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A Dataset Construction358

A.1 Examples of the QAs359

In Fig. 8, we illustrate examples of QAs used in training TOKEN.360

Q: What lane is the vehicle at (11.9, 12.1) 
driving in relative to the autonomous vehicle?
A: Vehicle at (11.9, 12.1) is merging into ego 
vehicle’s lane.

Scene Understanding Reasoning

Q: Should the autonomous vehicle pay attention 
to the object located at (-3.2, 6.7) ? Why?
A: The object is a car and is blocking the 
autonomous vehicle's lane. The answer is: Yes.

Hierarchical Planning

Q: The autonomous vehicle needs to keep forward along the road… [omitted] 
A: There is 1 important objects: car at (8.6, 3.9). The autonomous vehicle 
should yield to the car at (8.6, 3.9. It should remain roughly static, and…

Q: The autonomous vehicle needs to keep forward along the road. … 
[omitted] 
A: There are 4 important objects: traffic cone at (2.2, 13.4), traffic cone at (2.1, 
11.7), traffic cone at (1.7, 16.8), traffic cone at (1.6, 19.8). These traffic cones 
are blocking the ego vehicle’s lane. The autonomous vehicle should bypass the 
traffic cone at (2.2, 13.4) from the autonomous vehicle's right side …

Q: Should the autonomous vehicle pay attention 
to the object located at (3.1, 8.1) ? Why?
A: The object is a pedestrian with velocity (-1.6, 
0.2) m/s. Thus, it is crossing in front of the 
autonomous vehicle. The answer is: Yes.

Q: What is the observed status of the object at 
(-3.8, 6.0)?
A: Stationary
Q: What is the type of the object at (-3.8, 6.0)?
A: Pedestrian.

Figure 8: Examples of perception, reasoning, and planning QAs.

A.2 Road-Level Navigation Signal361

Previous works on VLM/LLM for autonomous vehicle planning often prompt the model with a362

high-level command based on the relative position of the ground-truth ego trajectory, including363

"keep forward" and "turn right/left." However, these high-level commands are not only unrealistic364

but also simplify the planning problem by removing the need for behavior planning. Therefore,365

we re-labeled the NuScenes dataset to use road-level navigation signals as high-level commands,366

including "keep forward along the current road," "prepare to turn right/left at the next intersection,"367

"turn right/left at the intersection," "left/right U-turn," and "left/right 3-point turn."368

A.3 Interaction Mode Labeling369

We use a combination of heuristics and manual labeling to annotate the interactions between the370

ego vehicle and the other traffic agents. We first use two types of categorical modes to describe the371

lane-relationship between a traffic agent and the ego vehicle (agent-ego lane mode) and the relative372

motion between a traffic participant and the ego vehicle (homotopy)[29]. Agent-ego lane mode at a373

time step t encodes the topology relationship between the ego’s current lane and the traffic agent’s374

lane, including: LEFT, RIGHT, AHEAD, BEHIND, and NOTON, where NOTON describes that the375

traffic agent is not on any derivable lanes in the scene (e.g., a parked vehicle in a parking lot). To376

compute the agent-ego lane mode for each traffic agent, we follow [29] to first identify the lane on377

which each agent is located and then leverage the lane topology map to annotate the agent-ego lane378

mode. We project the agent’s center to the lane polyline and use its relative position in the local379

Frenet frame to determine its lane association. Homotopies describe the relative motion between a380

pair of agents shown in the video, including: [S, CW, CCW] (static, clockwise, counterclockwise).381

Combining agent-ego lane mode, homotopy, agent ground truth state information, and scene con-382

text information (e.g., ego is located near an intersection) together, we can leverage heuristics to383

annotate the interaction. For example, within a 3-second horizon, a static object’s agent-ego lane384

mode changes from AHEAD, to LEFT, to BEHIND, while the ego vehicle performs RIGHT-LANE-385
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CHANGE, KEEP-LANE, then LEFT-LANE-CHANGE, indicating the ego vehicle overtakes that ob-386

ject from the ego vehicle’s left side. Finally, we use human labelers to verify and correct interaction387

labels in the following categories: 1) bypass blocking traffic cones to navigate around a construction388

zone; 2) yield to pedestrians; 3) yield to vehicles; 4) overtake traffic agents via straddling the lane389

dividers; 5) overtake traffic agents via lane-change.390

B Evaluation Protocol391

In this section, we provide a detailed description about our evaluation protocol. In Section 5.1 of the392

main text, we introduce the three variants of trajectory L2 error (the overall, turning, and progress393

errors) and the collision rate used to evaluate the predicted motion plans. As noted in [2], different394

evaluation protocols used to compute these metrics can lead to significant metric variations. We use395

the same evaluation protocol as described in [2] with one exception: we exclude samples where any396

future motion is missing near the end of a sequence (the frame masking strategy described in [2]).397

Including these partially invalid samples would significantly lower the L2 errors, as the L2 errors of398

these invalid frames are set to zero.399

C Additional Result: On the Value of Object-Centric Tokenization400

In Tab. 5, we present the full quantitative evaluation of each model’s performance in the planning401

task. We observe that TOKEN significantly outperforms all baselines across all planning metrics.402

Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

Video-LLaMA 0.27 1.72 6.34 3.01 2.39 0.06 0.14 0.20 0.13 0.13 0.56 3.36 9.20 4.36 3.52 2.64
VILA-1.5 0.28 1.56 4.41 2.09 1.66 0.05 0.11 0.19 0.12 0.10 0.29 1.92 6.47 2.89 2.24 1.98
BEV-TOKEN 0.39 1.01 2.02 1.14 0.96 0.03 0.05 0.06 0.05 0.05 0.75 1.79 3.55 2.03 1.71 0.39
TOKEN 0.26 0.70 1.46 0.81 0.68 0.02 0.04 0.06 0.04 0.03 0.50 1.32 2.72 1.51 1.26 0.15

Table 5: Planning performance evaluation. TOKEN significantly outperforms baseline VLMs due
to its use of driving-task pre-trained features and object-centric tokenization.

D Long-tail Events Construction403

We manually inspected the NuScenes dataset and identified the following long-tail scenarios for404

evaluation, each representing less than 1% of the training data: 1) executing 3-point turns; 2) resum-405

ing motion after a full stop; 3) overtaking parked cars through the oncoming lane; and 4) navigating406

around construction sites.407

Executing 3-point turns, which has one scene (scene-0778, frame 6-30) in the evaluation split and408

0 scenes in the training distribution. We extracted 25 key frames from the scene in which the ego409

vehicle is performing the 3-point U-turn for evaluation to remove the noise from other nominal410

behaviors in the scene.411

Resuming motion after a full-stop, which includes 14 scenes in the training split and 8 scenes in412

the evaluation split. We extract key frames from each scene where the ground truth (GT) motion plan413

captures the acceleration behavior after the full stop. This results in 70 key frames in the training414

split (0.28% of the total training samples) and 40 key frames in the evaluation split. The scenes415

and key frames in the training split are: scene-0208 (frame 25-29), scene-1023 (frame 21–25),416

scene-0067 (frame 24-28), scene-0159 (frame 4-8), scene-0185 (frame 26-30), scene-0262 (frame417

8-12), scene-0862 (frame 18-22), scene-0025 (frame 6-10) scene-0072 (frame 24-28), scene-0157418

(frame 12-16), scene-0234 (frame 4-8), scene-0423 (frame 6-10), scene-0192 (frame 14-18), and419

scene-0657 (frame 12-16). The scenes and key frames in the evaluation split are: scene-0921 (frame420

21-25), scene-0925 (frame 19-23), scene-0968 (frame 7-11), scene-0552 (13-17), scene-0917 (frame421

24-28), scene-0221 (frame 11-15), scene-1064 (frame 21-25), and scene-0331 (frame 8-12).422

Overtaking parked cars through the oncoming lane, which includes 14 scenes in the training split423

and 5 scenes in the evaluation split. We extracted key frames from each scene where the ground truth424
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motion plan captures the ego vehicle steering into the adjacent lane to overtake a blocking object425

and then returning to its original lane. This results in 248 key frames in the training split (0.9% of426

the total training samples) and 102 key frames in the evaluation split. The scenes and key frames in427

the training split are: scene-0001 (frame 12-39), scene-0011 (frame 1-39), scene-0023 (frame 1-8),428

scene-0034 (frame 23-39), scene-0318 (frame 10-30), scene-0379 (frame 14-26), scene-0408 (frame429

12-30), scene-0417 (frame 4-20), scene-0422 (frame 18-39), scene-0865 (frame 24-39), scene-1105430

(frame 18-30), scene-1065 (frame 24-35), scene-0200 (frame 20-39), and scene-0752 (frame 10-28).431

The scenes and key frames in the evaluation split are: scene-0038 (frame 4-33), scene-0271 (frame432

3-11), scene-0969 (frame 14-33), scene-0329 (frame 3-33), and scene-1065 (frame 24-35)433

Navigating around construction sites. This common and challenging scenario requires the au-434

tonomous vehicle to actively change lanes to bypass a construction zone. Although there are two435

scenes (scene-0980 and scene-0535) in the training split, none exist in the evaluation split. There-436

fore, we moved one training scene (scene-0980, frames 16-30) to the evaluation split. We selected437

15 key frames that capture the ego vehicle decelerating and steering into the adjacent lane to bypass438

the traffic cones.439

E Detailed Qualitative Result440

In this section, we provide an in-depth analysis of the qualitative results shown in Sec. 5.2.441

Executing a 3-point turn. During a 3-point turn, a vehicle makes a sharp left turn, backs up, and442

then makes another left turn to complete the maneuver. In Fig. 4, we compare the motion plans443

from TOKEN and PARA-Drive. Despite receiving a "3-point turn" command, PARA-Drive predicts444

straight movements at t = 2s and t = 4s, likely due to the absence of such examples in its training445

set. In contrast, TOKEN understands the command and generates the correct turning behavior.446

When approaching the curb to stop and back up, both PARA-Drive and TOKEN predict forward447

motions at t = 8s, likely due to the lack of 3-point turn examples in the dataset. At t = 10s, when448

the vehicle has enough clearance, both models predict left-turn motions, with TOKEN’s prediction449

more closely aligning with the ground truth.450

Overtaking parked cars through the oncoming lane. Fig. 6 shows an example of qualitative451

comparison between the motion plan from TOKEN and PARA-Drive at two constitutive time steps.452

At t = 5s, PARA-Drive predicts a motion that collides with the blocking vehicle, while TOKEN453

instructs the ego vehicle to decelerate to avoid the object. Interestingly, although TOKEN correctly454

predicts in language that the ego vehicle should decelerate and steer to the right, the motion plan only455

reflects the deceleration behavior. We hypothesize that this is caused by insufficient data that helps456

the LLM associate low-level motion with mid-level behavior. When the ego vehicle straddles the457

lane divider and prepares to overtake, TOKEN instructs the ego vehicle to drive back to its original458

lane after overtaking, while PARA-Drive predicts a forward motion that straddles the lane divider.459

Navigating around construction sites. Fig. 7 shows an example of qualitative comparison between460

the motion plan from TOKEN and PARA-Drive at two constitutive time steps. At t = 8s, TOKEN461

instructs the ego vehicle to steer and bypass the traffic cones from the ego vehicle’s right side, while462

PARA-Drive predicts a motion that collides with the blocking traffic cones At t = 12s, TOKEN463

instructs the ego vehicle to steer to the right to keep forward along the current lane, while PARA-464

Drive predicts a motion that deviates from the lane center.465

F Comparison with the SOTA LLM-based Planner - Agent-Driver466

We compare TOKEN with the SOTA LLM-based planner Agent-Driver [5]. They have the following467

differences:468

Scene representation. Agent-Driver queries text-based scene information using various tools (e.g.,469

object detection, mapping, etc.) and uses the queried text-based information as an input prompt to470

instruct the LLM to plan the ego vehicle’s motion. TOKEN tokenizes the scene into a few object-471

level tokens. This makes TOKEN more efficient in terms of information density per-token (e.g.,472
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TOKEN uses one token to encode an object’s semantic, geometry, and dynamic information while473

the same information is tokenized into around 60 text tokens in Agent-Driver).474

LLM-backbone. Agent-Driver fine-tunes the entire GPT3.5 while TOKEN uses LORA (with a475

rank of 64) to fine-tune LLaMA2.476

Chain-of-Thought Reasoning. Both Agent-Driver and TOKEN utilize chain-of-thought reason-477

ing to align the model’s planning process. However, Agent-Driver uses a coarse reasoning process478

that instructs the LLM to directly generate the ego vehicle’s discretized steering and acceleration479

command description based on the scene description, as opposed to TOKEN’s more structured rea-480

soning process that instructs the model to reason about the semantically meaningful effect of the481

objects (e.g., blocking the ego vehicle’s path) and interaction plans (e.g., overtake).482

We use the Agent-Driver’s predictions from the official repository and show the overall quantitative483

evaluation in Tab. 3 of the main text. In Tab. 6, we show the detailed quantitative evaluation of each484

long-tail scenario. In addition, since Agent-Driver includes the ego-state information in the prompt,485

we train a variant of TOKEN (denoted as TOKEN+) that also uses the ego-state information as486

input for planning (current velocity and current acceleration) and show the quantitative evaluation487

of TOKEN+ in Tab. 6. We see that TOKEN and Agent-Driver have similar overall performance,488

but TOKEN significantly outperforms Agent-Driver in long-tail scenarios. Furthermore, when using489

ego-state information as input, TOKEN+ significantly outperforms Agent-Driver in all splits.490

Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Split Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

val Agent-Driver 0.23 0.68 1.50 0.80 0.66 0.79 0.85 0.90 0.85 0.80 0.43 1.26 2.75 1.48 1.22 0.13
TOKEN 0.26 0.70 1.46 0.81 0.68 0.13 0.18 0.21 0.17 0.18 0.50 1.32 2.72 1.51 1.26 0.15
TOKEN + 0.17 0.52 1.21 0.64 0.52 0.10 0.16 0.19 0.15 0.17 0.33 1.00 2.30 1.21 1.00 0.13

3-point turn Agent-Driver 0.38 1.31 2.93 1.54 1.26 0.20 0.74 1.23 0.72 0.63 0.64 2.26 4.78 2.56 2.11 8.67
TOKEN 0.39 1.29 2.60 1.43 1.18 0.21 0.35 0.71 0.42 0.36 0.68 2.15 4.33 2.39 1.98 4.00
TOKEN + 0.20 0.73 1.77 0.90 0.73 0.17 0.22 0.38 0.26 0.22 0.37 1.28 2.93 1.53 1.24 1.46

Resume motion Agent-Driver 0.14 0.84 2.51 1.16 0.91 0.17 0.47 0.42 0.35 0.32 0.25 1.49 4.48 2.07 1.62 0.00
from full stop TOKEN 0.13 0.70 1.58 0.80 0.65 0.09 0.24 0.31 0.22 0.19 0.24 1.24 2.66 1.38 1.13 0.00

TOKEN + 0.06 0.43 1.27 0.59 0.46 0.05 0.13 0.17 0.12 0.10 0.11 0.78 2.30 1.06 0.84 0.00

Overtake Agent-Driver 0.27 0.89 2.07 1.08 0.88 0.05 0.13 0.24 0.14 0.12 0.47 1.46 3.37 1.77 1.45 0.77
TOKEN 0.29 0.77 1.63 0.90 0.74 0.04 0.07 0.11 0.07 0.09 0.53 1.36 2.86 1.58 1.31 0.19
TOKEN + 0.15 0.46 1.04 0.55 0.46 0.02 0.07 0.13 0.07 0.06 0.29 0.83 1.75 0.95 0.80 0.00

Table 6: Quantitative comparison with an LLM-based planner - Agent-Driver. TOKEN signifi-
cantly outperforms Agent-Driver in long-tail scenarios. TOKEN+ denotes a variant of TOKEN that
uses ego-state as input, similar to Agent-Driver.

G On the Value of Alignment - Qualitative Results491

In Fig. 9, we show a few qualitative comparisons between TOKEN and a variant of TOKEN trained492

with representation alignment but without reasoning alignment. We can see that the predicted motion493

plans are more aligned the GT motion with reasoning process alignment.494

H Additional Results495

H.1 TOKEN with HD-map Information496

In the main text, we use multi-view video as the sensory input. In this section, we include HD-map as497

an additional input to evaluate the performance of TOKEN. We utilize the CTT encoder described498

in [29] to fuse each traffic agent’s past state history with each lane’s ground truth center line and499

produce a traffic agent token as an additional token for each traffic object. We use TOKEN +map500

to denote the variant of TOKEN with HD-map information and show its quantitative evaluation501

in Tab. 7. We can see that the additional map information and the past state history significantly502

improve the planning performance in both evaluation split and long-tail scenarios.503
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TOKEN [no reasoning alignment] TOKEN GT

Figure 9: Qualitative comparison between TOKEN and a variant of TOKEN trained with represen-
tation alignment but without reasoning alignment. With reasoning process alignment, TOKEN is
able to instruct the ego vehicle to resume motion after a full-stop (top figure) and safely overtake
static obstacles (middle and bottom figures).

Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Split Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

Val TOKEN 0.26 0.71 1.47 0.81 0.68 0.02 0.04 0.06 0.04 0.03 0.50 1.32 2.73 1.52 1.27 0.15
TOKEN +map 0.15 0.42 1.18 0.58 0.51 0.02 0.02 0.06 0.03 0.03 0.33 0.92 2.11 1.12 0.97 0.08

Long-tail TOKEN 0.26 0.81 1.77 0.95 0.78 0.05 0.10 0.18 0.11 0.09 0.50 1.47 3.09 1.69 1.40 0.35
TOKEN +map 0.20 0.71 1.37 0.76 0.64 0.03 0.08 0.11 0.07 0.05 0.37 1.18 2.73 1.43 1.27 0.31

Table 7: Quantitative performance of TOKEN +map, a variant of TOKEN with HD-map information.

H.2 Ablation on the Effect of Structured Reasoning Process Alignment.504

One of the unique features of TOKEN is that it reasons about semantically meaningful interactions505

with identified critical objects (e.g., bypassing the blocking traffic cones). We hypothesize that this506

structured reasoning process supervision enhances the model’s planning performance by encour-507

aging the model to understand the interactions between the ego vehicle and other traffic objects,508

aligning more closely with how an expert reasons in the real world. To ablate the effect of structured509

reasoning process alignment, we removed it from the planning QAs’ answer labels and used a sim-510

ilar chain-of-thought reasoning and task planning method as in Agent-Driver (i.e., instructing the511
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Prompt: You are the brain of an autonomous vehicle and try to plan a safe and efficient motion. The autonomous vehicle needs to turn right at the next 
intersection. What objects are important for the autonomous vehicle's planning? What are these objects, their (x,y) locations? and how to interact with 
them? Please plan the autonomous vehicle's 3s future trajectory using 6 waypoints, one every 0.5 seconds.

TOKEN: There is no important object for the autonomous vehicle's planning. The autonomous vehicle should keep forward, and its 3-second future 
trajectory is…[omitted]

TOKEN
GT

Missed object

Figure 10: Failure mode example: The critical object (an oncoming motorcycle annotated by the red
rectangle) is not detected by TOKEN’s scene tokenizer, resulting in a dangerous motion plan.

LLM to generate the steering and acceleration command description first, followed by the motion512

plan) to TOKEN (denoted as TOKEN −interact.). We show the evaluation result in Tab. 8. We can513

see that the structured reasoning process alignment improves the planning performance in both the514

evaluation set and the long-tail scenarios.515

Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Split Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

Val TOKEN −interact. 0.28 0.77 1.54 0.86 0.75 0.02 0.03 0.08 0.04 0.04 0.52 1.39 2.82 1.58 1.31 0.17
TOKEN 0.26 0.71 1.47 0.81 0.68 0.02 0.04 0.06 0.04 0.03 0.50 1.32 2.73 1.52 1.27 0.15

Long-tail TOKEN −interact. 0.33 1.01 2.06 1.13 0.92 0.09 0.15 0.19 0.14 0.12 0.58 1.82 3.66 2.02 1.65 0.59
TOKEN 0.26 0.81 1.77 0.95 0.78 0.05 0.10 0.18 0.11 0.09 0.50 1.47 3.09 1.69 1.40 0.35

Table 8: Quantitative performance of TOKEN −interact., a variant of TOKEN that uses a similar
chain-of-thought reasoning as Agent-Driver does.

H.3 Few-Shot Learning.516

To stress test TOKEN’s few shot learning ability, we further remove 50% long-tail scenes from the517

training split and re-train PARA-drive and TOKEN and compare their performance. In Tab. 9, we518

show the quantitative evaluation result in long-tail scenarios. We see that TOKEN only degrades519

slightly as opposed to PARA-Drive’s significant performance degradation. For example, Traj L2520

Aveall of PARA-Drive is degraded by 24% while TOKEN only experiences 9% degradation with521

50% long-tail scenes removed. The results indicate the superior few-shot learning ability of TOKEN.522

Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Split Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

Long-tail PARA-Drive 0.26 0.96 2.16 1.13 0.91 0.09 0.20 0.34 0.21 0.18 0.47 1.61 3.51 1.86 1.57 0.51
(full long-tail training set) TOKEN 0.26 0.81 1.77 0.95 0.78 0.05 0.10 0.18 0.11 0.09 0.50 1.47 3.09 1.69 1.40 0.35
Long-tail PARA-Drive 0.51 1.17 2.30 1.32 1.12 0.09 0.17 0.29 0.18 0.16 0.76 1.96 3.93 2.22 1.86 0.89
(with 50% long-tail training scenes removed) TOKEN 0.28 0.86 1.83 0.99 0.85 0.06 0.15 0.24 0.15 0.13 0.56 1.66 3.29 1.84 1.62 0.41

Table 9: Planning performance of TOKEN and PARA-Drive with 50% long-tail training scenes
removed.

I Failure Mode523

One limitation of TOKEN is using a pre-trained and frozen PARA-Drive model as the scene tok-524

enizer, which makes the TOKEN’s performance tightly coupled with the quality of the pretrained525

tokenizer. In Fig. 10, we illustrate a failure mode where the critical object (the motorcycle) is not526

detected by the tracking querying transformer in PARA-Drive. Consequently, TOKEN assumes527

the road is clear to proceed and fails to generate a motion that yields to the oncoming motorcycle.528

Further work will focus on co-training PARA-Drive to leverage the knowledge within the LLM to529

improve the scene tokenizer.530
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