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ABSTRACT

We present STORM, a spatio-temporal reconstruction model designed for recon-
structing dynamic outdoor scenes from sparse observations. Existing dynamic
reconstruction methods often rely on per-scene optimization, dense observations
across space and time, and strong motion supervision, resulting in lengthy opti-
mization times, limited generalization to novel views or scenes, and degenerated
quality caused by noisy pseudo-labels for dynamics. To address these challenges,
STORM leverages a data-driven Transformer architecture that directly infers dy-
namic 3D scene representations—parameterized by 3D Gaussians and their ve-
locities—in a single forward pass. Our key design is to aggregate 3D Gaussians
from all frames using self-supervised scene flows, transforming them to the tar-
get timestep to enable complete (i.e., “amodal”) reconstructions from arbitrary
viewpoints at any moment in time. As an emergent property, STORM automat-
ically captures dynamic instances and generates high-quality masks using only
reconstruction losses. Extensive experiments on public datasets show that STORM
achieves precise dynamic scene reconstruction, surpassing state-of-the-art per-
scene optimization methods (+4.3 to 6.6 PSNR) and existing feed-forward ap-
proaches (+2.1 to 4.7 PSNR) in dynamic regions. STORM reconstructs large-scale
outdoor scenes in 200ms, supports real-time rendering, and outperforms competi-
tors in scene flow estimation, improving 3D EPE by 0.422m and Acc5 by 28.02%.
Beyond reconstruction, we showcase four additional applications of our model,
illustrating the potential of self-supervised learning for broader dynamic scene
understanding. For more details, please visit our project page.

1 INTRODUCTION

Understanding and reconstructing dynamic 3D scenes from visual data is a fundamental challenge
in computer vision, with significant applications in autonomous driving, robotics, and mixed reality,
among many others. While static scene reconstruction methods have evolved from per-scene opti-
mization (Mildenhall et al., 2021; Kerbl et al., 2023) to more data-driven approaches that leverage
generalizable priors for improved performance (Zhang et al., 2024; Tang et al., 2024; Xu et al., 2024;
Gao et al., 2024b; Wu et al., 2024b), most dynamic scene reconstruction methods still rely heavily on
per-scene optimization, dense spatio-temporal observations (Park et al., 2021; Yang et al., 2024b),
and strong motion supervision, such as dynamic objects’ masks (Li et al., 2021b; Wang et al., 2024b),
optical flow (Li et al., 2021b), or point trajectories (Wang et al., 2024b). Consequently, these models
suffer from noise in the above pseudo-labels, require lengthy training times that range from hours to
days, and cannot benefit from the data-driven advancements (e.g., scaling laws (Zhai et al., 2022))
that are nowadays exploited by generalizable static reconstruction methods.
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Our goal is to develop a scalable and data-driven solution for dynamic scene reconstruction ad-
dresses the limitations of existing methods. To this end, we present STORM, a self-supervised ap-
proach for reconstructing dynamic 3D scene representations and scene motions directly from sparse,
multi-timestep, posed camera images. STORM leverages a Transformer model (Vaswani et al., 2017;
Dosovitskiy, 2020) to reconstruct dynamic scenes in a single feed-forward pass, dramatically re-
ducing reconstruction times from hours to seconds while harnessing data priors learned from large-
scale datasets. Crucially, unlike existing methods that require pseudo-labels, STORM utilizes a self-
supervised reconstruction loss, enabling significantly more cost-efficient data acquisition.

STORM is enabled by our proposed bottom-up amodal aggregation and transformation frame-
work. Specifically, for each frame, we predict pixel-aligned or patch-aligned 3D Gaussian Splats
(3DGS) (Kerbl et al., 2023) along with their motions, capturing the instantaneous state of the scene
at each timestep. Since these image-aligned 3DGS can only represent the observed region from
the context frames, we transform the Gaussians predicted from all the input frames to the target
timestep, aggregating them into an “amodal” representation of the dynamic scene (Huang et al.,
2022). By minimizing the reconstruction loss defined over this aggregated representation, our ap-
proach achieves accurate, self-supervised estimation of the temporal changes in the scene, as inaccu-
racies in dynamics would result in poor aggregation and transformation results, thereby introducing
large reconstruction errors–driving our model toward better scene dynamics estimation.

Building upon this foundation, we introduce motion tokens—a set of learnable tokens prepended
to the Transformer’s input sequence. These motion tokens interact with image tokens through self-
attention operations and are decoded as motion bases at the end of Transformer. They are designed to
capture common motion primitives over time while also regularizing the degrees of freedom in pre-
dicted motions, motivated by the fact that the scene elements often move cohesively as groups (Wang
et al., 2024b; Lei et al., 2024; Luiten et al., 2023). Concretely, we represent the motion of each 3D
Gaussian using 3D velocity vectors, with the final motion computed as a weighted combination
of shared velocity bases. These weights are determined by the similarity between motion tokens
and image tokens. Consequently, motion tokens not only encode scene dynamics but also enable
unsupervised segmentation of dynamic instance or motion group segmentation.

Lastly, we introduce a few practical techniques to make STORMmore robust for in-the-wild captures.
We address challenges such as sky modeling and camera exposure mismatches using auxiliary sky
and affine tokens, and improve large novel view extrapolation and fine-grained human motions, such
as leg and arm movements, using latent Gaussians and a latent decoder.

We conduct extensive experiments on the Waymo Open dataset (Sun et al., 2020), NuScenes (Caesar
et al., 2020) and Argoverse2 (Wilson et al.) to evaluate the performance of STORM. The results
demonstrate that STORM accurately reconstructs dynamic scenes in real-time (0.2 seconds for a 2-
second clip), significantly surpassing per-scene optimization methods and other generalizable feed-
forward models in terms of photorealism, geometry and motion estimation quality. These findings
highlight the potential of self-supervised learning for advancing dynamic scene reconstruction and
understanding. Our contributions can be summarized as follows:
• We propose STORM, the first feed-forward, self-supervised method for fast and accurate recon-

struction of dynamic 3D scenes from sparse, multi-timestep, posed camera images.
• We propose a bottom-up framework that aggregates and transforms per-frame 3D Gaussian Splats

into a cohesive scene representation, which enables self-supervised motion estimation. Further-
more, we introduce motion tokens that capture common motion primitives and regularize motion
predictions, facilitating dynamic motion group segmentation without explicit motion or corre-
spondence supervision.

• We present several enhancements for in-the-wild scenarios, including sky modeling, camera ex-
posure inconsistency handling, large novel-view extrapolation, and fine-grained human motions
reconstruction, making STORM well-suited for real-world applications.

2 RELATED WORK

Dynamic scene reconstruction. Derived from neural radiance fields (NeRFs) (Mildenhall et al.,
2021), previous NeRF-based approaches model scene dynamics either by applying deformations
to a canonical volume (Pumarola et al., 2021; Tretschk et al., 2021; Cao & Johnson, 2023; Park
et al., 2021; Wu et al., 2022; Fridovich-Keil et al., 2023), or by chaining point-level scene flow mo-

2



Published as a conference paper at ICLR 2025

tions (Xian et al., 2021; Gao et al., 2021; Li et al., 2021b; 2023; Liu et al., 2023). These per-scene
optimization methods typically require dense temporal and spatial observations or explicit motion
supervision, such as optical flow (Li et al., 2021b; 2023; Yang et al., 2023b; Gao et al., 2024a; Karaev
et al., 2023; Fischer et al., 2024a) or dynamic masks (Liu et al., 2023; Li et al., 2023), to overcome
the ill-posed nature of reconstructing dynamic scenes from sparse views. More recently, methods
based on 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) have adopted similar strategies, apply-
ing deformations in canonical space (Wu et al., 2024a; Yang et al., 2024b) or rigid transformations
to particles (Luiten et al., 2023; Wang et al., 2024b). However, they also depend on dense views
or motion supervision, and remain limited to per-scene optimization, lacking the ability to leverage
data priors, except for e.g. Ren et al. (2024), that only focuses on object-level reconstructions. We
instead propose a feed-forward model trained on large-scale datasets, enabling outdoor dynamic
scene reconstruction without per-scene optimization or explicit motion supervision.

Feed-forward reconstruction. Feed-forward approaches for 3D reconstruction and rendering aim
to generalize across scenes by learning from large datasets. Early works on generalizable NeRFs
focus on object-level (Chibane et al., 2021; Johari et al., 2022; Reizenstein et al., 2021; Yu et al.,
2021) and scene-level reconstruction (Suhail et al., 2022; Wang et al., 2021; Du et al., 2023; Wang
et al., 2024a). These methods typically rely on epipolar sampling or cost volumes to fuse multi-view
features, requiring extensive point sampling for rendering, which results in slow speed and often un-
satisfactory details. More recently, feed-forward models based on 3DGS have been proposed (Szy-
manowicz et al., 2024b; Charatan et al., 2024; Wewer et al., 2024; Zhang et al., 2024; Szymanowicz
et al., 2024a; Tang et al., 2024; Xu et al., 2024). These models leverage large-scale object-centric
synthetic datasets (Chang et al., 2015; Deitke et al., 2023; 2024) or indoor datasets (Zhou et al.,
2018) for improved speed, view synthesis performance, and generalization. However, these meth-
ods are primarily designed for static scenes and struggle with dynamics. Unlike them, our approach
is a 3DGS-based feed-forward model operated on large-scale outdoor dynamic scenes; more impor-
tantly, it also recovers scene motions without explicit motion supervision.

Reconstruction for outdoor urban scenes. Building photorealistic reconstructions of dynamic ur-
ban scenes from on-car logs is crucial for autonomous driving, as it enables closed-loop training
and testing. Recent work has shifted focus from reconstructing static scenes (Guo et al., 2023) to
dynamic ones. Most existing methods for dynamic urban scene reconstruction rely on box anno-
tations to ensure controllability; however, these require expensive ground truth labels (Wu et al.,
2023; Chen et al., 2024; Yang et al., 2023a; Tonderski et al., 2024; Fischer et al., 2024b; Zhou et al.,
2024a; Ost et al., 2021; Williams et al., 2024; Fischer et al., 2024a) and often degrade in perfor-
mance when using noisy pseudo-labels (Yan et al., 2024; Zhou et al., 2024b). Methods that do not
rely on box annotations typically lack controllability over individual objects (Yang et al., 2024a;
Chen et al., 2023; Huang et al., 2024). Furthermore, these approaches are per-scene-based, do not
leverage data priors, and require lengthy training times, ranging from hours (Yan et al., 2024; Yang
et al., 2024a) to days (Xie et al., 2023). In contrast, our method is a fast, scalable feed-forward model
that reconstructs dynamic urban scenes purely through self-supervision in seconds. By differentiat-
ing between different instance groups emerged from our motion tokens, our approach enables better
decomposition and controllability.

3 SELF-SUPERVISED SPATIAL-TEMPORAL RECONSTRUCTION MODEL

Problem formulation. Our goal is to recover spatiotemporal scene representations from a set of
posed images. Specifically, given a set of images Ivt ∈ RH×W×3, with height H and width W ,
captured at multiple timesteps t and optionally from multiple viewpoints v, along with their corre-
sponding camera intrinsic and extrinsic parameters, we aim to reconstruct the underlying appear-
ance, geometry, and dynamics of the scene over the observed duration. The core challenge arises
from the transient and incomplete nature of the data: each point in the 4D space-time volume is typi-
cally observed only once, making it difficult to infer a comprehensive spatiotemporal representation.

3.1 STORM

To address the aforementioned challenges, we propose STORM, as illustrated in Fig. 1. We adopt
a Lagrangian representation by modeling scene elements as a set of 3D Gaussians (3DGS) (Kerbl
et al., 2023) that translate over time. Specifically, we begin by predicting 3DGS for each frame,
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Figure 1: STORMOverview. From sparsely observed context frames, STORM reconstructs per-frame
3D Gaussian splats (3DGS) and predicts their scene flows using prepended learnable motion tokens
and a dynamic mask decoder. The mask decoder computes weights for combining motion bases,
derived from the motion tokens, to obtain scene flows. These predicted scene flows enable the ag-
gregation and transformation of 3DGS over time, while the predicted weights support unsupervised
motion group segmentation. The learning process is guided purely by reconstruction losses.

capturing the instantaneous state of the scene at each timestep. To model dynamics, we task the
model with predicting the velocity of each Gaussian. Using these velocities, we transform the 3DGS
from their observed context timesteps into any target timestep. This process aggregates the per-frame
predictions into a cohesive amodal representation that remains consistent over time. Notably, our
method trains solely with reconstruction losses, avoiding reliance on external motion supervision,
significantly reducing data requirements. Below, we introduce our method in detail.

Network and input. STORM builds upon a standard Transformer model (Vaswani et al., 2017; Doso-
vitskiy, 2020), similar to Zhang et al. (2024). Following standard Vision Transformers (Dosovitskiy,
2020), we divide images into 2D non-overlapping patches. To incorporate 3D spatial information,
we extend this patching process to the Plücker ray map (Plucker, 1865), which encodes the ray
origins and directions corresponding to each pixel. These ray origins and directions are computed
based on the camera’s intrinsic and extrinsic parameters. The concatenated patches are then embed-
ded through a linear patch embedding layer to obtain image tokens. Lastly, temporal information is
infused via a time embedding layer (Peebles & Xie, 2023), which maps a frequency-encoded time
vector into a time embedding. The resulting input to the Transformer is a 1D sequence of image
tokens, formed by summing the image embeddings, ray embeddings, and time embeddings.

Output. The main output of our model is a set of pixel-aligned 3D Gaussians (Kerbl et al., 2023),
each defined as g ≡ (µ,R, s, o, c), where µ ∈ R3 and R ∈ SO(3) represent the center and
orientation, s ∈ R3 indicates the scale, o ∈ R+ denotes the opacity, and c ∈ R3 corresponds to the
color. The orientation is parameterized using a 4D quaternion. The centers of the 3D Gaussians are
computed from ray origins and directions, which are pre-computed from camera parameters, along
with the ray distance, by µ = rayo + d · raydir, where d is the 1-channel ray distance predicted by
the model. By default, our model predicts {Gv

t ∈ R(H×W )×12} from the ViT feature map {Fv
t ∈

R(H//p×W//p)×e} using a linear layer, where p is the patch size of the Transformer, and e is the
channel dimension. These 3D Gaussians exist independently in 3D space for each timestep. Next,
we describe how their dynamics are obtained and how they are aggregated to form the final amodal,
synchronized scene representations. For clarity, the view index v is omitted unless necessary.

Scene dynamics. To capture the dynamics of a 3D scene, we model the motion of each 3D Gaussian
using two velocity vectors, v ≡ [v−

t ,v
+
t ] ∈ R6 (we will detail how to compute these later), which

represent the backward and forward velocities of a Gaussian at timestep t. Empirically, we find
that assuming the Gaussians move with constant velocity within the duration of the clip (typically
around 2 seconds) achieves a good balance between model complexity and representational power.
Accordingly, the translation of a Gaussian at time t′ is specified as follows:

µt→t′ =

{
µt − (t′ − t)v−

t t′ < t

µt + (t′ − t)v+
t t′ > t

. (1)

Amodal aggregation. To create a unified representation of the scene that is consistent over time,
we aggregate the per-frame 3D Gaussians into an amodal, synchronized representation. Specifically,
the Gaussians Gt′ at an arbitrary target timestep t′ are defined as the union:

Gt′ =
⋃
t

Gt→t′ , (2)
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(a) Effect of affine token (b) Sky token helps reconstruct an unbounded sky
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Figure 2: Effect of affine and sky tokens. (a) The affine token handles exposure mismatches
between cameras, eliminating artifacts like the black foggy floaters caused by exposure differences
(orange arrows). (b) The sky token enables our method to predict sky colors for every pixel during
rendering, even when they are not observed in any context frames.

where Gt→t′ contains translated Gaussians with centers µt→t′ derived from the prediction Gt.
This amodal representation combines observations from multiple timesteps, capturing the complete
geometry and appearance of the scene along with its dynamics. It supports tasks such as rendering
the scene from novel viewpoints and moments in time.

Motion tokens and mask decoder. Motivated by the observation that scene dynamics often exhibit
low-dimensional structures composed of shared motion patterns (Wang et al., 2024b; Kratimenos
et al., 2023; Lei et al., 2024), we introduce M learnable motion tokens (indexed by m), where M ≪
N and N is the number of image tokens. These motion tokens are prepended to the input sequence
of the Transformer and interact with other input tokens via self-attention. STORM leverages these to-
kens to capture common motion primitives present in the scene over time. At the output of the Trans-
former, the motion tokens are decoded into velocity bases vb ≡ (vb−,vb+) ∈ RM×6 and motion
queries q ∈ RM×e′ via a set of Multi-Layer Perceptrons (MLPs).1 Here, e′ denotes the dimen-
sion of the motion embedding space. Simultaneously, the image embeddings F ∈ R(H//p×W//p)×e

are mapped into this space to produce pixel-aligned motion keys k ∈ R(H×W )×e′ through several
deconvolution layers, where each key vector ki,j ∈ Re′ corresponds to a spatial location (i, j).

Inspired by SAM (Kirillov et al., 2023), we compute the similarity between motion queries q and
motion keys k to derive weights w ∈ R+(H×W )×M for combining the velocity bases. Specifically,
the weights w(i,j) ∈ R+M at each spatial location (i, j) are computed as:

w(i,j)
m =

exp
(

qm·ki,j

τ

)
∑M

m′=1 exp
(

qm′ ·ki,j

τ

) , (3)

where τ is a temperature hyperparameter that controls the sharpness of the distribution (we set
τ = 0.5 in all experiments). The weights w are then used to combine the velocity bases for each
Gaussian associated with the pixel at location (i, j), yielding the final velocity v used in Eq. (1):

v(i,j) =

M∑
m=1

w(i,j)
m vbm, where

M∑
m=1

w(i,j)
m = 1 and 0 ≤ w(i,j)

m ≤ 1. (4)

This design captures the low-dimensional structure of scene dynamics and regularizes the motion
prediction problem by reducing its degrees of freedom.

3.2 STORM IN THE WILD

Modeling unbounded scenes from multi-view videos captured in the wild introduces additional chal-
lenges, such as representing the sky, handling exposure differences between cameras, and accurately
modeling humans.

Auxiliary tokens for sky and exposure mismatches. In in-the-wild video collections, particularly
those captured by autonomous vehicles, sky modeling and exposure mismatches are common chal-
lenges. Specifically, the sky often lacks well-defined depth, and the same 3D point may appear with

1Following the mask decoder design of SAM (Kirillov et al., 2023), we use distinct MLP weights for each
motion token, as this leads to cleaner motion masks.
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(a) Effect of Affine token (b) Sky token helps reconstruct an unbounded sky
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Figure 3: Latent-STORM Examples. Using latent Gaussians and a decoder, Latent-STORM can
photorealistically reconstruct human leg movements. Note how the leg angles change over time in
Latent-STORM, while they remain static in regular STORM (blue arrows). Please refer to “Human
Modeling with Latent-STORM” section in our project page for video comparisons.

varying colors across different images due to exposure differences between cameras. To address
these issues, we introduce two types of learnable auxiliary tokens into the input sequence: the sky
token and the affine token, designed similarly to the motion tokens.

A single sky token is used to capture sky information. At the output of the Transformer, this sky
token conditions a modulated MLP that takes the ray direction d as input and outputs the sky color:

csky = MLPsky (γ (d) ; sky token) , (5)
where γ(·) is a frequency-based positional embedding function as in Mildenhall et al. (2021). This
setup allows us to query sky colors for every pixel we wish to render. Given a rendered image IGS

before sky composition and a rendered opacity map Ô, the final image with the sky composed is:

I′ = IGS + (1− Ô) · csky. (6)
To handle exposure mismatches between cameras, we introduce v learnable affine tokens, where v
is the number of cameras. These tokens aim to capture exposure variations between cameras. At the
Transformer’s output, each affine token is mapped to a scaling matrix S ∈ R3×3 and a bias vector
b ∈ R3 via a linear layer. The final rendered image is obtained by applying the affine transformation
to every pixel: Î = SI′ + b. The affine transformation has been similarly explored in previous
work (Rematas et al., 2022) but only in a per-scene optimization setting. Examples illustrating the
roles of the sky and affine tokens are shown in Fig. 2.

Latent-STORM. As an optional enhancement, we introduce the use of latent Gaussians coupled
with a latent decoder to improve STORM’s performance on large novel view extrapolation and hu-
man body modeling. Instead of predicting pixel-aligned Gaussians with a 3-channel color vector, we
predict patch-aligned Gaussians with a c-channel latent vector. This approach reduces the number of
Gaussians while increasing the modeling capacity of each Gaussian. Consequently, the model out-
put changes from Gv

t ∈ R(H×W )×12 to Gv
t ∈ R(H//p×W//p)×(9+c), where p is the patch size of the

Transformer. After rasterization, we obtain a p× downsampled latent feature map F, which is com-
posited with a learnable inpainting token using the opacity map: F̂ = F+(1−Ô)·inpainting token.
This composited feature map is then upsampled to the original resolution using a convolutional de-
coder (Rombach et al., 2022) to produce the final color and depth outputs.

This design addresses the limitations of color-based Gaussians in handling occluded regions that
are not visible in any of the context views, since the decoder can infer and reconstruct these unseen
areas from the inpatinting tokens within a reasonable extrapolation range.2 Additionally, capturing
fine-grained human motions, such as leg and arm movements, remains challenging with sparse ob-
servations. However, we find that the decoder can photorealistically recover these subtle motions,
albeit with a slight compromise in pixel sharpness due to the additional decoding process. Fig. 3
compares this property. We refer to this new variant of our method as Latent-STORM.

3.3 IMPLEMENTATION

Model architecture. By default, we use a 12-layer Vision Transformer (ViT-B) (Dosovitskiy, 2020)
with full attention and a patch size of 8, along with M = 16 motion tokens. We study how perfor-

2Significant hallucination would require stronger generative capabilities, which we leave as future work.
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mance scales with respect to the number of motion tokens in Appendix B.2. For the mask decoder
and MLP components, we adopt the implementation from SAM (Kirillov et al., 2023), and set the
final projected motion embedding space to be 32 dimensional. For the modulated MLP used in sky
modeling, we follow DiT (Peebles & Xie, 2023) to use an adaptive LayerNorm layer for modula-
tion. Our GS backend is based on gsplat (Ye et al., 2024).

Supervision and loss functions. After aggregating the amodal scene representation from all ob-
served timesteps, we transform it into the target timesteps we wish to render. During training, we
randomly select a starting timestep t and sample 4 target timesteps t′ within the range [t, t+ 2s] for
supervision. Using the transformed amodal Gaussians Gt′ , we minimize a combination of recon-
struction loss, sky loss, and velocity regularization loss:

L = Lrecon + λsky · Lsky + λreg · Lreg, (7)

where the reconstruction loss Lrecon includes RGB loss, perceptual loss, and depth loss. The sky loss
Lsky encourages zero opacity for Gaussians located in the sky-region. The velocity regularization
loss is defined as Lreg = ∥v∥22/3, where we encourage the predicted velocity vectors to be small.
λsky = 0.1 and λreg = 0.005 are two hyperparameters that balance different losses. Details regarding
training, implementation, and the loss functions are provided in Appendix A.

4 EXPERIMENTS

Datasets. We primarily conduct experiments on the Waymo Open Dataset (Sun et al., 2020), which
contains 1,000 sequences of driving logs: 798 sequences for training and 202 for validation. Each
sequence consists of a 20-second video recorded at 10FPS. For training and testing, we use the
frontal three cameras at an 8× downsampled resolution (160×240). The input to our model consists
of 4 context timesteps, evenly spaced at t+0s, t+0.5s, t+1.0s, and t+1.5s, where t is a randomly
chosen starting timestep. Additionally, we evaluate our method on the NuScenes (Caesar et al.,
2020) and Argoverse2 (Wilson et al., 2023) datasets. Please refer to Appendix B.1 for more details.

4.1 RENDERING

Setup. We assess novel view synthesis from sparse view reconstructions using the validation set
of the Waymo Open Dataset (Sun et al., 2020). Each video sequence is segmented into 10 non-
overlapping clips, each 2.0 seconds long and consisting of 20 frames (3 camera views per frame). For
reconstruction, we provide the 1st, 5th, 10th, and 15th frames as context frames, and evaluate on the
remaining frames. This setup enables evaluation of both interpolation (0s to 1.5s) and extrapolation
(1.5s to 2.0s), resulting in 2,019 video clips, or 96,912 total images. We report standard metrics:
PSNR, SSIM, and Depth RMSE. Additionally, we analyze performance on both full images and
dynamic regions for a more comprehensive evaluation. Lastly, we report the inference time; for per-
scene optimization methods, this refers to the test-time fitting time, while for generalizable methods,
it refers to the time required for the model to feedforward and output 3D Gaussians.

Baselines. We compare our method against two categories of approaches: per-scene optimization
methods and feed-forward models. For per-scene optimization, we evaluate against a NeRF-based
approach, EmerNeRF (Yang et al., 2024a), and 3DGS-based approaches, including 3DGS (Kerbl
et al., 2023), PVG (Chen et al., 2023), and DeformableGS (Yang et al., 2024b). Since LiDAR data
is not provided at test time in our setup, we train these baselines without LiDAR supervision to
ensure a fair comparison. In the second category, we compare against recent large reconstruction
models, including LGM (Tang et al., 2024) and GS-LRM (Zhang et al., 2024). We notice that the
default LGM, which predicts raw 3DGS coordinates, performs poorly in our datasets. Therefore,
we modify it to predict depth and recover positions similar to our approach, and denote it as LGM∗.
We provide more implementation details of these baselines in Appendix A.3.

Results. We present the quantitative results in Table 1. Compared to per-scene optimization meth-
ods, STORM achieves significantly better performance in both dynamic regions and full images in
terms of photorealism, geometry, and inference speed. Specifically, in dynamic regions, STORM out-
performs the best per-scene method by a substantial 5dB in PSNR and 0.346 SSIM. For full images,
STORM attains around 0.5 to 1dB PSNR gain. Notably, STORM achieves these improvements while
reducing inference time from tens of minutes to just 0.18 second, making it suitable for real-time
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Table 1: Comparison to state-of-the-art methods on the Waymo Open Dataset. We compare
photorealism, geometry and speed metrics against both per-scene optimization methods and gener-
alizable feed-forward methods. PSNR, SSIM, and Depth RMSE (D-RMSE) are reported. Speed
metrics are estimated on a single A100 GPU. ∗: reproduced by us. †: Non-sky region.

Methods Dynamic-only Full image† Inference speed Real-time rendering
PSNR↑ SSIM↑ D-RMSE↓ PSNR↑ SSIM↑ D-RMSE↓ Time↓ (>200FPS)

Per-Scene Optimization methods
EmerNeRF (Yang et al., 2024a) 17.79 0.255 40.88 24.51 0.738 33.99 14min ×
3DGS (Kerbl et al., 2023) 17.13 0.267 13.88 25.13 0.741 19.68 23min ✓
PVG (Chen et al., 2023) 15.51 0.128 15.91 22.38 0.661 13.01 27min ✓
DeformableGS (Yang et al., 2024b) 17.10 0.266 12.14 25.29 0.761 14.79 29min ✓

Generalizable feed-forward methods
LGM (Tang et al., 2024) 17.36 0.216 11.09 18.53 0.447 9.07 0.06s ✓
LGM* (Tang et al., 2024) 19.58 0.443 9.43 23.59 0.691 8.02 0.06s ✓
GS-LRM∗ (Zhang et al., 2024) 20.02 0.520 9.95 25.18 0.753 7.94 0.02s ✓

Ours
Latent-STORM 21.26 0.535 9.42 25.03 0.750 8.57 0.18s ✓
STORM 22.10 0.624 7.50 26.38 0.794 5.48 0.18s ✓

Table 2: Comparison to state-of-the-
art methods on more datasets. We
report full-image PSNR and Depth
RMSE metrics on the NuScenes (Cae-
sar et al., 2020) and Argoverse2 (Wil-
son et al.) datasets.

Method NuScenes Argoverse2

PSNR↑ D-RMSE↓ PSNR↑ D-RMSE↓
LGM 23.21 7.34 22.93 14.20
GS-LRM 24.53 7.71 24.49 14.70
Ours 24.90 5.43 24.80 13.51

Table 3: Comparison of scene flow estimation on the
Waymo Open Dataset. All competing methods require
LiDAR input at test time, whereas our method relies
solely on camera images.

Methods EPE3D (m) ↓ Acc5(%) ↑ Acc10(%) ↑ θ (rad) ↓ Inference Time ↓
NSFP
(Li et al., 2021a) 0.698 42.17 54.26 0.919 ∼27s/frame

NSFP++
(Najibi et al., 2022) 0.711 53.10 63.02 0.989 ∼167s/frame

Ours 0.276 81.12 85.61 0.658 ∼0.025s/frame

applications. This confirms our motivation of building data-driven models that excels with data pri-
ors, addressing the limitations of per-scene optimization methods. Compared to other generalizable
feed-forward models, STORM demonstrates a robust ability to model scene dynamics and process
multi-timestep, multi-view images holistically. This enables us to model dynamic scenes better.

Results on additional datasets. We evaluate the applicability of STORM on the NuScenes (Caesar
et al., 2020) and Argoverse2 (Wilson et al.) datasets, comparing against other generalizable methods
in Table 2. We provide detailed setups in Appendix B.1. Our method achieves the best performance
in both full-image PSNR and Depth RMSE metrics. Measuring performance on dynamic regions is
expected to have more gains. These results validate the generalizability of STORM across datasets.

4.2 FLOW ESTIMATION

Setup and baselines. A unique capability of STORM is scene motion estimation, which we demon-
strate using the Waymo Open Dataset (Sun et al., 2020). This dataset provides ground truth 3D
scene flows, which we do not use for supervision. We measure 3D scene flow estimation accuracy
using standard metrics following Li et al. (2021a): End-Point Error in 3D (EPE3D), Acc5, Acc10,
angular error θerr, and inference time. For baselines, we compare STORM against NSFP (Li et al.,
2021a), and NSFP++ (Najibi et al., 2022). Since existing methods cannot directly synthesize scene
flows at novel timesteps, we evaluate the scene flows estimated on the context frames. Specifically,
we provide the 1st, 5th, 10th, and 15th sensor observations as input and evaluate on these frames
rather than on the remaining ones. Notably, all these competing methods require LiDAR input at test
time, whereas STORM relies solely on camera images, making our comparisons highly conservative.

Results. As presented in Table 3, STORM consistently outperforms all methods across all metrics,
achieving substantial improvements in EPE3D, Acc5 and Acc10 despite using only camera images
as input. While NSFP (Li et al., 2021a) and NSFP++ (Najibi et al., 2022) excel at scene flow esti-
mation with dense space-time observations (10Hz), they struggle with sparse observations (2Hz). In
contrast, STORM demonstrates robust performance even with sparse data. To the best of our knowl-
edge, STORM is the first scene flow estimation method that does not require depth signals at test
time. These results demonstrate the effectiveness of our approach in explicit motion understanding
and its potential for scene flow estimation without reliance on additional sensors at test time.
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(b) Sample-1 (zoom-in)(a) Sample-1 (BEV) (c) Sample-2 (BEV) (d) Sample-2, zone 1 (e) Sample-2, zone 2

Figure 4: Iterative reconstruction of static scenes. STORM reconstructs 20-second-long videos
within 1 second in an iterative manner, which can serve as initialization for per-scene optimization
methods for further refinement.
(a) Sample-1, Viewer results (b) Sample-2, Viewer results (c) Sample-3, Viewer results

Figure 5: Iterative reconstruction of dynamic scenes. Top: STORM reconstructs 20-second-long
videos within 1 second in an iterative manner. Bottom: Furthermore, by chaining scene flows, we
obtain point trajectories for dynamic Gaussians.

4.3 ABLATION STUDY, QUALITATIVE RESULTS AND APPLICATION

Ablation study. We present a detailed ablation study to analyze the impact of the velocity regular-
ization coefficient λreg, the number of motion tokens M , and the number of input timesteps during
training and testing in Appendix B.2. In short, without velocity regularization, training collapses be-
cause of gradient explosion, and an optimal λreg (5e-3) yields the best performance. STORM is robust
to the choice of M and performs best with M = 16 for both rendering and flow estimation tasks.
Furthermore, when trained on a fixed number of timesteps (e.g., 4), STORM demonstrates strong
zero-shot generalization to varying input timesteps (e.g., 1, 2, 6, 10) at test-time, though re-training
for specific configurations achieves optimal results.

Larger scene reconstruction. Figs. 4 and 5 show the results of applying STORM iteratively to
20-second posed videos, each includes 600 images captured across 3 cameras over 200 timesteps.
We process videos clip by clip, completing the inference for an entire video within 0.5 seconds
on a single A100 GPU using batch inference and a bf16 precision. By merging the Gaussians
predicted from each clip, we construct a comprehensive dynamic 3D scene reconstruction in a fully
feedforward manner. Although some artifacts are present in overlapping regions when merging clips,
these results demonstrate STORM’s potential for holistic dynamic scene reconstruction, even for long
and complex sequences. Furthermore, the predicted 3D Gaussians can serve as an initialization for
per-scene optimization methods for further refinement, which we leave for future work.

Point tracking. While per-point trajectory estimation is not the primary focus of our work, STORM
models the motion of Gaussians over time, enabling us to derive point trajectories by chaining scene
flows. In the bottom row of Fig. 5, we present examples of point tracking, demonstrating STORM’s
potential for applications such as motion analysis and object tracking. We hope this approach could
inspire further exploration in related tasks, such as 2D pixel or 3D point tracking.

Scene flow estimation and motion segmentation. We visualize the predicted 3D velocities and
motion token assignments, i.e., the motion segmentation mask decoded by the mask decoder, in
Fig. 6. These masks are derived by applying an argmax operation on per-pixel assignment weights
w along the motion token dimension M (see Eq. (4)). These visualizations demonstrate that STORM
captures scene dynamics and groups 3D Gaussians that correspond to the same moving pattern,
resulting in motion-level segmentations. These unsupervised segmentations allow us to select Gaus-
sians based on their assignments for editing, without using ground truth 3D bounding boxes.
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(a) (b) (c)

Rendered Images

Rendered Scene flows

Rendered Motion Masks

Rendered Images

Rendered Scene flows

Rendered Motion Masks

Rendered Images

Rendered Scene flows

Rendered Motion Masks

Figure 6: Self-supervised scene flow estimation and motion segmentation. For each sample, we
show the rendered camera images (top), scene flows (middle), and motion assignments (bottom).

(a) Sample-1, original

(b) Sample-1, remove dynamic objects

(c) Sample-2, original

(d) Sample-2, clone and offset latent Gaussians

(e) Sample-3, original

(f) Sample-3, replace cars, add pedestrians

(g) Sample-3, add cars

(h) Sample-3, add pedestrians

Figure 7: STORM editing examples. We present examples of removing or cloning vehicles (a-d),
as well as adding or replacing pedestrians and vehicles (e-h). Notice how STORM harmonizes the
edited images due to the use of the decoder. More examples can be found at our project page.

Editing, control, and inpainting. We demonstrate the capabilities of Latent-STORM3 in editing
scenes. Since each latent Gaussian still represents a physical particle in space, we can edit the
scene by adding, removing, or modifying these Gaussians before feature map rasterization and
decoding. As shown in Fig. 7, Latent-STORM can reconstruct human movements (f, h), hallucinate
occluded regions, and provide other advantages, such as image harmonization (f, g, h). For instance,
Latent-STORM can recover leg movements and hand gestures. Furthermore, one common challenge
in driving scene reconstruction is the difficulty of inpainting occluded regions or removing static
objects without leaving black holes. Latent-STORM addresses this by synthesizing these areas, albeit
with slight blurriness. Please refer to our project page for more visualizations if interested. Overall,
these results demonstrate the flexibility of STORM as a tool for scene editing and simulation.

5 CONCLUSION

In this work, we have introduced STORM, a scalable spatio-temporal model designed for dy-
namic scene reconstruction from sparse observations without requiring explicit motion supervision.
Through extensive experiments, we have demonstrated STORM’s ability to reconstruct dynamic out-
door scenes and estimate scene dynamics. Our method significantly surpasses existing per-scene
optimization and feed-forward approaches, showcasing its versatility for a wide range of applica-
tions, including view synthesis, scene editing and point tracking. Looking ahead, we hope STORM
will become a foundational model for various tasks across multiple domains, enabling more efficient
and flexible approaches to 4D scene reconstruction, motion estimation, and beyond. As research in
spatio-temporal modeling progresses, we believe STORM has the potential to unlock new possi-
bilities for real-time dynamic scene analysis, interactive applications, and further advancements in
self-supervised learning.

3Our default STORM performs well for vehicle editing but exhibits slightly reduced performance for human
modeling.
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Kontschieder. Dynamic 3d gaussian fields for urban areas. arXiv preprint arXiv:2406.03175,
2024a.

Tobias Fischer, Lorenzo Porzi, Samuel Rota Bulo, Marc Pollefeys, and Peter Kontschieder. Multi-
level neural scene graphs for dynamic urban environments. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 21125–21135, 2024b.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023.

Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from dynamic
monocular video. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 5712–5721, 2021.

11



Published as a conference paper at ICLR 2025

Quankai Gao, Qiangeng Xu, Zhe Cao, Ben Mildenhall, Wenchao Ma, Le Chen, Danhang Tang,
and Ulrich Neumann. Gaussianflow: Splatting gaussian dynamics for 4d content creation. arXiv
preprint arXiv:2403.12365, 2024a.

Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla, Pratul
Srinivasan, Jonathan T Barron, and Ben Poole. Cat3d: Create anything in 3d with multi-view
diffusion models. arXiv preprint arXiv:2405.10314, 2024b.

Jianfei Guo, Nianchen Deng, Xinyang Li, Yeqi Bai, Botian Shi, Chiyu Wang, Chenjing Ding,
Dongliang Wang, and Yikang Li. Streetsurf: Extending multi-view implicit surface reconstruction
to street views. arXiv preprint arXiv:2306.04988, 2023.

Nan Huang, Xiaobao Wei, Wenzhao Zheng, Pengju An, Ming Lu, Wei Zhan, Masayoshi Tomizuka,
Kurt Keutzer, and Shanghang Zhang. s3 gaussian: Self-supervised street gaussians for au-
tonomous driving. arXiv preprint arXiv:2405.20323, 2024.

Shengyu Huang, Zan Gojcic, Jiahui Huang, Andreas Wieser, and Konrad Schindler. Dynamic 3d
scene analysis by point cloud accumulation. In European Conference on Computer Vision, pp.
674–690. Springer, 2022.

Mohammad Mahdi Johari, Yann Lepoittevin, and François Fleuret. Geonerf: Generalizing nerf with
geometry priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18365–18375, 2022.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. arXiv preprint arXiv:2307.07635, 2023.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis. Dynmf: Neural motion factorization for
real-time dynamic view synthesis with 3d gaussian splatting. arXiv preprint arXiv:2312.00112,
2023.

Jiahui Lei, Yijia Weng, Adam Harley, Leonidas Guibas, and Kostas Daniilidis. Mosca: Dynamic
gaussian fusion from casual videos via 4d motion scaffolds. arXiv preprint arXiv:2405.17421,
2024.

Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey. Neural scene flow prior. Advances in
Neural Information Processing Systems, 34:7838–7851, 2021a.

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-
time view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498–6508, 2021b.

Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. Dynibar: Neu-
ral dynamic image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4273–4284, 2023.

Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu Tseng, Ayush Saraf, Changil Kim, Yung-Yu
Chuang, Johannes Kopf, and Jia-Bin Huang. Robust dynamic radiance fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13–23, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.

12

https://openreview.net/forum?id=Bkg6RiCqY7


Published as a conference paper at ICLR 2025

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R Qi, Xinchen Yan, Scott Ettinger, and Dragomir
Anguelov. Motion inspired unsupervised perception and prediction in autonomous driving. In
European Conference on Computer Vision, pp. 424–443. Springer, 2022.

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural scene graphs for
dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2856–2865, 2021.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Julius Plucker. Xvii. on a new geometry of space. Philosophical Transactions of the Royal Society
of London, (155):725–791, 1865.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318–10327, 2021.

Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and
David Novotny. Common objects in 3d: Large-scale learning and evaluation of real-life 3d cat-
egory reconstruction. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 10901–10911, 2021.

Konstantinos Rematas, Andrew Liu, Pratul P Srinivasan, Jonathan T Barron, Andrea Tagliasacchi,
Thomas Funkhouser, and Vittorio Ferrari. Urban radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12932–12942, 2022.

Jiawei Ren, Kevin Xie, Ashkan Mirzaei, Hanxue Liang, Xiaohui Zeng, Karsten Kreis, Ziwei Liu,
Antonio Torralba, Sanja Fidler, Seung Wook Kim, and Huan Ling. L4gm: Large 4d gaussian
reconstruction model, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Mohammed Suhail, Carlos Esteves, Leonid Sigal, and Ameesh Makadia. Generalizable patch-based
neural rendering. In European Conference on Computer Vision, pp. 156–174. Springer, 2022.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for au-
tonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 2446–2454, 2020.

Stanislaw Szymanowicz, Eldar Insafutdinov, Chuanxia Zheng, Dylan Campbell, João F Henriques,
Christian Rupprecht, and Andrea Vedaldi. Flash3d: Feed-forward generalisable 3d scene recon-
struction from a single image. arXiv preprint arXiv:2406.04343, 2024a.

Stanislaw Szymanowicz, Chrisitian Rupprecht, and Andrea Vedaldi. Splatter image: Ultra-fast
single-view 3d reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 10208–10217, 2024b.

13



Published as a conference paper at ICLR 2025

Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm:
Large multi-view gaussian model for high-resolution 3d content creation. arXiv preprint
arXiv:2402.05054, 2024.

Adam Tonderski, Carl Lindström, Georg Hess, William Ljungbergh, Lennart Svensson, and
Christoffer Petersson. Neurad: Neural rendering for autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14895–14904, 2024.

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lassner, and
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A IMPLEMENTATION DETAILS

In this section, we discuss the implementation details of STORM.

A.1 STORM IMPLEMENTATION DETAILS

Gaussian Parameterization. Our Transformer architecture and output mapping largely follow
Zhang et al. (2024). The input images are normalized to the range of [-1, 1]. Recall that each
Gaussian is defined as g ≡ (µ,R, s, o, c), where µ ∈ R3 and R ∈ SO(3) represent the center and
orientation, s ∈ R3 indicates the scale, o ∈ R+ denotes the opacity, and c ∈ R3 corresponds to
the color. Below, we describe the activations or normalizations applied to the raw outputs to derive
these parameters.

For coordinates µ, we first compute ray origins and directions from the camera’s intrinsic and ex-
trinsic parameters. We then compute µ = rayo + d · raydir, where d is the 1-channel ray distance
predicted by our model. Depth d is computed as d = near+σ(d)∗ (far−near), where σ represents
the sigmoid function, and near and far are hyperparameters. In all our experiments, we set near to
0.1 and far to 400.0.

For rotation R, we parameterize it with 4-dimensional quaternion vectors. Note that there is a default
normalization step in gsplat (Ye et al., 2024) that applies L2 normalization to ensure quaternion
vectors are unit vectors.

For scale s, we compute s = min (exp(s′ − 2.3), 0.5), following Zhang et al. (2024), where s′ rep-
resents the outputs before normalization. This regularization limits the maximum size of Gaussians
and improves training stability.

For opacity o, we compute o = σ(o′ − 2.0), again following Zhang et al. (2024).

For color c, we compute c = σ(c′) · 2− 1. When computing PSNR, we map color back to [0, 1].

Sky MLP. The modulated sky MLP predicts sky color from view directions by conditioning a sky
token csky through a modulated linear layer. Specifically, frequency-embedded viewing directional
vectors γ(d) are linearly projected to 64 dimensions, then normalized using LayerNorm without
affine parameters. The sky token outputted from the Transformer serves as the conditioning vector
csky (768 dims) is mapped to 64 dimensions and used in an adaptive layer normalization (AdaLN)
process, where csky is transformed to produce shift and scale vectors, each of size 64, modulating
the normalized features by x = x · (1 + scale) + shift. Finally, the modulated features are linearly
transformed to an output of 3-dimensional color.

Mask Decoder. The convolution layers in the mask decoder are similar to those used in SAM (Kir-
illov et al., 2023), which is defined as:

self.output upscaling = nn.Sequential(
nn.ConvTranspose2d(embed dim, 512, kernel size=2, stride=2),
LayerNorm2d(512),
nn.GELU(),
nn.ConvTranspose2d(512, 256, kernel size=2, stride=2),
LayerNorm2d(256),
nn.GELU(),
nn.ConvTranspose2d(256, 128, kernel size=2, stride=2),
nn.GELU()

)

The input to this decoder is the ViT output feature maps. After they are upsampled by the mask
decoder, they are projected into a 32-dimensional space using a linear layer. Additionally, motion
tokens are mapped into a 32-dimensional space using a set of three-layer MLPs, following the design
in SAM (Kirillov et al., 2023).

Training. We train our model for 100,000 iterations with a global batch size of 64 on NVIDIA
A100 GPUs, using a learning rate of 4 × 10−4. The training process utilizes the AdamW opti-
mizer (Loshchilov & Hutter, 2019) along with a cosine learning rate scheduler that includes a linear
warmup phase over the first 5,000 iterations. We enable the LPIPS loss (Zhang et al., 2018) only
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after 5,000 iterations, as we find this approach stabilizes training. Gradient checkpointing is enabled
by default to reduce memory usage. Behind the scene, we observe that STORM benefits from longer
training durations and larger model sizes. We maintain the default setup to ensure alignment with
our baseline in this work. However, an attractive direction for future work is to explore the scaling
laws of STORM (Zhai et al., 2022).

Point trajectory estimation. We visualize the trajectories of dynamic Gaussians. These trajectories
are obtained by chaining per-frame scene flows. Specifically, for each frame at t, we use the pre-
dicted scene flow to transform Gaussians to its next frame t + 1 to obtain its estimated destination.
Then, for every Gaussian at t + 1, we find its nearest Gaussians transformed from t and connect
them to visualize the trajectories. This process is recursively applied to all frames to obtain the final
trajectories.

A.2 LOSS FUNCTION

We present more details about our loss function here. Given the rendered images Î, depth maps
D̂, opacity maps Ô, and velocities for all 3D Gaussians v, along with the corresponding observed
camera images I, depth maps D, and sky masks M that are predicted by a pre-trained segmentation
model (Chen et al., 2022), we compute the overall loss as:

L = Lrecon + λsky · Lsky + λreg · Lreg, (A1)

where the reconstruction loss combines RGB loss, depth loss, and LPIPS loss (Zhang et al., 2018):

Lrecon = ∥Î− I∥2 + ∥(D̂−D)/max(D)∥1 + λlpips · LPIPS
(
Î, I

)
, (A2)

and the sky loss and velocity regularization loss are MSE losses that encourage sparsity:

Lsky = ∥Ô− (1−M)∥1, Lreg = ∥v∥22/3 =
1

3

3∑
i=1

v2
i . (A3)

Here, the λ terms control the relative weighting of each loss component. For the LPIPS loss, we
utilize a VGG-19-based (Simonyan & Zisserman, 2014) implementation. We set λlpips to 0.05, λsky

to 0.1, and λreg to 5e-3 in all experiments.

A.3 BASELINE IMPLEMENTATIONS

For per-scene optimization 3DGS-based methods, we use the recently open-sourced codebase
DriveStudio from Chen et al. (2024), which includes implementations for PVG (Chen et al.,
2023), DeformableGS (Yang et al., 2024b), and 3DGS (Kerbl et al., 2023) on the Waymo Open
Dataset. For EmerNeRF (Yang et al., 2024a), we directly modify their officially released code. Since
our task is to reconstruct short-sequenced dynamic scenes from sparse observations (3 cameras × 4
timesteps), the original training recipes designed for long-sequenced dense views (3 cameras × 200
timesteps) are no longer appropriate. Therefore, we reduce the training iterations for all methods
from 20,000 to 5,000 and linearly scale down all iteration-based hyperparameters. In our prelim-
inary experiments, we did not observe significant differences between training for 20,000 versus
5,000 iterations, as there are only limited training views available, while training 5,000 iterations is
much faster.

For generalizable approaches, LGM (Tang et al., 2024) has open-sourced their code and pre-trained
models, whereas GS-LRM (Zhang et al., 2024) has not. However, LGM is originally trained on
an object-centric synthetic dataset, which has a significant domain gap compared to our problem.
Therefore, we followed their official code to reimplement their model within our codebase to elimi-
nate potential misalignments due to differences in data processing, learning rate scheduling, super-
vision, and optimizers. For GS-LRM (Zhai et al., 2022), we implemented the model according to
the descriptions provided in their paper. We train these models on the same dataset as ours with the
same color, depth, perceptual and sky supervision, and the same number of iterations. Since these
models do not inherently support sky processing, we modify them to predict the depth of the sky
as the far plane, a predefined hyperparameter. This adjustment already enhances the performance
of these methods. The number of trainable parameters of these models are controlled to be similar,
i.e., GS-LRM has 86.68M parameters, LGM has 103.29M parameters, while our default STORM has
100.60M parameters.
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Figure B.1: Ablation study on velocity regularization and motion tokens. (a) Effect of velocity
regularization coefficient λreg: We evaluate rendering quality using dynamic PSNR and flow esti-
mation performance using EPE3D and Acc5. We find that excluding this regularization frequently
leads to gradient explosion and NaN loss. (b) Impact of motion token count: We study how the
number of motion tokens M influences rendering and motion estimation performance.
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Figure B.2: Ablation study on input timesteps. (a) Zero-shot transfer evaluation: We test STORM
pre-trained with 4 input timesteps with varying test-time input timestep configurations without re-
training. (b) Scaling training timesteps: We train STORM with different numbers of input views to
assess its adaptability to changes in input timesteps.

B ADDITIONAL RESULTS

B.1 COMPARISON ON ADDITIONAL DATASETS

NuScenes. The NuScenes dataset (Caesar et al., 2020) contains 1000 driving scenes, each lasting
20 seconds, captured at 12Hz frame rate. These scenes are divided into 700, 150, and 150 scenes
for training, validation, and testing, respectively. Similar to our evaluation protocol for the Waymo
Open Dataset (Sun et al., 2020), we use 3 frontal cameras at a roughly 5.5× downsampled resolution
(160 × 288) and leverage both sample (key frames) and sweep data. Models are trained on the
training set and evaluated on the validation set with unchanged hyperparameters.

Argoverse2. The Argoverse2 dataset (Wilson et al.) contains 1,000 driving scenes, split into 700 for
training, 150 for validation, and 150 for testing. It includes data from seven ring cameras, providing
a 360-degree view. For training and evaluation, we use the three frontal cameras, resampled to a
192 × 256 resolution. The original central camera resolution is 2048 × 1550, while other cameras
are 1550 × 2048, resulting in reversed aspect ratios. We do not apply special adjustments for this
discrepancy and resize all images uniformly to 192 × 256. To simplify processing, performance
is measured on full images without extracting dynamic instances. Notably, depth RMSE is higher
for this dataset compared to NuScenes and Waymo, which is expected due to Argoverse2’s larger
sensing range of over 200m, in contrast to the approximately 80m range of the other datasets.

B.2 ABLATION STUDY

We study the effect of different components of our method here. All experiments here are conducted
on the Waymo Open Dataset. To manage the computational demands of these extensive experiments,
models studied in Fig. B.1 are trained with a global batch size of 32 for 100k iterations. For the
models examined in Fig. B.2-(b), we use a global batch size of 64 over the same number of iterations.
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Velocity regularization coefficient λreg. The impact of the velocity regularization coefficient is
illustrated in Fig. B.1-(a). We observe that omitting this term often results in gradient explosion
and NaN loss. Thus, this regularization term is indispensable. In this controlled setting, the optimal
coefficient is found to be 5× 10−3, as it achieves the best dynamic PSNR and ranks second in flow
estimation performance.

Number of motion tokens M . We evaluate the effect of the number of motion tokens on rendering
and flow estimation performance in Fig. B.2-(b). When no motion token (M = 0) is used, the
dynamic mask decoder directly predicts pixel-aligned velocities from image embeddings, keeping
the number of learnable parameters nearly constant to ensure fair comparison. As shown in Fig. B.2-
(b), STORM demonstrates robust performance across different motion token counts, with the best
results obtained at M = 16.

Number of input timesteps. Our default configuration trains and tests STORM with 4 input
timesteps. Leveraging the sequence-to-sequence nature of our Transformer-based model, we can
flexibly adjust the number of input timesteps during both training and testing by appending tokens
from more input timesteps or dropping tokens from existing input timesteps. This flexibility en-
ables us to study the effect of input sparsity on STORM’s performance. We conduct two ablation
studies in Fig. B.2. First, we test STORM trained with 4 input timesteps under varying test-time
input timestep configurations without re-training. This zero-shot transfer experiment demonstrates
that STORM generalizes well to unseen input configurations, though it achieves peak performance
with 4 timesteps, as expected. In the second study, we re-train STORM with different numbers of
input timesteps and evaluate their performance. Results indicate that increasing the number of input
timesteps improves performance. Notably, when trained with a single timestep, STORM transitions
into a future prediction framework. Even in this configuration, it significantly outperforms per-scene
optimization approaches that utilize 4 input timesteps for reconstruction, achieving a 2 to 4 PSNR
improvement on dynamic regions (cf. Table 1).

C LIMITATIONS

While our model benefits from the scalability and flexibility of Transformer architectures, it comes
with certain trade-offs. One limitation is the processed sequence length. STORM typically operates
on images downsampled by a factor of 8, using inputs from three cameras and four timesteps, which
results in around 7k tokens. Although we have fine-tuned STORM to handle up to 32,000 tokens in
preliminary experiments to enable higher resolution images, longer temporal windows, or additional
camera views, this comes with a non-trivial increase in computational costs for both training and
inference. Another limitation is that our model requires camera intrinsic and extrinsic parameters
as inputs. While these parameters are readily accessible in autonomous vehicle datasets, they may
be more difficult to obtain in other domains, potentially limiting the ability to directly train and test
STORM on those data domains without additional effort or preprocessing. Future works to address
these limitations include better Transformer architecture with reduced complexity, joint optimization
of camera parameters, and the use of geometric foundation models.
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