
Under review as a conference paper at ICLR 2024

(a) Source: Art (b) Source: Cartoon (c) Source: Sketch

Figure 4: OOD accuracy (%) on PACS (Additional)

A EXPERIMENTAL RESULTS

A.1 EXPERIMENTS ON PACS (CONTINUED)

Table 5: sDG accuracy on PACS (Full).

Method P A C S Avg.

Source: Photo
Ours (AN+P) 52.46 50.29 66.79 56.52
Ours (AN+M) 57.54 46.89 64.93 56.45

Source: Art
Ours (AN+P) 78.07 66.04 63.15 69.09
Ours (AN+M) 77.53 59.39 60.04 65.65

Source: Cartoon
Ours (AN+P) 64.57 50.02 69.00 62.04
Ours (AN+M) 65.20 47.10 65.81 59.37

Source: Sketch
Ours (AN+P) 46.25 44.31 61.60 50.72
Ours (AN+M) 48.03 47.83 60.32 52.06

Here we present the results of additional experiments with
the PACS benchmark.

Previous experiments on the PACS benchmark only used
the Photo dataset as the source domain. In the following
section, we report other cases where the source domain
is changed (e.g., Art, Cartoon, Sketch). Here, we will de-
note each experiment as Art as source, Cartoon as source,
and Sketch as source, respectively.

In Table 5, we report the sDG accuracy of our two meth-
ods, MDAR and PROF, where AN, M, and P stands for
AlexNet, MDAR, and PROF, respectively. Each row in the
table displays the source domain, backbone type, and the
training method (M/P). In cases where Art or Cartoon is
used as source domain, training with our oracle regular-
ization PROF marked higher OOD accuracy then its counterpart. On the other hand, PROF suffered
when Sketch was set as the source domain, falling behind the baseline MDAR. Our hypothesis is that
this behavior is triggered by the subpar performance of the oracle. To elaborate, the oracle used on
the Sketch as source experiment displayed low OOD accuracy on the target domains, unsuitable for
effective oracle regularization (Photo: 51.61%, Art: 39.39%, Cartoon: 56.85%).

Next, we present the analysis on mid-train OOD fluctuation in each experimental configuration.
When the source domain is set as Art, employing PROF resulted in yielded a stabilization of the OOD
performance, effectively mitigating fluctuations. The fluctuation was quantified as the reduction in
variance across the target domain accuracy in K > 5. When compared with the conventional aug-

ment & align method MDAR, our regularization method PROF displayed large reductions in variance
(Photo: 1.71!1.17, Cartoon: 3.13!2.97, Sketch: 21.50!11.22). The mid-train OOD fluctuation
when source is set as Art, is depicted in Figure 4a.

Similarly, when the source domain is configured as Cartoon, PROF displays similar stabilization of
the mid-train OOD performance. Using PROF allows a reduction in fluctuation, measured as variance
(Photo: 5.15 ! 3.06, Art: 5.00 ! 3.07, Sketch: 0.70 ! 3.91). We note that the stabilization effect
in Sketch is relatively lower than that of other target domains, even lower than our augment & align

baseline MDAR. The mid-train fluctuation is demonstrated in Figure 4b.

Lastly, we report the experimental results where the source was set as Sketch. In the Sketch as

source experiment, we observe that PROF not only suffers in terms of performance but also exhibits
instability. PROF displayed high variance in mid-train performance when compared to the baseline
(Photo: 2.46 ! 10.41, Art: 2.33 ! 7.99, Cartoon: 1.01 ! 1.04). The fluctuation is illustrated in
Figure 4c. While a clear explanation is absent, we view that this phenomenon is caused by the under-
performance of the oracle in the Sketch as source experiment. This result displays a clear example of
the problems associated with the obstacles regarding the oracle, where obtaining an oracle may not
be readily available. We further discuss the issue with oracles in the following section, Appendix D

15



Under review as a conference paper at ICLR 2024

A.2 EXPERIMENTAL RESULTS ON DIGITS (CONTINUED)

Figure 5: OOD accuracy (%) on
Digits

Here we continue our analysis on the results of the Digits Ex-
periment. In Section 5, we demonstrated that our regularization
method PROF successfully mitigates issues of OOD fluctuation,
measured as variance. This is illustrated in Figure 5 (M and P
are from MDAR and PROF.). One notable observation is the sig-
nificant increase in OOD generalization accuracy (81.82) when
using PROF, in Table 3. As mentioned in the footnote, we do not
claim this score to be state-of-the-art, as the true oracle is used.
From the perspective of knowledge distillation, this is anticipated
as the true oracle is already generalized to the target domains. In
comparison, the approximated oracle in PACS does not guarantee
robustness in the target domains, despite its higher generalizabil-
ity. This confirms that a gap between the approximated oracle and the true oracle exists, which is a
limitation that we acknowledge. We provide further analysis on the oracle in Appendix D

Next, we discuss the results of our baseline experiment using MDAR. As mentioned in the main
paper, our baseline surpassed state-of-the-art in Digits. In SVHN and SYNDIGIT (S-D), we show
large improvement, while results in MNIST-M (M-M) show slight deficiency. Similar to existing
methods, we refrain from using any form of manual data augmentation. We find that in Digits,
increasing the number of simulated domains (K) helps OOD generalization. Both our baseline
(MDAR) and PROF benefited from long training (K > 100).

A.3 EXPERIMENTAL RESULTS ON OFFICE-HOME (CONTINUED)

Figure 6: OOD accuracy (%) on
Office-Home

Here we continue our analysis of the results of the Office-Home
Experiment. The Office-Home benchmark is not commonly used
in the sDG literature, but we include the benchmark to bring atten-
tion to an important question: Is augmentation reliable for sDG?

As described in Table 4, augmentation-based approaches do show
a boost in OOD accuracy. However, the effect gradually disap-
pears with a sharp decline in OOD accuracy, as depicted in Fig-
ure 6. (A, C, and P are abbreviations of Art, Clipart, and Prod-
uct domains, while M and P are from MDAR and PROF.) This
downward trend is also spotted on other benchmarks, but not as
intense. We believe that this phenomenon aligns with our analysis
of the uncertainty of utilizing augmentation for OOD generaliza-
tion. Our hypothesis is that the distributional gap within the Office-Home benchmark may be more
intense than conventional sDG benchmarks (e.g., Digits, Corrupted CIFAR-10, PACS). The phe-
nomenon brings novel questions on the efficacy of augmentation-based generalization methods. We
believe that further research is required. Nonetheless, even in this case, PROF continues to stabilize
the learning process, showing a smaller variance than our baseline (MDAR).

A.4 A SYNERGISTIC APPROACH: COMBINED USE OF MDAR AND PROF

Figure 7: OOD accuracy (%) on
PACS (MDAR + PROF)

In this section, we report the effect of using MDAR and PROF si-
multaneously. While PROF was designed for use without an align-
ment term (e.g., MDAR), we tested the effect of combining the two
terms together. We observe that the synergistic method of PROF
and MDAR triggered some differences in the training process.

Regarding the OOD accuracy, the synergistic method marked
Art: 58.96%, Cartoon: 45.86%, Sketch: 64.57%, an average of
56.46% with AlexNet, as seen in Table 1. While the accuracy is
slightly higher than using MDAR alone (56.45%), we view that the
synergistic method does not significantly benefit the OOD perfor-
mance. On the other hand, applying the synergistic method with
a ResNet18 backbone showed a rise in OOD accuracy by a large

16



Under review as a conference paper at ICLR 2024

gap 1. Further research is necessary to provide an understanding of this behavior as no definitive
explanation currently exists, while our hypothesis is that the model architecture may have caused
the phenomenon.

Regarding the mid-train OOD fluctuation, the synergistic method was not able to reduce fluctua-
tions across Art and Cartoon, while reducing the fluctuation in Sketch. (Art: 3.39!4.50, Cartoon:
5.22!5.86, Sketch: 7.23!3.52) Similar to previous experiments, the mid-train OOD fluctuation
was quantified with the variance across the target domain accuracy in K > 5. The mid-train OOD
fluctuation is depicted in Figure 7 (A, C, and S are from PACS and M and MP from MDAR and
MDAR+PROF, the synergistic method.). Our hypothesis is that the two terms may have disrupted
each other, while a clear explanation for this phenomenon remains elusive. We believe that addi-
tional research is needed to produce an effective synergy of both methods.

A.5 STUDY OF HYPERPARAMETERS (CONTINUED)

We explore our method’s sensitivity to hyperparameters. (�PROF): �PROF is the hyperparameter used
for PROF that operates as the balancing weight of the two functions in Equation (4). We begin with
the value in the original paper of Zbontar et al. (2021) with �PROF = 0.005, and an alternate value
1
d

introduced in Tsai et al. (2021) where d is the length of a vector in D (distillation head output
space). We observe that our method is resilient to the switch between two candidate values of �PROF

although we cannot guarantee they are optimal. (�MDAR and �adv): The study on �MDAR and �adv

is processed similar to �PROF. Switching between � = 0.005 and 1
p

posed no notable impact on the
learning process, where p is the length of a vector in P (projection head output space). While we
cannot guarantee an optimal value. (wadv , wcyc, wdiv): We optimize the hyperparameters wadv ,
wcyc, wdiv using grid search. We find that as long as the weight-multiplied loss (wL) is situated on
the (0, 1) range, there is no significant impact on performance.

B IMPLEMENTATION DETAIL

In this section, we report the implementation details of our method.

B.1 MODEL ARCHITECTURE

We report the details of model architectures used in our experiments. All models were built to match
the architecture used in previous studies.

Task Model The task model architecture varies in each experiment. For each experiment, we
report the feature extractor H , including an additional layer (i.e. buffer) used to match the feature
extractor’s output dimension to the oracle’s.

The model used in the PACS experiment is AlexNet (Krizhevsky et al., 2012). The model consists of
5 convolutional layers with channels of {96, 256, 384, 384, 256}, followed by two fully-connected
layers of size 4096 units. The buffer is a 2-layered MLP that maps the output dimension 4096 to
that of the oracle (RegNetY-16GF), which is 3024. Hence, the final output dimension of the feature
extractor is 3024.

The model used in the Corrupted CIFAR-10 experiment is a Wide Residual Network (i.e. WRN)
of width w = 4 and depth 16 (Zagoruyko & Komodakis, 2016). WRN is a model that boosts its
performance by widening the network by a certain factor w. The model consists of 4 network blocks
with channels incrementally increasing as {16, 16w, 32w, 64w}. Specifically, the 4 blocks refer to
an initial convolutional layer, followed by three additional network blocks. We further follow the
original WRN design and set the dropout rate as 0.3. The buffer is a 2-layered MLP that maps
the output dimension 256 to that of the oracle (ResNet50), which is 2048. Hence, the final output
dimension of the feature extractor is 2048.

For the model used in the Digits experiment, please refer to Section 5.1. The architecture consists
of two 5 × 5 convolutional layers, with 64 and 128 channels respectively. Each convolutional layer
is followed by a MaxPooling layer (2 × 2). The network also includes two fully connected layers
with sizes of 1024, 1024 being the final output dimension of the feature extractor. Since we do not
employ oracle for the Digits experiment, a buffer was not added.

17



Under review as a conference paper at ICLR 2024

STN Style-
TransferEncoder Decoder

Figure 8: The illustration of the Generator.

Generator In this section, we describe the generator in detail. While the design of the generator
slightly varies in each experiment, the basic architecture is the same. The generator consists of an
encoder and a decoder, with a spatial transformer network (STN) and a style-transfer module in
between the encoder and the decoder. The four components are placed in the order of Encoder -
STN - Style-Transfer - Decoder.

We begin by illustrating the overall process of how an image is augmented by the generator. First,
the input image is passed through the encoder to get a feature representation vector. The feature
vector is then passed through the STN and the style-transfer module for modification. The modified
vector is then reconstructed via a decoder, returning an augmented image. The mentioned process
is illustrated in Figure 8. In the figure, we depict how each module modifies the input image.

STN is a module that learns to perform spatial transformations on the input (Jaderberg et al., 2015).
During the process, the STN module learns transformation parameters, where the parameters each
define the magnitude of spatial transformations (e.g., rotation, scaling, translation). The STN module
can be inserted at any point in the generator, allowing the generator to selectively transform the data
up to a degree that is label-preserving. We place the STN right after the Encoder, following the
experimental results of the original paper (Jaderberg et al., 2015). In Figure 8, we can see that the
STN performs spatial transformations, creating the modified image at the middle. An advantage of
STN is that no additional requirements are needed for training the module.

The style-transfer module modifies the features of the input image by adjusting the mean and stan-
dard deviation of the image features. This is performed using a normalization technique called
Batch-Instance Normalization (i.e. BIN) (Nam & Kim, 2018). BIN selectively normalizes the fea-
tures of the input image that are of less significance, while preserving features that are important.
Note that this module is a modified version of the AdaIN method introduced in Huang & Belongie
(2017), where we switched the normalization method from Instance Normalization (Ulyanov et al.,
2016) to BIN for effective style transfer.

We share the results of applying these modifications in Figure 9. Whilst previous augmentation
methods (Li et al., 2021; Wang et al., 2021) were limited to manipulating certain attributes (e.g.,
color, stroke), our method further allows spatial manipulations (e.g., shape, location). For instance,
in the right image of Figure 9, we can observe that the images generated using our method displayed
a large variance in shape, position, and color. This modification is inspired by recent studies on
domain shift (Kaur et al., 2022; Wiles et al., 2021), which revealed that domain shift occurs on
a variety of levels. However, an observable limitation is that the STN cannot transform complex
images as in PACS, as small spatial modifications vastly change the semantics of the image. As
depicted in Figure 10, the effect of the spatial modification is limited on PACS images.

Oracle Here, we report the architecture of the oracle. The oracle varies on the type of the ex-
periment, (1) a RegNetY-16GF for the PACS and Office-Home experiment, (2) a ResNet50 for the
corrupted CIFAR-10 experiment.

The RegNetY-16GF is a variant of the RegNet family, a line of models introduced in (Radosavovic
et al., 2020) for image classification. The name of the model indicates its configurations, where the
”Y” indicates the convolution method, and the ”16GF” represents the model’s capacity or complex-
ity. We implement the model, and its model weights using the torchvision (Falbel, 2023) library.
We used the weights pretrained via end-to-end fine-tuning of the original SWAG (Singh et al., 2022)
weights on the ImageNet-1K data (Russakovsky et al., 2014). We then fine-tuned the pretrained
model again with the Photo domain of PACS for 200 epochs, with a learning rate of 1e � 4 using

18



Under review as a conference paper at ICLR 2024

(a) Conventional Style-transfer (b) STN + Style-transfer

Figure 9: The illustrated comparison of the generators.

Figure 10: The illustration of generated images (PACS).

the SGD optimizer and the Cosine Annealing learning rate scheduler, a batch size of 64. For the
Office-Home, we fine-tuned the pretrained model with the Real World domain of Office-Home for
30 epochs, using the SGD optimizer and the Cosine Annealing scheduler, a batch size of 16.

The ResNet50 is a variant of the ResNet family, a series of image classification models introduced in
He et al. (2016). The name of the model indicates its depth, where ”50” marks the number of layers.
We implemented the model and its model weights using the torchvision library. For ResNet50, we
used the weights pretrained with the ImageNet-1K dataset. We finetuned the pretrained ResNet50
with the CIFAR-10 dataset, the source domain of the corrupted CIFAR-10 experiment. In detail, we
trained for 100 fine-tuning epochs, with a learning rate of 1e � 4 with the SDG optimizer and the
Cosine Annealing learning rate scheduler, a batch size of 64.

B.2 MODEL TRAINING

In this section, we elaborate on the details of the training process. We explicitly state the training
hyperparameters (e.g., number of simulated domains (K), number of inner training loops for each
generator, learning rate, the type of the optimizer, learning rate scheduler, and batch size). We further
state the configurations of the projection heads (e.g., projection dimension (Z) of the projection head
P , projection dimension (D) of the distillation head D).

PACS For the PACS experiment, we set K as 20, training each generator with 30 inner loops.
During the first 15 inner loops we train the generator, and stop the training during the last 15 loops.
We manually set the number of epochs by analyzing the training behavior of the generators. We set
the learning rate as 1e� 4, using the Adam optimizer (Kingma & Ba, 2015). The batch size was set
as 64. Regarding the model architecture, both the projection dimension (Z) and the distillation head
projection dimension (D) were set as 1024.

19



Under review as a conference paper at ICLR 2024

Corrupted CIFAR-10 For the Corrupted CIFAR-10 experiment, we set K as 20, and 20 inner
loops. During half (10) of the inner loops, we trained the generator and stopped the training during
the remaining 10 inner loops. We set the learning rate as 1e�4, with the Adam optimizer. The batch
size was set as 256. The projection dimension (Z) and the distillation head projection dimension
(D) were both set as 512.

Digits For the Digits experiment, we set K as 100, with 10 inner loops. Similar to the above
two experiments, we trained the generator for 5 epochs and stopped the training for the other 5.
Furthermore, the learning rate was tuned as 1e � 4, using the Adam optimizer. The batch size was
set as 128. Finally, both the projection dimension (Z) and the distillation head projection dimension
(D) were as 128.

Office-Home For the Office-Home experiment, we set K as 20, training each generator with 30
inner loops. During the first 15 inner loops we train the generator, and halted training for the remain-
ing 15 loops. Similar to other cases, we set the number of epochs by analyzing the training behavior
of the generators. The learning rate was set as 1e�4, using the Adam optimizer. The batch size was
set as 64. Regarding the model architecture, both the projection dimension (Z) and the distillation
head projection dimension (D) were set as 512.

B.3 MODEL PRETRAINING

In this section, we report the information regarding the pretraining process. As mentioned above, we
pretrained our task model with the source domain prior to the main training procedure. We announce
the number of pretraining epochs, the learning rate, the optimizer, the learning rate scheduler, and
the batch size.

PACS We pretrained the AlexNet with the train data of the Photo domain, using the train split
introduced in the original paper (Li et al., 2017). We pretrained the model for 60 epochs, with a
learning rate of 5e � 3 using the SGD optimizer. We further used the Step learning rate scheduler
with a gamma rate (i.e. the strength of the learning rate decay) of 0.5. The batch size was set as 32.

Corrupted CIFAR-10 For the corrupted CIFAR-10 experiment, we pretrained the WRN with the
train split of CIFAR-10. The pretraining epochs was set as 200, with a learning rate of 1e� 1 using
the SGD optimizer. We used the Multi-Step LR scheduler, setting the gamma rate as 2e � 1, with
milestones set as {60, 120, 160}. Hence, every time the training epoch reaches the milestone, the
learning rate was reduced to one-fifth of the previous rate. The batch size was set as 128.

Digits Lastly, for the Digits experiment, we set the number of pretraining epochs as 100, with a
learning rate of 1e� 4 using the Adam optimizer. The batch size was set as 256.

Office-Home We pretrained the ResNet18 with the train split of the Real World domain. We
pretrained the model for 100 epochs, with a learning rate of 1e � 4 using the SGD optimizer. We
used no learning rate scheduler. The batch size was set as 64.

B.4 HYPERPARAMETERS

In this part, we state the hyperparameters used in our experiments.

�PROF �PROF is a balancing coefficient for LPROF, an objective adopting the feature-decorrelation
loss introduced in Zbontar et al. (2021). We tuned �PROF using experimental results of the original
paper and (Tsai et al., 2021). In the original paper, the author reported the optimal value of the
balancing term as 0.005, which remains consistent under varying projection dimensions. We set
this as a starting point for hyperparameter tuning. We find that if �PROF balances the off-diagonal
term (i.e. redundancy reduction term) and the diagonal term (i.e. alignment term) to a similar
degree, no significant differences are observed. Furthermore, switching �PROF to 1

d
⇡ 0.0001 showed

no significant changes to the learning process. Here, d denotes the projection dimension of the
distillation head D (distillation head output space). While we cannot guarantee an optimal value for
�PROF, we set �PROF = 0.005 for our two experiments using PROF.

20



Under review as a conference paper at ICLR 2024

�MDAR,�adv The hyperparameters �MDAR and �adv is used together for adversarial learning, hence
we report the two together. �MDAR was set in a similar way as �PROF. For our experiments, �adv

was set as 0.005. �adv was searched under a fixed value of �MDAR = 0.005. We experimented with
varying values of �adv: {0.005, 0.05, 0.5}, which showed no significant difference to the training
process, while 0.05 showed slightly better results in the validation set of the source domain. Hence,
in our experiments, �adv was set to 0.05. To explicate, generally, Ladv displayed a value approxi-
mately 10 times larger than LMDAR. We believe that this behavior is correlated to 0.05 being a good
value for �adv under a fixed value of �MDAR = 0.005.

All other hyperparameters (e.g., wcyc, wdiv , wadv, wPROF ) are searched with a similar method to Li
et al. (2021). For all experiments, we set wcyc as 20.0, wcyc as 2.0, and wadv as 0.1 in Digits, and
0.02 in PACS and Corrupted CIFAR-10. Finally, wPROF was set as 0.1. The values were tuned such
that the weighted losses (i.e. wL) are situated in a similar range.

C ON DOMAIN GAPS

In previous works, there exist different mentions regarding the domain gap within the experimental
datasets. We begin this section by comparing such views.

There are contradicting views on the domain gap within the PACS dataset, the authors of Wan
et al. (2022) view that the domain gap is significant between the Art domain and the source domain
(Photo), while relatively smaller with the Sketch and Cartoon domain. In contrast, Wang et al. (2021)
viewed that the domain gap is the largest between the source and the Sketch domain, due to its
vastly abstracted shapes. On the contrary, there exists a shared consensus regarding the domain gap
within corrupted CIFAR-10 dataset, where researchers view that the domain gap between the source
(CIFAR-10) and the target (corruption datasets) is defined by the severity level of the corruption (Li
et al., 2021; Qiao et al., 2020; Wang et al., 2021; Wan et al., 2022). Concerning the Digits dataset,
the authors of Qiao et al. (2020); Wang et al. (2021); Li et al. (2021) view that USPS displays the
smallest domain gap with the source domain (MNIST). This is very similar to the view of Wan et al.
(2022) that USPS and SYNDIGIT datasets are closer to the source, while there is a large domain
gap between the MNIST-M and the source domain.

In our paper, we used a different measure to observe the domain gap between datasets: the OOD
classification accuracy on unseen domains. Our view on domain discrepancy is that it can be indi-
rectly observed through the downstream task performance. This is closely tied to realistic settings,
where task performance is the leading motive behind the study of sDG. The method is simple: using
a fixed model, we train the model with the train split of the source domain. Then, using the trained
model, we test the classification accuracy on unseen domains. We reported the results in Section 5.2.
Using the baseline OOD accuracy as a measure for domain gap matches the view of many existing
works, while differences exist. For instance, USPS displays the highest OOD accuracy, matching
the view of previous works that USPS shows the smallest discrepancy with the source (Qiao et al.,
2020; Wang et al., 2021; Li et al., 2021; Wan et al., 2022). In PACS, the Sketch domain displays the
lowest baseline OOD accuracy, which is in line with the view of some previous works (Wang et al.,
2021), while different from the view of Wan et al. (2022).

D ON ORACLES

In this section, we discuss the implementation of the oracle using pretrained models. Using pre-
trained models for OOD generalization is not an entirely novel idea (Li et al., 2023; Cha et al.,
2022), but first for the task of sDG.

We selected the pretrained RegNetY-16GF as an oracle for PACS. In Cha et al. (2022), a pretrained
RegNetY-16GF model displayed high MI with the true oracle, a model that is trained on all source
and target domains). The authors reported that the true oracle displayed an average validation accu-
racy of 98.4% on all PACS domains.

Similar to this, our implementation of the oracle with a pretrained RegNetY-16GF finetuned on the
source domain (i.e. Photo in PACS, MNIST in Digits, Real World in Office-Home) displayed high
validation accuracies across all target domains. To be specific, in PACS, the finetuned RegNetY-
16GF marked 75.16%, 75.30%, 69.00% on Art, Cartoon, Sketch, and an average validation accuracy

21



Under review as a conference paper at ICLR 2024

of 73.15. While the average accuracy is lower than the true oracle in Cha et al. (2022), this is an
expected behavior as our oracle used only the Photo domain, while the true oracle in (Cha et al.,
2022) utilized all four domains of PACS.

However, we empirically confirm that the RegNetY-16GF is not universally available for use as the
oracle. For instance, using the RegNetY-16GF to implement the oracle for the Corrupted CIFAR-10
experiment was not satisfactory. When finetuned with the source domain (i.e. CIFAR-10), RegNetY-
16GF marked low validation accuracy in the target domain with an average of 60.65%. This is
similar for the implementation with ResNet50, which marked an average accuracy of 61.25% on
the target domains, performing worse than the task model. We believe that this difference is derived
from the difference between the two datasets. For instance, PACS is a collection of images without
any distortion, while the Corrupted CIFAR-10 is a dataset generated by vastly distorting CIFAR-10.
As the RegNetY-16GF is not specifically trained to withstand distortions, its performance decrease
in Corrupted CIFAR-10 is understandable. Similarly, the RegNetY-16GF does not fit well with the
Digits benchmark due to the large gap between the pretrained dataset of the RegNetY-16GF and the
Digit classification datasets.

This issue can be explained with the work of Wolpert & Macready (1997), where the authors demon-
strate that there exists a trade-off between a model’s performance on a certain task and the perfor-
mance on all remaining tasks. We believe this to be a crucial limitation of our method, and aspire to
investigate further.

22


	Introduction
	Preliminaries
	Limitations of Augmentation for sDG
	Leveraging Pretrained Models to Learn Domain Invariance
	Oracle Regularizer
	Multi-Domain Alignment with Redundancy Reduction
	Learnable Domain Shift Simulators

	Experiment
	Experimental Settings
	Experimental Results and Analysis

	Conclusion
	Experimental Results
	Experiments on PACS (Continued)
	Experimental Results on Digits (Continued)
	Experimental Results on Office-Home (Continued)
	A Synergistic Approach: Combined use of mdar and prof
	Study of Hyperparameters (Continued)

	Implementation Detail
	Model Architecture
	Model Training
	Model Pretraining
	Hyperparameters

	On Domain Gaps
	On Oracles

