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A CODE REPOSITORY

The code for this paper is given in https://anonymous . 4open.science/r/FP-70F4/

B THE ALGORITHM

Algorithm 1 Multi- Generate multiple views of the data

Input: y,,...,yy € RP-datasamples, K € N - Amount of partitions, T- amount iterations
Output: w™ ... w(K) €[0,1]” - Partition of the features into the K sets
1: Init feature partition vectors w¥), ... w(X) by
K
W =a/3 "0, k=1,...,K,d=1,...,D, (19)
s=1
and @Y, ..., @) "L Uniform|o, 1]P
2: Set d < d;p4 according to Eq. 26
3: for t=1,...,T do
4 ft=T:6=0
5: while Score decreases do
6: Update the Graph matrices - W ... W) ¢ [0, 1]V *N according to Eq. 10
7: Update the feature partition vectors- w(, ... w(X) ¢ [0, 1]” according to Eq. 23
8: Calculate the score according to Eq. 22
9: §<0/2
10: Return w®, ... w),

Note: In our simulations, we run this algorithm multiple times with different random initializations
and return the solution with the smallest score.

C ALGORITHMIC DETAILS

This section presents an algorithm for approximately solving the feature partitioning problem de-
scribed in Problem 1. The algorithm solves approximately a regularized version of this problem
at each iteration, gradually reducing the regularization coefficient until the problem aligns with the
original problem. Throughout this section, we derive its update rules, compare it to a naive solution
to Problem 1 and derive its complexity. The proofs for this section are given in Appendix E.3.

Based on Proposition 3, one can derive an alternating optimization directly for Problem 1. How-
ever, this method is susceptible to converge to local minima. Specifically, an update rule for the
partitioning weights that follows Eq. 9 yields solutions situated on the boundary of the partitioning
domain. These solutions, potentially local minima, may lead to rapid convergence regardless of the
initialization. In the right plot of Figure 6 we provide an example.

Now, we begin by defining a regularized version of the algorithm based on § € R, by

5, (k) - = (B) | -
Greg (0, {W " }il1, {W(k)}kK:u {y¥t) = GUW T}, {W(k)}a {y ) + (20)
D K
5 (D log(K) +>_ Y @l 1og(a;f1’“>)> 1)
d=1k=1
The regularization term is non-negative because Zle wfik) = 1forald e {1,...,D} and the

fact that negative entropy achieves its lower bound when the probability distribution is uniform
W =1/K foralld € {1,...,D}and k € {1,...,K}).

Now we can rewrite the new optimization problem by
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The loss landscape with the partitioning parameter updates
(white= w{= partioning solution at the end of iteration t, black arrows= parameter updates)
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Figure 6: An experiment comparing the dynamics of our algorithm updates Algorithm 1 (left), with
an alternating minimization technique based on Eq. 3 (right). Specifically on the left, each column
shows the loss landscape around the partitioning solution given in each iteration ¢ € {1,...,3},
where the partitioning updates in steps 5 — 8 are drawn on top of that. Specifically, in the first row,
the loss landscape concerns the first two partition coordinates, while the last two are constrained
to be the initial solution at this step. The bottom row is the but regarding the third and fourth
coordinate, while constraining the first two. The black arrows depict the partitioning parameter
updates applied throughout each algorithm iteration. The data is composed of N = 400 samples
in D = 4 dimensions that consist of two concatenated circles, meaning that the correct solution
is w® = (0,0,1,1). In the regularized case (Left) after the algorithm converges to a specific
configuration t its updated parameter values are assigned to w{**1}, as described in Algorithm 1.

Problem 3. Let 6 € R,. Consider the optimization problem defined as follows

. = (k) -
min Greg(6 AW H_ o™ {yd)y), (22)

1A N PNISRE
{W }kzl’{w }k=1
with the following constraints: Zszl @ék) =1, Zjvzl Wl(];) =1, Wi(’lf) =0fori=1,...,N,
k=1,....,K,andd=1,...,D.

Our algorithm approximately solves Problem 3 for some 0 = §;,;:, and then will gradually decrease
it until the problem aligns with Problem 1. We begin by focusing on the solution of the problem
for each 0. Given that there are two sets of parameters, the feature partitions {w*)} and their cor-

responding affinity matrices {W(k)}, we propose an alternating minimization approach. Meaning,
the method alternately minimizes the objective function, focusing first on the affinity matrices while
keeping the partition weights fixed and vice versa. These parameters are derived below-

Proposition 4. Let 6 > 0, {w®}X < [0,1]° be a partitioning weights and {W W }E_
[0, 1)V*N be affinity matrices that satisfy the constraints of Problem 3.

Define {W*)*} < [0, 1]N*N as in Eq. 10 and {w®*}E_| by

(k) w2\ K W () — (W,)a)
wék)* — exp (_ Zz] Wi ((yi)d (yg)d) ) /Zexp (_ Zu Wi ((y%)d (yj)d) ) . (23)
s=1

0 o
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Then, a set of parameters that minimize the objective function and are with the domain of Problem 3
are

* . I (k)
{W(k) b= ngm{WUf)}Greg((;» w }5:17 {w(k)}£<:1, {yz}ij\il)v (24)
{w(k)*} = argmin{wm}GTeg((ﬁ, {W(k)}szlv{‘b(k)}szlv{yi fvzl) (25)

The proof of Proposition 4 can be found in Appendix C. For § = 0, we can see that this proposition
aligns with Proposition 3.
Finally, we offer a heuristic to initialize §;,,;; so that the solution to the regularized problem discussed

above will be around the uniform partitioning, i.e. wék) ~ 1/K forallk € {1,...,K}and d €
{1,...,D}. Then, as ¢ decreases, it will slowly shift towards the right partitioning described in
Proposition 3.

Proposition 5. Let {@ W} | < [0,1]° be a uniform partitioning, i.e. E((ik) = 1/K, and the
—(k

corresponding affinity matrices {W( )}szl defined as in Proposition 4 based on these partitions.

Let {w®}E c {0,1}” and {W(k)}szl be the optimal partitioning solution as discussed in

Proposition 3.

Define

D -log(K) '

Oinit =

(26)

Then,
w7 (k) _
Greg(éim'ta w }5:17 {w(k)}gzla {yz}ij\il) < Greg(5inita {W(k)}kK:u {W(k)}kK:u {yz}zj\il) (27)

The proof of Proposition 5 can be found in Appendix C.

In Algorithm 1, we outline the steps of our proposed algorithm based on Propositions 4 and 5. In
Figure 6, we present an experiment based on the discussed update rules based on Proposition 3 and
our algorithm. The plots illustrate the convergence behavior of both optimization processes. As
observed on the right plot, the optimization in the original case quickly converges to an incorrect
solution and remains there. However, on the left plot, the regularization guides the solution towards
a uniform partition at ¢ = 1. As the regularization parameter 1} decreases, the solution gradually
shifts towards the correct partition. Moreover, the regularization effectively controls the influence
of the partitioning weights, as intended.

Computational Complexity. In the next two paragraphs, we will provide the computational com-
plexity of our algorithm, outlined in Algorithm 1, when the input is either the data or its singular
value decomposition (SVD) approximation. To analyze the complexity in the first case, consider a
dataset with N observations in R”, where the features are partitioned into K subsets. The compu-
tational complexity of constructing the similarity graph in tSNE using all the features is O(N2D).
On the other hand, the computational complexity of obtaining K partitions and their corresponding
similarity graphs using our approach is O(K N2 D). Hence the computational complexity of our ap-
proach incurs an additional factor of K, which is typically small. Nonetheless, our approach can be
significantly slower due to the iterative procedure we employ for solving our optimization problem.

To enhance scalability, we also describe an implementation that exploits a low-rank approxima-
tion of the data, which can considerably reduce the running time for large datasets. Given that
the data is approximated using the S < min(N, D) leading singular vectors of the data,the com-
putational complexity of the graph construction in tSNE will reduce to O(N2S), while the com-
putational complexity of obtaining K partitions and their corresponding similarity graphs will be
O(K(S*N? + S2D)), based on the next proposition.

Proposition 6. Let the data consist of N data points in RP. Suppose the data is given in the form of
a singular value decomposition (SVD) approximation of rank S < N, D. Then, the computational
complexity of the updates suggested in Proposition 4 is O(K (S?N? + S?D)).

Its proof can be found in page 44.
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(a) The three extracted partitions using

our method.

Diffusion Maps based on all pixels
Color: Yoda fig. angle Bulldog fig. angle Bunny fig. angle

Diffusion Maps based on pixels from
partition 1 (yellow) partition 2 (grey) partition 3 (pink)
Color: Yoda fig. angle Bulldog fig. angle Bunny fig. angle

AN

(b) The diffusion maps embedding based on all pixels compared with
the embedding based on each extracted feature partition.

Figure 7: The partitions extracted by our method in Section 3.2

D EXPERIMENT DETAILS-

D.1 EXPERIMENT DETAILS SECTION 3.1

In this experiment, we define an independent dataset and a partially dependant dataset denoted by
V,Y C RS, respectively. The two datasets are defined based on an 2—dimensioanl ellipse defined
by

A = {(8cos(0)sin(¢), 6sin()sin(¢), 4cos()) | 6 € [0,27], 6 € [0, 7]}, (28)
and R, S € O(3) be two orthogonal matrices. Now, we can define the two datasets by

%{(23) | a,beA} (29)

y={( ) 1| abea oa-om)}. G0)
where 0(a) returns the 0 parameterization of the point based on Eq. 28.

The error measure we consider can be understood in different ways. One way is through a non-
normalized Jaccard distance between the true feature partition and the estimated one, up to a permu-
tation of the ordering of partitions. Another way is using the L1 distance by

K
AW T {SMHL D) = minsepermoy Y 0™ =&, Gh
k=1
where Perm(D) is the set of all permutations over {1, ..., D}.

D.2 EXPERIMENT DETAILS SECTION 3.2

The experiment considers the embedding of a set of greyscale images, each formed of a concate-
nation of a pair of images that were captured by two cameras at the same time. To generate the
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embedding of the tSNE embedding based on all the features in Figure 4 we used perplexity of 40
with 100 simulations. The visualizations using the tSNE algorithm of the data based on each par-
tition uses a perplexity of 110. The high perplexity can be attributed to a known issue with tSNE,
where it sometimes distorts circular embeddings, resulting in discontinuities. A common solution to
this problem is to increase the perplexity of the embedding.

In Figure 7 we present the extracted partitions from this experiment using all features. Additionally,
we provide the Diffusion Maps embedding based on all the features and features from each of the
extracted partitions. The shown embedding includes the first two non trivial eigenvectors.

Finally we examine the performance of our approach with K-means and spectral clustering. These
methods are applied on the features while treating the samples as the coordinates (i.e., applied on the
data transpose). The quality of each method is quantified with respect to the true angles of the three
figurines, as they are the parameters governing the data (as described in Section 3.2). The score of
a partition for a figurine is based on the overlap percentage of the k-nearest neighbors based on the
feature partition with those from the figurine’s angle of each sample (overlap divided by k). This is
defined by

N figurine ‘method,j

(Nmethod,j Nfigum’ne) _ ij : |-/\[Z ﬂ/\/i |
Pmean ’ - N Nfigurine
i=1 | [ |

- 100,

pstd(Nmethod,j,Nfigurine) _

l i <|A/;figurine n _/\/;.mEthOd’j|

2
N |Nfigurine | . 100 — Prmean (Nmethod,j , Nfigurine))
i

i=1

where /797" denotes the set of k-nearest neighbors of the i-th sample, determined by the ground

truth of the figurine, while V/"“""**7| denotes the set of the k-nearest neighbors of the i-th sample,
determined by j-th feature partition of the method.

The score of a method with respect to a single figurine, is then calculated based on the partition that
achieved the maximal intersection (in expectation over the samples) by

Z mjax Pmean (NmethOd"J,Nﬂgumne).

# figurines figarine

In the same manner we define the standard deviation that we will use in the results, the mean of
the standard deviation for the best assignement. In Table 1 we provide details about the results of
the different methods. Finally, in Figure 8 we provide the feature partitions extracted by spectral
clustering and K-means.

We note that the parameters used for K-means and spectral clustering were the default parameters
used with Sklearn. The exact parameters that were used for each algorithm is given in Figure 7.
Specifically for spectral clustering we used a nearest neighbors graph.

D.3 EXPERIMENT DETAILS SECTION 3.3

In Section 3.3 we applied our method to the dataset used in Qu et al. (2024) using a perplexity of 40
with 100 simulations. As for the preprocessing of the data, the count data matrix initially included
3745 cells with 32285 genes. We used the Normalization scheme used in the Seurat package on it.
Meaning, the genes in each cell were divided by the total amount of genes within the cell and then
scaled by 10000. Each entry was then individually transformed using log normalization, where each
value x was transformed into log(1 4 x). Then, we used the highly variable genes method to reduce
the amuont of used genes automatically, which resulted in 1708 genes. Finally, we z-scored each
gene across the different samples and applied PCA into dimension 100.

In Section 3.3, we applied our method to the dataset used in Qu et al. (2024) that included a count
data matrix comprised 3, 745 cells and 32, 285 genes. We employed the normalization scheme from
the Seurat package, where the gene counts in each cell were divided by the total number of genes
within that cell and then scaled by 10, 000. Each entry was subsequently log-normalized using the
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Agreement of Agreement of
Method 30-nearest neighbors (std) | 50-nearest neighbors (std)

All features 8.21 (4.91) 11.74 (4.75)

K- means (K=3) 18.49 (9.74) 25.93 (10.61°)

K-means (K=4) 18.23 (9.11) 25.42 (10.31)

Spectral clustering (nn=10,K=3, eigs=3) 18.28 (8.4) 24.72 (8.82)
Spectral clustering (nn=10,K=4,eigs= 4) 18.85 (8.71) 25.49 (9.19)
Spectral clustering (nn=30,K=3, eigs=3) 18.12 (8.5) 24.47 (8.97)
Spectral clustering (nn=30,K=4,eigs=4) 18.19 (8.5) 24.53 (8.98)
Spectral clustering (nn=10,K=3,eigs=5) 18.04 (8.5) 24.41 (8.98)
Spectral clustering (nn=10,K=4,eigs=5) 18.63 (8.76) 25.25 (9.26)
Spectral clustering (nn=10,K=3,eigs=10) 17.51 (7.94) 23.8 (8.22)
Spectral clustering (nn=30,K=4,eigs=10) 18.94 (10.35) 25.49 (11.51)
FP (Ours) 75.93 (12.22) 85.15 (8.59)

Table 1: Performance quality of different clustering methods in capturing the movement patterns
of each figurine that govern the data. The table includes the results of applying the metric in Ap-
pendix D.2 on all the features, our method (FP), K-means and spectral clustering. The K-means and
spectral clustering are applied on the pixels treating the images as coordinates (i.e., applied on the
transposed data). The K indicates the amount of clusters used, nn indicates the amount of nearest
neighbors, and eig are the amount eigenvectors used. For the Feature Partioning method we parti-
tioned the pixels into 3 partitions.

(a) An image from the dataset

(b) K-means (K=3)

(d) Spectral clustering (K=3,10-nn,eigs=3)

(c) K-means (K=4)

(e) Spectral clustering (K=4,10-nn,eigs=4)

Figure 8: The pixels partitions generated using K-means and spectral clustering, by clustering the
pixel data while treating the samples as the coordinates (applied on the transposed data). The K
indicates the amount of clusters used, 10-nn means that a 10-nearest neighbors graph was used, and
eigs means the amount of eignevectors used.
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transformation log(1+x). We then applied the highly variable genes method to automatically reduce
the number of genes, resulting in 1, 708 genes. Finally, we z-scored each gene across the samples
and performed PCA to reduce the dimensionality to 100. As for our method, we applied Algorithm 1
on the data using a perplexity of 40 and 100 simulations.

Finally, in Figure 9 we show the Diffusion Maps embedding of the data based on the two partitions.
As shown, the embedding relates to both attributes of the given cells, unlike the embedding based
on all the genes.

D.4 BIOLOGICAL DATA ANALYSIS - FEATURE SELECTION OF GENES

In this subsection we would like to explore the genes governing the two structures we unraveled in
Section 3.3. We employ a feature selection approach in the spirit of He et al. (2005); Lindenbaum
et al. (2021) that sorts the features according to the scoring function .S (W, d) for each dimension d
and affinity matrix W, as defined in Eq. 3. Then, we choose the features with the smallest values
that intuitively promote the most smooth features with respect to the structure W.

When considering partition 1, meaning W™ and the genes within this partition, we get a Laplacian
score for each of these genes. The 40 genes with the smallest score are - Agtr2, Foxd1, Fibin,
Coll12al, Dpt, Sox18, Sox11, Thbs2, Lox, Nrp2, Ebf1, Cdknlc, H19, Dclk1, Igf2, Fgf10, Igf1, Mest,
Abi3bp, Sox2, Lefl, Kitl, Itm2a, Sox9, Angptll, Cd24a, Cdknla, Ogn, Cpne$5, Nfib, Ptch1, Zfhx4,
S100a6, Col23al, Pde3a, Klif4, Sgip1, Postn, Bmp4, Synel (ordered from smallest to highest).

As for the partition 2, we considered the same problem but with respect to W and its genes. The
40 genes with the smallest scores are -Top2a, Cenpf, Nusapl, Cdca8, Hmmr, Ube2c, Ccnbl, Smc4,
Tpx2, Prcl, Cenpe, Mki67, Smc2, Spc25, Histlhlb, Cks2, Hist1h2ap, Cdc20, Birc5, Knll, Kif23,
Ckap2l, Pimreg, Tacc3, Cdkl, Ccna2, Arl6ipl, Sgo2a, Mis18bpl, Incenp, Aurkb, Hmgb2, Plkl1,
Kif20b, Cenpa, Esco2, Pclaf, Hist1hle, H2afx, Tubalc (ordered from smallest to highest).

In Figures 10c and 10d we color the tSNE embeddings based on the different partitions according
to the genes extracted above. We can see that the values of most genes from partition 1 are indeed
smooth with respect to the tSNE embedding of partition 1, but not of partition 2. This claim holds
vise versa, which indicates that the gene partitions have a different underlying structure. It is worth
mentioning that a subset of the genes, like Foxdl, are smooth with respect to both embeddings.
Specifically, for Foxdl, it relates to genes that are active in DC cell types, which are defined as G1
cell cycle phase type.

Diffusion Maps based on Diffusion Maps based on _
all features partition 1 partition 2 all features partition 1 partition 2
2 e e . E =4
(a) Colored by cell type (b) Colored by cell cycle phase

Figure 9: The Diffusion Maps embedding of N = 3745 cells characterized by their D = 1708
genes values as detailed in Section 3.3 colored by different attributes of the cells. In Figure 10, we
provide further investigation of these embeddings.

19



Under review as a conference paper at ICLR 2024

tSNE based on tSNE based on
all genes partition 1 partition 2 all genes partition 1 partition 2
= o
‘ 2
0 v
o 0 " ‘
2 Ay <
S ] ‘
>
. (@]
@] 2 =
Ay @ Qe
. (o]
O
(a) Colored by cell type (b) Colored by cell cycle phase
Agtr2 Foxdl Fibin Coll2al Dpt
‘e ‘e ‘& L e ' 4

e

Fibin Coll2al

QQ

Agtr2

L%

(c) The embeddings colored based on genes extracted from Partition 1 using Unsupervised Feature Selec-
tion
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l‘ l .‘b .‘b lb
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(d) Coloring the embeddings based on genes extracted from Partition 2 using Unsupervised Feature Se-
lection

Hmmr

Top2a Cenpf

¢

Figure 10: The tSNE embedding of N = 3745 cells characterized by their D = 1708 genes values
as detailed in Section 3.3. The embeddings are colored by different attributes of the cells, and by
the values of specific genes that were selected by an Unsupervised Feature selection method as
described in Appendix D.4.
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E PROOFS

Proofs overview.

The proofs section is organized into three main parts. First, Appendix E.1 contains the proofs for
the results in Section 1. Next, Appendix E.2 presents the proofs for the results in Section 2. Finally,
Appendix E.3 includes the proofs of the results in Appendix C.

The proof outline for Appendix E.1 is structured as follows:

1.

Lemma 1. This is an auxiliary lemma used in Proposition 1 that characterizes the entropy
function of a discrete distribution.

. The proof of Proposition 1. The proof begins by converting the optimization problem to

a convex one, by relaxing an equality constraint. Then it derives an optimal solution to
the optimization problem by using the Karush-Kuhn-Tucker(KKT) conditions for convex
optimization problems (Boyd & Vandenberghe (2004)) and Lemma 1. Finally, we show
that the solution satisfics the original equality constraint.

. Lemma 2. This is an auxiliary lemma used in Proposition 2 that approximates specific

integrals over a manifold in terms of the manifold’s properties and density. The lemma
uses results from Singer (2006).

. The proof of Proposition 2. The proof begins by asymptotically approximating the func-

tion using results from Hein et al. (2005). Then, it derives its expression using Lemma 2 in
terms of the manifold’s characteristics and density. Finally, a further simplification of the
expression is done by referring to results from Osher et al. (2017).

. Lemma 3. This is an auxiliary lemma used in Proposition 3 that characterizes the optimal

graphs in a Problem 1 with fixed partitions. The proof begins by converting the optimization
problem to a convex one, by relaxing an equality constraint. Then it derives an optimal
solution to the optimization problem by using the Karush-Kuhn-Tucker(KKT) conditions
for convex optimization problems (Boyd & Vandenberghe (2004)) and Lemma 1. Finally,
we show that the solution satisfies the original equality constraint.

. Lemma 4. This is an auxiliary lemma used in Proposition 3 that characterizes the optimal

partitions in a Problem 1 with fixed graphs.

. The proof of Proposition 3. The proof divides the problem into two sub-problems, fixing

either the feature partitions or their associated graphs in each case. Then it combines the
results from Lemmas 3 and 4 to achieve a full characterization of optimal solutions to the
problem.

The proof outline for Appendix E.2 is structured as follows:

1.

The proof of Corollary 1. The proof begins by proving that the optimization problem
is convex. Then it derives an optimal solution to the optimization problem by using the
Karush-Kuhn-Tucker(KKT) conditions for convex optimization problems (Boyd & Van-
denberghe (2004)).

. Lemma 5. This is an auxiliary lemma used in Theorem 1 that characterizes a specific sum

in terms of the data setup parameters and the overall dimension of it as defined in Section 2.

. Lemma 6. This is an auxiliary lemma used in Lemma 7 that approximates specific integrals

over a manifold in terms of the manifold’s properties and density and some predefined
parameters. Its proof uses results from Lemma 2.

. Lemma 7. This is an auxiliary lemma used in Theorem 1 that approximates specific inte-

grals over a manifold in terms of the manifold’s properties, density and some predefined
parameters. Each of the integrals under consideration includes a nested integral, with the
inner integral being addressed in Lemma 6.

. The proof of Theorem 1. The proof begins by solving the minimization problem over the

graph parameters derived in Corollary 1. It then asymptotically approximates the solution
as the dimension tends to infinity, utilizing Lemma 5. Next, it approximates this asymptotic
value as the number of samples tends to infinity, applying Lemma 7 to express it in terms
of the manifold’s properties, density, and partition parameters.
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6. Lemma 8. This auxiliary lemma, used in Theorem 2, considers the case of two parti-
tions. It demonstrates that the analytical form derived in Theorem 1 is minimized when
the partitioning is close to the true feature partitioning under a constraint on the possible
partitioning solutions.

7. The proof of Theorem 2. The proof builds on Lemma 8 by considering a sequence
of problems and demonstrates that the problem is minimized when the true partitioning
solution is used.

8. The proof of Problem 3. The proof finds a parameter defining the regularization within
Problem 3 that shifts the optimal solution towards the uniform partitioning solution.

The proof outline of Appendix C is structured as follows:

1. Appendix E.3. This is an auxiliary lemma used in Proposition 4 that characterizes the
optimal graphs in a Problem 3 with fixed partitions. The proof begins by converting the
optimization problem to a convex one, by relaxing an equality constraint. Then it derives an
optimal solution to the optimization problem by using the Karush-Kuhn-Tucker(KKT) con-
ditions for convex optimization problems (Boyd & Vandenberghe (2004)) and Lemma 1.
Finally, we show that the solution satisfies the original equality constraint.

2. The proof of Proposition 4. The proof divides the problem into two sub-problems, fixing
either the feature partitions or their associated graphs in each case. Then it combines the
results from Lemma 3 from Section Appendix E.1 and Lemma 9 to achieve a full charac-
terization of optimal solutions to the problem.

E.1 PROOFS OF SECTION 1.1 AND SECTION 1.2

Lemma 1. Considery,,...,yy C R, and define the function f : (0,00) — R by

N
exp(—u;]°5) exp( 1y, |8)
1(8) = J 1 J
) gzﬁ exp(—[wl28) S, eap(— s ]26)

Then f is monotonous non decreasing and continuous in (.

. (32)

Proof. We indicate that this proof is used in not new, and is shown here for completeness. We begin
by rewriting the function f-

N eap(— |y, 126) exp(—[1y;]°5) )
B) = lo (33)
1@ Z(Zﬁlem—nytnw) BN can(—|v.]28)

N 2
exp(—|y;|28)
g SN exp(—ly,)128)

j=1

log(exp(—|ly,°8)) (34)

N N

cep(— |y, %5) 2
l —ly.l1%8
;zleem—nytnzm 292 exn(=—llw.l*9)

N

exp(—y; )
25 corl-lulF)
zjy-lexp<—||yj25>> y )
- lo exp(—
(Zi&ew(—nytn?ﬁ) o2 cer )

s=1

log(exp(—|ly,[*8)) (35)

SPY .o 71 R ED NG o PSS
j=1 >t exp(—|y.?6) s=1
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Now we will show that its first derivative is non negative:

N

d exp(_||yj||2ﬁ) i
LB = — |
ag (8) ;Eﬁle:cp(_”ytw)lly I

N
—BY_ eap(—|ly;1°B)lly;lI* -

N N
—lly,l1* X202 exp(=lly, [1°8) + 3=y exp(—lly,I°B)lly, 1

s (i eap(—lylI28))?

N
> erp(—lly.[*B)lly, I

+
SN eap(—|y.lI120)

N N
—lly,l1* X202 exp(=lly, [1°8) + 3=y exp(—lly,°B)lly, 1

N
= —B —May. 25 2.
2 car=l; )l | 5N eon(—w.8))

2
n el I7) L eap(—ly;I28)
P e e Z” S — Ty

2
_ cap( llygll B (1 o cap(—ly.I28)
_ 5 Zzt o (nyj (Znyrn o (_”ySHQﬁ)))

> 0.

Furthermore, we will show that the derivative is bounded and therefore it is continuous with respect
to 5. Based on Eq. 40-

a4 ey lt8) s _ean( w28\’
dﬂf(ﬁ) =5 Zzt 1 exp(—|ly.[1*6) ( (leyrll SN e (—||ys||28)>>

Jj=1

2

N
exp(—ly,*5) cap(=]ly; [R2)

11 exp(=[ly.[1*5) 11 exp(—

N
cap(—l,°8) | .,
8 .

gz ~ cop(- g5 %

< mazjeq,..ny Byl
where in the first derivation we use the variance decomposition into moments.

IN

g

Proposition 1. The matrix W € [0, 1]V *¥ defined in Eq. 1 is a solution to

_ argmin JW {yy,...,yn}), ®)
We[oyl]NxN

ford = 1,...,D and i,5 = 1,..., N, where D(k) = Zj\le exp(—||y; — yiju(k)/eM), the
bandwidth parameters {e ;} are set to satisfy the entropy constraints in Problem 1, and S is the
Laplacian-type score defined in Eq. 3.

If there are T > « points which are the 1-nearest neighbors of point i € {1,..., N}, then W, ;
should be set to 1 only for a subset A C {j : j is among the T nearest neighbors of i} of size «, and
W;.; = 0 otherwise.

Proof of Proposition 1. Inthe following proof, we will solve the problem with an adjusted constraint
using an inequality instead of an equality. However, the optimal result will satisfy the equality
constraint. Specifically, we consider an inequality negative constraint

N
Z Wi ilogW; ; < —log(e) (46)
j=1
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foralli € {1,...,N}.

Then by showing that the new problem includes convex inequality constraints, affine equality con-
straints and a convex objective function we can use the KKT conditions for convex problems (See
KKT conditions for convex problems within Sec. 5.5.3 in Boyd & Vandenberghe (2004)) to find an
optimal solution. Specifically, it states that any primal and dual sets parameters that satisfy the KKT
conditions are the primal and dual optimal solution with zero duality gap. Finally, we will need to
verify that the optimal solution satisfies the original negative entropy equality constraint.

We begin by showing that the new suggested problem satisfies the conditions of the KKT conditions
for convex problems. The objective and the constraint that the sum over the rows of the graph should
be 1 is convex as both are affine functions of the graphs. Finally, we will show that the inequality
constraint in Eq. 46 is convex for all j,i € {1,..., N} such thati # j, as W;; = 0. We will
use second order condition that implies the convexity of the function (see Sec. 3.1.4 in Boyd &
Vandenberghe (2004)). This is done by showing the that the Hessian of the function is positive
semi-definite, which is demonstrated here by proving it is diagonal with positive values

d2 N . d -
_ Weilog(Wey) = — (1+lo W) 47
dm%g; +1log(Wir) e g(Wi;) (47)
1
= = (48)
Wi,j
> 1 (49)
d__d iﬁ/ log(W,,) = —2 (1+1o (W -)) (50)
AW, dW;, e o0 AW, B
=0 (51)
foralli,j,s,t € {1,..., N} satisfying i # j and s # ¢.
Next, we define the Lagrangian of the minimization problem over w by
~ N ~
J(W, {yz}iVZI) = Z Wijlly; — yj||2 (52)
ij=1
N N )
+ Z € | log(a) + Z W, ; log(W; ;) (53)
i=1 j=1
N N
> [ oW1 (54)
i=1 j=1

where ¢; > 0and pi; € Rfori =1,..., N.

We will find a solution W that attain the KKT conditions, as they are sufficient for optimality. We
begin with the stationary condition-

dJ(W, {yz i\Ll)

AW, ; (35)

=y, —y;lI> + & (1 +log(Wi ;) + i (56)
Y 2 —+ € + W

Wi = exp (_ ly yjlle‘ Ay 57
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The KKT condition primal feasibility condition on the on the equality constraint induces-

N
1= ) Wy (58)
j=1
ly; — u,ll* + € + pa
= ZeXp <— J c (59)
J#i ’
i ly; —y;l* + e
exp (5—) = Zexp (—E—J . (60)
‘ g ’
By pushing it back into Eq. 57 we get that for all j # i
Yy 12 te
exp <_ 1y, ?fZH +ez>
Wi; = 5 (61)
’ i~ Y N tei
i 0xp (_M)
_ 2
exp <_ 1Y, eiyyu )
= (62)

. — 2 :
3 exp (— B

Furthermore, to satisfy the KKT conditions on the inequality constraint, we define any ¢; for all
ie{l,...,N} by

€ St ZWW log W; ; = —log(a). (63)

J

The function j W; jlog W; ; is a continuous, non increasing monotonous in ¢; according to

Lemma 1. Now, under the reasonable assumption that {y, } are n distinct points such ; exists based
on the intermediate value theorem (and can computationally be found up to the wanted accuracy
using binary search). O

Lemma 2. Let M C RP be a smooth compact Riemannian manifold and let g : M — R be some
smooth positive over it. Let Ay : M — R be the Laplace Beltrami operator over M. Then, there
exists €(M) so that for any € < é(M) and x € M

T — 2
%/w W e <——” 2€y” > g(@)dz = g(y) + ¢/2(E(y)g(y) + Amg(y)) + O(*)  (64)
=9(y) 1 +0(e))  (65)
é /:CEM P (_—”m — ) 9(@)(za — ya)*dz = eg(y) |V ayall® + O(¢*)  (66)

2e
=cg(@¥)|Vamyal*(1+0()) (67
foralld € {1,..., D}, where E(x) is a smooth scalar function of the curvature of M at x € M
and C = (2me)mM)/2,

Proof. The proof of Eq. 64 is given in Singer (2006) (see Eq. 2.11). Now we begin proving Eq. 66.
As x tends to y

Apmg(@)(za —ya)? (68)

=g(x)(®a — Ya) Am(Ta — Ya) + (Ta — ya) Armg(®)(Ta — ya) (69)
+2(Vmg(@)(xa — ya), Vaa(za — ya))

= g9(x)(rd — Ya) Amza + (Ta — Ya) Armg(x)(Ta — Ya) (70)
+2(z4 — ya)(Vmg(x), Vmza) + 29(x) ||V pmzal?

= 29(2) | Vmzal*| 5y (71)
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where we use the identity Ay p-h = hAa(p) + pAri(h) +2(V amp, V arh) for smooth functions
p,h : M — R, based on the fact both f and the restriction of the manifold onto a specific dimension
is smooth with respect to them manifold M. Furthermore we use the fact that by combining it with
the fact that the manifold is compact, we get that the Laplace Beltrami operator and the gradients
over 24, g(x), g(x) - x4 are bounded.

Now, by combining it with Eq. 64 we get that for sufficiently small e

1 [ —y|?
o [ oo (SR s e = 220w Vo) + 060 a2
Jxem €
= cg@WIVagal® +0(*). (73)
a

Proposition 2. Let M C RP be a smooth compact Riemannian manifold with an intrinsic di-
mension denoted by dim(M) < D. Assume y,,...,yy € M are independently sampled from
a smooth non-vanishing distribution f over M, and that W is constructed as described in Eq. 1.
Then, for all sufficiently small €y, ...,ex € Ry, we have forall i € {1,..., N},

N ..

> Wisllys —y,l? *7F 5 - dim(M) + O(e). (©)

. a.s
j=1

Proof of Proposition 2. For simplicity denote = y,. Let’s examine the inquired term in Eq. 6

N
> Wil —y,° (74)
j=1

exp(—||z — y;|*/e:)
= Z Z ex (—JH:B— ||2/6) -||.’L'—yjH2 (75)
je{1,...,NY/{i} “=te{l, . .N}/{i} p Yy i

(76)

a.s.

Nogo / exp(—|z — ylI*/ei)llx — y[*f(y)dy
— )

yem  Jzepmep(—lm - 2[P/e) f(z)dz
where the derivation made in the last line is based on Lemma 2 in Hein et al. (2005). Specifically by
considering Ag ¢, n—1 and the samples {y, };er where I = {1,..., N}/{i}. To be explicit, in the
context of the derivation this Lemma states that: Let © € M and g be a continuous function on M.
Then, there exists a constant C' > 1 so that for any €, € (0,1/C') such that

. ( Sjererp(-lz —y, 1/ )o(y;)  Eyealeap(— | — y|?/)g(v) ‘ . 5)

Y jererp(=llz —y;ll*/e) Ezemlexp(—|l@ — z[*/e)]
>1—-CN - exp(—thim(M)gz/C).

Next, we decompose the Euclidean distance and apply Lemma 2 to approximate different terms

within the integral

D
_ exp(—|lz — yl1?/e:)(za — ya)? f (y)dy
> /yeM oo exp(—ll@ — 2[?/e;) f(z)dz a7
D
o (6/2) f(@)]|[V pmzal (1 + O(es))
T (@)1 +0(e) 78)
D
1
= ;(61'/2)”%\4%”2(1 +0(€)) - 300 (79)
D
= Z(éi/2)||VMId||2(1 +0(e;)) - (1 + O(ei)) (80)
=1 i ”
= (5 > ||Vde||2> +0(), (81)
d=1
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where we use the first-order approximation of 1/(14a) = 1 —a+0(a?) = 14+ 0O(a) for sufficiently
small a. Finally, by using proposition 3.1 from Osher et al. (2017) we get

- % -dim(M) + O (€?) (82)
and thus, the proof is complete. O
Lemma 3. Let o € (1, N — 1) and let {w®} | C [0,1]P be a partition solution as defined in

Problem 1. Define a set of K affinity matrices {W(k)} C [0, 1]V*N py

ki

Hy ytH (k)) fOrj #Z (83)

exp| —

k) _
W’] o ZZL:1 cxp(

€k,i

0 else
foralli,j=1,...,N,and K =1, ..., K where € ; satisfies

Z Wi k) log W, ) = —log(a). (84)

Then, a minimizer of the function G (defined in Eq. T) over matrices that satisfy the constraints in
Problem 1 is

{whn — argmlnG({W }k AW Ty yn ). (85)
{W

Proof. In the following proof, we will solve the problem with an adjusted constraint using an in-
equality instead of an equality. Specifically, we consider an inequality negative constraint

N
Z Wl(];) log Wl(];) < —log(c) (86)
j=1
forallk € {1,...,K}andi € {1,..., N}. Then by showing that the new problem includes convex
inequality constraints, affine equality constraints and a convex objective function we can use the
KKT conditions for convex problems (See KKT conditions for convex problems within Sec. 5.5.3
in Boyd & Vandenberghe (2004)) to find optimal solutions. Specifically, it states that any primal
and dual sets parameters that satisfy the KKT conditions are the primal and dual optimal solution
with zero duality gap. Finally, we will need to verify that the optimal solution satisfies the original
negative entropy equality constraint.

We begin by showing that the new suggested problem satisfies the conditions of the KKT conditions
for convex problems. The objective and the constraint that the sum over the rows of the graph should
be 1 is convex as both are affine functions of the graphs. Finally, we will show that the inequality
constraint in Eq. 86 is convex for all j,i € {1,..., N} such that i # j, as WZ(I;) = 0, and for all
k e {1,..., K}. We will use second order condition that implies the convexity of the function (see
Sec. 3.1.4 in Boyd & Vandenberghe (2004)). This is done by showing the that the Hessian of the
function is positive semi-definite, which is demonstrated here by proving it is diagonal with positive
values

d2

(k) (k)Y _ d 7 (k)
d2W k) tzl Wst IOg(Wst) - dW‘(k») (1 +10g(Wi,j )) (87)
] S (2%}
1
= — (88)
(®)
Wi
> 1. (89)
d (k) (k) d (k)
W log(W®) = 1+ log(W %) (90)
2 Z st 108 % &
dW()destl d s(,t)( )
=0 o1)

27



Under review as a conference paper at ICLR 2024

forall 4, j,s,t € {1,..., N} satisfying i # j and s # t.

~ (k
Next, we define the Lagrangian of the minimization problem over {W( )} by

LWL ™) = Z S g, — gl (92)
=11,5=1
N
+ ZZ% log(a) + > W 10g(W%) (93)
k=11i=1 J=1
K N N
D | oW (94)
k=11i=1 Jj=1

where e, ; > 0and py,; € Rfork=1,...,Kandi=1,...,N.

We will find a solution {W(k)}f:1 that attain the KKT conditions, as they are sufficient for opti-
mality. We begin with the stationary condition-

dL{W ™M}, {wM})

0 = (95)
aw®)
=y~ yl1200 + eni (1+108(W)) + i (96)
2
i~ Y + €rqi + i
WZ(];) = exp (_Hy yj”“"(:; ki 1k, ) 97)

The KKT condition primal feasibility condition on the on the equality constraint induces-

N

- "
j=1
2
— Yexp (_ Ny =y, 2,00 + €k + i, ) o)
J#i €ki
2
exp (&) — Zexp (_ Hy y_]”w(k) k, ) ' (100)
okt j 74 €k,i
, e 7
By pushing it back into Eq. 97 we get that forall j #iand k € {1,...,N}
e x5 (101)
Et;ﬁi exp | — o

€k,i

_ 102
A (102)
Do OXP | — T

Furthermore, to satisfy the KKT conditions on the inequality constraint we define any ey, ; for all
ie{l,...,N}tandk € {1,...,K} by

> W log W) = —log(a). (103)

exp <_|yi—yj|f Zm)

The function ) _; Wi(];) log Wi(?) is a continuous, non increasing monotonous in ¢; according to
Lemma 1. Now, under the reasonable assumption that {y; } are n distinct datapoints such ¢; exists
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based on the intermediate value theorem (and can be found up to the wanted accuracy using binary
search).

O

Lemma 4. Let {W "} € [0,1]"%" be affinity matrices under the constraints in Problem 1. Define
a partitioning solution {w®} C {0,1}” by

(k)_{l if k = k for some k € Q(d)
Wi =3 )

else

) (104)

ford=1,...,D, where Q(d) = argmingeq K}S(W( ) ,d) and S is defined in Eq. 3.

,,,,,

Then, a minimizer of the objective function in Problem 1 while fixing the graph parameters satisfy
its constraints is

{W(k)} = argmin{wm}G({W(k)}f:l, {&(k)}szla {1, yn}) (105)

Proof. The minimization problem is

argmmZdek) ZZ (y)a— (y;)a)* | - (106)

(@™} a=1k=1 i=1j=1
As the constraints are ) _, wl(i ) =1 for any d = 1,..., D, the problem can be decomposed into D
independent problems. Meaning that for any d € {1,..., D} we need to solve
k
arg(nk”)nnde ZZWi(,j)((yi)d - (yj)d)2 . (107)
{057} k=1 i=1 j=1

Hence, the solution to this problem is

Wc(lk) _ { (1) ifk=~F foresl(s)gle ke I(d) (108)

forallk € {1,...,K}andd € {1,..., D}, where
Qd) = argmingeq, xkyS(WH,d). (109)
O

Proposition 3 An optimal partitioning solution {(.u("“)}kK:1 and the corresponding affinity matrices
{W®K_ that solve Problem 1 must satisfy

(k) _ [ 1 ifk=F forsome k € Q(d)
Wa = { 0 else ’ ©
k PP .
wk) _ ) exp (_”yz - yj”zg(k)/ek,i) /Dz(,i) if i # j 7 10)
“J 0 else
Q(d) = argmin Y S(WH q), (11)
kE{l,...J(}id:l

Proof of Proposition 3. The proposition aims to characterize optimal parameters of Problem 1. We
begin by defining two sub-problems that are related to it, each focusing on minimizing one set of
parameters while keeping the other set fixed:

. < (k) B
(W = argmin GUW M AWM {yy, -y )) (110)
{W(k> 7

k

{w®} = arg min G({W(k)

{@®}

WAy, yn)). (111)

k
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where the parameters are limited to the constraints stated in Problem 1.

These two sub-problems are considered in Lemmas 3 and 4. Specifically, in Lemma 3 the optimal
graph matrices are derived in the form of

1YY, 1%
exp (_ J w( )

ki

wk = - CXp(_ yi—i:z)(k)> forj#i (112)
0 else
(113)
fori,j=1,...,Nand k =1,..., K,and ¢ ; satisfy
N
S W og W) = ~1og(a). (114)
j=1

On the other hand, in Lemma 4 an optimal partitioning parameters are derived in the form of

w((ik) _ { (1) ifk=k for:lc:;le k€ Q(d) (115)
ford=1,...,Dandk=1,..., K, where Q(d) = argmingc(r.. 1, S(W™ ,d) and S is defined
in Eq. 3.

Therefore there exists parameters of this form that minimizes Problem 1. O
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E.2 PROOFS OF SECTION 2

Corollary 1. Let {&®)} be a partitioning that satisfies the constraints in Problem 2. Then, the graph
affinity matrices that minimize Eq. 13 while fixing the partitioning parameters {d)(k )} are

1Y, =Y, 1~ ) N 1Y:~Y 2 ) p .

T Ti® T Tt

W = eXp( 1/D>z§1'§“>/ 2\ s aw ) AT g
0 else

The Proof of Corollary 1. For simplicity we denote the following term distance term

ly; — v, I
(k)y = L w"“gk). (116)
(1/D) Zd:l Wy

V(Y Y5 w

Then the problem we are trying to minimize is:

min G ({WHL AGHS oy ) +e DI 1og (WD) a17)

{W“”')}k, i

||y7, Y, || (k) .
W —“’ W 1og (W) (118)
{w mgg} ZZ D el o8 (1:5)

K N

= { }rl(lg)l} Z Z Dy yw Z Z W) log (W(k)) (119)
k=11,7=1 k=114,j=1

k

with the following constraints Zivzl WZ(I;) W(k) =0,fort: =1,...,N,k=1,..., K and
d=1,...,D. ‘

We begin by showing that the problem satisfies the conditions of the KKT conditions for convex
problems. First, the constraints that constraint the sum over the rows of the graph to be 1 is convex
as it is an affine function of the graphs. Second, we can see that the the first term in our problem is
linear and therefore convex. By showing that the second sum term is convex as well, we can use the
fact that sum of convex functions is a convex function Boyd & Vandenberghe (2004). To do so, we
will use the second order condition that implies the convexity of the function (see Sec. 3.1.4 in Boyd
& Vandenberghe (2004)). This is done by showing the that the Hessian of the function is positive
semi-definite, which is demonstrated here by proving it is diagonal with positive values

d2

d
Z W log(W )y = 1+ log(W, %) (120)

1
= =m (121)

]
> 1 (122)

d (k) (k) d (k)
W 10g(Wh)) = 1+ log(W %) (123)
k Z s,t
aw® )dW7 = ) ( )

= 0 (124)

forall 4, j,s,t € {1,..., N} satisfying i # j and s # t.
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= (k
Next, we define the Lagrangian of the minimization problem over {W( )} by

K N
= (k) = (k
LW L ™) = YN Wy 0®) (125)
k=11i,j=1
K N
T-(k T-(k
+ ey Y W log(W ) (126)
k=11,7=1
K N N ~
+ O i W —1 (127)
k=1 i=1 =1

where ¢, ; > Oand pu,; € Rfork=1,...,Kandi=1,...,N.

We will find a solution { W(k)}f:1 that attain the KKT conditions, as they are sufficient for opti-
mality. We begin with the stationary condition-

dL{W ™ {w®})

0 gy (128)
i,J
_ ey (K) (k) )
- 'Y(yza y]7w ) + € 1 + log(Wi,j ) + Mk i (129)
cw k) .
iYW +e+ )
w® = exp (-wy Y F) SR ) (130)
The KKT condition primal feasibility condition on the on the equality constraint induces-
N
Lo asn
j=1
- w (k) ,
79 W + € + N3
_ Yew (_v(y y;wh)) i, ) 132
i#i ‘
<y (k)
i i Y W t€
exp (&) = Zexp (_’y(y Y ) ) . (133)
‘ i#i ‘

By pushing it back into Eq. 130 we get that forall j # iand k € {1,..., N}

WE) e
exp (_’Y(yivyzvew )+ )
(k) _
Wi,j - E exp (_»},(ywy ;w(m)_,_e) (134)
t#1 €

( v(yi-,yj;w““)))
exp | ————F—
= (135)

Y wE)\
Dt €XP (_M)

Therefore we can conclude the proof with the derived optimal solution form. O

Lemma 5. Assume the configuration described in Section 2, and let {w®'} {0, 1} be a parti-
tioning solution that satisfies its conditions.

Leti# j€{l,...,N} betwo samples, and k € {1, ..., K} be a single partition then

k s s K+1 K+1
D Wy, —y)s  pt (e el Y a2
> S~ O (136)
a=1 (1/D) > 5, w3 s=1 >i1pi Di/D
k S S common common
wof |+ §2p§>(||x§>_m§,>||4+||m§ it MY (137)
D

s=1 (Ds/D) (Zfil pgk)(Dt/D)f
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where we define each partition according to structure of the samples structure in Section 2, meaning
w® = (wENT, (0N forall k € {1,..., K} and pi = S0 w9/ D,.

Proof. Rewrite the left hand side term in Eq. 136 results in

k k,s s s
2w v A
2 Z Z Q (138)
Sy W SHE /D)y, W
s 2l ?
K D, Yd LB (K+1)
z _] d
_ Z : (139)
D k
(/D) i X7t w0
As shown, the examined function can be decomposed into different parts of y® fors=1,..., K.
For simplicity, we will the value for an arbitrary s € {1,..., K} and the general result will follow.
We denote a = [z'*); 25TV — [wg-s); :B;K—H)] and get that
2
D. k) ( =10 ) D, (ks
Wd @ d _ Zdzl w((i : . i 2 140
D (k) - D (k) D ||a|| ( )
= (1/D)> 25, Wi (1/D) Ecizl‘*“ s
s, (kys)
w 1
= i oy pllel’ (141)
/D) Y, (L7 ef?) D
(k)
Ps 2
= 7w = lall (142)
S v DD

*:5) (p() ) 5
o W (P a) 2 wiks) 2
Var Z 4 = E ( i ) Var [ P¥gq } (143)
D k k
d=1 (1/ )E?:l wl(i ) d=1 (1/D) E (?:1 wz(i ) ( )d

Dy k,s
_ w0y 2lja]’ (14
B D (\? D?
= (/D) sf )
s k,s
(1/Dy) 3207 Wi 2||al|*
o k. 2 D,
(/D) i, (22, @)
k
B K (k) 2 D,
(Et:lpt Dt/D)

as P®a ~ Np, ( R ||a||2I> following the fact that P(S) ~ N(0,1/Dy) for any i,j €

{1,...,ds + deommont X {1,...,Ds}, andpt = (1/Dy) Zd 1%(11@ ) as defined in the lemma’s
statement for any k,t € {1,..., K}. O

Lemma 6. Let f be a non-vanishing smooth distribution over a smooth compact Riemannian man-
ifold M and let y € M. Let 31, ...,k € (0,1) that satisfy Zszl Br = 1. There exists é(M, f)
such that for any ¢ < &/VK any q1, ..., qx € [vVe,1 — (K —1)\/e]andany s € {1,..., K} :

Iz — yll*gs
1 o IS d 146
0g</weMeXp< GZf_lﬂhﬁt)f(m) w) (146)

. K
_ dlm;./\/l) log <7T€ D1 Qt,8t> +log (f(y)) + O (\/E) )

S
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and

K
(Lo (g ) o

dim(M) e > @By
> log < It( 1

s=1 qS

) +log (f(y) + 0 (Ve) .

Proof. We begin by showing Eq. 146. Based on Lemma 2, there exists ¢(M) so that for any
€ < EM)

/ exp (_Hcc%y) f(@)da = (we) M2 () (1 4 O(e)). (148)
remM

Second, if € < & /+/K then

i abh _ oS Y < YT Ay < “\/f = VeK <&, (149)
ds ds ds €

by using the Cauchy-Schwartz inequality, the fact that ¢,, s € [0,1] forall s € {1,..., K} and the
assumption that Zle Bs = 1. Therefore

Iz — yll*gs
1 —_—— d 150
0g</m€Me><p< er_lqtﬁt>f(y) y) (150)
X dim(M)/2
~log (M) f(@) (140 (Vo) (151)

. K
— dlméM) log (“Zt—l qtﬁt) +log (f(x)) +log (1+ O (V) (152)

ds

_ dim(
2

. K
dm(M) | (“ Ltz Mt) +1log (f(x)) + O (V) . (153)

S

where we used Lemma 2 in the derivation of Eq. 151, and the first order approximation of log(1 +
a) = a for small enough a.

Now, as for Eq. 147. If ¢ < &2 /y/K then

K K
€ 41 @Bt <€ Dot &P <

e < <, (154)
Zs:l s ar
forany r € {1,..., K}. Then, Eq. 147 follows using similar derivation.
|
Lemma 7. Let f1, ..., fxy1 be non-vanishing smooth distributions over smooth compact Rieman-
nian manifolds My, ..., Mk 1, respectively. Define f to be a non vanishing smooth distribution

over the product manifold M = My x ..., x Mg by f(xW, ... xE+D)) = Hf;ll fr(z®)
for any () ... 2E+D) e M.

Let Bi,...,Bx € (0,1) that satisfy 3", Br, = 1. There exists (M, f) such that for any ¢ < & /]\/K
andany qi,---,4K € [\/E,l - (K - 1)\/2]
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/ y)log (155)
YyeMm
K S S
[ ([T (L2 pe 10 g0 ) ),
p K K T [ay
TeM \s=1 €D 1 QB € i1 Uhr
K .
:Zdlm(;\/lk log (Wezt 1Qt/3t> (156)
s=1

. K
+dlm(-A;lK+1) log (szit{_l qtﬂt) B+ OWe),
2521 qs

where h(f) is the differential entropy of f defined by h(f) = — fyeM f(y)log(f(y))dy.

Proof. We begin by rewriting the terms inside the logarithmic term in Eq. 155 using the separability
properties of M and f

K (s))12 (K+1) _ 4 (K+1))12
log/ H ||.’13 — "% _ | Ky “gs f(x)da(157)
TeM \ 4

€ thl qt Bt € thl qt Bt

= Og exp e — s\ T
o Jr@em, e 4l
m(K+1) _ 2 (K41))2 K_ s
w(K+1)EMK+1 € Zt:l Qtﬂt
K (s) _ ()2
X S s s
= Zlog / exp _HK—qu fk(fc( ))d:c( )] (159)
1 T(eM, € thl qt Pt

(K+1) _ o (K+1) 12 3K
+log/ exp = yK 17> 1 4s Frcsr (@ EHD)dg D |
TE+DE My € Et:1 en

Based on Lemma 6 there exists ¢(M, f) such that for any ¢ < ¢2/v/K and 1, ..., qx € [, 1 —
(K — 1)4/€] then the equation above is equal to

K . K
_ Z (dlm(/\/ls) log <7T€ 2oi—1 ’Jtﬁt> i 1og(fs(y))> (160)

S

2
+dim MK+1 <7T€ Zt 1 a5t

S 1qS

) K
_ Z <dlm(2M5) log (71'6 22_1 qtﬁt>> (161)
s=1 °

+dim(MK+1) log <7T€ Zfil qt s
2 Zf:l 4s

) +log (fr+1(y)) + O(Ve)

) +log(f(y)) + O(Ve).
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Now, we can push this term inside Eq. 155 and derive that it can be rewritten by

K dim(M,) Wﬁthzlthﬁt
L) -

s=1

) K
+d1m(/\;l1<+1) log <7T€ Z;{:l qBs

) + log(f(y)) + 0(\/€)> dy

s=19s

K . K
)
s=1 *

) K
L OmMican) (M) ~ )T OWe),
2 D s s

O

Theorem 1. Let {w k)} be a partitioning that bdtisﬁes the constraints in Problem 2. Then, there
exists €(M, f) < 1 such that for any € < € and k) € [ve, 1 — (K — 1)y/€¢] we have

min L G ({W(k)} : { } {yl}) + €< Z W(k) log (W(k)) ) + Klog(N)

{Wm}eN e
(16)
K . K (k) K . (k)
0o d d s
=y lm(/\;ml) og ( S <k> ) + 2 = log ( ) (k) )
k=1 Zt 1P B k,s=1 Zt:l P B
17)
K414 K+1
—KZ ) log (me) +K Y hs(fs) +O(Ve),
s=1
where the convergence is in probability and hy.(fx) = — [, M fx(2)log fr(2z)dz is the differen-
tial entropy of the density fj over M.
Proof of Theorem 1.
We denote the entire latent data manifold by M = M; x ... X Mg, and its distribution by f
defined by f(z™, ..., x(K+D) = Hf;ll fr(x™). As can be understood, this definition complies

with the data definition of Section 2.
Based on Corollary 1, a set of affinity matrices {W(k ) }szl that minimize Eq. 16 is of the form:

A(k)
Wz(];) _ vJ (164)
> A
forallk € {1,...,K}andi,je€ {1,..., N} and
1y, yJH (k) o .
w
A = eXp( /D)%, ~<’“)> fits (165)
0 else

By plugging these affinity matrices in to Eq. 16 we get

no

ly; —y'H2 (k)

zy 2 I W

E E . (166)
k D k

eNk 1= 121& lAz(',t) Ed:lwc(l)
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K A(k) ( A(k) )

— E lo b + Klog(N)
k)

Ny 1A§t S, A

1 Ai,j (k)
=N Z Z W -log(A; ) (167)
k=14,j=1 2 t=1 1

Ak

= 22 (o) =D e (Z AE,B) (168)

) (169)

- _%iz <log (%ZAE?)). (170)

Now it will be easier to derive Eq. 17. For the asymptotic convergence in the next lines we employ
Lemmas 5 to 7. Speciﬁcally, we use Lemma 7 that proves that there exists é(M, f) such that for

any e < & /v/K and any p{) € [e,1 — (K — 1)\/]], where s,k = 1,..., K, we get

N
1 1 —llyi — y,lIZ o
—ZZlog Zex ( I W 171)
N k=11=1 " : (1/D) Zd
s 2
»K “"ES) | e (*)
b 1 KX N s=1 2 E+D 2B+ Ps
—00 T 7 i
=3 log = Y exp - (172)
PN k=11i=1 j=1 525(:1 pg )ﬁt
K s 9% (k K+1 E+D)||? «K  (k
N (- e o S
= — og— Y exp| — p - r
N k=11i=1 N j=1 €Zf<:1pz(€ )5t 625:1191(5 Bt
2
K+1 K (k
Noe & Zf:l () — z(s)Hngk) ng ) _ Z(K+1)’ PO 1p§ )
— —Z log exp N0 — ) (174)
“r k=17 LEM ZeM € by B €21 Pr
f(2)dzf (w)da
K . K (k) .
d s d
_ Z 1m(/\;1K+1) log ( %:1@) ) _ K% log(meX175)
k=1 Zt:l Dy Bt
K . (k) K .
dim(Msy) Ds d1m
+ Z log ( - ) KZ log (me)
k,s=1 2 Zf{:l pt(t )ﬁt s=1
+Kh(f)log+O0(\/e)
d
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Lemma 8. Let C1,C5,C5 > 0, and 51,02 € (0,1) where 81 + B2 = 1. Define the function
f:(0,1)2 - Rby

_ pi(l —p1) )
flerp2) = Cilog ((plﬂl +p2B2)(1 = p1f1 — p2f2) (176)
p2(1 — p2) )
+Calog ((Plﬂl +p2f2)(1 — p1f1 — p2f)

)
(pl +p2)(2 p1 — )
+C5log ((plﬁl i p2ﬁ2)(1 —p1P — p262))

Let a > maxe(0,130.5 - (482(1 — B2))~ (C1+C2+C3)/(Ct) pe a neighberhood constant. Then, for
any 6 € (0, min(fy, B2)/«) the minimizers py, pi defined by

p1, v = argmin  f(p1,p2) (177)
(p1,p2)€[0,1-06)2

should sastisfy (p%,p3) € L x U or (p},p5) € U x L. where L = [0,a0] and U = [1 — ad,1 — ).

Proof. We begin with going through the properties of p : [0, 1] — R defined by p(p) = p(1 — p) for
any p € [0, 1]. The function is concave, maximized when p = 1/2 and is symmetric around it.

For any (p1,p2) € [ad,1 — ad] x [4,1 — &] we begin by analyzing the value of the first two terms
with respect to their value in (J,1 — 9)

(178)

2
, pi(1 —pi)
; Cilog ((plﬁl + p2B2)(1 — p11 — p2fa)

N 5(1—95)
-2 Cilog (e

)
)
=3 e (BUE) g
)
)

(6B1 + (1 —6)B2)(1 =01 — (1 —9)p2)
+ZC] ( (p1B1 + p2f2)(1 — p1f1 — p2/2)

> Cqlog (%) + Cylog ( ) + Z C;log ( i ) (180)
> Cylog (a1 — ad)) +Zol- log (452(1 — B2)) (181)

=1

2
> Chlog (a/2) + Y Cilog (452(1 — B2)) (182)

i=1

based on the assumption on the properties of p, and that for 5 = min(f51, B2) the identity 6(1 —
B)+ (1 —6)8 € [B,1/2] is sastified as

(1-p)+(1=09)p = B+0(1-25) (183)

< B+8(1-2p8) (184)

< 28(1-p) (185)

< 1/2 (186)

(1-8)+(1-6)B—-p > 6(1-28) (187)
> 0. (188)
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Using the same derivations mentioned above we can derive the difference between third terms -

(p1 +p2)(2 —p1 —p2) )
Cslo <(p151 + p2f2)(1 — plﬂl p2%32 (189)

G+1-0)2-6-01 )
—(C51
Calo ((5/31 +(1=0)B2)(1—0p1 — 9)B2)
(32 () o
= Cslog (plﬁl + p2f2 +Cslog 1—p1B1 — p2f2 Ca log Ba(1 — B2) (150)

p1B1 + p2f2 1 —min(p1, p2)
> C3log (462(1 — B2)

By combining these two statements we get that f(p1,p2) > f(6,1 —0) -

f(p1,p2) — f(6,1—9) (193)
3

ZCﬂ%<E££uE§)+Cﬂ%<llﬂii——J4%%bgﬂmﬂ—ﬂﬂ) (191)
).

(192)

> Cylog (ar/2) + Y Cilog (452(1 — f2)) (194)
=1
_ 331 Ci/Ce
:Qm<(%ﬂﬁz ) (195)
2 wm—@ D G/
>l . : (196)
1 log (mazte{o,l} (452(1 . ﬂz))ziﬂci/ct
2 (%uw2wﬂﬂ>
> C log ( - (197)
(482 (1 — Bp)) 2= /<
> 0. (198)

The proof for (p1,p2) € [0,1 — ] X [@d, 1 — ad] can be derived from the above proof. Now we are
left to show that this inequality stands for any (py, p2) € [6, ad]?. As before, we begin with the first
two terms-

2
_ pi(1—pi) >
; Cilog <(P1ﬁ1 +p2/32)(1 —p1f1 — p2f2) (199
2 5(1—9)
_ZQM<WWO—MW 5B — (6%0
RS (8P + (1= 8)B2)(1 = 81 — (1~ 8)5a)
_;Ci log< —0) > ZC] ( (P11 + p2f32) (1 — p1B1 — p2f32) > (200
. —9) 6f1+ (1= 6)B2)(1 — 0B — (1 —0)B2)
= ;C” ( =5 ) + ZC o ( (@01 + a0/) (1 — adf — adfa) ) (201)
Ba(1 —f32)
> ;cylog (a5(1 — a5)> (202)
>0 (203)
based on the assumption on the properties of g, and that §(1 — 8) + (1 — §)8 € [5,1/2]. O

Theorem 2. Define f : (0,1)> — R by

& dim(Mey) K P al dim )
flovpe) =) ———log| =7 | + ) 1og o |
k=1 Zt:lpt Bt k,s=1 thlpt Br
(204)

(]
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where pgl) = py and pél) = po and therefore pél) =1- pgl), péz) =1- péQ).

The minimizers p},p5 = limco argmin, . o1 c1_ /g2 f(p1,p2) exist and satisfy (p},p3) €

{(0,1), (1,0}

Proof of Theorem 2. Based on Lemma 8, we can see that a does not depends on . Meaning that
if we take a sequence of Js that converges to 0, the minimizers should converge to (0, 1) or (1,0).
Now, by defining § = /€ we attain the theorem’s statement.
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E.3 PROOFS OF APPENDIX C

Lemma 9. Let {W(k)} C [0, 1]™*™ be affinity matrices under the constraints in Problem 3. Define
a partitioning solution {w®} C [0,1]P by
n 2
exp (= X150 WO () — (w))a)" /9)
2
Z?:l exp (_ Zz ,j=1 W(k) ((yl)d - (y])d) /5)

Then, a minimizer of the optimization problem suggested in Problem 3 among partitioning solutions
that satisfy its constraints is

W% = argmin Greg (0. (WYL (WY {w) ) (206)
{w™™}

wl(ik) k=1

. K. (205)

Proof. The minimization problem with respect to partitioning solutions can be written by

argmmzz~(k ZZWH (Yi)a—(y;)a )2 +5Zdek)1og( )>, (207)

@™y 41 k=1 i=1 j=1 d=1k=1
where Ziil w((ik) = 1forany d = 1,...,D. As the constraints are Zszl wc(lk) = 1 for all
d € {1,...,D}, the above problem can be decomposed into D independent problems. Meaning

that for and d € {1, ..., D} we need to solve

K

aTgmznZw(k) Z Z W (y)a— (y;)a)? | + 52 5% log ( (k )> (208)

{w()}kl i=1 j=1 k=1

Then by showing that the new problem includes affine equality constraints and a convex objective
function we can use the KKT conditions for convex problems (See KKT conditions for convex prob-
lems within Sec. 5.5.3 in Boyd & Vandenberghe (2004)) to find an optimal solution. Specifically,
it states that any primal and dual sets parameters that satisfy the KKT conditions are the primal and
dual optimal solution with zero duality gap.

‘We begin by showing that the new suggested problem satisfies the conditions of the KKT conditions
for convex problems. The constraint the sums the partitions up to one in every dimension is indeed
linear. Now we will show that the objective function is linear by using second order condition that
implies the convexity of the function (see Sec. 3.1.4 in Boyd & Vandenberghe (2004)). This is done
by showing the that the Hessian of the function is positive semi-definite, which is demonstrated here
by proving it is diagonal with positive values

2 K n n K
# ST IS W - (wa)? | > sl )log( "”) (209)
d k=1

k=1 i=1 j=1
d n n
= —5 [ | W (e — () | +6(1+10g(@)) (210)
dag i=1 j=1
0
a”d
> 1. (212)
d d L K
k k k
0 B0 || DLW e ) | £ e os (47) | 13
Wa i=1j=1 k=1
d n n k
= [ | 222w (- @i | +o0+leg@i) | 14
Wy i=1 j=1
=0 (215)
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forall s,k € {1,..., K} such that s # k.

We define the Lagrangian of the minimization problem over {&Elk)} foralld € {1,...,D} by

Law® 5,0y = Z*’“ ZZ —(y;)a)? (216)

k=1 i=1j=1
+5Zw Nlog () (217)

—yy Z oW 1) 218)

where 4 € R.

Next, we will find solutions {w(*)} that attain the KKT conditions, as they are sufficient for opti-
mality. We begin with the stationary condition

0 = dLZ (219)
dw( )
= S W (s — (uy)a) + 60 + o) + (220)
=1 j=1
n (k) 2
e W (Ys)a — (y; +0+
o — ep (_Zw_l o ((y )dd (y;)a) ud>. o)
Now, the KKT condition primal feasibility condition on the equality constraints induces
K
1= > w (222)
k=1
K n n (k)
= j= Wz - +(5+
C S e (_21_1 o Wi (s 5>d (y;)a)? ud> )
k=1
K n n (k) 2
= =1 Wi i)d = (Y; +0
exp (%) _ Zeﬂ:p (_21_1 j=1"i;j (((Sy )d (yj)d) ) 224)
k=1
K n n (k) 9
. WA i)d — ) +4
T 510g Zexp _21712371 i, ((y )d (yj)d) ' (225)
k=1 Y

By pushing it back into our explicit stationary condition we get

exp (— i1 Wz‘kf((y )a—(Y,)a) +5>
(k)
- - (k) (226)
Z?Zl exp( i X Wi i(y Da—(Y, )d)2+5>
Sy S WY, ) a—(Y)a)?
exp (— 1 1 s
) : (227)
Zle exp <_ Zi:l ZjZI Wz,]()((yl)d (y]')d)2>

This concludes the proof. a

Proposition 4. Let & > 0, {w®™}X . < [0,1]” be a partitioning weights and {W W} K
[0, 1]V %N be affinity matrices that satisfy the constraints of Problem 3.
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Define {W "} € [0,1]V*N as in Eq. 10 and {w®™*}K | by

9 — exp (_ 5, Wl ((z(/;)d - <yj)d)2> 3 e (_ S, W ((?)d — (y,)a )2>

(23)

Then, a set of parameters that minimize the objective function and are with the domain of Problem 3
are

* . ~(k)
W= argmin w Greg@ AW HL ™D Apdl)), @4

{W(k)*} = argmin{w(m}Greg((S, {W(k)}szla {“:’(k) }szla {yi fvzl) (25)

Proof of Proposition 4. The proposition aims to characterize optimal parameters of Problem 3. We
begin by defining two sub-problems that are related to it, each focusing on minimizing one set of
parameters while keeping the other set fixed:

* . T k)
(WO} = argmin Gy (6 (W} oY fwa) ), (228)
W1
@7} = argmin Grey (0 AW O (&N wi b)) (229)
{w™}

where the parameters are limited to the constraints stated in Problem 3. Interestingly, the suggested
optimization problem in Eq. 229 can be rewritten by

N . = (k)
{W(k) b} o= argminGey (6, {W }kK:I’{w(k)}szlv{yi}zNzl (230)
< (k)
W
" D K :
_ : i ~ (k) N k
- 9 ) 1Ji=1
argmin G{W "}, {&"}, {y,}; )+5<Dlog + E E log(w )(231)
W d=1k=1
= argmin G(IW "} (6@} {y, 3. (232)
(k)
W

These two sub-problems are considered in Lemmas 3 and 9. Specifically, in Lemma 3 the optimal
graph matrices are derived in the form of

1Y, -Y;i
exp (lew(’f)>

Wl(’];)* N o1 exp (‘ Hyi_zt,l‘% = ) . ’ i
0 else
(234)
fori,j=1,...,Nand k =1,..., K,and ¢ ; satisfy
N
Z W log W = ~log(a). (235)

On the other hand, in Lemma 9 an optimal partitioning parameters are derived in the form of

o (=S8 WO ()i — (w))a)” /9) 56

n I 2
Siyexp (= X3 WO ((w)a — (w,)a)” /9)
ford=1,...,Dandk=1,..., K.

Therefore there exists parameters of this form that minimizes Problem 3. ]
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Proposition 5. Let {1} [0,1]P be a uniform partitioning, i.e. @, = 1/K, and the
corresponding affinity matrices {W(k)}szl defined as in Proposition 4 based on these partitions.

Let {w®}E < {0,1}P and {W "} | be the optimal partitioning solution as discussed in
Proposition 3.

Define

GUW M (@M () 26)
D -log(K) '

dinit =
Then,

w7(k) _
Greg(Oinit, {W }szlv {w(k)}szlv {y i\il) < Greg(Oinits {W(k)}szlv {“’(k)}g:la {y; iV:(12)7)

Proof of Proposition 5. We can see that the inequality stands based on the following derivation-
i (k) _
Greg(Gimies (W 11, {w(k)}szlv {y:}) @37

D K
—(k . — S
GUW @ Y Ay Y0 + B (D log(K)+>_ Y @l 1og<w&’“>>> (238)

d=1 k=1
(k) _
=GU{W 7 HL e {y ) (239)

= dinit(D - log(K)) (240)

G({W(k)}gzl, {w(k)}£<:1, {y1 i= )+5mzt (D -log(K)) (241)

= GUW N (0™ () + G (D () + 303"l ol (242)
d=1k=1

= Greg(Ginit, {W(k)}i(:lv {w(k)}kzla {yi}izl)a (243)

where we use the fact that the function g is non-negative, and that negative entropies satisfy
SE WP 1ogw = 0and K @l logw (Y = —log(K) forall d € {1,...,D}. O

F ADDITIONAL PROOFS

Proposition 6. Let the data consist of N data points in R”. Suppose the data is given in the form of
a singular value decomposition (SVD) approximation of rank S < N, D. Then, the computational
complexity of the updates suggested in Proposition 4 is O(K (S?N? + S2D)).

Proof. Let Y € RN*P represent the data matrix, with the points embedded as rows. The SVD
approximation is given by Y = UEV ", where U € RV*5 and V' e RP*5 are the left and right
singular vector matrices, respectively, and E € R%*% is the diagonal matrix of the leading singular
values.

The update rule for the feature partitioning weights, which is described in Eq. 23, includes the
computation of

N

Z Wi(,é)((yi)d - (yj)d)2 (244)

i,j=1

forevery d € {1,...,D} and k € {1,..., K'}. The other operations used within this update rule
includes taking the exponential of this value and normalization it across the different partitions which
result in a computational complexity of O(DK). In the next lines we will rewrite the equation above
and compute the computational complexity associated with it.

44



Under review as a conference paper at ICLR 2024

We begin with rewriting the Eq. 244 by

S W (w)a - )  (249)
i,j=1
N N N N N
k k k
=2 QoW w)E+ DO Wi Wi 2 3 Wi waly)a 46)
j=1 i=1 i=1 j=1 i,j=1
N N N
k k k k
=2 QoW Wi )i - X W W waly)a 4D
j=1 i=1 i,j=1
= (VT (diagW M1+ (W) T1)Y)ga — (YT WD+ (WE)Y)0g  (248)
=(Y'LY)4a (249)
where L*) € RNXN s defined by L = diag(W™® + (WEHT)1) — W — (WEN)T for any
k € {1,...,K}, the vector 1 € R" is an all ones vector, and diag : RY — R¥*¥ generates a

diagonal matrix from a given vector. Next we are going to use the SVD decomposition within this
equation:

(VEUTLWUEVT),,. (250)

The computational complexity of A®) = UTL®U € R5*S is O(SN? + S2N) as U € RN*S
and L™ € RV*N_ The computational complexity of B¥) = EAME € R5*S is 0(52) as E is
a diagonal matrix. Therefore we are left with computing

(VB®OVTY, ,. (251)

The computational complexity of each such element is O(S?), and the computational complexity
foralld € {1,...,D}is O(S%D). Therefore the computational complexity of this step for a single
ke{l,...,K}is O(SN? + 52D), and over all ks O(K(SN? + S%D)).

Now, we are left with deriving the computational complexity of the graph weights. The update rule
for the graph weights that is described in Eq. 14 contains the computation of

Y — yill2s0 (252)

for all i,5 € {1,...,N} and k € {1,...,K}. The other operations used within this update
rule includes taking its exponential values and normalizing its values based on the values across
je{l,...,N}foranyi € {1,...,N}and k € {1,..., K}. The latter operations has has a com-
putational complexity of O(N2K), and now we can rewrite Eq. 252 and derive its computational
complexity.

Eq. 252 can be rewritten by

1y =yl (253)

= (Ydiag(w®)YT), i + (Ydiag(w™)YT); ; — 2(Y diag(w™)YT), (254)
= (UEV diag(w®\VEUT),; + UEV diag(w®\VEUT);; (255)
—2UEV diag(w®)\VEUT), ; (256)

foralli,j € {1,...,N}and k € {1,..., K}, where diag : RP — RP*P generates a diagonal
matrix from a given vector. The computational complexity of C' (k) — VTdiag(w®™)V e RS*S is
0(82D), and of F*) = ECY E € RS*S is O(S?) as E is a diagonal matrix. Finally, the com-
putational complexity of (V7 F* )V)i, ;18 O(S?), and the computational complexity of deriving it
for all entrees is O(S?N?) . Therefore the total computational complexity for this step including
over all partitions k € {1,..., K} results in O(K(S?N? + KS?D)).

Now, by combining the computational complexities for both parameter updates results in
O(K(SN? + 82D) + K(S?N? + KS?D)) = O(S?N? + KS?D).

|
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Score Change as Partition Count Increases

100 4
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Figure 11: The score (Eq. 8) of our algorithm when using an increasing number of partitions (/)
on the dataset with the three rotating figurines, used in Section 3.2.

G CHOOSING THE NUMBER OF PARTITIONS ( K') AND VALIDATING THE
DATA SETUP ASSUMPTION

The selection of the number of partitions (/) is a practical consideration that directly affects the
outcome of our algorithm and therefore the visualizations generated based on it. A sub-optimal
choice of K can result in visualizations that are either overly complex or redundant. In this section,
we discuss how to determine K using our algorithm and examine the implications of selecting a
sub-optimal number of partitions. Finally, we propose a procedure to verify whether the data is
indeed composed of subsets of features that are partially independent as our approach assumes.

In order to determine K we propose to inspect the behavior of the smoothness score from our
approach (Eq. 8) as a function of the number of partitions K. As long as K increases but remains
lower than the true number of partitions, we expect to see a rapid decay of the score. Then, when K
reaches the true number of partitions, we expect to see an ‘elbow’, after which the score saturates or
decays very slowly. This phenomenon is reminiscent of analogous ones when manually selecting the
number of clusters in k-means or the number of components in PCA. We demonstrate this behavior
of the smoothness score in Figure 11.

Next, we discuss the expected impact of over-selecting or under-selecting K on the resulting repre-
sentation and embedding. If the number of partitions is lower than the number of true partitions in
the data, we expect the partitions to separate the features into super-groups that correspond to the
most distinct geometric structures, even if some of these groups could be further subdivided. In this
case, each group of features describes a geometry that is simpler than that of the original data, i.e., it
has a lower intrinsic dimension. Hence, the outcome of our procedure in this case still improves the
ability to embed and visualize the data in a low-dimensional space, albeit sub-optimally — where the
embedding dimension may need to be higher than it would be if the optimal choice of K was used.

If the number of partitions is slightly larger than the true number of partitions in the data, we expect
that one or more of the true partitions will be arbitrarily subdivided. This will introduce redundancy
into the representation, where some feature subsets will exhibit similar geometric structures. The
user should take into account this possibility and inspect the resulting embeddings for potential
redundancy. Nonetheless, the partitioning is still beneficial in this case, since the data for each
partition can be easily embedded and visualized in a low-dimensional space. If the number of
partitions is grossly overestimated, then in addition to redundancy, some of the feature subsets may
not reliably represent the underlying geometry of any of the true feature subsets.

46



Under review as a conference paper at ICLR 2024

When the data’s assumptions are not satisfied, we expect that applying our algorithm to partition the
features into K groups will result in partitions with similar or nearly identical underlying structures.
Consequently, the graphs that correspond to the partitions will also exhibit similar characteristics,
leading to embeddings (such as tSNE) that closely resemble each other.

To determine if the features can be partitioned into meaningful subsets, we propose a type of a
permutation test. Specifically, we propose to compare the smoothness score produced by our method
from the original data to the analogous score obtained from manipulated versions of the data. The
manipulated versions are obtained by applying a random orthogonal transformation to the features,
in which case the data does not satisfy our underlying assumption by design. The different steps of
this procedure and their justification are detailed below:

1. Apply our procedure with K = 2 to the given data matrix and store the associated score (
Eq. 8).

2. Generate multiple modified versions of the dataset by applying random orthogonal trans-
formation to the features of the data. Each orthogonal transformation randomly mixes all
the features in the dataset. If distinct feature partitions existed in the original data, they will
be completely mixed after the transformation. Hence, our underlying assumption does not
hold for these manipulated datasets.

3. Apply our procedure with K = 2 to each transformed dataset and store the associated
scores ( Eq. 8).

4. Compare the score from step 1 to the distribution of the scores from step 3. If the score
from step 1 is smaller than a chosen percentile of the scores from step 3 (e.g., 0.01), we con-
clude that the original data contains feature partitions with significantly distinct structures,
suggesting that our assumption holds, at least to some extent.

H ADDITIONAL EXPERIMENTS

We conducted an additional validation experiment using a subset of the COIL-20 dataset Nene et al.
(1996), consisting of images of three different cars captured at varying azimuths. While this dataset
may not explicitly satisfy our method’s theoretical assumptions, it provides an interesting test case
for our approach.

We applied our algorithm to partition the pixels into KX = 2 groups and analyzed the resulting t-
SNE visualizations (Figure 12). The baseline t-SNE visualization using all pixels (left) reveals a
closed loop structure corresponding to the object’s azimuth. Notably, partition 2 (right) produces a
more coherent representation of the azimuth, demonstrating also enhanced stability across different
perplexity values. Interestingly, partition 1 effectively separates the images based on car identity,
suggesting our method naturally discovered semantically meaningful features. The actual pixel
partitions are shown in Figure 12c.

The experiment details are - The car objects that were used are objects number 2, 5, 18. The dataset
was standardized using the z-score transformation on each pixel across all observations. Then, we
approximated the data using its 20 leading singular value component to get rid of noise. Finally, we
ran our algorithm using a perplexity parameter of 10 in order to divide the features into two subsets
(K =2).
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Figure 12: The experiment detailed in Appendix H. The dataset includes N = 216 gray-scale
images with D = 16217 pixels from Coil-20. Each image contains a single rotated object, and the
considered objects are three types of cars. (a)- tSNE embedding of the data perplexity parameter of
10, (b)- tSNE embedding of the data perplexity parameter of 20. (c)- Three sample images from the
dataset, overlaid by the feature partitions of our method.
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