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Supplementary Materials

A Dataset Construction
A.1 Examples of the QAs

In Fig. 8, we illustrate examples of QAs used in training TOKEN.

Scene Understanding Reasoning Hierarchical Planning

 locat (-3.2,6.7) ) A: There is 1 important objects: car at (8.6, 3.9). The autonomous vehicle
A: Vehicle at (11.9, 12.1) is merging into ego A: The object is a car and is blocking the should yield to the car at (8.6, 3.9. It should remain roughly static, and...
vehicle’s lane. autonomous vehicle's lane. The answer is: Yes.

B At 1

(-3.8,6.0)? (3.1,8.1)

A: Stationary A: The object is a pedestrian with velocity (-1.6, A: There are 4 important objects: Imf‘f"u‘ cone at (2.2, 13.4), traffic cone at (2.1,
(-3.8, 6.0)7 0.2) mls. Thus, it is crossing in front of the 11.7), traffic cone at (1.7, 1/6.8), traffic cone at (1.6, 19.8). These traffic cones
A: Pedestrian. autonomous vehicle. The answer is: Yes. are blocking the ego vehicle’s lane. The autonomous vehicle should bypass the

traffic cone at (2.2, 13.4) from the autonomous vehicle’s right side ...

Figure 8: Examples of perception, reasoning, and planning QAs.

A.2 Road-Level Navigation Signal

Previous works on VLM/LLM for autonomous vehicle planning often prompt the model with a
high-level command based on the relative position of the ground-truth ego trajectory, including
"keep forward" and "turn right/left." However, these high-level commands are not only unrealistic
but also simplify the planning problem by removing the need for behavior planning. Therefore,
we re-labeled the NuScenes dataset to use road-level navigation signals as high-level commands,
including "keep forward along the current road," "prepare to turn right/left at the next intersection,"
"turn right/left at the intersection," "left/right U-turn," and "left/right 3-point turn."

A.3 Interaction Mode Labeling

We use a combination of heuristics and manual labeling to annotate the interactions between the
ego vehicle and the other traffic agents. We first use two types of categorical modes to describe the
lane-relationship between a traffic agent and the ego vehicle (agent-ego lane mode) and the relative
motion between a traffic participant and the ego vehicle (homotopy)[29]. Agent-ego lane mode at a
time step ¢ encodes the topology relationship between the ego’s current lane and the traffic agent’s
lane, including: LEFT, RIGHT, AHEAD, BEHIND, and NOTON, where NOTON describes that the
traffic agent is not on any derivable lanes in the scene (e.g., a parked vehicle in a parking lot). To
compute the agent-ego lane mode for each traffic agent, we follow [29] to first identify the lane on
which each agent is located and then leverage the lane topology map to annotate the agent-ego lane
mode. We project the agent’s center to the lane polyline and use its relative position in the local
Frenet frame to determine its lane association. Homotopies describe the relative motion between a
pair of agents shown in the video, including: [S, CW, CCW] (static, clockwise, counterclockwise).
Combining agent-ego lane mode, homotopy, agent ground truth state information, and scene con-
text information (e.g., ego is located near an intersection) together, we can leverage heuristics to
annotate the interaction. For example, within a 3-second horizon, a static object’s agent-ego lane
mode changes from AHEAD, to LEFT, to BEHIND, while the ego vehicle performs RIGHT-LANE-
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CHANGE, KEEP-LANE, then LEFT-LANE-CHANGE, indicating the ego vehicle overtakes that ob-
ject from the ego vehicle’s left side. Finally, we use human labelers to verify and correct interaction
labels in the following categories: 1) bypass blocking traffic cones to navigate around a construction
zone; 2) yield to pedestrians; 3) yield to vehicles; 4) overtake traffic agents via straddling the lane
dividers; 5) overtake traffic agents via lane-change.

B Evaluation Protocol

In this section, we provide a detailed description about our evaluation protocol. In Section 5.1 of the
main text, we introduce the three variants of trajectory L2 error (the overall, turning, and progress
errors) and the collision rate used to evaluate the predicted motion plans. As noted in [2], different
evaluation protocols used to compute these metrics can lead to significant metric variations. We use
the same evaluation protocol as described in [2] with one exception: we exclude samples where any
future motion is missing near the end of a sequence (the frame masking strategy described in [2]).
Including these partially invalid samples would significantly lower the L2 errors, as the L2 errors of
these invalid frames are set to zero.

C Additional Result: On the Value of Object-Centric Tokenization

In Tab. 5, we present the full quantitative evaluation of each model’s performance in the planning
task. We observe that TOKEN significantly outperforms all baselines across all planning metrics.

Traj L2 (m) | Heading L2 (rad) | Lon. weighted traj L2 (m) | Collision (%) |
Method 1s 2s 3s Aveqozs  Avey | s 2s 3s Avejozs  Avey | s 2s 3s Aveyoss  Avey Avey;
Video-LLaMA | 0.27 1.72 6.34 3.01 2.39 0.06 0.14 020 0.13 0.13 056 336 920 4.36 3.52 2.64
VILA-1.5 028 1.56 4.41 2.09 1.66 0.05 0.11 0.19 0.12 0.10 | 029 192 647 289 224 1.98
BEV-TOKEN | 039 1.01 202 1.14 0.96 0.03 0.05 0.06 0.05 0.05 075 179 355 203 1.71 0.39
TOKEN 026 0.70 1.46 0.81 0.68 | 0.02 0.04 0.06 0.04 003 | 050 132 272 1.51 1.26 0.15

Table 5: Planning performance evaluation. TOKEN significantly outperforms baseline VLMs due
to its use of driving-task pre-trained features and object-centric tokenization.

D Long-tail Events Construction

We manually inspected the NuScenes dataset and identified the following long-tail scenarios for
evaluation, each representing less than 1% of the training data: 1) executing 3-point turns; 2) resum-
ing motion after a full stop; 3) overtaking parked cars through the oncoming lane; and 4) navigating
around construction sites.

Executing 3-point turns, which has one scene (scene-0778, frame 6-30) in the evaluation split and
0 scenes in the training distribution. We extracted 25 key frames from the scene in which the ego
vehicle is performing the 3-point U-turn for evaluation to remove the noise from other nominal
behaviors in the scene.

Resuming motion after a full-stop, which includes 14 scenes in the training split and 8§ scenes in
the evaluation split. We extract key frames from each scene where the ground truth (GT) motion plan
captures the acceleration behavior after the full stop. This results in 70 key frames in the training
split (0.28% of the total training samples) and 40 key frames in the evaluation split. The scenes
and key frames in the training split are: scene-0208 (frame 25-29), scene-1023 (frame 21-25),
scene-0067 (frame 24-28), scene-0159 (frame 4-8), scene-0185 (frame 26-30), scene-0262 (frame
8-12), scene-0862 (frame 18-22), scene-0025 (frame 6-10) scene-0072 (frame 24-28), scene-0157
(frame 12-16), scene-0234 (frame 4-8), scene-0423 (frame 6-10), scene-0192 (frame 14-18), and
scene-0657 (frame 12-16). The scenes and key frames in the evaluation split are: scene-0921 (frame
21-25), scene-0925 (frame 19-23), scene-0968 (frame 7-11), scene-0552 (13-17), scene-0917 (frame
24-28), scene-0221 (frame 11-15), scene-1064 (frame 21-25), and scene-0331 (frame 8-12).

Overtaking parked cars through the oncoming lane, which includes 14 scenes in the training split
and 5 scenes in the evaluation split. We extracted key frames from each scene where the ground truth
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motion plan captures the ego vehicle steering into the adjacent lane to overtake a blocking object
and then returning to its original lane. This results in 248 key frames in the training split (0.9% of
the total training samples) and 102 key frames in the evaluation split. The scenes and key frames in
the training split are: scene-0001 (frame 12-39), scene-0011 (frame 1-39), scene-0023 (frame 1-8),
scene-0034 (frame 23-39), scene-0318 (frame 10-30), scene-0379 (frame 14-26), scene-0408 (frame
12-30), scene-0417 (frame 4-20), scene-0422 (frame 18-39), scene-0865 (frame 24-39), scene-1105
(frame 18-30), scene-1065 (frame 24-35), scene-0200 (frame 20-39), and scene-0752 (frame 10-28).
The scenes and key frames in the evaluation split are: scene-0038 (frame 4-33), scene-0271 (frame
3-11), scene-0969 (frame 14-33), scene-0329 (frame 3-33), and scene-1065 (frame 24-35)

Navigating around construction sites. This common and challenging scenario requires the au-
tonomous vehicle to actively change lanes to bypass a construction zone. Although there are two
scenes (scene-0980 and scene-0535) in the training split, none exist in the evaluation split. There-
fore, we moved one training scene (scene-0980, frames 16-30) to the evaluation split. We selected
15 key frames that capture the ego vehicle decelerating and steering into the adjacent lane to bypass
the traffic cones.

E Detailed Qualitative Result

In this section, we provide an in-depth analysis of the qualitative results shown in Sec. 5.2.

Executing a 3-point turn. During a 3-point turn, a vehicle makes a sharp left turn, backs up, and
then makes another left turn to complete the maneuver. In Fig. 4, we compare the motion plans
from TOKEN and PARA-Drive. Despite receiving a "3-point turn" command, PARA-Drive predicts
straight movements at ¢ = 2s and ¢ = 4s, likely due to the absence of such examples in its training
set. In contrast, TOKEN understands the command and generates the correct turning behavior.
When approaching the curb to stop and back up, both PARA-Drive and TOKEN predict forward
motions at ¢ = 8s, likely due to the lack of 3-point turn examples in the dataset. At¢ = 10s, when
the vehicle has enough clearance, both models predict left-turn motions, with TOKEN’s prediction
more closely aligning with the ground truth.

Overtaking parked cars through the oncoming lane. Fig. 6 shows an example of qualitative
comparison between the motion plan from TOKEN and PARA-Drive at two constitutive time steps.
At t = 5s, PARA-Drive predicts a motion that collides with the blocking vehicle, while TOKEN
instructs the ego vehicle to decelerate to avoid the object. Interestingly, although TOKEN correctly
predicts in language that the ego vehicle should decelerate and steer to the right, the motion plan only
reflects the deceleration behavior. We hypothesize that this is caused by insufficient data that helps
the LLM associate low-level motion with mid-level behavior. When the ego vehicle straddles the
lane divider and prepares to overtake, TOKEN instructs the ego vehicle to drive back to its original
lane after overtaking, while PARA-Drive predicts a forward motion that straddles the lane divider.

Navigating around construction sites. Fig. 7 shows an example of qualitative comparison between
the motion plan from TOKEN and PARA-Drive at two constitutive time steps. At ¢ = 8s, TOKEN
instructs the ego vehicle to steer and bypass the traffic cones from the ego vehicle’s right side, while
PARA-Drive predicts a motion that collides with the blocking traffic cones At ¢ = 12s, TOKEN
instructs the ego vehicle to steer to the right to keep forward along the current lane, while PARA-
Drive predicts a motion that deviates from the lane center.

F Comparison with the SOTA LLM-based Planner - Agent-Driver

We compare TOKEN with the SOTA LLM-based planner Agent-Driver [5]. They have the following
differences:

Scene representation. Agent-Driver queries text-based scene information using various tools (e.g.,
object detection, mapping, etc.) and uses the queried text-based information as an input prompt to
instruct the LLM to plan the ego vehicle’s motion. TOKEN tokenizes the scene into a few object-
level tokens. This makes TOKEN more efficient in terms of information density per-token (e.g.,
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TOKEN uses one token to encode an object’s semantic, geometry, and dynamic information while
the same information is tokenized into around 60 text tokens in Agent-Driver).

LLM-backbone. Agent-Driver fine-tunes the entire GPT3.5 while TOKEN uses LORA (with a
rank of 64) to fine-tune LLaMA2.

Chain-of-Thought Reasoning. Both Agent-Driver and TOKEN utilize chain-of-thought reason-
ing to align the model’s planning process. However, Agent-Driver uses a coarse reasoning process
that instructs the LLM to directly generate the ego vehicle’s discretized steering and acceleration
command description based on the scene description, as opposed to TOKEN’s more structured rea-
soning process that instructs the model to reason about the semantically meaningful effect of the
objects (e.g., blocking the ego vehicle’s path) and interaction plans (e.g., overtake).

We use the Agent-Driver’s predictions from the official repository and show the overall quantitative
evaluation in Tab. 3 of the main text. In Tab. 6, we show the detailed quantitative evaluation of each
long-tail scenario. In addition, since Agent-Driver includes the ego-state information in the prompt,
we train a variant of TOKEN (denoted as TOKENT) that also uses the ego-state information as
input for planning (current velocity and current acceleration) and show the quantitative evaluation
of TOKENT in Tab. 6. We see that TOKEN and Agent-Driver have similar overall performance,
but TOKEN significantly outperforms Agent-Driver in long-tail scenarios. Furthermore, when using
ego-state information as input, TOKEN™ significantly outperforms Agent-Driver in all splits.

Traj L2 (m) | Heading L2 (rad) | Lon. weighted traj L2 (m) | Collision (%) |
Split Method 1s 2s 3s Avejoszs  Avey | 1s 2s 3s Avejozs  Avey | Is 2s 3s Avejazs  Avey Avey
val Agent-Driver | 0.23  0.68 1.50 0.80 0.66 | 0.79 0.85 090 0.85 080 | 043 126 275 148 1.22 0.13
TOKEN 026 070 1.46 0.81 0.68 | 0.13 0.8 021 0.17 0.18 | 050 132 272 151 1.26 0.15
TOKEN *+ 017 052 121 0.64 052 | 010 016 0.19 0.15 017 | 033 1.00 230 1.21 1.00 0.13
3-point turn Agent-Driver | 0.38 131 293 154 126 | 020 074 123 0.72 0.63 | 0.64 226 478 256 2.11 8.67
TOKEN 039 129 260 143 118 | 021 035 071 042 036 | 0.68 215 433 239 1.98 4.00
TOKEN * 020 073 177 0.90 073 | 017 022 038 0.26 022 | 037 128 293 153 124 146
Resume motion | Agent-Driver | 0.14 0.84 251 1.16 091 0.17 047 042 035 0.32 025 149 448 2.07 1.62 0.00
from full stop TOKEN 0.13 070 1.58 0.80 0.65 | 009 024 031 022 0.19 | 024 124 266 1.38 1.13 0.00
TOKEN * 0.06 043 127 0.59 046 | 0.05 0.3 0.17 0.12 010 | 011 0.78 230 1.06 0.84 0.00
Overtake Agent-Driver | 0.27 0.89 2.07 1.08 0.88 | 005 0.13 024 0.14 0.12 | 047 146 337 177 1.45 0.77
TOKEN 029 077 1.63 0.90 0.74 | 0.04 0.07 011 0.07 0.09 | 053 136 286 1.58 1.31 0.19
TOKEN *+ 0.15 046 1.04 0.55 046 | 0.02 0.07 0.13 0.07 0.06 | 029 083 175 0.95 0.80 0.00

Table 6: Quantitative comparison with an LL.LM-based planner - Agent-Driver. TOKEN signifi-
cantly outperforms Agent-Driver in long-tail scenarios. TOKENT denotes a variant of TOKEN that
uses ego-state as input, similar to Agent-Driver.

G On the Value of Alignment - Qualitative Results

In Fig. 9, we show a few qualitative comparisons between TOKEN and a variant of TOKEN trained
with representation alignment but without reasoning alignment. We can see that the predicted motion
plans are more aligned the GT motion with reasoning process alignment.

H Additional Results
H.1 TOKEN with HD-map Information

In the main text, we use multi-view video as the sensory input. In this section, we include HD-map as
an additional input to evaluate the performance of TOKEN. We utilize the CTT encoder described
in [29] to fuse each traffic agent’s past state history with each lane’s ground truth center line and
produce a traffic agent token as an additional token for each traffic object. We use TOKEN map
to denote the variant of TOKEN with HD-map information and show its quantitative evaluation
in Tab. 7. We can see that the additional map information and the past state history significantly
improve the planning performance in both evaluation split and long-tail scenarios.
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Figure 9: Qualitative comparison between TOKEN and a variant of TOKEN trained with represen-
tation alignment but without reasoning alignment. With reasoning process alignment, TOKEN is
able to instruct the ego vehicle to resume motion after a full-stop (top figure) and safely overtake
static obstacles (middle and bottom figures).

Traj L2 (m) | Heading L2 (rad) | Lon. weighted traj L2 (m) | Collision (%) |
Split Method 1s 2s 3s Avejoss  Avey | Is 2s 3s Avejozs  Avey | 1s 2s 3s Avejozs  Avey Avey
Val TOKEN 026 071 147 0381 0.68 | 0.02 0.04 006 0.04 0.03 | 050 132 273 152 1.27 0.15
TOKEN +m# | 0.15 042 118 0.58 051 | 0.02 0.02 0.06 0.03 003 | 033 092 211 112 0.97 0.08
Long-tail | TOKEN 026 081 1.77 095 0.78 | 0.05 0.10 0.18 0.11 0.09 | 050 147 3.09 1.69 1.40 0.35
TOKEN ™ | 020 0.71 137 0.76 0.64 | 0.03 0.08 0.11 0.07 005 | 037 118 273 143 1.27 0.31

Table 7: Quantitative performance of TOKEN ™% a variant of TOKEN with HD-map information.

H.2 Ablation on the Effect of Structured Reasoning Process Alignment.

One of the unique features of TOKEN is that it reasons about semantically meaningful interactions
with identified critical objects (e.g., bypassing the blocking traffic cones). We hypothesize that this
structured reasoning process supervision enhances the model’s planning performance by encour-
aging the model to understand the interactions between the ego vehicle and other traffic objects,
aligning more closely with how an expert reasons in the real world. To ablate the effect of structured
reasoning process alignment, we removed it from the planning QAs’ answer labels and used a sim-
ilar chain-of-thought reasoning and task planning method as in Agent-Driver (i.e., instructing the
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TOKEN
— GT

Prompt: You are the brain of an autonomous vehicle and try to plan a safe and efficient motion. The autonomous vehicle needs to turn right at the next
intersection. What objects are important for the autonomous vehicle's planning? What are these objects, their (x,y) locations? and how to interact with
them? Please plan the autonomous vehicle's 3s future trajectory using 6 waypoints, one every 0.5 seconds.

TOKEN: There is no important object for the autonomous vehicle's planning. The autonomous vehicle should keep forward, and its 3-second future
trajectory is...[omitted]
Figure 10: Failure mode example: The critical object (an oncoming motorcycle annotated by the red
rectangle) is not detected by TOKEN’s scene tokenizer, resulting in a dangerous motion plan.

LLM to generate the steering and acceleration command description first, followed by the motion
plan) to TOKEN (denoted as TOKEN —interact:y - We show the evaluation result in Tab. 8. We can
see that the structured reasoning process alignment improves the planning performance in both the
evaluation set and the long-tail scenarios.

Traj L2 (m) | Heading L2 (rad) | Lon. weighted traj L2 (m) | Collision (%) |
Split Method 1s 2s 3s Avejazs  Avey | s 2s 3s Avejozs  Aveyy | s 2s 3s Avejass  Avey Avey
Val TOKEN —interact: | 028 0.77 1.54 0.86 0.75 | 0.02 0.03 008 0.04 0.04 | 052 139 282 1.58 1.31 0.17
TOKEN 0.26 071 147 0.81 0.68 | 0.02 0.04 0.06 0.04 0.03 | 050 132 273 1.52 1.27 0.15
Long-tail | TOKEN —neret | 033 1,01 2.06 1.13 092 |0.09 015 019 0.14 0.12 | 058 1.82 3.66 2.02 1.65 0.59
TOKEN 026 0.81 177 0.95 078 | 0.05 0.0 0.18 0.11 0.09 | 050 147 3.09 1.69 140 0.35

Table 8: Quantitative performance of TOKEN —interact. 5 variant of TOKEN that uses a similar
chain-of-thought reasoning as Agent-Driver does.

H.3 Few-Shot Learning.

To stress test TOKEN’s few shot learning ability, we further remove 50% long-tail scenes from the
training split and re-train PARA-drive and TOKEN and compare their performance. In Tab. 9, we
show the quantitative evaluation result in long-tail scenarios. We see that TOKEN only degrades
slightly as opposed to PARA-Drive’s significant performance degradation. For example, Traj L2
Avey of PARA-Drive is degraded by 24% while TOKEN only experiences 9% degradation with
50% long-tail scenes removed. The results indicate the superior few-shot learning ability of TOKEN.

Traj L2 (m) | Heading L2 (rad) | Lon. weighted traj L2 (m) | Collision (%) |
Split Method Is 2 s Avens. Avew | Is 25 35 Aversss Avew | Is 25 3 Avens  Ave Aveg
Long-tail PARA-Drive | 026 096 2.16 1.13 091 009 020 034 021 018 | 047 161 351 1.86 157 051
(full long-tail training set) TOKEN 026 081 177 095 078 | 005 010 018 0.11 0.09 | 050 147 3.09 1.69 1.40 035

Long-tail PARA-Drive
(with 50% long-tail training scenes removed) | TOKEN

051 117 230 1.32 1.12 0.09 0.17 029 0.18 0.16 076 1.96 3.93 222 1.86 0.89
0.28 086 1.83 0.99 085 | 0.06 015 024 0.15 0.13 | 056 1.66 329 1.84 1.62 0.41

Table 9: Planning performance of TOKEN and PARA-Drive with 50% long-tail training scenes
removed.

I Failure Mode

One limitation of TOKEN is using a pre-trained and frozen PARA-Drive model as the scene tok-
enizer, which makes the TOKEN’s performance tightly coupled with the quality of the pretrained
tokenizer. In Fig. 10, we illustrate a failure mode where the critical object (the motorcycle) is not
detected by the tracking querying transformer in PARA-Drive. Consequently, TOKEN assumes
the road is clear to proceed and fails to generate a motion that yields to the oncoming motorcycle.
Further work will focus on co-training PARA-Drive to leverage the knowledge within the LLM to
improve the scene tokenizer.
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