially use the following facts: 1. Bi = biI so that U−1
Σ Bi = BiU

−1
Σ , 2.639

Xi(UΣX0, Bj) = UΣXi(X0, Bj) from (37), 3. Ai = aiΣ
−1, so that U⊤

Σ AiUΣ = Ai, 4. UΣU
−1
Σ =640

U−1
Σ UΣ = I . (ii) follows from our inductive hypothesis. The inductive proof is complete by641

verifying that (41) exactly matches the third equation of (39) when C = U−1
Σ SUΣ.642

Step 3: G and d
dt
G under random transformation of X0643

We now verify that G(UΣX0, Bj) = UΣG(X0, Bj). This is a straightforward consequence of (37)644

as645

G(UΣX0, Bj)

=UΣX0

k∏
i=0

(
I +MXi(UΣX0, Bj)

TAiXi(UΣX0, Bj)
)

=UΣX0

k∏
i=0

(
I +MXi(X0, Bj)

TAiXi(X0, Bj)
)

=UΣG(X0, Bj), (42)

where the second equality uses (37), as well as the fact that U⊤
Σ AiUΣ = Ai. Next, we will show that646

U−1
Σ

d

dt
G(UΣX0, Bj + tSj)

∣∣∣∣
t=0

=
d

dt
G(X0, Bj + tU−1

Σ SjUΣ)

∣∣∣∣
t=0

. (43)

To see this, we can expand647

U−1
Σ

d

dt
G(UΣX0, Bj + tSj)

=U−1
Σ

d

dt

(
UΣX0

k∏
i=0

(
I +MXi(UΣX0, Bj + tSj)

TAiXi(UΣX0, Bj + tSj)
))

=X0

k∑
i=0

(
i−1∏
ℓ=0

(
I +MXℓ(UΣX0, Bj)

TAℓXi(UΣX0, Bℓ)
))

·M d

dt

(
Xi(UΣX0, Bj + tSj)

TAiXi(UΣX0, Bj)
)

·

(
k∏

ℓ=i+1

(
I +MXℓ(UΣX0, Bj)

TAℓXi(UΣX0, Bℓ)
))

(i)
=X0

k∑
i=0

(
i−1∏
ℓ=0

(
I +MXℓ(X0, Bj)

TAℓXℓ(X0, Bℓ)
))

·M

((
U−1
Σ

d

dt
Xi(UΣX0, Bj + tSj)

)T

AiXi(X0, Bj) +MXi(X0, Bj)
T
Ai

(
U−1
Σ

d

dt
Xi(UΣX0, Bj + tSj)

))

·

(
k∏

ℓ=i+1

(
I +MXℓ(X0, Bj)

TAℓXℓ(X0, Bℓ)
))

(ii)
=X0

k∑
i=0

(
i−1∏
ℓ=0

(
I +MXℓ(X0, Bj)

TAℓXℓ(X0, Bℓ)
))
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·M

((
d

dt
Xi(X0, Bj + tU−1

Σ SjUΣ)

)T

AiXi(X0, Bj) +MXi(X0, Bj)
T
Ai

(
d

dt
Xi(X0, Bj + tU−1

Σ SjUΣ)

))

·

(
k∏

ℓ=i+1

(
I +MXℓ(X0, Bj)

TAℓXℓ(X0, Bℓ)
))

(iii)
=

d

dt
G(X0, Bj + tU−1

Σ SjUΣ)

In (i) above, we the following facts: 1. Xi(UΣX0, Bj) = UΣXi(X0, Bj) from (37), 2. Ai = aiΣ
−1,648

so that U⊤
Σ AiUΣ = Ai, 3. UΣU

−1
Σ = U−1

Σ UΣ = I . (ii) follows from (38). (iii) is by definition of649

G.650

Step 4: Putting everything together651

Let us now continue from (36). We can now plug (42) and (43) into (36):652

d

dt
f(A,B(tSj , j))

∣∣∣∣
t=0

=2EX0,U

[
Tr
(
(I −M)G(UΣX0, Bj)

⊤Σ−1 d

dt
G(UΣX0, Bj + tSj)

∣∣∣∣
t=0

(I −M)

)]
(i)
=2EX0,U

[
Tr
(
(I −M)G(X0, Bj)

⊤Σ−1 d

dt
G(X0, Bj + tU−1

Σ SjUΣ)

∣∣∣∣
t=0

(I −M)

)]
=2EX0

[
Tr
(
(I −M)G(X0, Bj)

⊤Σ−1EU

[
d

dt
G(X0, Bj + tU−1

Σ SjUΣ)

∣∣∣∣
t=0

]
(I −M)

)]
(ii)
= 2EX0

[
Tr
(
(I −M)G(X0, Bj)

⊤Σ−1 d

dt
G(X0, Bj + tEU

[
U−1
Σ SjUΣ

]
)

∣∣∣∣
t=0

(I −M)

)]
=2EX0

[
Tr
(
(I −M)G(X0, Bj)

⊤Σ−1 d

dt
G(X0, Bj + tsjI)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
f(A,B(tsjI, j))

∣∣∣∣
t=0

where sj := 1
dTr

(
Σ−1/2SjΣ

1/2
)
. In the above, (i) uses 1. (42) and (43), as well as the fact that653

U⊤
Σ Σ−1UΣ = Σ−1. (ii) uses the fact that d

dtG(X0, Bj + tC)
∣∣
t=0

is affine in C. To see this, one654

can verify from (39), using a simple induction argument, that d
dtXi(X0, Bj + tC) is affine in C for655

all i. We can then verify from the definition of G, e.g. using similar algebra as the proof of (43),656

that d
dtG(X0, Bj + C) is affine in d

dtXi(X0, Bj + tC). Thus EU

[
G(X0, Bj + tU−1

Σ SjUΣ)
]
=657

G(X0, Bj + tEU

[
U−1
Σ SjUΣ)

]
.658

With this, we conclude our proof of (35).659

Step 5: Proof of (34)660

We will now prove (34) for fixed but arbitrary j, i.e. there is some rj such that661

d

dt
f(A(t · rjΣ−1, j), B) ≤ d

dt
f(A(tRj , j), B).

The proof is very similar to the proof of (35) that we just saw, and we will essentially repeat the same662

steps from Step 2-4 above.663

Let us introduce a redefinition: let Xi(X,C) (resp Yi(X,C)) to denote the value of Xi (resp664

Yi) from (29), with X0 = X , and Aj = C (previously it was with Bj = C). Once again, let665

G(X,C) := X
∏i

i=0

(
I +MXi(X,C)T ĀiXi(X,C)

)
, where Āj = Aj + tC, and Āℓ = Aℓ for all666

ℓ ∈ {0...k} \ {j}.667

We first verify that668

Xi(UΣX0, Bj) = UΣXi(X0, Bj)

G(UΣX0, Bj) = UΣG(X0, Bj). (44)
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The proofs are identical to the proofs of (37) and (42) so we omit them. Next, we show that for all i,669

U−1
Σ

d

dt
Xi(UΣX0, Aj + tRj)

∣∣∣∣
t=0

=
d

dt
Xi(X0, Aj + tU⊤

Σ RjUΣ)

∣∣∣∣
t=0

. (45)

We establish the dynamics for the right-hand-side of (45):670

d

dt
Xℓ (X0, Aj + tC) = 0

d

dt
Xj+1 (X0, Aj + tC) = BjXj (X0, Aj)MXj (X0, Aj)

⊤
CXj (X0, Aj)

d

dt
Xi+1 (X0, Aj + tC) =

d

dt
Xi (X0, Aj + tC)

+Bi

(
d

dt
Xi (X0, Aj + tC)

)
MXi (X0, Aj)

⊤
AiXi (X0, Aj)

+BiXi (X0, Aj)M

(
d

dt
Xi (X0, Aj + tC)

)⊤

AiXi (X0, Aj)

+BiXi (X0, Aj)MXi (X0, Aj)
⊤
Ai

(
d

dt
Xi (X0, Aj + tC)

)
(46)

Similar to (40), we show that for i ≤ j,671

U−1
Σ

d

dt
Xi (UΣX0, Aj + tRj) =0 = U−1

Σ

d

dt
Xi (UΣX0, Aj + tUΣRjUΣ)

U−1
Σ

d

dt
Xj+1 (UΣX0, Aj + tRj) =U−1

Σ BjUΣXj(X0, Aj)MXj(UΣX0, Aj)
⊤Aj

=
d

dt
Xj+1

(
UΣX0, Aj + tU⊤

Σ RjUΣXj

)
.

Finally, for the inductive step, we follow identical steps leading up to (41) to show that672

U−1
Σ

d

dt
Xi+1 (UΣX0, Aj + tRj)

=
d

dt
Xi

(
X0, Aj + tU⊤

Σ RjUΣ

)
+Bi

(
d

dt
Xi

(
X0, Aj + tU⊤

Σ RjUΣ

))
MXi (X0, Aj)

⊤
AiXi (X0, Aj)

+BiXi (X0, Aj)M

(
d

dt
Xi

(
X0, Aj + tU⊤

Σ RjUΣ

))⊤

AiXi (X0, Aj)

+BiXi (X0, Aj)MXi (X0, Aj)
⊤
Ai

(
d

dt
Xi

(
X0, Aj + tU⊤

Σ RjUΣ

))
(47)

The inductive proof is complete by verifying that (47) exactly matches the third equation of (46)673

when C = U−1
Σ SUΣ. This concludes the proof of (45).674

Next, we study the time derivative of G(UΣX0, Aj + tRj) and show that675

U−1
Σ

d

dt
G(UΣX0, Aj + tRj) =

d

dt
G(X0, Aj + tU⊤

Σ RjUΣ). (48)

This proof differs significantly from that of (43) in a few places, so we provide the whole derivation676

below. By chain-rule, we can write677

U−1
Σ

d

dt
G(UΣX0, Aj + tRj) = ♠+♡

where678

♠ := U−1
Σ

d

dt

(
UΣX0

k∏
i=0

(
I +MXi(UΣX0, Aj + tRj)

TAiXi(UΣX0, Aj + tRj)
))
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and679

♡ :=U−1
Σ UΣX0

(
j−1∏
i=0

(
I +MXi(UΣX0, Aj)

TAiXi(UΣX0, Aj)
))

·MXj(UΣX0, Aj)
TRjXj(UΣX0, Aj)

·

 k∏
i=j+1

(
I +MXi(UΣX0, Aj)

TAiXi(UΣX0, Aj)
) .

We will separately simplify ♠ and ♡, and verify at the end that summing them recovers the right-680

hand-side of (48). We begin with ♠, and the steps are almost identical to the proof of (43).681

♠

=U−1
Σ

d

dt

(
UΣX0

k∏
i=0

(
I +MXi(UΣX0, Aj + tRj)

TAiXi(UΣX0, Aj + tRj)
))

=X0

k∑
i=0

(
i−1∏
ℓ=0

(
I +MXℓ(UΣX0, Aj)

TAℓXi(UΣX0, Aℓ)
))

·M d

dt

(
Xi(UΣX0, Aj + tRj)

TAiXi(UΣX0, Aj + tRj)
)

·

(
k∏

ℓ=i+1

(
I +MXℓ(UΣX0, Aj)

TAℓXi(UΣX0, Aℓ)
))

(i)
=X0

k∑
i=0

(
i−1∏
ℓ=0

(
I +MXℓ(X0, Aj)

TAℓXℓ(X0, Aℓ)
))

·M

((
U−1
Σ

d

dt
Xi(UΣX0, Aj + tRj)

)T

AiXi(X0, Aj) +MXi(X0, Aj)
T
Ai

(
U−1
Σ

d

dt
Xi(UΣX0, Aj + tRj)

))

·

(
k∏

ℓ=i+1

(
I +MXℓ(X0, Aj)

TAℓXℓ(X0, Aℓ)
))

(ii)
=X0

k∑
i=0

(
i−1∏
ℓ=0

(
I +MXℓ(X0, Aj)

TAℓXℓ(X0, Aℓ)
))

·M

((
d

dt
Xi(X0, Aj + tU⊤

Σ RjUΣ)

)T

AiXi(X0, Aj) +MXi(X0, Aj)
T
Ai

(
d

dt
Xi(X0, Aj + tU⊤

Σ RjUΣ)

))

·

(
k∏

ℓ=i+1

(
I +MXℓ(X0, Aj)

TAℓXℓ(X0, Aℓ)
))

=X0

k∑
i=0

(
i−1∏
ℓ=0

(
I +MXℓ(X0, Aj)

TAℓXℓ(X0, Aℓ)
))

·M d

dt

(
Xi(X0, Aj + tU⊤

Σ RjUΣ)
TAiXi(X0, Aj + tU⊤

Σ RjUΣ)
)

·

(
k∏

ℓ=i+1

(
I +MXℓ(X0, Aj)

TAℓXℓ(X0, Aℓ)
))

(49)

In (i) above, we the following facts: 1. Xi(UΣX0, Bj) = UΣXi(X0, Bj) from (44), 2. Ai = aiΣ
−1,682

so that U⊤
Σ AiUΣ = Ai, 3. UΣU

−1
Σ = U−1

Σ UΣ = I . (ii) follows from (45).683
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We will now simplify ♡.684

♡

=U−1
Σ UΣX0

(
j−1∏
i=0

(
I +MXi(UΣX0, Aj)

TAiXi(UΣX0, Aj)
))

·MXj(UΣX0, Aj)
TRjXj(UΣX0, Aj)

·

 k∏
i=j+1

(
I +MXi(UΣX0, Aj)

TAiXi(UΣX0, Aj)
)

(i)
=X0

(
j−1∏
i=0

(
I +MXi(X0, Aj)

TAiXi(X0, Aj)
))

MXj(X0, Aj)
⊤U⊤

Σ RjUΣXj(X0, Aj)

·

 k∏
i=j+1

(
I +MXi(X0, Aj)

TAiXi(X0, Aj)
) , (50)

where (i) uses the fact that Xi(UΣX0, Bj) = UΣXi(X0, Bj) from (44) and the fact that Ai =685

aiΣ
−1.686

By expanding d
dtG(X0, Aj + tU⊤

Σ RjUΣ), we verify that687

d

dt
G(X0, Aj + tU⊤

Σ RjUΣ) = (49) + (50) = ♠+♡ = U−1
Σ

d

dt
G(UΣX0, Aj + tRj),

this concludes the proof of (48).688

The remainder of the proof is similar to what was done in (36) in Step 4:689

d

dt
f(A(tRj , j), B

∣∣∣∣
t=0

=2EX0,U

[
Tr
(
(I −M)G(UΣX0, Aj)

⊤Σ−1 d

dt
G(UΣX0, Aj + tRj)

∣∣∣∣
t=0

(I −M)

)]
(i)
=2EX0,U

[
Tr
(
(I −M)G(X0, Aj)

⊤Σ−1 d

dt
G(X0, Aj + tU⊤

Σ RjUΣ)

∣∣∣∣
t=0

(I −M)

)]
(ii)
= 2EX0

[
Tr
(
(I −M)G(X0, Aj)

⊤Σ−1 d

dt
G(X0, Aj + tEU

[
U⊤
Σ RjUΣ

]
)

∣∣∣∣
t=0

(I −M)

)]
=2EX0

[
Tr
(
(I −M)G(X0, Aj)

⊤Σ−1 d

dt
G(X0, Aj + t · rjΣ−1)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
f(A(t · rjΣ−1, j), B)

∣∣∣∣
t=0

,

where rj := 1
dTr

(
Σ1/2RjΣ

1/2
)
. In the above, (i) uses 1. (44) and (48), as well as the fact that690

U⊤
Σ Σ−1UΣ = Σ−1. (ii) uses the fact that d

dtG(X0, Aj + tC)
∣∣
t=0

is affine in C. To see this, one691

can verify using a simple induction argument, that d
dtXi(X0, Aj + tC) is affine in C for all i.692

We can then verify from the definition of G, e.g. using similar algebra as the proof of (48), that693
d
dtG(X0, Aj + C) is affine in d

dtXi(X0, Aj + tC) and C. Thus EU

[
G(X0, Aj + tU⊤

Σ RjUΣ)
]
=694

G(X0, Aj + tEU

[
U⊤
Σ RjUΣ

]
).695

This concludes the proof of (34), and hence of the whole theorem.696

B.4 Equivalence under permutation697

Lemma 7. Consider the same setup as Theorem 4. Let A = {Ai}ki=0, with Ai = aiΣ
−1. Let698

f(A) := f

({
Qi =

[
Ai 0
0 0

]
, Pi =

[
0d×d 0
0 1

]}k

i=0

)
. Let i, j ∈ {0...k} be any two arbitrary699

indices, and let Ãi = Aj , Ãj = Ai, and let Ãℓ = Aℓ for all ℓ ∈ {0...k} \ {i, j}. Then f(A) = f(Ã)700
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Proof. Following the same setup leading up to (21) in the proof of Theorem 4, we verify that the701

in-context loss is702

f(A) = E
[
Tr
(
(I −M)G(X0, A)

⊤Σ−1G(X0, A) (I −M)
)]

where G(X0, A) := X0

∏k
ℓ=0

(
I +MXT

0 AℓX0

)
.703

Consider any fixed index ℓ. We will show that704 (
I +MXT

0 AℓX0

) (
I +MXT

0 Aℓ+1X0

)
=
(
I +MXT

0 Aℓ+1X0

) (
I +MXT

0 AℓX0

)
.

The lemma can then be proven by repeatedly applying the above, so that indices of Ai and Aj are705

swapped.706

To prove the above equality,707 (
I +MXT

0 AℓX0

) (
I +MXT

0 Aℓ+1X0

)
=I +MXT

0 AℓX0 +MXT
0 Aℓ+1X0 +MXT

0 AℓX0MXT
0 Aℓ+1X0

=I +MXT
0 AℓX0 +MXT

0 Aℓ+1X0 +MXT
0 aℓΣ

−1X0MXT
0 aℓ+1Σ

−1X0

=I +MXT
0 AℓX0 +MXT

0 Aℓ+1X0 +MXT
0 aℓ+1Σ

−1X0MXT
0 aℓΣ

−1X0

=
(
I +MXT

0 Aℓ+1X0

) (
I +MXT

0 AℓX0

)
.

This concludes the proof. Notice that we crucially used the fact that Aℓ and Aℓ+1 are the same matrix708

up to scaling.709

C Auxiliary Lemmas710

C.1 Reformulating the in-context loss711

In this section, we will develop a re-formulation in-context loss, defined in (5), in a more convenient712

form (see Lemma 9).713

For the entirety of this section, we assume that the transformer parameters {Pi, Qi}ki=0 are of the714

form defined in (11), which we reproduce below for ease of reference:715

Pi =

[
Bi 0
0 1

]
, Qi =

[
Ai 0
0 0

]
.

Recall the update dynamics in (4), which we reproduce below:716

Zi+1 = Zi +
1

n
PZiMZ⊤

i QZi, (51)

where M is a mask matrix given by M :=

[
In×n 0
0 0

]
. Let Xk ∈ Rd×n+1 denote the first d rows717

of Zk and let Yk ∈ R1×n+1 denote the (d + 1)th (last) row of Zk. Then the dynamics in (51) is718

equivalent to719

Xi+1 = Xi +
1

n
BiXiMXT

i AiXi

Yi+1 = Yi +
1

n
YiMXT

i AiXi. (52)

We present below an equivalent form for the in-context loss from (5):720

Lemma 9. Let px and pw denote distributions over Rd. Let x(1)...x(n+1) iid∼ px and w⋆ ∼ pw. Let721

Z0 ∈ Rd+1×n+1 is specifically defined in (1) as722

Z0 =

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) 0

]
∈ R(d+1)×(n+1).
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Let Zk denote the output of the (k−1)th layer of the linear transformer (as defined in (51), initialized723

at Z0). Let f
(
{Pi, Qi}ki=0

)
denote the in-context loss defined in (5), i.e.724

f
(
{Pi, Qi}ki=0

)
= E(Z0,w⋆)

[(
[Zk](d+1),(n+1) + w⊤

⋆ x
(n+1)

)2]
. (53)

Let Z0 be defined as725

Z0 =

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) y(n+1)

]
∈ R(d+1)×(n+1),

where y(n+1) =
〈
w⋆, x

(n+1)
〉
. Let Zk denote the output of the (k − 1)th layer of the linear726

transformer (as defined in (51), initialized at Z0). Assume {Pi, Qi}ki=0 be of the form in (11). Then727

the loss in (5) has the equivalent form728

f
(
{Ai, Bi}ki=0

)
= f

(
{Pi, Qi}ki=0

)
= E(Z0,w⋆)

[
Tr
(
(I −M)Y

⊤
k Y k (I −M)

)]
,

where Ȳk ∈ R1×n+1 is the (d+ 1)th row of Z̄k.729

Before proving Lemma 9, we first establish an intermediate result (Lemma 10 below). To facilitate730

discussion, let us define a function FX

(
{Ai, Bi}ki=0 , X0, Y0

)
and FY

(
{Ai, Bi}ki=0 , X0, Y0

)
to731

be the outputs, after k layers of linear transformers respectively. I.e.732

FX

(
{Ai, Bi}ki=0 , X0, Y0

)
= Xk+1

FY

(
{Ai, Bi}ki=0 , X0, Y0

)
= Yk+1,

as defined in (52), given initialization X0, Y0.733

We now prove a useful lemma showing that [Y0]n+1 = y(n+1) influences Xi, Yi in a very simple734

manner:735

Lemma 10. Let Xi, Yi follow the dynamics in (52). Then736

1. [Xi] is are independent of [Y0]n+1.737

2. For j ̸= n+ 1, [Yi]j is independent of [Y0]n+1.738

3. [Yi]n+1 depends additively on [Y0]n+1.739

In other words, for C := [0, 0, 0..., 0, c] ∈ Rd+1×1,740

1 : FX

(
{Ai, Bi}ki=0 , X0, Y0 + C

)
= FX

(
{Ai, Bi}ki=0 , X0, Y0

)
2 + 3 : FY

(
{Ai, Bi}ki=0 , X0, Y0 + C

)
= FY

(
{Ai, Bi}ki=0 , X0, Y0

)
+ C

Proof of Lemma 10. The first and second items follows directly from observing that the dynamics741

for Xi and Yi in (52) do not involve [Yi]n+1, due to the effect of M .742

The third item again uses the fact that Yi+1 − Yi does not depend on [Yi]n+1.743

We are now ready to prove Lemma 9744

Proof of Lemma 9. Let Z0, Zk, Z0, Zk be as defined in the lemma statement. Let Xk and745

Y k denote first d rows and last row of Zk. Then by Lemma 10, Xk = Xk and Y k =746

Yk +
[
0 0 · · · 0

〈
w⋆, x

(n+1)
〉]

. Therefore, (53) is equivalent to747

E(Z0,w⋆)

[(
[Zk](d+1),(n+1)

)2]
=E(Z0,w⋆)

[(
[Y k](n+1)

)2]
=E(Z0,w⋆)

[∥∥∥(I −M)Y
⊤
k

∥∥∥2]
=E(Z0,w⋆)

[
Tr
(
(I −M)Y

⊤
k Y k (I −M)

)]
.
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This concludes the proof.748

C.2 Proof of Lemma 2 (Equivalence to Preconditioned Gradient Descent)749

Proof of Lemma 2. Consider fixed samples x(1)...x(n), and fixed w⋆. Let P = {Pi}ki=0 , Q =750

{Qi}ki=0 denote fixed weights. Let Zi evolve as described in (4). Let Xi denote the first d rows of Zk751

(under (9), Xi = X0 for all I) and let Yi denote the (d+1)th row of Zi. Let g(x, y, k) : Rd×R×Z→752

R be a function defined as follows: let xn+1 = x and let yn+1
0 = y, then g(x, y, k) := yn+1

k . Note753

that yn+1
k = [Yk]n+1.754

We verify that, under (9), the formula for updating y
(n+1)
k is given by755

Yk+1 = Yk −
1

n
YkMX⊤

0 AkX0.

where M is a mask given by
[
I 0
0 0

]
. We can verify the following facts756

1. g(x, y, k) = g(x, 0, k) + y. To see this, notice first that for all i ∈ {1...n},

y
(i)
k+1 = y

(i)
k −

1

n

n∑
j=1

x(i)TAkx
(j)y

(j)
k .

In other words, y(i)k does not depend on y
(n+1)
t for any t. Next, for y(n+1)

k itself,

y
(n+1)
k+1 = y

(n+1)
k − 1

n

n∑
j=1

x(n+1)TAkx
(j)y

(j)
k ,

which depends on yn+1
k only additively. We can verify under a simple induction that757

g(x, y, k + 1)− y = g(x, y, k)− y.758

2. g(x, 0, k) is linear in x. To see this, notice first that for j ̸= n+ 1, y(j)k is does not depend759

on x
(n+1)
t for all t, j, k. Consequently, the update formula for y(n+1)

k+1 depends only linearly760

on x(n+1) and y
(n+1)
k . Finally, y(n+1)

0 = 0 is linear in x, so the conclusion follows by761

induction.762

With these two facts in mind, we verify that for each k, there exists a θk ∈ Rd, such that763

g(x, y, k) = g(x, 0, k) + y = ⟨θk, x⟩+ y

for all x, y. It follows from definition that g(x, y, 0) = y, so that ⟨θ0, x⟩ = g(x, y, 0) − y = 0, so764

that θ0 = 0.765

We now turn our attention to the third crucial fact: for all i,766

g(x(i), y(i), k) = y
(i)
k =

〈
θk, x

(i)
〉
+ y(i)

To see this, suppose that we let x(n+1) := x(i) for some i ∈ 1...n. Then767

y
(i)
k+1 = y

(i)
k −

1

n

n∑
j=1

x(i)TAkx
(j)y

(j)
k

y
(n+1)
k+1 = y

(n+1)
k − 1

n

n∑
j=1

x(n+1)TAkx
(j)y

(j)
k ,

thus y
(i)
k+1 = y

(n+1)
k+1 if y(i)k = y

(n+1)
k , and the induction proof is completed by noting that y(i)0 =768

y
(n+1)
0 by definition. Let X̄ ∈ Rd×n be the matrix whose columns are x(1)...x(n), leaving out x(n+1).769

Let Ȳk ∈ R1×n denote the vector of y(1)k ...y
(n)
k . Then it follows that770

Ȳk = Ȳ0 + θTk X̄.

31



Using the above fact, the update formula for y(n+1)
k can be written as771

y
(n+1)
k+1 =y

(n+1)
k − 1

n

〈
AkX

⊤Yk, x
(n+1)

〉
⇒

〈
θk+1, x

(n+1)
〉
=
〈
θk, x

(n+1)
〉
− 1

n

〈
AkX̄

(
X̄T θk + Ȳ0

)
, x(n+1)

〉
=
〈
θk, x

(n+1)
〉
− 1

n

〈
AkX̄

(
X̄T (θk + w⋆)

)
, x(n+1)

〉
Since the choice of x(n+1) is arbitrary, we get the more general update formula772

θk+1 = θk −
1

n
AkX̄X̄T (θk + w⋆) .

We can treat Ak as a preconditioner. Let f(θ) :== 1
2n (θ + w⋆)

T
X̄X̄T (θ + w⋆), then773

θk+1 = θk −
1

n
Ak∇f(θ).

Finally, let wgd
k := −θk. We verify that f(−w) = Rw⋆

(w), so that774

wgd
k+1 = wgd

k −
1

n
Ak∇Rw⋆

(wgd
k ).

We also verify that for any x(n+1), the prediction of y(n+1)
k is775

g
(
x(n+1), y(n+1), k

)
= y(n+1) −

〈
θ, x(n+1)

〉
= y(n+1) +

〈
wgd

k , x(n+1)
〉
.

This concludes the proof.776
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