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A Related Works26

A.1 NeRF-based Transparent Objects Recognition for Manipulation27

NeRF [1] and its variants use differentiable rendering to find optimal 3D vision models (e.g., 3D28

color fields, occupancy fields) from multiple 2D RGB images. Due to NeRF’s ability to learn 3D29

structures without using depth images, several studies [2, 3] have attempted to use NeRF for grasping30

transparent objects. Dex-NeRF [2] has first proposed transparent object recognition and grasping31

using NeRF, introducing a depth rendering technique suitable for grasping differing from traditional32

NeRF approaches. This work utilizes the rendered depth images to grasp objects using a pre-trained33

Dex-Net [4]. Building on this, Evo-NeRF [3] has enhanced performance by improving the time34

efficiency of the training process and adding a geometry regularizer term. Recently, NFL [5] has35

employed pre-trained mask estimators and 2D normal field estimators to more accurately capture36

3D geometry.37

The primary limitation of these NeRF-based methods is their dependency on having access to all-38

around, hemispheric views. When only partial views are available, these methods experience catas-39

trophic failures. Furthermore, while NeRFs effectively capture the overall geometry of a scene, they40

do not provide details about specific object instances. This absence of instance-specific information41

poses significant challenges for tasks requiring target-driven manipulation.42

A.2 Learning-based Transparent Objects Recognition for Manipulation43

In this section, we summarize learning-based methods developed for transparent object recognition44

and manipulation. One of the dominant approaches attempts to refine a corrupted depth image using45

information from an RGB image, and then apply existing depth image-based grasp pose generation46

algorithms [6]. For instance, Cleargrasp [7] has proposed a method that takes an RGB-D image of47

a scene containing transparent objects, uses the RGB portion to estimate surface normals, detect48

boundaries, and segment objects with a neural network, and then globally optimizes these outputs49

to restore the damaged depth image. DepthGrasp [8] has developed a GAN-based generator to50

directly produce a completed depth image from raw RGB-D input. Similarly, TransCG [9] has51

provided a dataset of raw and refined depth images of real-world transparent objects and train a52

U-Net structure neural network to predict refined depth images from RGB images and incomplete53

depth images. Moreover, SwinDRNet [10] has proposed depth image completion using a two-stream54

Swin Transformer [11], introducing domain randomization to tackle sim-to-real domain shift issues.55

However, the grasp pose generation methods based on depth images have fundamental limitations.56

First, full 6-DoF grasping is not possible, resulting in reduced diversity of grasp poses. Second,57

there is often a lack of information on the 3D geometry of objects, making it difficult to generate58

collision-free grasping trajectories. Third, most cases do not involve instance-wise representation,59

which complicates target-driven manipulation.60

GraspNeRF [12] predicts TSDF values from multiple RGB images and trains a model to predict61

grasp poses using VGN [13]. This method overcomes some of the disadvantages mentioned above.62

Since it directly generates grasp poses, it can also be trained to create 6-DoF grasp poses. Addition-63

ally, because it outputs TSDF values, it has information on 3D geometry, enabling the generation of64

collision-free trajectories. However, since the current version does not provide instance information,65

target-aware manipulation is challenging. One of the most significant differences in our research is66

that we use extended deformable superquadrics for 3D scene representation, which, compared to67

TSDF, is more memory-efficient and allows for much faster collision checks and grasp sampling.68

Lastly, we would like to emphasize that all the learning-based methods mentioned above face a69

sim-to-real issue. Because RGB images in simulation differ from real images, models trained on70

simulated RGB images commonly experience a significant performance drop when applied to real71

images. It would be ideal to use real-world data, but collecting it is quite challenging. Although72

various methods have been introduced in previous studies [10, 12] to enhance robustness to the73

sim-to-real gap, none have been particularly effective. In our research, we developed a model that74
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uses mask images as input, which we found to be significantly more robust to the sim-to-real gap75

compared to models that directly take RGB images as input.76
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B Implementation Details for Our Methods77

B.1 Details for TablewareNet Objects78

In this section, we describe the constraints on the superquadric parameters and poses for each table-79

ware object mentioned in Section 2.2. – wine glasses, bottles, beer bottles, bowls, dishes, handleless80

cups, and mugs – and explain how these constraints are represented using tableware parameters.81

Notations. Following the notation used in Section 2.2., each tableware object is composed of n82

superquadrics {Si|i = 1, . . . , n}, with their function type, pose, size parameter, and shape parameter83

denoted as fi, Ti, ai, and ei, respectively. Additionally, their deformation parameters are denoted as84

di = (ki, bi, αi, si). If there is no deformation, di = (0, 0, 0, 0); we denote the absence of bending85

as bi = 0 for convenience, as bending diminishes when b approaches zero. In actual implementation,86

deformation Db is not computed when bi = 0.87

Wine Glass. The wine glass template encompasses a wide range of wine glass and champagne glass88

shapes. This template consists of three superquadrics: two superellipsoids S1, S2 for the foot and89

stem, and a superparaboloid S3 for the bowl. The tableware parameters and the constraints on the90

superquadrics are given in Figure 1 and Table 1.91

Figure 1: Description for the wine glass
parameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Foot thickness t1 ∈ [0.003, 0.006]
t2 Stem radius t2 ∈ [0.003, 0.006]
t3 Bowl radius t3 ∈ [0.03, 0.057]
t4 Wine glass Height t4 ∈ [0.155, 0.264]
t5 Bowl height ratio t5 ∈ [0.4, 0.6]
t6 Foot/bowl radius ratio t6 ∈ [0.9, 1.1]
t7 Bowl e1 t7 ∈ [0.6, 2.0]
t8 Bowl k t8 ∈ [−3.0, 0.0]

Table 1: Tableware parameters of wine glasses.

Bowl. The bowl template consists of one superquadric: a superparaboloid S1 for the bowl. The92

tableware parameters are given in Figure 2 and Table 2.93

Figure 2: Description for the bowl pa-
rameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Bowl a1 t1 ∈ [0.04, 0.15]
t2 Bowl a2 t2 ∈ [0.04, 0.15]
t3 Bowl a3 t3 ∈ [0.02, 0.1]
t4 Bowl e1 t4 ∈ [0.01, 0.3]
t5 Bowl e2 t5 ∈ [0.1, 1.0]
t6 Bowl k t6 ∈ [−0.1, 0.3]

Table 2: Tableware parameters of bowls.
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Bottle. The bottle template consists of three superquadrics: superellipsoids S1, S2, S3 for the body,94

shoulder and finish. The tableware parameters and the constraints on the superquadrics are given in95

Figure 3 and Table 3.96

Figure 3: Description for the bottle pa-
rameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Body radius t1 ∈ [0.03, 0.055]
t2 Body height t2 ∈ [0.10, 0.23]
t3 Shoulder height t3 ∈ [0.03, 0.05]
t4 Finish radius t4 ∈ [0.008, 0.012]
t5 Finish height t5 ∈ [0.01, 0.02]
t6 Overall e2 t6 ∈ [0.2, 1.0]

Table 3: Tableware parameters of bottles.

Beer bottle. The beer bottle template consists of three superquadrics: superellipsoids S1, S2, S3 for97

the body, shoulder and neck. The tableware parameters and the constraints on the superquadrics are98

given in Figure 4 and Table 4.99

Figure 4: Description for the beer bottle
parameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Body radius t1 ∈ [0.025, 0.05]
t2 Body height t2 ∈ [0.12, 0.19]
t3 Shoulder height t3 ∈ [0.01, 0.07]
t4 Neck radius t4 ∈ [0.014, 0.016]
t5 Neck height t5 ∈ [0.07, 0.1]
t6 Neck k t6 ∈ [−0.2, 0.0]

Table 4: Tableware parameters of beer bottles.
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Handless Cup. The handless cup template consists of one superquadric: a superparaboloid S1. The100

tableware parameters are given in Figure 5 and Table 5.101

Figure 5: Description for the handless
cup parameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Cup radius t1 ∈ [0.025, 0.05]
t2 Cup height t2 ∈ [0.05, 0.22]
t3 Cup e1 t3 ∈ [0.01, 0.3]
t4 Cup k t4 ∈ [0.0, 0.3]

Table 5: Tableware parameters of handless cups.

Mug. The mug template consists of two superquadric: superparaboloids S1, S2 for the cup and102

handle. The tableware parameters and the constraints on the superquadrics are given in Figure 6 and103

Table 6.104

Figure 6: Description for the mug pa-
rameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Cup radius t1 ∈ [0.025, 0.05]
t2 Cup height t2 ∈ [0.08, 0.12]
t3 Cup e1 t3 ∈ [0.01, 0.3]
t4 Cup k t4 ∈ [−0.2, 0.2]
t5 Handle a1 t5 ∈ [0.002, 0.003]
t6 Handle a2/a1 t6 ∈ [1.0, 2.0]
t7 Handle length ratio t7 ∈ [0.5, 0.7]
t8 Handle e2 t8 ∈ [0.2, 1.0]
t9 Handle s t9 ∈ [−0.5,−0.0001]

Table 6: Tableware parameters of mugs.

Dish. The dish template consists of one superquadric: a superparaboloid S1. The tableware param-105

eters are given in Figure 7 and Table 7.106

Figure 7: Description for the dish pa-
rameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Dish radius t1 ∈ [0.08, 0.14]
t2 Dish height t2 ∈ [0.015, 0.03]
t3 Dish e1 t3 ∈ [0.01, 0.3]
t4 Dish e2 t4 ∈ [0.5, 1.0]
t5 Dish k t5 ∈ [0.3, 0.6]

Table 7: Tableware parameters of dishes.
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B.2 Details for Tableware Dataset107

Our dataset employs uniform random sampling for each object class, offering infinitely continuous108

variations in object shapes, unlike other datasets with a finite number of fixed shapes. We capture109

comprehensive data, including object poses, tableware parameters, class labels, bounding boxes,110

meshes, and TSDF values. For each scene, we provide mask images, depth images, and RGB111

images from seven different camera poses using the synthetic camera parameters of the RealSense112

D435. The dataset features two versions: one with objects on a shelf and another with objects on113

a table. Each includes 120,000 scenes, with 30,000 scenes each containing 1, 2, 3, or 4 objects.114

Among them, 12,000 scenes include RGB images; we do not capture RGB images for other scenes.115

Therefore, the dataset comprises 840,000 depth and mask images and 84,000 RGB images.116

B.3 Examples of Class Supplementation Using Deformable Superquadrics117

Figure 8: Perfume bottle and plastic cup with
spherical lid represented by deformable su-
perquadrics.

In this section, we present examples of addi-118

tional objects that can be generated using de-119

formable superquadrics, which are not covered120

in our dataset. Perfume Bottle. Perfume bot-121

tles come in various shapes and are transpar-122

ent objects commonly seen in daily life. How-123

ever, they are not included in our dataset be-124

cause they are not tableware. The perfume bot-125

tle template consists of two superquadrics: su-126

perellipsoids S1, S2 for the body and cap. Plas-127

tic Cup with Spherical Lid. Plastic cups with128

spherical lids are easily seen in the most cof-129

fee shops. This template consists of two su-130

perquadrics: superellipsoids S1, S2 for the cup131

and lid. The example of perfume bottle and cup132

with spherical lid represented by deformable133

superquadrics can be found in Figure 8.134

B.4 Details for Model Architecture and Training Process135

B.4.1 Bounding Box Prediction Model Architecture136

In this section, we describe the structure of the neural network used for bounding box prediction.137

We utilize the architecture of DETR3D [14], which takes fixed multi-view RGB images as input138

and outputs multiple 3D bounding boxes. DETR3D first obtains 2D features from the multi-view139

images using ResNet [15] and FPN [16]. It employs a Transformer architecture, where each layer140

decodes candidate positions for bounding box centers using a sub-network for object queries. These141

decoded positions are projected onto each image plane, and the corresponding image feature values142

are incorporated into the object queries using multi-head attention. The refined object queries are143

then used as input for the next layer. From each object query passing through the layers, the bound-144

ing box center, size, and class are predicted using an MLP structure for training. During inference,145

the bounding boxes and classes are predicted from the object queries of the final layer. For more146

details, refer to [14].147

We adopt the DETR3D structure with a few modifications. Instead of using a classifier to predict the148

object class for each object query, we pre-assign classes to the object queries and use a confidence149

predictor to predict a value in [0, 1] whether the query corresponds to a present object. For example,150

if there are 3500 object queries and 7 classes, the first 500 queries represent the first class, and if151

the confidence predictor assigns high confidence (we use a threshold value of 0.75) to one of these152

queries, it is predicted that a bounding box for an object of that class exists. Unlike the original153

DETR3D using RGB image inputs, we use binary mask images as inputs.154
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B.4.2 Bounding Box Prediction Model Training155

Matching and Loss Calculation. As in the original DETR3D, we use bipartite matching to cal-156

culate the loss. Since we have pre-assigned classes to each query, the matching occurs within each157

class. We use binary cross-entropy for the confidence scores and L1 loss for the bounding box co-158

ordinates and size. The weights between the binary cross-entropy loss and the L1 loss are set to 5:1.159

After calculating the loss for the optimal matching within each class, we sum these losses across all160

classes to obtain the final loss value.161

Training Process. We train the network using 12,000 samples from the TablewareNet dataset;162

although our model can utilize the entire 120,000 sample dataset, we use only the 12,000 samples163

that include RGB images for comparison with other RGB-based baselines. We employ the Adam164

optimizer with an initial learning rate of 0.00005. A cosine annealing scheduler is used, and the165

training process spans 200 epochs.166

Cutout Augmentation. For cutout augmentation, the number of holes per mask image is determined167

by uniformly sampling an integer between 0 and 2. The size of each hole is determined by uniformly168

sampling an integer between 50 and 100 for both the width and height; note that mask image size is169

(240, 320). The position of each hole is also uniformly sampled within the image pixels.170

B.4.3 3D Voxel Representation of Smoothed Visual Hull171

We need to voxelize the predicted bounding boxes with fixed voxel size Li, to create the raw 3D172

space to be carved. Here, i represents the class index. Given that bounding boxes can vary in size,173

voxelizing them directly would result in different resolution of voxels, disabling the inference of the174

3D CNN and FCN architecture. To address this, we follow a specific procedure to standardize the175

raw voxel representation.176

First, we inspect the all size of the ground truth bounding boxes of class i and store the maximum size177

(Wimax , Himax , Dimax). Using this maximum size, we create a standardized 3D voxel space centered178

on the predicted bbox center. This ensures that all voxel representations have a consistent resolution179

(Wimax/Li, Himax/Li, Dimax/Li).180

Next, we calculate the smoothed visual hull within this standardized voxel space. To further refine181

the representation, we add a channel to the voxel grid, where voxels inside the predicted bounding182

box are assigned a value of 1, and those outside are assigned a value of 0. The final voxel input183

to the network thus takes the shape (Wimax/Li, Himax/Li, Dimax/Li, 2), with the first channel repre-184

senting the smoothed visual hull and the second channel indicating bounding box occupancy. This185

standardized approach ensures consistent and accurate input for the 3D CNN, facilitating reliable186

network inference.187

B.4.4 Tableware Parameter Prediction Model Architecture188

We employ a ResNet3D [17] + FCN architecture to predict the tableware parameters, including the189

pose T, using the smoothed visual hull voxel as input. Given that each tableware class has different190

voxel resolutions and the number of parameters, we train separate predictors for each class. In other191

words, there are as parameter predictors as the number of the classes, with each predictor dedicated192

to estimating the parameters of a single class of tableware objects.193

In addition, we assume that all objects are upright. Therefore, instead of predicting the entire SE(3)194

matrix for the object pose T, the model only predict the relative position p ∈ R3 to the bounding195

box center and the rotation around the z-axis, θ ∈ [0, 2π).196

B.4.5 Tableware Parameter Prediction Model Training197

Chamfer Distance as Loss function. The tableware parameters output by the parameter predictor198

could be directly trained via supervised learning using the L1 or L2 distance from the ground truth199

tableware parameters. However, this approach may not yield a zero loss value even when the pre-200
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dicted object shape matches the ground truth shape due to symmetrical ambiguities. For instance,201

orientations of objects with circular symmetry such as wine glasses, beer bottles, handless cups, and202

dishes, do not affect their shapes. In the case of a bottle, rotating the object by 90 degrees results203

in the same shape, thus the ground truth shape has four possible orientations. For bowls, swapping204

the width t1 and length t2 and rotating the orientation by 90 degrees along the z-axis results in the205

same shape. We want a loss function that yields a zero value when the predicted shape matches the206

ground truth shape, regardless of these symmetrical ambiguities.207

To address this, we use the Chamfer distance between point clouds sampled from the predicted and208

ground truth object surfaces as the loss function. This requires a differentiable point cloud sampling209

method from deformable superquadric parameters, which we will discuss later. For a tableware210

object composed of multiple superquadrics S1, . . . , Sn, we compute the Chamfer distance for each211

deformable superquadric part. Specifically, if Pi,pred and Pi,gt are the point clouds sampled from the212

predicted and ground truth i-th deformable superquadric Si,pred and Si,gt, respectively, the Chamfer213

loss is defined as:214

n∑
i=1

chamfer(Pi,pred, Pi,gt)

Differentiable Point Sampling on Deformable Superquadrics. For superquadrics without defor-215

mation, there exists an explicit parameterization as follows;216

xse =

[
x
y
z

]
=

[
a1 cos

e1 θ cose2 ϕ
a2 cos

e1 θ sine2 ϕ
a3 sin

e1 θ

]
, xsp =

[
x
y
z

]
=

 a1h cos
e2 ϕ

a2h sin
e2 ϕ

a3(h
2/e1 − 1)

 ,

where −π/2 ≤ θ ≤ π/2, −π ≤ ϕ ≤ π and 0 ≤ h ≤ 1, and cose θ := sgn(cos θ)| cos θ|e and217

sine θ := sgn(sin θ)| sin θ|e.218

We utilize a uniform grid in θ, ϕ, and h coordinates to sample points on the superquadric surface219

using this explicit parameterization. This method is differentiable with respect to the superquadric220

parameters.221

When dealing with deformations, we apply the transformations Dt, Db, and Ds described in Section222

2.1 to these sampled points. These transformations are also differentiable with respect to deforma-223

tion parameters.224

Training Process. During training, we observe empirically that adding L1 loss for tableware param-225

eters (excluding the object’s pose) and MSE loss for position as regularizers accelerate the training226

process. We do not use a regularizer for orientation due to symmetry issues previously discussed.227

The weights used between the position MSE loss, parameter L1 loss, and Chamfer loss were set to228

1 : 0.1 : 1. The model is trained with 12,000 data which include RGB images. The input smoothed229

visual hulls are generated using ground truth bounding boxes and mask images for each scene. Sim-230

ilar to the bounding box predictor training, we employed the Adam optimizer with an initial learning231

rate of 0.00005, using a cosine annealing scheduler. The training process spanned 200 epochs.232

Data Augmentation with Bounding Box Perturbation. During inference, errors in the bounding233

box predictions may lead to low performance of the parameter predictor if it is trained solely on234

visual hulls generated from ground truth bounding boxes. To address this, we add noise to the235

bounding box’s position and size to create a perturbed visual hull during training. Specifically, as236

mentioned in B.4.3., while generating the voxel representation, we apply perturbations to the center237

and size of the bounding boxes when creating the second channel representing the bounding box238

occupancy. This data augmentation strategy ensures that the parameter predictor remains robust to239

prediction errors from the bounding box predictor, enabling T2SQNet to maintain high performance240

even when bounding box predictions are not perfectly accurate.241
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B.5 Details for Geometry-Aware Object Manipulation242

6-DoF Grasp Sampler. After obtaining the deformable superquadric representation of the transpar-243

ent objects, we sample feasible grasp poses from the obtained shapes. While it is possible to find the244

antipodal point by utilizing the implicit function of the deformable superquadric and its closed-form245

normal vector [18], we manually design a faster and more diverse grasp sampler in this paper. Since246

each object consists of multiple deformable superquadric parts, we first generate grasp poses for247

each part. Inspired by previous works [19], we manually generate top-down and side grasp poses248

for the superellipsoids according to their shapes. For superparaboloids, we generate grasp poses that249

grasp the edge. Example grasp poses can be found in Section 4. After generating grasp poses for250

each part, we check whether the grasp poses avoid self-collision with the object. Grasp poses with251

a distance between the antipodal points greater than 7.5 cm are removed from the candidates, as the252

maximum gripper width of the Franka gripper is 8 cm.253

Object Rearrangement Method. Using the graspability function – set to 1 if the object is graspable254

and 0 otherwise – described in Section 5.2, we can generate robot actions that make the target object255

graspable. We use sampling-based model predictive control (MPC) to maximize the graspability256

function. From the recognized tableware objects, we sample 50 pick-and-place action sequences.257

Since the dynamics of the pick-and-place actions are precisely known, we do not use an additional258

learning-based model to predict the dynamics of the objects. Then, we find the optimal action that259

best maximizes the graspability function.260
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C Experimental Details261

C.1 Additional Details for Recognition Experiments262

Baseline Implementations. NeRF and Dex-NeRF are trained using the seven partial views available263

in TablewareNet. For both methods, the view poses used for training and depth accuracy measure-264

ment are identical. Consequently, we use the model from the final epoch of training for evaluation.265

Depth rendering for NeRF and Dex-NeRF follows the approach described in [2], with a σ threshold266

of 15 for Dex-NeRF. To generate occupancy voxel grids, we render depth images from uniformly267

sampled view poses over a hemisphere using the trained NeRF and Dex-NeRF models. Subse-268

quently, these depth images are converted to TSDFs, and regions with negative TSDF values are269

marked as occupied. DVGO and Mask DVGO are also trained using the seven partial views. For270

depth rendering, both methods employ the depth rendering technique used by NeRF in [2], rather271

than the Dex-NeRF method. Empirically, using the Dex-NeRF depth rendering approach decreases272

performance for DVGO-based methods. Predicted occupancy voxels are defined as those with an273

occupancy probability exceeding a threshold, which we set to 0.1. For GraspNeRF, we train the274

model with our 12,000 RGB-equipped TablewareNet dataset. We utilize rendering loss and TSDF275

loss, where ground truth TSDF values are used to derive the occupancy voxels directly from the276

predicted TSDF values. For our model, T2SQNet, we generate occupancy voxels using the implicit277

function representation of the superquadrics of the predicted tableware objects.278

TRansPose Dataset. For the TRansPose dataset, we follow the same process as when generating279

the TablewareNet dataset, as described in Section 2.2. We first spawn random objects from the280

TRansPose object dataset [20] within PyBullet and then render RGB images of the scenes using281

Blender with transparent textures.282

C.2 Additional Details for Sequential Declutter Experiment283

We generate five scenarios for each number of objects, one (single) and four (cluttered), and for284

each environment type, including shelf and table, resulting in a total of 20 scenarios. The initial285

settings for all scenes, including the configuration and poses of objects, can be seen in Figure 9.286

When testing the three baselines, including Mask DVGO, GraspNeRF, and T2SQNet, we place the287

same objects in the same pose as consistently as possible for each scene.288

Figure 9: Initial scene settings for real-world sequential declutter experiments.
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C.3 Additional Details for Target Retrieval Experiment289

We generate five scenarios with designated target objects in a shelf environment. The initial scene290

settings, including the target tableware class name (e.g., wine glass), for all scenarios can be found291

in Figure 10. For the target retrieval experiment, we place the target object so that it is not initially292

graspable.293

Figure 10: Initial scene settings for real-world target retrieval experiments.
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D Additional Experimental Results294

D.1 Additional Results for Recognition Experiments295

Additional examples of transparent object recognition results are shown in Figure 11 and Figure 12.296

The trends of these additional results are similar to the representative example in Section 5.1. For297

the test sets of the Tableware dataset in Figure 11, T2SQNet succeeds in recognizing accurate 3D298

geometries of the transparent objects while also delivering instance information. GraspNeRF per-299

forms best among the baselines but predicts less accurate results than T2SQNet. Although T2SQNet300

has slightly lower performance on the Tableware dataset compared to TRansPose, it succeeds in301

predicting somewhat accurate instance-wise geometries, as shown in Figure 12.302

Figure 11: Recognition results from RGB images from test sets of Tableware dataset.
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Figure 12: Recognition results from RGB images from TRansPose dataset.
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D.2 Additional Results for Sequential Declutter Experiments303

More examples of sequential decluttering with T2SQNet on shelves and tables are shown in Fig-304

ure 13 and Figure 14, respectively. Generally, our method succeeds in sequentially grasping objects305

without re-recognition, while avoiding collisions with other objects and the environment based on306

the accurately predicted geometries of the objects. However, there are several failure cases: (i) a307

slightly incorrect shape leads to an unstable grasp pose, as shown in the third example of Figure 13,308

(ii) some objects are not recognized by T2SQNet, as shown in the first example of Figure 14, and (iii)309

an inverse kinematics solution does not exist, as shown in the third example of Figure 14. The first310

and second failure cases can be resolved through a more accurate recognition model, as described in311

the future works section (Section 5.3). The third failure case can be addressed by designing a more312

diverse 6-DoF grasp sampler.313

Figure 13: Examples of sequential declutter experiment results on shelves.
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Figure 14: Examples of sequential declutter experiment results on tables.
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D.3 Additional Results for Target Retrieval Experiments314

Additional results for target retrieval with T2SQNet are shown in Figure 15. In the three examples315

above, T2SQNet-based method successfully rearranges surrounding objects and retrieves target ob-316

jects through appropriate pick-and-place actions. In the last example, T2SQNet fails to recognize317

one wine glass; consequently, the robot performs an action of directly retrieving the target object,318

the mug, and as a result, it grasps both the wine glass and the mug together.319

Figure 15: Examples of target retrieval experiment results on shelves.
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D.4 Comparison of T2SQNet with an End-to-End Method320

Figure 16: Visual comparison of T2SQNet output with an end-to-end method output on validation
set

To validate the effectiveness of our T2SQNet framework, which combines several separate modules,321

we developed and trained a simple end-to-end model for comparison. The end-to-end model struc-322

ture is as follows: it utilizes our modified DETR3D structure (where queries are pre-assigned classes323

and a confidence estimation is incorporated) but replaces the bounding box predicting FCN with an324

FCN that predicts tableware parameters. Given that the dimension of tableware parameters varies by325

object class, separate FCNs are used for each class to predict the parameters. These class-specific326

FCNs take as input the queries assigned to the same class and output the corresponding tableware327

parameters. The learning loss for these parameters employs the same position regularizer, parameter328

regularizer, and chamfer loss as T2SQNet. In this end-to-end method, we set the weights for confi-329

dence loss, position regularizer, parameter regularizer, and chamfer loss to 1:1:1:0.1, respectively.330

The training results are shown in Figure 16. We observed that training this end-to-end model is331

considerably challenging, and we hypothesize the following reasons:332

Chamfer Loss Scale. As the centers of two objects diverge, the chamfer loss scale increases333

quadratically. During the initial training phases, failing to align the object’s position significantly334

inflates the chamfer loss scale relative to the confidence loss and position loss. Conversely, as ob-335

jects come closer, the chamfer loss scale becomes much smaller than the confidence loss and other336

loss terms. This large variation in loss scale during training leads to inconsistent bipartite matching337

results, hindering significant training progress.338

Positional Constraints. In T2SQNet, the object center position is constrained to remain within the339

bounding box, providing a structured framework for the output. However, the end-to-end method340

bypasses the bounding box prediction process, resulting in the lack of such positional constraints.341

Consequently, the predicted object can be located anywhere within the workspace during the initial342

training stages, making it difficult to resolve the aforementioned issues.343

In conclusion, the large scale variation of the chamfer loss during training makes it challenging344

to balance the losses, leading to unstable bipartite matching results and ultimately hindering the345

learning process. While the end-to-end method theoretically streamlines the process, the practical346

challenges in training and the inherent issues in loss scaling and positional constraints highlight the347

advantages of our modular T2SQNet framework.348

D.5 Supplementary Videos for Pushing Manipulation Experiments349

Videos for real-world sequential declutter and target retrieval can be found at the following link:350

https://www.youtube.com/watch?v=qUWOp6wUHb8.351
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