
A Supplementary Material521

All code for running simulations, numerically solving the ODEs and generating phase plots is522

provided in the attached ‘RL-Perceptron.rar’ zip file. All code for running bossfight and pong is523

provided in the attached ‘procgen_fork.rar’ zip file/524

B Relation to vanilla policy gradient525

The RL perceptron with its update rule eq. (1) can be grounded in policy gradient methods [Sutton526

et al., 2000] where, at every timestep t, the agent occupies some state st in the environment, and527

receives an observation xt conditioned on st. An action yt is then taken by sampling from the528

policy π(yt | xt), and the agent receives a reward accordingly. Policy gradient methods aim to529

optimise parameterised policies with respect to the total expected reward J . The gradient step for530

the REINFORCE policy gradient method is given in eq. (9). Our sequential decision-making task531

can be reformulated in the language of policy gradient methods: at each timestep t, the state st of532

the environment can be one of two states s+, s− and xt ∼ P (·|st) is a high dimensional sample533

representative of the underlying state, with P (·|s±) = N±(·|w∗). Where N+(·|w∗) is the N(0,1D)534

distribution, but with zero-probability mass everywhere except in the half-space whose normal is535

parallel to w∗, and N−(·|w∗) is correspondingly non-zero in the half-space with a normal that is536

antiparallel to w∗ — (N(0,1D) has been partitioned in two). The next state st+1 is sampled with537

probability P (st+1|st) ≡ P (st+1) = 1/2 independently from the decision made by the student at538

previous steps. At the end of an episode, after all decisions have been made, we update the agent as539

in eq. (1). Within this framework we can consider both rewards and penalties, i.e. at the end of an540

episode we may consider a reward (penalty) of size η1 (η2) depending on the fulfilment (unfulfillment)541

of Φ. The introduction of states in this case does not affect the dynamics of the system, but we use542

them as an exemplary case for more complex setups we plan to instantiate with more states and543

where actions conditionally affect state transitions without required a partitioning of the Gaussian544

distribution. Formally, the mapping to the RL setting can be stated by introducing the states and a545

probabilistic policy πw (y | x) = 1/(1 + exp{−yw⊺x}/
√
D). The REINFORCE policy gradient546

update in this case is547

∇wJ =

〈
T−1∑
t=0

∇w log πw (yt | xt)

(
T∑

t′=t+1

rt′

)〉
≈

〈
T−1∑
t=0

ytxt [η1I(Φ)− η2(1− I(Φ))]

〉
(9)

−→ ∆w ∝ η1

〈
T−1∑
t=0

ytxtI(Φ)

〉
− η2

〈
T−1∑
t=0

ytxt(1− I(Φ))

〉
(10)

The approximation in eq. (9) holds in the early phases of learning–when w⊺x/
√
D is small548

∇w log π(y|x) = ∇w log
1

1 + e−yw·x (11)

≈ −∇w log e−yw·x = yx (12)

-and gives us the possibility to understand the most complex part of the problem when the student549

is still learning the rule. In this way, the update in eq. (1) is analogous to the REINFORCE policy550

gradient in the same way that the perceptron update is analogous to SGD on the squared loss for a551

perceptron in binary classification.552

C Derivations553

Thermodynamic Limit: In going from the stochastic evolution of the state vector w to the deter-554

ministic dynamics of the order parameters, we must take the thermodynamic limit. For the ODE555

involving R we must take the inner product of eq. (1) with w∗.556
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wµ+1 = wµ +
η1√
D

(
1

T

T∑
t=1

ytxtI(Φ)

)µ

− η2√
D

(
1

T

T∑
t=1

ytxt(1− I(Φ))

)µ

(13)

DRµ+1 = DRµ +
η1√
D

(
1

T

T∑
t=1

ytw
∗⊺xtI(Φ)

)µ

− η2√
D

(
1

T

T∑
t=1

ytw
∗⊺xt(1− I(Φ))

)µ

(14)

we subtract DRµ and sum over l episodes, the LHS is a telescopic sum, and 14 becomes557

D(Rµ+l −Rµ)

l
=

η1√
D

1

l

l−1∑
i=0

(
1

T

T∑
t=1

ytw
∗⊺xtI(Φ)

)µ+i

− η2√
D

1

l

l−1∑
i=0

(
1

T

T∑
t=1

ytw
∗⊺xt(1− I(Φ))

)µ+i
(15)

dR

dα
=

η1 + η2√
D

〈
1

T

T∑
t=1

ytw
∗⊺xtI(Φ)

〉
− η2√

D

〈
1

T

T∑
t=1

ytw
∗⊺xt

〉
(16)

We go from eq. 15 to eq. 16 by taking the limit D → ∞, l → ∞ and l/D = dα → 0. The558

RHS of eq. 16 is a sum of a large number of random variables, and by the central limit theorem559

is self-averaging in the thermodynamic limit (under the assumption of weak correlations between560

episodes), consequently the LHS is self-averaging. A similar procedure can be followed for order561

parameter Q, but we instead take the square of eq. ?? and go to the limit described, obtaining:562

dQ

dα
=

2 (η1 + η2)

T
√
D

〈
T∑

t=1

ytw
⊺xtI(Φ)

〉
− 2η2

T
√
D

〈
T∑

t=1

ytw
⊺xt

〉

+
η21 − η22
T 2D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′I(Φ)

〉
+

η22
T 2D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′

〉 (17)

recalling the auxiliary variables (known in the literature as the aligning fields)563

ν =
w∗⊺x√

D
and λ =

w⊺x√
D

, (18)

which are sums of N independent terms and by the central limit theorem they obey a Gaussian564

distribution, we note565

⟨ν⟩ = ⟨λ⟩ = 0 (19)

⟨ν2⟩ = D , ⟨λ2⟩ = DQ (20)

⟨νλ⟩ = w∗⊺w = DR (21)

Substituting 18 into 16 and 17 we can rewrite as566
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dR

dα
=

η1 + η2
T

〈
T∑

t=1

νtsgn(λt)I(Φ)

〉
− η2 ⟨νsgn(λ)⟩ (22)

dQ

dα
=

2 (η1 + η2)

T

〈
T∑

t=1

λtsgn(λt)I(Φ)

〉
− 2η2 ⟨λsgn(λ)⟩

+
η21 − η22
T 2D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′I(Φ)

〉
+

η22
T 2D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′

〉
.

(23)

Computing Averages: It remains to compute the expectations in eqs. 22 and 23. All expectations567

can be expressed in terms of the constituent expectations given below, which are trivially computed568

by considering the Gaussianity of ν and λ and x:569

⟨νsgn(λ)⟩ =
√

2

π

R√
Q
, ⟨λsgn(λ)⟩ =

√
2Q

π
, ⟨νsgn(ν)⟩ =

√
2

π
, ⟨λsgn(ν)⟩ =

√
2

π
R (24)

1

D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′

〉
=

1

D

〈(
T∑

t=1

x⊺
t xt + 2

T∑
t=2

t−1∑
t′=1

ytyt′x
⊺
t xt′

)〉
(25)

= T +O(1/D) (26)

The terms involving Φ will in general consist of expectations containing step functions θ(x) (1 for570

x > 0, 0 otherwise), specifically θ(νλ) (1 if student decision agrees with teacher, 0 otherwise) and571

θ(−νλ) (1 if student decision disagrees with teacher, 0 otherwise). When we encounter these terms,572

they can be greatly simplified by considering the following equivalences:573

sgn(λ)θ(νλ) =
1

2
(sgn(λ) + sgn(ν)) and sgn(λ)θ(−νλ) =

1

2
(sgn(λ)− sgn(ν)) (27)

We show as an example the case where Φ is the condition to get all decisions correct in an episode,574

I(Φ) =
∏T

t=1 θ(νtλt), where θ(x) is the step function (1 for x > 0, 0 otherwise). The first term in575

Eq. 22 can be addressed:576

〈
1

T

T∑
t=1

νtsgn(λt)I(Φ)

〉
→

〈
1

T

T∑
t=1

νtsgn(λt)

T∏
s=1

θ(νsλs)

〉
(28)

= ⟨νtsgn(λt)θ(νtλt)⟩

〈
T∏

s̸=t

θ(νsλs)

〉
(29)

=
1

2
⟨νt(sgn(λt) + sgn(νt))⟩PT−1 (30)

=
1√
2π

(
1 +

R√
Q

)
PT−1 (31)

where P is the probability of making a single correct decision, and can be calculated by considering577

that an incorrect decision is made if x lies in the hypersectors defined by the intersection of N±(·|w∗)578

and N±(·|w), the angle ϵ subtended by these hypersectors is equal to the angle between w∗ and w.579

P =
(
1− ϵ

π

)
=

(
1− 1

π
cos−1

(
R√
Q

))
(32)
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Similarly, the first term in Eq. 23 can be addressed:580

〈
2

T

T∑
t=1

λtsgn(λt)

T∏
s=1

θ(νsλs)

〉
= ⟨λt(sgn(λt) + sgn(νt))⟩PT−1 (33)

=

√
2Q

π

(
1 +

R√
Q

)
PT−1 (34)

The cross terms in 23 can also be computed:581

1

D

〈
T∑

t,t′=1

ytyt′x
⊺
t xt′

T∏
s=1

θ(νsλs)

〉
=

1

D

〈(
T∑

t=1

x⊺
t xt′ + 2

T∑
t=2

t−1∑
t′=1

ytyt′x
⊺
t xt′

)
T∏

s=1

θ(νsλs)

〉
(35)

= TPT +O(1/D) (36)

where the 2nd term can be neglected in the high dimensional limit. Substituting these computed582

averages into equations 22 and 23, the ODEs for the order parameters can be written:583

dR

dα
=

η1 + η2√
2π

(
1 +

R√
Q

)
PT−1 − η2R

√
2

πQ
(37)

dQ

dα
= (η1 + η2)

√
2Q

π

(
1 +

R√
Q

)
PT−1 − 2η2

√
2Q

π
+

(η21 − η22)

T
PT +

η22
T

(38)

Equivalence of state formulation584

The ODEs governing the dynamics of the order parameters in the previous section can be equivalently585

calculated under the formulation involving the underlying states {s+, s−} defined in section 1. The586

underlying system can take a multitude of trajectories (τ ) in state space, there are 2T trajectories in587

total (as the system can be in 2 possible states at each timestep), and expectations must now include588

the averaging over all possible trajectories. All expectations will now be of the following form, where589

the dot (·) denotes some arbitrary term to be averaged over.590

⟨·⟩ =
∑
τ

P(τ) ⟨· | τ⟩ (39)

By considering symmetry of the Gaussian and ‘half-Gaussian’ (N±) distributions, all expectations in591

24 can be seen to be identical regardless of whether expectations are taken with respect to the full592

Gaussian or the half-Gaussian distributions, i.e.593

⟨·⟩N = ⟨·⟩N+
= ⟨·⟩N− (40)

this implies that all expectations are independent of the trajectory of the underlying system, hence594

averaging over all trajectories leaves all expectations unchanged. This also allows the extension to595

arbitrary transition probabilities between the underlying states {s+, s−}.596

Other Reward structures597

The expectations can be calculated in other conditions of Φ from considering combinatorical argu-598

ments. We state the ODEs for two reward conditions.599

n or more: the case where Φ is the requirement of getting n or more decisions in an episode of600

length T correct. We give the ODEs below for the case of η2 = 0601
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Figure 7: Optimal Schedules for the unconstrained student. (a) Evolution of optimal η (a) and T
(b) over learning, while following the specified optimal schedule, over a range of rewards and episode
lengths. Parameters: D = 900, η2 = 0, (a) T = 8, (b) η = 1.

dR

dα
=

η1

T
√
2π

T∑
i=n

(
T

i

)[
i

(
1 +

R√
Q

)
(1− P )− (T − i)

(
1− R√

Q

)
P

]
P i−1 (1− P )

T−i−1

(41)

dQ

dα
=

η1
T

√
2Q

π

T∑
i=n

(
T

i

)[
i

(
1 +

R√
Q

)
(1− P )− (T − i)

(
1− R√

Q

)
P

]
P i−1 (1− P )

T−i−1

+
η21
T

T∑
i=n

(
T

i

)
P i (1− P )

T−i

(42)

Breadcrumb Trails We also consider the case where a reward of size η1 is received if all decisions in602

an episode are correct in addition to a smaller reward of size β for each individual decision correctly603

made in an episode:604

dR

dα
=

1√
2π

(
1 +

R√
Q

)(
η1P

T−1 + β
)
+ β(T − 1)

√
2

π

R√
Q
P (43)

dQ

dα
=

√
2Q

π

(
1 +

R√
Q

)(
η1P

T−1 + β
)
+ 2β(T − 1)

√
2Q

π
P

+

(
η21
T

+ 2η1β

)
PT + β2 (1 + (T − 1)P )P

(44)

D Theory extension605

Optimal scheduling (Unconstrained) The optimal schedules for learning rate and episode length606

(eq. (8)) hold in the unconstrained case too (where Q(α) isn’t restricted to the surface of a sphere);607

this is because the parameters were derived from the general requirement of extremising the update608

of ρ from any point in the (ρ,Q) plane. The evolution of Topt and ηopt over time (while following609
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their respective scheduling) is shown in fig. 7. In the unconstrained case the magnitude of the student610

grows quadratically, an increase Q acts as a decrease in effective learning rate. Hence contrary to the611

spherical case a decaying learning rate is not optimal, and optimal T grows much slower, as shown in612

fig. 7b; the plots for Topt do not show a clear trend and require further investigation. The evolution of613

ηopt/
√
Q is plotted in fig. 7a, this value is the effective learning rate and we observe a polynomial614

decay in the value as with the spherical case presented in section 2.3.615

Phases (Unconstrained) The phases observed in fig. 4 are not an artifact of the spherical case. When616

Q(α) is not constrained we also observe regimes where a ‘bad’ fixed point of ρ may be attained.617

Figure 8 shows flow diagrams in the (ρ,Q) plane for various parameter instantiations in the case618

where a reward of η1 = 1 is received if all decisions in an episode of length T = 8 are correctly619

made, and a penalty of η2 otherwise. Figure 8a is the flow diagram for η2 = 0, in this regime the620

agent can always perfectly align with the teacher from any initialisation (the student flows to ρ = 1621

at Q = ∞). This is analogous to the student being in the easy phase at the bottom of the plot in622

fig. 4b, as with probability 1 the algorithm naturally converges to the optimal ρ = 1. Figure 8b shows623

the flow for η2 = 0.05; in this regime we observe the flow to some suboptimal ρ at Q = ∞; this is624

analogous to the student being in the easy phase at the top of the plot in fig. 4b, as with probability 1625

the algorithm converges to a value of ρ from any initialisation. However, this value of ρ is suboptimal.626

Figure 8c shows the flow for η = 0.045, we see that depending on the initial ρ, the agent will flow to627

one of two fixed point in ρ at Q = ∞; this is analogous to the agent being in the hybrid-hard phase628

in fig. 4b, where with high probability the agent converges to the worse ρ. The ‘good easy phase’,629

characterising the behaviour seen in fig. 8a, is indicated by the green region in fig. 8d.630

Critical Slowing down With the addition of a penalty term we observe initial speed up in learning as631

shown in fig. 9. Towards the end of learning, however, we observe a critical slowing down, and see632

how in many instances a non-zero η2 can instead give an overall slowing to learning. This is most633

easily seen in the spherical case for the rule where all decisions in an episode of length T must be634

correct for a reward: fig. 9a shows the times to reach 0.99 of the fixed point starting from an initial635

ρ = 0 for T = 13 and η1 = 1. We observe that increasing η2 (up to ηcrit, at which point the algorithm636

enters the hybrid-hard phase detailed in section 2.4) increases the time taken to reach the fixed point.637

This is similarly seen for T = 20 in fig. 9b. This slowing is not present over the entire range of η2; it638

is true that for small values of η2 there is actually a small speed up in the reaching of the fixed point,639

showing that the criticality severely reduces the range of η2 that improves convergence speed. We plot640

the distance of of η2 away from the critical penalty value (|η2 − ηcrit|) against time for convergence in641

fig. 9a, for T = 20 (top) and T = 13 (bottom). We observe a polynomial scaling of the convergence642

time with distance away from criticality.643

E Experiments644

Pong speed accuracy645

For another verification of the speed accuracy tradeoff introduced in section 2.5 we train agents646

from pixels on the ALE [Machado et al., 2018] game ‘Pong’. The notion of lives (or requiring n or647

more correct decisions in an episode for a reward) is essentially a way to control the difficulty of648

a task, whereby higher n (fewer lives) is a more stringent condition i.e. a more difficult task. We649

examine a corresponding setup in pong, where task difficulty is varied in order to study generalisation650

performance of agents. The Pong task difficulty is varied by changing the episode length after which651

the agent receives a reward, where intuitively longer episode length is a more difficult task. On each652

timestep the agent has a binary choice of moving left/right and aims to return the ball. If the ball653

manages to get past the agent the episode ends without reward, if the agent survives until the end654

of the episode, it receives a reward. The decisions of the agent are sampled from the outputs of a655

deep policy network (detailed in code). Pong is deterministic, so in order to introduce stochasticity,656

we employ ‘Sticky actions’, where instead of taking the action sampled from the policy, the agent657

instead with probability 0.2 repeats the previous action. The weights of the policy network are trained658

using the policy gradient update eq. (9) by running 20 agents in parallel. To study the speed-accuracy659

trade-off, we train agents that require a different number of timesteps before receiving reward. We660

trained from 7 different random seeds. The results are shown in fig. 10, we observe a speed-accuracy661

tradeoff, but in this setup the tradeoff is mediated by episode length T (instead of lives). We see that662

agents trained on shorter episode lengths initially learn much faster, but reach a lower asymptotic663

accuracy.664
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Figure 8: Flow and phase plots. Flow in the (ρ,Q) plane for the case where all decisions in an
episode are required correct for an reward of η1 = 1 and a penalty other wise of η2 = 0 (a), 0.05 (b),
and 0.045 (c). (d) Phase plot showing the region where learning failed (red) and succeeded (green)
over the η1, η2 plane, for the same learning rule. Parameters: Initialised from ρ = 0 and Q = 1

21



(a)

0 0.1 0.2 0.3 0.4

106

107

η2

Ti
m

e
t

(b)

0 0.025 0.05

·10−2

107

108

η2

Ti
m

e
t

(c)

10−4 10−3 10−2 10−1

106

|η2 − ηcrit|

t

10−4 10−3 10−2

107.5

108

108.5

t

Figure 9: Critical slowing down for η2 ̸= 0. The above plots are for the spherical case where the
agent must get every decision correct in order to receive a reward of η1 = 1, and a penalty of η2
otherwise. (a) The time for convergence to the fixed point for T− = 13. (b) The time for convergence
to the fixed point for T− = 20 (c) Time for convergence plotted against distance of η2 away from the
critical penalty for T = 13 (bottom) and T = 20 (top) Parameters: D = 900, Q = 1, η1 = 1
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Figure 10: Speed-accuracy tradeoff for Pong. The mean survival time over the course of training
for agents required to survive up to completion of an episode of length T in order to receive reward.
Parameters: η1 = 2, η2 = 0
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