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A Appendix

A.1 SE@Q)
The collection of 4 x 4 real matrices of the SE(3) is shown as:

1 ri2 riz b
R t ro1 Toz T23 t2
= 11
[ 0 1} T31 T3z T3z t3 an
0 0 0 1

where R € SO(3) and t € R3, SO(3) is the 3D rotation group. R satisfying R’ R = I and
det(R) = 1.

A.2 Details of Model Architecture

As stated in Sec. [3.3]on sequence-structure graph convolution, [ is set to be a constant number 11. We
increase the predefined radius r to 27 after one pooling layer, and the number of feature channels for
node embeddings is also doubled. We use a Leaky ReLU function [|13]] as the activation o () in the
message passing layers.

We design the sequential and radius graph instead of the k-nearest neighbour graph because a constant
k make some neighbor nodes far away from the center node. As shown in Figure[7] the distances
of a group of neighbor nodes (|| P;,ca — Pj,cal|) are larger than 20 A, which cannot be seen as
contacts [9]]. Therefore, the radius is initially set to 4, enlarging to 16 in deeper layers. There are
four massage passing and pooling layers. In this condition, when the number of nodes decreases, [ is
constant, 7 increases, neighbours of center nodes gradually cover more distant nodes.
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Figure 7: The histogram of distance statistics of k& = 30 nearest neighbor nodes of a protein dataset

(CATH [29]). The horizontal axis denotes the distance in terms of exponents of 10, and the vertical
axis represents the number of neighbor nodes with this distance.
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Table 4: Dataset statistics. # X means the number of X.

Dataset # Train  # Validation # Test
Enzyme Commission 15,550 1,729 1,919
Gene Ontology 29, 898 3,322 3,415
Fold Classification - Fold 12,312 736 718

Fold Classification - Superfamily 12,312 736 1,254
Fold Classification - Family 12,312 736 1,272
Reaction Classification 29,215 2,562 5,651

A.3 Details of Datasets and Training Setup

For all datasets, we use a data augmentation strategy by adding noise for the training set to increase
the variability of data. For example, we update the position of C,;,

P,c, < Pic, + N(un,o%) (12)

where p1, 03 are the mean (expectation) and variance of the normal distribution N, which are set
to 0 and 0.1 in experiments. Dataset statistics 53] of our four downstream tasks are summarized in
Table

Settings The proposed models are conducted on a single NVIDIA-SMI A100 GPU, through
PyTorch 1.13+cul17 and PyTorch Geometric 2.3.1 with CUDA 11.2. The number of the initial
feature channels is 256. The learning rate is set to 0.001. More details about implementation is shown
in Table

Table 5: More details of training setup

Hyper-parameter Fold Enzyme Reaction GO EC

Batch size 4 4 24 64
Epoch 400 400 500 500

A.4 Evaluation Metric F .,

Fmax is calculated by first determining the precision and recall for each protein, then averaging these

results over all proteins [53,|15,|19]]. p! is the prediction probability for the j-th class of the i-th
protein, given the decision threshold ¢ € [0, 1], the precision and call are give as:

(] 2 ) ) S U((p = t) nel)]
= 10(vl > 1)) L

where b/ € {0, 1} is the corresponding binary class label, and T € {0, 1} is an indicator function. If
there are IV proteins in total, then the average precision and recall are defined as:

N
. 11; (¢
mﬂwzzg%gg

precision; (t) =

, recall;(t) =

N .
> Drecision;(t)

S (GHEEN S

Finally, F,,.« is defined as the maximum value of F-score over all thresholds,

{ 2 - precision(t) - recall(t) }

precision(t) 4 recall(t)

precision(t) =

Frax = max

¢ (13)

A.5 More Results of GO Term Prediction

For GO term prediction, we also apply different cutoff splits. Proteins in the test set are categorized
into five groups based on their similarity to the training set ( 30%, 40%, 50%, 70%, and 95%). As
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Figure 8: F ,ax on GO term and EC number prediction under different cutoffs.

shown in Figure [] the results of GO term prediction are presented in Figure 8(a)-(c). The proposed
model CoupleNet achieves the highest F,,,x scores across all cutoffs on these tasks. Even when
there is a low similarity between the training and test sets, our model also has higher scores, which
demonstrates the superiority and robustness of the proposed model.

A.6 Completeness Analysis

Given a protein 3D graph G = (V,&,P), we capture the geometric representations based on
the atoms’ 3D positions and use sequential and structural representations as the node and edge
features. For a 3D structure, based on the definition of completeness in Sec.[3.1and the rigorously
demonstrated method to show the calculated geometries can achieve completeness for structures [47],
we guarantee the completeness of the selected geometric representations at the base and backbone
levels of structures.

The geometric representations are SE(3) invariant (distances, angles) and SE(3) equivariant (directions,
orientations). Therefore, it is natural for Eq.[3]to hold from right to left. To demonstrate Eq.[3]holding
from left to right, we need to show F(G) = T,(P), where T,; does not change the 3D conformation
of a 3D graph. Thus we need to show positions can be determined by F(G).

The base approach CoupleNet,, only considers the C, coordinates and constructs LCS for each
residue. F(G),, provides complete representations. First, when n = 1, it holds. Assume the case
n = k holds such that F(G),, is complete. Then we need to prove the case n = k + 1 still holds.
This is obvious because if v; is the (k + 1)-th node connected to node v; among the existing k nodes,
the LCS @; can be easily obtained from Q; and F(G)qq

When considering the backbone atoms Cy, C,N, O, F(G),q is complete. As shown in Figure[3] the
remaining degree of freedom at the backbone level is the rotation angles ®, ¥, (2 based on the rigid
bond lengths and angles. Such backbone torsion angles are calculated and concatenated with @; 4,
into x;. Besides, for any residues ¢ and j, the calculated six inter-residue geometries fully define the
relative locations of backbone atoms. Therefore, there are no other remaining degrees of freedom.
Consequently, the obtained geometric representations at the backbone level are complete.
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Table 6: More Ablation of our proposed method

Method Fold Classification Enzyme GO EC
Fold Superfamily Family Reaction  BP MF CC
CoupleNet 60.6 82.1 99.7 89.0 0467 0.669 0.494 0.866
wl/o sequence  60.0 81.6 99.6 88.4 0.441 0.650 0.456 0.700
w/o structure  26.1 36.4 92.9 81.3 0.406 0.586 0427 0.625

A.7 More Results of Ablation Study

Table 3] presents an ablation study of the proposed CoupleNet model. Apart from removing ®, ¥, Q
or d,w, 0, ¢ and using the base model CoupleNet,,. we conduct more ablation experiments on the
four tasks. The results are shown in Table[6

Compared with the full model, we consider removing either the sequence or structure information
to analyze their importance. Removing the sequence information means removing the encoding of
amino acid types for each node. Removing the structure information means removing features related
to protein geometry (F(G)aa, @, ¥, 2, d,w, 8, p, and we omit related subscripts for brevity).

As shown in Table [] removing either sequence or structure causes a performance drop on all
tasks, demonstrating that both types of information are critical for the proposed method. When
removing the structure, the performance decreases more significantly, suggesting that structural
information provides more important and comprehensive clues compared with sequence information
alone. Combining these diverse data sources leads to optimal predictive performance.
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