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A Related Works

A.1 NeRF-based Transparent Objects Recognition for Manipulation

NeRF [1] and its variants use differentiable rendering to find optimal 3D vision models (e.g., 3D
color fields, occupancy fields) from multiple 2D RGB images. Due to NeRF’s ability to learn 3D
structures without using depth images, several studies [2, 3] have attempted to use NeRF for grasping
transparent objects. Dex-NeRF [2] has first proposed transparent object recognition and grasping
using NeREF, introducing a depth rendering technique suitable for grasping differing from traditional
NeRF approaches. This work utilizes the rendered depth images to grasp objects using a pre-trained
Dex-Net [4]. Building on this, Evo-NeRF [3] has enhanced performance by improving the time
efficiency of the training process and adding a geometry regularizer term. Recently, NFL [5] has
employed pre-trained mask estimators and 2D normal field estimators to more accurately capture
3D geometry.

The primary limitation of these NeRF-based methods is their dependency on having access to all-
around, hemispheric views. When only partial views are available, these methods experience catas-
trophic failures. Furthermore, while NeRFs effectively capture the overall geometry of a scene, they
do not provide details about specific object instances. This absence of instance-specific information
poses significant challenges for tasks requiring target-driven manipulation.

A.2 Learning-based Transparent Objects Recognition for Manipulation

In this section, we summarize learning-based methods developed for transparent object recognition
and manipulation. One of the dominant approaches attempts to refine a corrupted depth image using
information from an RGB image, and then apply existing depth image-based grasp pose generation
algorithms [6]. For instance, Cleargrasp [7] has proposed a method that takes an RGB-D image of
a scene containing transparent objects, uses the RGB portion to estimate surface normals, detect
boundaries, and segment objects with a neural network, and then globally optimizes these outputs
to restore the damaged depth image. DepthGrasp [8] has developed a GAN-based generator to
directly produce a completed depth image from raw RGB-D input. Similarly, TransCG [9] has
provided a dataset of raw and refined depth images of real-world transparent objects and train a
U-Net structure neural network to predict refined depth images from RGB images and incomplete
depth images. Moreover, SwinDRNet [10] has proposed depth image completion using a two-stream
Swin Transformer [11], introducing domain randomization to tackle sim-to-real domain shift issues.

However, the grasp pose generation methods based on depth images have fundamental limitations.
First, full 6-DoF grasping is not possible, resulting in reduced diversity of grasp poses. Second,
there is often a lack of information on the 3D geometry of objects, making it difficult to generate
collision-free grasping trajectories. Third, most cases do not involve instance-wise representation,
which complicates target-driven manipulation.

GraspNeRF [12] predicts TSDF values from multiple RGB images and trains a model to predict
grasp poses using VGN [13]. This method overcomes some of the disadvantages mentioned above.
Since it directly generates grasp poses, it can also be trained to create 6-DoF grasp poses. Addition-
ally, because it outputs TSDF values, it has information on 3D geometry, enabling the generation of
collision-free trajectories. However, since the current version does not provide instance information,
target-aware manipulation is challenging. One of the most significant differences in our research is
that we use extended deformable superquadrics for 3D scene representation, which, compared to
TSDF, is more memory-efficient and allows for much faster collision checks and grasp sampling.

Lastly, we would like to emphasize that all the learning-based methods mentioned above face a
sim-to-real issue. Because RGB images in simulation differ from real images, models trained on
simulated RGB images commonly experience a significant performance drop when applied to real
images. It would be ideal to use real-world data, but collecting it is quite challenging. Although
various methods have been introduced in previous studies [10, 12] to enhance robustness to the
sim-to-real gap, none have been particularly effective. In our research, we developed a model that



75 uses mask images as input, which we found to be significantly more robust to the sim-to-real gap
76 compared to models that directly take RGB images as input.
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B Implementation Details for Our Methods

B.1 Details for TablewareNet Objects

In this section, we describe the constraints on the superquadric parameters and poses for each table-
ware object mentioned in Section 2.2. — wine glasses, bottles, beer bottles, bowls, dishes, handleless
cups, and mugs — and explain how these constraints are represented using tableware parameters.

Notations. Following the notation used in Section 2.2., each tableware object is composed of n
superquadrics {S;|i = 1,...,n}, with their function type, pose, size parameter, and shape parameter
denoted as f;,T;,a;, and e;, respectively. Additionally, their deformation parameters are denoted as
d; = (k;, b, a, ;). If there is no deformation, d; = (0, 0,0, 0); we denote the absence of bending
as b; = 0 for convenience, as bending diminishes when b approaches zero. In actual implementation,
deformation Dy, is not computed when b; = 0.

Wine Glass. The wine glass template encompasses a wide range of wine glass and champagne glass
shapes. This template consists of three superquadrics: two superellipsoids S7, So for the foot and
stem, and a superparaboloid S5 for the bowl. The tableware parameters and the constraints on the
superquadrics are given in Figure 1 and Table 1.

2t,
n es =(t;, 1) Parameter Desc. Range
5 ds = (£.0,0,0) T Pose T € SE(3)
t1 Foot thickness t; € [0.003,0.006]
to Stem radius ta € [0.003,0.006]
Ry e, = (02,1) ts Bowl radius ts € [0.03,0.057]
~ 4 = (0'6 0.0) ty Wine glass Height ¢4 € [0.155,0.264]
N R ts Bowl height ratio ts € [0.4,0.6]
o 2L, te Foot/bowl radius ratio t¢ €10.9,1.1]
Ny tr Bowl e; ty € [0.6, 2.0]
=1 AT) e; =(0.2,1) ts Bowl k ts € [-3.0,0.0]
‘—'\Zt:té/ d1=(0.0.0,0) Table 1: Tableware parameters of wine glasses.

Figure 1: Description for the wine glass
parameters.

Bowl. The bowl template consists of one superquadric: a superparaboloid S for the bowl. The
tableware parameters are given in Figure 2 and Table 2.

4

/ Parameter  Desc. Range
2t, T Pose T € SE(3)

tq Bowla; t; € [0.04, 0.15]
to Bowlay ty € [004, 015}

2ts t3 Bowl a3 t3 € [0027 01]
ty4 Bowl e ty € [001, 03]

e = (ty ts) ts Bowl ey ts € [01, 10]

di = (t,0,0,0) t Bowlk tg € [0.1,0.3]
Figure 2: Description for the bowl pa- Table 2: Tableware parameters of bowls.

rameters.
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Bottle. The bottle template consists of three superquadrics: superellipsoids S1, Sz, S3 for the body,
shoulder and finish. The tableware parameters and the constraints on the superquadrics are given in

Figure 3 and Table 3.

2t,

‘ =" e; = (0.2,1.0)

5 . d; = (0,0,0,0)
e, = (0.2,t)

. dz—(t4_1000)

27ty

e; = (0.2,t)
d, = (0,0,0,0)

2t

Figure 3: Description for the bottle pa-
rameters.

Parameter Desc. Range
T Pose T € SE(3)
t1 Body radius t1 € [0.03,0.055]
to Body height to € [0.10,0.23]
t3 Shoulder height  ¢3 € [0.03,0.05]
ty Finish radius ¢4 € [0.008, 0.012]
ts Finish height ts € [0.01,0.02]
te Overall ey te € 10.2,1.0]

Table 3: Tableware parameters of bottles.

Beer bottle. The beer bottle template consists of three superquadrics: superellipsoids S1, S2, S for
the body, shoulder and neck. The tableware parameters and the constraints on the superquadrics are

given in Figure 4 and Table 4.

2t,
s e; = (0.05,1.0)
ds = (£,0,0,0)
. e, = (0.05,1)
3
ty(1—tg) —ty
d,=(2—5 _190,0
2= G-t +t )
t.
2 e, = (0.05,1)
d, =(0,0,0,0)

—T

2t

Figure 4: Description for the beer bottle
parameters.

Parameter Desc. Range

T Pose T € SE(3)

t Body radius t1 € [0.025,0.05]
to Body height to €10.12,0.19]
t3 Shoulder height  t3 € [0.01,0.07]
ta Neck radius t4 € [0.014,0.016]
ts Neck height t5 € [0.07,0.1]
te Neck k& tg € [—0.2, 00]

Table 4: Tableware parameters of beer bottles.
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Handless Cup. The handless cup template consists of one superquadric: a superparaboloid S;. The
tableware parameters are given in Figure 5 and Table 5.

Parameter Desc. Range
t) e =(t51) T Pose T € SE(3)

d; = (t,0,0,0) ty Cup radius ¢, € [0.025,0.05]
to Cup height  t5 € [0.05,0.22]
t3 Cup e; t3 € [0.01,0.3)
ty Cup k ty €[0.0,0.3]

Table 5: Tableware parameters of handless cups.

2t,

Figure 5: Description for the handless
cup parameters.

Mug. The mug template consists of two superquadric: superparaboloids S7, Sy for the cup and
handle. The tableware parameters and the constraints on the superquadrics are given in Figure 6 and
Table 6.

Parameter Desc. Range
T Pose T € SE(3)
a, = (te, tate Sty t Cup radius t1 € [0.025,0.05]
e; _ ((0_52 ;’8;’ 720) to Cup height t5 € [0.08,0.12]
t - 2 t3 Cup e; t3 € [0.01,0.3]
2= (0,505 ta Cup k ty € [-0.2,0.2]
e, = (ts1) ts Handle a, ts € [0.002,0.003)
" d; = (t4,0,0,0) te Handle as/a; te € [1.0,2.0]
2t tr Handle length ratio t7 € [0.5,0.7]
tg Handle ey tg € [0.2,1.0]
Figure 6: Description for the mug pa- to Handle s tg € [~0.5,—0.0001]

rameters.
Table 6: Tableware parameters of mugs.

Dish. The dish template consists of one superquadric: a superparaboloid S;. The tableware param-
eters are given in Figure 7 and Table 7.

e; = (t3,t,) Parameter Desc. Range
d, = (t5,0,0,0) T Pose T € SE(3)
t Dish radius ¢ € [0.08,0.14]
t2 | w o Dish height £, € [0.015,0.03]
t3 Dish e; t3 € [0.01,0.3]
2ty ty Dish ey ty € [05, 10]
ts Dish k ts €10.3,0.6]

Figure 7: Description for the dish pa-

rameters. Table 7: Tableware parameters of dishes.
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B.2 Details for Tableware Dataset

Our dataset employs uniform random sampling for each object class, offering infinitely continuous
variations in object shapes, unlike other datasets with a finite number of fixed shapes. We capture
comprehensive data, including object poses, tableware parameters, class labels, bounding boxes,
meshes, and TSDF values. For each scene, we provide mask images, depth images, and RGB
images from seven different camera poses using the synthetic camera parameters of the RealSense
D435. The dataset features two versions: one with objects on a shelf and another with objects on
a table. Each includes 120,000 scenes, with 30,000 scenes each containing 1, 2, 3, or 4 objects.
Among them, 12,000 scenes include RGB images; we do not capture RGB images for other scenes.
Therefore, the dataset comprises 840,000 depth and mask images and 84,000 RGB images.

B.3 Examples of Class Supplementation Using Deformable Superquadrics

In this section, we present examples of addi- Perfume Bottle Cup with Spherical Lid
tional objects that can be generated using de- -
formable superquadrics, which are not covered

in our dataset. Perfume Bottle. Perfume bot- ’
tles come in various shapes and are transpar-

ent objects commonly seen in daily life. How-
ever, they are not included in our dataset be-
cause they are not tableware. The perfume bot-
tle template consists of two superquadrics: su-
perellipsoids S1, So for the body and cap. Plas-
tic Cup with Spherical Lid. Plastic cups with

spherical lids are easily seen in the most cof- k

fee shops. This template consists of two su-

perquadrics: superellipsoids S7, So for the cup

and lid. The example of perfume bottle and cup Figure 8: Perfume bottle and plastic cup with
with spherical lid represented by deformable spherical lid represented by deformable su-
superquadrics can be found in Figure 8. perquadrics.

B.4 Details for Model Architecture and Training Process
B.4.1 Bounding Box Prediction Model Architecture

In this section, we describe the structure of the neural network used for bounding box prediction.
We utilize the architecture of DETR3D [14], which takes fixed multi-view RGB images as input
and outputs multiple 3D bounding boxes. DETR3D first obtains 2D features from the multi-view
images using ResNet [15] and FPN [16]. It employs a Transformer architecture, where each layer
decodes candidate positions for bounding box centers using a sub-network for object queries. These
decoded positions are projected onto each image plane, and the corresponding image feature values
are incorporated into the object queries using multi-head attention. The refined object queries are
then used as input for the next layer. From each object query passing through the layers, the bound-
ing box center, size, and class are predicted using an MLP structure for training. During inference,
the bounding boxes and classes are predicted from the object queries of the final layer. For more
details, refer to [14].

We adopt the DETR3D structure with a few modifications. Instead of using a classifier to predict the
object class for each object query, we pre-assign classes to the object queries and use a confidence
predictor to predict a value in [0, 1] whether the query corresponds to a present object. For example,
if there are 3500 object queries and 7 classes, the first 500 queries represent the first class, and if
the confidence predictor assigns high confidence (we use a threshold value of 0.75) to one of these
queries, it is predicted that a bounding box for an object of that class exists. Unlike the original
DETR3D using RGB image inputs, we use binary mask images as inputs.
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B.4.2 Bounding Box Prediction Model Training

Matching and Loss Calculation. As in the original DETR3D, we use bipartite matching to cal-
culate the loss. Since we have pre-assigned classes to each query, the matching occurs within each
class. We use binary cross-entropy for the confidence scores and L loss for the bounding box co-
ordinates and size. The weights between the binary cross-entropy loss and the L; loss are set to 5:1.
After calculating the loss for the optimal matching within each class, we sum these losses across all
classes to obtain the final loss value.

Training Process. We train the network using 12,000 samples from the TablewareNet dataset;
although our model can utilize the entire 120,000 sample dataset, we use only the 12,000 samples
that include RGB images for comparison with other RGB-based baselines. We employ the Adam
optimizer with an initial learning rate of 0.00005. A cosine annealing scheduler is used, and the
training process spans 200 epochs.

Cutout Augmentation. For cutout augmentation, the number of holes per mask image is determined
by uniformly sampling an integer between 0 and 2. The size of each hole is determined by uniformly
sampling an integer between 50 and 100 for both the width and height; note that mask image size is
(240, 320). The position of each hole is also uniformly sampled within the image pixels.

B.4.3 3D Voxel Representation of Smoothed Visual Hull

We need to voxelize the predicted bounding boxes with fixed voxel size L;, to create the raw 3D
space to be carved. Here, 7 represents the class index. Given that bounding boxes can vary in size,
voxelizing them directly would result in different resolution of voxels, disabling the inference of the
3D CNN and FCN architecture. To address this, we follow a specific procedure to standardize the
raw voxel representation.

First, we inspect the all size of the ground truth bounding boxes of class 7 and store the maximum size
(Wios Hiroos Di, ). Using this maximum size, we create a standardized 3D voxel space centered
on the predicted bbox center. This ensures that all voxel representations have a consistent resolution
Wi/ Lis Hipo / Ly D [ L)

Next, we calculate the smoothed visual hull within this standardized voxel space. To further refine
the representation, we add a channel to the voxel grid, where voxels inside the predicted bounding
box are assigned a value of 1, and those outside are assigned a value of 0. The final voxel input
to the network thus takes the shape (W; . /L;, H; . /L:, D;. . /L;,2), with the first channel repre-
senting the smoothed visual hull and the second channel indicating bounding box occupancy. This
standardized approach ensures consistent and accurate input for the 3D CNN, facilitating reliable
network inference.

max ?

B.4.4 Tableware Parameter Prediction Model Architecture

We employ a ResNet3D [17] + FCN architecture to predict the tableware parameters, including the
pose T, using the smoothed visual hull voxel as input. Given that each tableware class has different
voxel resolutions and the number of parameters, we train separate predictors for each class. In other
words, there are as parameter predictors as the number of the classes, with each predictor dedicated
to estimating the parameters of a single class of tableware objects.

In addition, we assume that all objects are upright. Therefore, instead of predicting the entire SE/(3)
matrix for the object pose T, the model only predict the relative position p € R? to the bounding
box center and the rotation around the z-axis, 6 € [0, 27).

B.4.5 Tableware Parameter Prediction Model Training

Chamfer Distance as Loss function. The tableware parameters output by the parameter predictor
could be directly trained via supervised learning using the L, or Lo distance from the ground truth
tableware parameters. However, this approach may not yield a zero loss value even when the pre-
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dicted object shape matches the ground truth shape due to symmetrical ambiguities. For instance,
orientations of objects with circular symmetry such as wine glasses, beer bottles, handless cups, and
dishes, do not affect their shapes. In the case of a bottle, rotating the object by 90 degrees results
in the same shape, thus the ground truth shape has four possible orientations. For bowls, swapping
the width ¢; and length ¢2 and rotating the orientation by 90 degrees along the z-axis results in the
same shape. We want a loss function that yields a zero value when the predicted shape matches the
ground truth shape, regardless of these symmetrical ambiguities.

To address this, we use the Chamfer distance between point clouds sampled from the predicted and
ground truth object surfaces as the loss function. This requires a differentiable point cloud sampling
method from deformable superquadric parameters, which we will discuss later. For a tableware
object composed of multiple superquadrics S, ..., S,, we compute the Chamfer distance for each
deformable superquadric part. Specifically, if F; preq and P; 4 are the point clouds sampled from the
predicted and ground truth i-th deformable superquadric S; preq and S; g, respectively, the Chamfer
loss is defined as:

Z chamfer(P; pred, P ot)
i=1

Differentiable Point Sampling on Deformable Superquadrics. For superquadrics without defor-
mation, there exists an explicit parameterization as follows;

x ap cos®! 6 cos®? ¢
Xse = |Y| = |a2c0s% Osin? ¢ | | X,

z a3 sin® 6

= | aghsin® ¢
ag(hQ/el — 1)

)

lx} arh cos®? ¢

where —7/2 < 0 < 7/2, —m < ¢ < mand 0 < h < 1, and cos® § := sgn(cos )| cosh|® and
sin® 0 := sgn(sin 6)| sin 0|°.

We utilize a uniform grid in 6, ¢, and h coordinates to sample points on the superquadric surface
using this explicit parameterization. This method is differentiable with respect to the superquadric
parameters.

When dealing with deformations, we apply the transformations D;, D, and D described in Section
2.1 to these sampled points. These transformations are also differentiable with respect to deforma-
tion parameters.

Training Process. During training, we observe empirically that adding L loss for tableware param-
eters (excluding the object’s pose) and MSE loss for position as regularizers accelerate the training
process. We do not use a regularizer for orientation due to symmetry issues previously discussed.
The weights used between the position MSE loss, parameter L; loss, and Chamfer loss were set to
1:0.1: 1. The model is trained with 12,000 data which include RGB images. The input smoothed
visual hulls are generated using ground truth bounding boxes and mask images for each scene. Sim-
ilar to the bounding box predictor training, we employed the Adam optimizer with an initial learning
rate of 0.00005, using a cosine annealing scheduler. The training process spanned 200 epochs.

Data Augmentation with Bounding Box Perturbation. During inference, errors in the bounding
box predictions may lead to low performance of the parameter predictor if it is trained solely on
visual hulls generated from ground truth bounding boxes. To address this, we add noise to the
bounding box’s position and size to create a perturbed visual hull during training. Specifically, as
mentioned in B.4.3., while generating the voxel representation, we apply perturbations to the center
and size of the bounding boxes when creating the second channel representing the bounding box
occupancy. This data augmentation strategy ensures that the parameter predictor remains robust to
prediction errors from the bounding box predictor, enabling T>SQNet to maintain high performance
even when bounding box predictions are not perfectly accurate.
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B.5 Details for Geometry-Aware Object Manipulation

6-DoF Grasp Sampler. After obtaining the deformable superquadric representation of the transpar-
ent objects, we sample feasible grasp poses from the obtained shapes. While it is possible to find the
antipodal point by utilizing the implicit function of the deformable superquadric and its closed-form
normal vector [18], we manually design a faster and more diverse grasp sampler in this paper. Since
each object consists of multiple deformable superquadric parts, we first generate grasp poses for
each part. Inspired by previous works [19], we manually generate top-down and side grasp poses
for the superellipsoids according to their shapes. For superparaboloids, we generate grasp poses that
grasp the edge. Example grasp poses can be found in Section 4. After generating grasp poses for
each part, we check whether the grasp poses avoid self-collision with the object. Grasp poses with
a distance between the antipodal points greater than 7.5 cm are removed from the candidates, as the
maximum gripper width of the Franka gripper is 8 cm.

Object Rearrangement Method. Using the graspability function — set to 1 if the object is graspable
and 0 otherwise — described in Section 5.2, we can generate robot actions that make the target object
graspable. We use sampling-based model predictive control (MPC) to maximize the graspability
function. From the recognized tableware objects, we sample 50 pick-and-place action sequences.
Since the dynamics of the pick-and-place actions are precisely known, we do not use an additional
learning-based model to predict the dynamics of the objects. Then, we find the optimal action that
best maximizes the graspability function.

10
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C Experimental Details

C.1 Additional Details for Recognition Experiments

Baseline Implementations. NeRF and Dex-NeRF are trained using the seven partial views available
in TablewareNet. For both methods, the view poses used for training and depth accuracy measure-
ment are identical. Consequently, we use the model from the final epoch of training for evaluation.
Depth rendering for NeRF and Dex-NeRF follows the approach described in [2], with a ¢ threshold
of 15 for Dex-NeRF. To generate occupancy voxel grids, we render depth images from uniformly
sampled view poses over a hemisphere using the trained NeRF and Dex-NeRF models. Subse-
quently, these depth images are converted to TSDFs, and regions with negative TSDF values are
marked as occupied. DVGO and Mask DVGO are also trained using the seven partial views. For
depth rendering, both methods employ the depth rendering technique used by NeRF in [2], rather
than the Dex-NeRF method. Empirically, using the Dex-NeRF depth rendering approach decreases
performance for DVGO-based methods. Predicted occupancy voxels are defined as those with an
occupancy probability exceeding a threshold, which we set to 0.1. For GraspNeRF, we train the
model with our 12,000 RGB-equipped TablewareNet dataset. We utilize rendering loss and TSDF
loss, where ground truth TSDF values are used to derive the occupancy voxels directly from the
predicted TSDF values. For our model, T2SQNet, we generate occupancy voxels using the implicit
function representation of the superquadrics of the predicted tableware objects.

TRansPose Dataset. For the TRansPose dataset, we follow the same process as when generating
the TablewareNet dataset, as described in Section 2.2. We first spawn random objects from the
TRansPose object dataset [20] within PyBullet and then render RGB images of the scenes using
Blender with transparent textures.

C.2 Additional Details for Sequential Declutter Experiment

We generate five scenarios for each number of objects, one (single) and four (cluttered), and for
each environment type, including shelf and table, resulting in a total of 20 scenarios. The initial
settings for all scenes, including the configuration and poses of objects, can be seen in Figure 9.
When testing the three baselines, including Mask DVGO, GraspNeRF, and T2SQNet, we place the
same objects in the same pose as consistently as possible for each scene.

Shelf Shelf
Cluttered Single

Table
Single

Table
Cluttered

Figure 9: Initial scene settings for real-world sequential declutter experiments.
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C.3 Additional Details for Target Retrieval Experiment

We generate five scenarios with designated target objects in a shelf environment. The initial scene
settings, including the target tableware class name (e.g., wine glass), for all scenarios can be found
in Figure 10. For the target retrieval experiment, we place the target object so that it is not initially
graspable.

Wineglass Wineglass Bowl Mug Mug

Figure 10: Initial scene settings for real-world target retrieval experiments.
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D Additional Experimental Results

D.1 Additional Results for Recognition Experiments

Additional examples of transparent object recognition results are shown in Figure 11 and Figure 12.
The trends of these additional results are similar to the representative example in Section 5.1. For
the test sets of the Tableware dataset in Figure 11, T2SQNet succeeds in recognizing accurate 3D
geometries of the transparent objects while also delivering instance information. GraspNeRF per-
forms best among the baselines but predicts less accurate results than T2SQNet. Although T2SQNet
has slightly lower performance on the Tableware dataset compared to TRansPose, it succeeds in
predicting somewhat accurate instance-wise geometries, as shown in Figure 12.
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Figure 11: Recognition results from RGB images from test sets of Tableware dataset.
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Figure 12: Recognition results from RGB images from TRansPose dataset.
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D.2 Additional Results for Sequential Declutter Experiments

More examples of sequential decluttering with T2SQNet on shelves and tables are shown in Fig-
ure 13 and Figure 14, respectively. Generally, our method succeeds in sequentially grasping objects
without re-recognition, while avoiding collisions with other objects and the environment based on
the accurately predicted geometries of the objects. However, there are several failure cases: (i) a
slightly incorrect shape leads to an unstable grasp pose, as shown in the third example of Figure 13,
(ii) some objects are not recognized by T2SQNet, as shown in the first example of Figure 14, and (iii)
an inverse kinematics solution does not exist, as shown in the third example of Figure 14. The first
and second failure cases can be resolved through a more accurate recognition model, as described in
the future works section (Section 5.3). The third failure case can be addressed by designing a more
diverse 6-DoF grasp sampler.

Sequential declutter

Observe Recog. Observe Recog. Observe Recog. Observe

Recog.

Figure 13: Examples of sequential declutter experiment results on shelves.
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Sequential declutter
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Figure 14: Examples of sequential declutter experiment results on tables.
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D.3 Additional Results for Target Retrieval Experiments

Additional results for target retrieval with T2SQNet are shown in Figure 15. In the three examples
above, T2SQNet-based method successfully rearranges surrounding objects and retrieves target ob-
jects through appropriate pick-and-place actions. In the last example, T?SQNet fails to recognize
one wine glass; consequently, the robot performs an action of directly retrieving the target object,
the mug, and as a result, it grasps both the wine glass and the mug together.

Shelf Target retrieval

Success

Observe

A e
Wineglass Success

Observe

Recog.

Success

Observe

Recog.

Mug Failure

Figure 15: Examples of target retrieval experiment results on shelves.
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D.4 Comparison of T>2SQNet with an End-to-End Method

J7 J" b

ground truth T2SQNet End-to-end

Figure 16: Visual comparison of T?SQNet output with an end-to-end method output on validation
set

To validate the effectiveness of our T2SQNet framework, which combines several separate modules,
we developed and trained a simple end-to-end model for comparison. The end-to-end model struc-
ture is as follows: it utilizes our modified DETR3D structure (where queries are pre-assigned classes
and a confidence estimation is incorporated) but replaces the bounding box predicting FCN with an
FCN that predicts tableware parameters. Given that the dimension of tableware parameters varies by
object class, separate FCNs are used for each class to predict the parameters. These class-specific
FCNss take as input the queries assigned to the same class and output the corresponding tableware
parameters. The learning loss for these parameters employs the same position regularizer, parameter
regularizer, and chamfer loss as T2SQNet. In this end-to-end method, we set the weights for confi-
dence loss, position regularizer, parameter regularizer, and chamfer loss to 1:1:1:0.1, respectively.

The training results are shown in Figure 16. We observed that training this end-to-end model is
considerably challenging, and we hypothesize the following reasons:

Chamfer Loss Scale. As the centers of two objects diverge, the chamfer loss scale increases
quadratically. During the initial training phases, failing to align the object’s position significantly
inflates the chamfer loss scale relative to the confidence loss and position loss. Conversely, as ob-
jects come closer, the chamfer loss scale becomes much smaller than the confidence loss and other
loss terms. This large variation in loss scale during training leads to inconsistent bipartite matching
results, hindering significant training progress.

Positional Constraints. In T2SQNet, the object center position is constrained to remain within the
bounding box, providing a structured framework for the output. However, the end-to-end method
bypasses the bounding box prediction process, resulting in the lack of such positional constraints.
Consequently, the predicted object can be located anywhere within the workspace during the initial
training stages, making it difficult to resolve the aforementioned issues.

In conclusion, the large scale variation of the chamfer loss during training makes it challenging
to balance the losses, leading to unstable bipartite matching results and ultimately hindering the
learning process. While the end-to-end method theoretically streamlines the process, the practical
challenges in training and the inherent issues in loss scaling and positional constraints highlight the
advantages of our modular T2SQNet framework.

D.5 Supplementary Videos for Pushing Manipulation Experiments
Videos for real-world sequential declutter and target retrieval can be found at the following link:

https://www.youtube.com/watch?v=qUWOp6wUHDS.
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