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Text-prompt Camouflaged Instance Segmentation with
Graduated Camouflage Learning

Anonymous Authors

ABSTRACT
Camouflaged instance segmentation (CIS) aims to seamlessly de-
tect and segment objects blending with their surroundings. While
existing CIS methods rely heavily on fully-supervised training with
massive precisely annotated data, consuming considerable annota-
tion efforts yet struggling to segment highly camouflaged objects
accurately. Despite their visual similarity to the background, camou-
flaged objects differ semantically. Since text associated with images
offers explicit semantic cues to underscore this difference, in this
paper we propose a novel approach: the first Text-Prompt based
weakly-supervised camouflaged instance segmentation method
named TPNet, leveraging semantic distinctions for effective seg-
mentation. Specifically, TPNet operates in two stages: initiating
with the generation of pseudo masks followed by a self-training pro-
cess. In the pseudo mask generation stage, we innovatively align
text prompts with images using a pre-training language-image
model to obtain region proposals containing camouflaged instances
and specific text prompt. Additionally, a Semantic-Spatial Iterative
Fusion module is ingeniously designed to assimilate spatial infor-
mation with semantic insights, iteratively refining pseudo mask. In
the following stage, we employ Graduated Camouflage Learning, a
straightforward self-training optimization strategy that evaluates
camouflage levels to sequence training from simple to complex
images, facilitating for an effective learning gradient. Through the
collaboration of the dual phases, our method offers a comprehen-
sive experiment on two common benchmark and demonstrates a
significant advancement, delivering a novel solution that bridges
the gap between weak-supervised and high camouflaged instance
segmentation.

CCS CONCEPTS
• Computing methodologies → Interest point and salient
region detections.

KEYWORDS
camouflaged instance segmentation, weakly-supervised, text-prompt

1 INTRODUCTION
Camouflaged instance segmentation (CIS) is a task focused on seam-
lessly detecting and segmenting objects blending with surroundings
as instances. The remarkable resemblance of camouflaged objects
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Figure 1: (a) denotes the original image containing camou-
flaged objects and (b) signifies the ground truth.Both unsu-
pervisedmethodCutLer [41] (c) and fully-supervisedmethod
Mask R-CNN [16] (d) encounter difficulties in distinguish-
ing foreground and background in camouflaged images with
similar appearances. To overcome this challenge, we intro-
duce TPNet, a novel approach that leverages text prompts
to integrate semantic information and employs graduated
camouflage learning for accurate weakly-supervised camou-
flaged instance segmentation.

to their surroundings renders the task significantly more difficult
compared to generic instance segmentation tasks. Stimulating sig-
nificant interest within the computer vision community, CIS proves
valuable across numerous domains, such as wildlife protection
[29, 45], medical image segmentation [14, 15, 22] and industrial
defect detection [27].

Recently, benefiting from the strong perceptual capability of deep
neural networks, especially the Transformer architecture [39], CIS
[11, 26, 31] has made significant progress. However, these methods
are all based on fully-supervised learning, which poses challenges
due to the difficulty and labor-intensive nature of annotating cam-
ouflage images with high precision. In fact, the adoption of weakly-
supervised methods to avoid the high costs associated with massive
precise annotation required by full supervision has become a trend.
This way has been applied in various tasks, such as object detection
[43, 48], image segmentation [33], video object segmentation [47],
achieving significant progress.

This leads us to consider: Can we explore CIS tasks under weak
supervision? Such an approach could significantly alleviate the
challenge of accurately labeling camouflage data, which would be
of profound significance. However, even fully-supervised trained
with precisely labeled data still cannot accurately segment camou-
flaged objects in CIS. For example, the bird concealed within the

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

forest in the first row of Figure. 1 is not effectively segmented by
Mask R-CNN [16], as its color closely resembles that of the sur-
rounding leaves. Not to mention the disappointing performance
of unsupervised methods like Cutler [41]. Due to the lack of prior
works conducted under weakly-supervised setting in CIS, therefore
it is a significant challenge to introduce appropriate weak super-
vision to accurately differentiate foreground and background and
thus achieve accurate camouflaged instance segmentation.

To this end, we carefully observe the characteristics of the cam-
ouflage image itself and then realize that despite the strong resem-
blance between foreground and background, they differ semanti-
cally. As shown in the second row of Figure. 1, although the tail of
the snail bears a remarkable resemblance in color and texture to
the background beach, it remains clearly distinguishable as a sepa-
rate semantic instance. Notably, text-prompt have been effectively
employed as semantic weak supervision in tasks like camouflaged
object detection [18] and open-vocabulary object detection [25],
demonstrating remarkable capabilities. These tasks further confirm
the feasibility and effectiveness of incorporating semantic weak
supervision. Hence, in this paper text-prompt is utilized as weak
supervison for the first time to explore CIS.

Besides, some weakly-supervised works in other tasks often uti-
lize self-training methods to refine initial pseudo-labels and obtain
final results. These self-training approaches often treat the training
data as if it is unordered, implying that samples are introduced
into the training process without regard to their difficulty or com-
plexity. However, related researchs [3, 40] on curriculum learning
suggest that training with unordered samples does not fully exploit
the training potential, while ordered training dataset may enhance
model capacity and endow it with stronger generalization ability.
Due to the unique characteristics of camouflage images compared
to other conventional images, it is feasible to evaluate the camou-
flage level for each image. Inspired by this, optimizing self-training
methods based on graduating the camouflage levels is another key
exploration in this paper.

In response to the aforementioned explorations, we propose the
first text-prompt based weakly-supervised camouflage instance
segmentation framework named TPNet, aimed at alleviating the
demand for instance-level pixel annotation. TPNet employs cam-
ouflaged text prompts together with images to simultaneously uti-
lize semantic and spatial information. This framework adopts a
two-stage approach, initially generating pseudo mask, followed by
self-training.

Firstly, during the pseudo mask generation stage, we aim to
generate pseudo masks for camouflaged images based on a given
text-prompt. We identify camouflaged regions in the image using a
existing object detection model and create a series of prompts cover-
ing camouflaged categories. Additionally, we align the text-prompt
with these instance regions, filtering and pairing them based on
cosine similarity. Following this, a Semantic-Spatial Iterative Fu-
sion (SSIF) module is innovatively employed to iteratively refine
the pseudo mask. This module integrates semantic and spatial in-
formation guided by a carefully designed mask evaluator. In the
second stage, we introduce a novel self-training strategy named
Graduated Camouflage Learning (GCL). Comprising Camouflage
Measurer and Camouflage Scheduler, GCL is devised to utilize the
distinctive features of camouflage images to enhance the model’s

capabilities. Initially, the Camouflage Measurer evaluates the level
of camouflage in images and utilizes this evaluation as the crite-
rion for sorting training samples. Subsequently, the Camouflage
Scheduler prioritizes images with lower levels of camouflage during
training. As training progresses, more complex images with higher
levels of camouflage are gradually incorporated into the training.
Through this optimized training strategy, the model can acquire
the ability to segment and learn from highly camouflaged samples
with low gradient after simple samples with high gradient.

Our major contributions can be summarized as follows:
• We introduce TPNet, the first text-prompt based weakly-
supervised framework for camouflaged instance segmenta-
tion, which significantly reduces the annotation burden of
image data by leveraging semantic understanding for effec-
tive segmentation.

• We propose a self-training approach, named Graduated Cam-
ouflage Learning (GCL). GCL prioritizes the mastery of sim-
ple image features before addressing the challenge of com-
plex camouflage, thereby significantly enhancing themodel’s
accuracy and robustness in handling camouflaged scenes.

• We present Semantic-Spatial Iterative Fusion, a groundbreak-
ing innovation that pioneers the seamless integration of se-
mantic understanding with spatial context. SSIF fuses and
refines the pseudo mask through a effective iterative process,
yielding refined segmentation results.

• Experimental results indicate that our TPNet outperforms
all existing unsupervised and point-supervised instance seg-
mentation models on the CIS dataset, achieving performance
comparable to some fully-supervised instance segmentation
approaches.

2 RELATE WORK
2.1 Camouflaged Instance Segmentation
Although Camouflaged Instance Segmentation (CIS) has garnered
increasing attention in recent years, it remains a challenging task
due to the intricate nature of identifying camouflaged objects in
complex backgrounds. Le et al. [20] first introduced the concept
of the CIS task and conducted instance-level annotations on the
available CAMO dataset, laying the groundwork for CIS research.
Pei et al. [31] utilized transformer to address the CIS problem, lever-
aging its powerful global information processing capabilities to
segment camouflaged objects. Building on the work of predeces-
sors, Luo et al. [26] introduced the concept of frequency analysis
from the task of camouflaged object detection [9, 46] into CIS, utiliz-
ing fourier transform to de-camouflaging. Inspired by query-based
transformers [5, 51], Dong et al. [11] propose a unified query-based
multi-task learning framework for camouflaged instance segmen-
tation. This framework, by integrating learning objectives from
different tasks, further enhance the model’s segmentation perfor-
mance.

Despite the significant achievements of fully-supervisedmethods
in camouflaged instance segmentation (CIS), these methods rely on
time-consuming fully-supervised annotations. In particular, anno-
tating camouflaged images becomes notably harder when the fore-
ground and background share striking similarities. However, there
has been no exploration of CIS beyond fully-supervisedmethods. To
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tackle this challenge, our work is the first to explore accurately seg-
menting camouflaged images under a non-fully-supervised frame-
work, effectively reducing the exorbitant costs associated with
annotating camouflaged images.

2.2 Unsupervised and Weakly-supervised
Instance Segmentation

Although there hasn’t been any non-fully supervised work on CIS
tasks yet, the field of general instance segmentation has seen con-
siderable research. Especially since the advent of deep learning,
significant progress has been made. In the unsupervised instance
segmentation, DINO [6] has demonstrated that salient features can
be acquired through self-supervised learning. Building upon this
notion, recent methods such as LOST [36] and TokenCut [44] uti-
lize self-supervised ViT [12] features to segment individual salient
objects within images, employing graph-based techniques that
leverage DINO’s patch features. In weakly-supervised instance seg-
mentation, various types of supervision exist. For instance, some
methods [8, 37] employ box supervision, where specialized loss
functions are designed to achieve end-to-end instance segmentation.
Others [7] utilize point supervision, which, in addition to augment
bounding box guidance by introducing a selection of random points,
for instance, 3, 5, or 10 points, to refine the prediction of the final
mask. Although these methods [38, 41, 42] have been successful in
general instance segmentation tasks, their performance in camou-
flaged instance segmentation tasks is disappointing because of the
high similarity between camouflaged objects and their backgrounds.
Recently, some research [18, 49] has delved into unsupervised cam-
ouflaged object detection, making significant achievements within
the field of camouflaged object detection . However, there has been
a lack of research focusing on weakly-supervised tasks in CIS. Due
to the fundamental differences and distinct requirements between
CIS and COD tasks, the methods developed for COD cannot be
directly applied to CIS tasks.

In response to these challenges, we introduce the first text-
prompt based camouflaged instance segmentationmodel. Ourmodel
does not depend on time-consuming, pixel-level annotations; In-
stead, it utilizes text prompts from language model as weak supervi-
sion. This unique approach leverages rich semantic information to
guide camouflaged instance segmentation, overcoming limitations
often encountered by general unsupervised methods when dealing
with complex scenes.

3 METHOD
We introduce TPNet, a novel text-prompt based weakly-supervised
framework for camouflaged instance segmentation. The framework
primarily consists of two stages: pseudo mask generation and grad-
uated camouflage learning. Firstly, we detail the method’s overview
(Sec 3.1). Furthermore, we specifically introduce the Semantic-
Spatial Iterative Fusion module, a novel component of the first
stage that effectively integrates semantic and spatial information
to generate refined pseudo masks (Sec 3.2). Additionally, we pro-
vide an in-depth discussion on the Graduated Camouflage Learning
method, which is in the second stage and designed to optimize the
self-training phase of our model, enabling it to handle the complex-
ity of camouflaged images (Sec 3.3).

3.1 Overview
Our proposed framework is illustrated in Figure. 2. It primarily
consists of two stages: pseudo mask generation and graduated
camouflage learning.

In the first stage, given a camouflaged image 𝐼 ∈ R𝐻×𝑊 ×3

and a specific text-prompt 𝑃𝑠 : “a photo of camouflaged objects”,
our framework aims to generate pseudo mask 𝑀 ∈ R𝐻×𝑊 ×1. In
the image branch, we discover camouflaged regions with a object
detection model based on DINO [2] to obtain region proposals
R = {𝑟1, 𝑟2, ..., 𝑟𝑛}. To capture more camouflaged instances, we also
treat the entire image as a region proposal for prediction. In the text
branch, we firstly feed a singular, predefined prompt 𝑃𝑠 into GPT [1],
which produces a spectrum of prompts 𝑃 covering diverse camou-
flaged categories. Then we employ CLIP [32] to align text-prompts
and image regions by encoding the regions and text-prompts and
compute the cosine similarity metric to filter the region-text pairs.

After obtaining region-text pairs, we innovatively design a Semantic-
Spatial Iterative Fusion module to generate the final pesudo mask.
Specifically, we employ a Semantic Mask Generator and a Spatial
Mask Generator to produce masks that correspond to semantic
and spatial features, respectively. Then we iteratively integrate
these two kinds of masks to adequately fuse semantic and spatial
information and progressively improve the quality of the pseudo
mask.

In the second stage, our framework propose a Graduated Cam-
ouflage Learning mechanism to train an instance segmentation
model based on camouflage level. To clarify, we firstly design a
Camouflage Measurer to encode camouflaged images and prede-
fined camouflage level text-prompt, and match each image with
camouflage level. After that, we construct a Camouflage Scheduler
for graduated training, which gradually increases the camouflage
level of the training samples and decreases the gradient of the train-
ing loss. Under the collaborative effort of these two stages, our
framework leads to the generation of refined CIS results.

3.2 Semantic-Spatial Iterative Fusion
In previous studies on unsupervised or weakly-supervised learn-
ing, researchers [24, 44] often relied on methods such as spectral
decomposition [35] or class activation mapping (CAM) [50] for
image segmentation. However, these methods have limitations. For
example, spectral decomposition primarily uses spatial information
and may not fully utilize semantic cues for segmentation. Similarly,
while CAM generates heatmap results to identify relevant image
regions, it may not capture fine spatial details effectively. Although
a vanilla idea is to simply combine the two kinds of masks using
a weighted approach, this method may compromise the quality of
generated masks. We will compare this straightforward integration
approach in the experiment section.

To this end, we propose a Semantic-Spatial Iterative Fusion (SSIF)
module to adequately integrate generated semantic and spatial
masks wit CAM and spectral decomposition respectively. As shown
in the Figure. 2, SSIF consists of three major components: Semantic
Mask Generator, Spatial Mask Generator and Iterative Mask Fusion.
SSIF begins by using the Semantic Mask Generator and Spatial
Mask Generator to create masks from the image. These masks are
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Figure 2: An overview of our proposed TPNet, supervised by camouflage text-prompt. Our framework has two main stages:
pseudo mask generation and graduated camouflage learning. In the first stage, using DINO for object detection and GPT for
prompt generation, we align text-prompts with image regions to create pseudo masks, refined iteratively by SSIF. In the second
stage, we adopt a Graduated Camouflage Learning mechanism to train an instance segmentation model, based on camouflage
level.

Figure 3: Visualizing the evaluation of different annotations
in the training dataset, where each scatter represents an an-
notation result. It can be observed that the lower the evalu-
ation score, the better the segmentation result matches the
instance. (a) shows the evaluation results of the CutLer algo-
rithm ,(b) illustrates our results and (c) presents the evalua-
tion results of ground truth annotations. The x-axis repre-
sents energymetric of angular direction on polar coordinates,
and the y-axis represents energy metric of radial direction
on polar coordinates.

then iteratively refined by the Iterative Mask Fusion component to
produce accurate pseudo labels.
Semantic Mask Generator. In order to utilize the text prompt,
Semantic Mask Generator builds upon the foundation of Class

Activation Mapping (CAM) [50], a technique widely used in such
tasks to generate heatmaps that highlight regions of interest in
an image. It employs feature maps from the final convolutional
layer to generate a heatmap. GradCAM [34], on the other hand,
improves upon CAMby replacing the weights of the fully connected
layer after the Global Average Pooling with gradients to weight the
activation map, resulting in a more refined class activation map.
Therefore, GradCAM can be effectively employed within the CLIP
to generate class activation maps for camouflage image prompts,
allowing for the precise localization of object categories within the
Vision Transformer model [12].

Given camouflaged region 𝑟 ∈ Rℎ×𝑤×3 within single instance
and foreground class text prompt 𝑓 , we adopt GradCAM to distin-
guish foreground class and background class, which can be formu-
lated as:

𝑀𝑠𝑒
𝑖 𝑗 = RELU(

∑︁
𝑘

𝑤
𝑓

𝑘
𝐴𝑘
𝑖 𝑗 ), (1)

where𝑤 𝑓

𝑘
denotes the weight of foreground class for k-th feature

map, 𝐴𝑘
𝑖 𝑗
denotes the activation value for the k-th feature map and

𝑀𝑠𝑒 denotes the semantic mask and RELU is an activation function
that equal to𝑚𝑎𝑥 (0, 𝑥).
Spatial Mask Generator.We employ DINO and NCut to facilitate
the generation of spatial masks. Ncut [35] is a graph-based image
segmentation algorithm that utilizes the spectral decomposition
of a graph to partition an image into regions of similarity. This is
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achieved by solving a generalized eigenvalue system to find the
eigenvector 𝑥 corresponding to the second smallest eigenvalue 𝜆

(𝐷 −𝑊 )𝑥 = 𝜆𝐷𝑥, (2)

where𝑊 ∈ 𝑁 × 𝑁 is a symmetrical matrix and 𝐷 ∈ 𝑁 × 𝑁 is a
diagonal matrix derived from𝑊 . Firstly, we obtain patches yielded
by DINO for all regions. Next, we utilize the key feature of each
patch to calculate the inter-patch affinity 𝑊 across all patches
within the DINO feature space. This is achieved by solving Eq. 2 to
find the second smallest eigenvector 𝑥 . With a threshold value, we
obtain the spatial mask𝑀𝑠𝑝 using𝑀𝑠𝑝𝑖 𝑗 = max(0, sign(𝑀𝑠𝑝𝑖 𝑗−𝑥)).
IterativeMask Fusion.After obtaining semantic and spatial masks,
we iteratively fuse these two kinds of masks and refine the gener-
ated pesudo mask based on the evaluation of fused masks, rather
than simply adding them together. Firstly, we evaluate the fused
masks on semantic and spatial aspects.

In the semantic aspect, we employ the CLIP model to evaluate
the similarity between foreground and background images with the
camouflage category text prompt individually. Then, we calculate
the ratio between these similarity scores. The entire process can be
formulated as:

𝐸𝑠𝑒 =
𝑆𝐼𝑀 (𝑥 𝑓

𝐼
, 𝑥𝑇 )

𝑆𝐼𝑀 (𝑥𝑏
𝐼
, 𝑥𝑇 )

, (3)

where 𝑥 𝑓
𝐼
and 𝑥𝑏

𝐼
is the feature of the foreground and background

mask from image encoder, 𝑥𝑇 denotes the feature of camouflaged
category text-prompt from text encoder, and 𝑆𝐼𝑀 denotes the cosine
similarity function.

In the spatial aspect, we exploit frequency features to evaluate
the spatial quality of fused masks. Despite the strong resemblance
between camouflaged objects and the background, disparities in
energy distribution exist in the frequency domain.

To visualize the energy distribution across different frequency
domains, we conducted an analysis and present the results in Fig. 3.
Each point corresponds to a pair of values representing the variance
of energy distribution along various frequency axes, with lower
values indicating a more balanced distribution. The scatter plot re-
veals clear distinctions between the ground truth and coarse masks
. As shown in Figure. 3 (c), the ground truth, labeled with smaller
values on the plot, demonstrate a uniform energy spread, while
the coarse masks in Figure. 3 (a) exhibit higher values, pointing to
a less balanced distribution. This leads us to conjecture that fully
segmented instances present a balanced energy distribution, while
incomplete segmentation of camouflaged instances may result in
uneven energy distribution, especially where partially disguised
regions intersect with the background. Therefore, leveraging fre-
quency features may enable the recognition of subtle differences
in spatial quality. In this paper, we introduce Directional Energy
Distribution metric 𝐸𝐷𝐸 ∈ [0, 1] and Concentric Circle Energy
metric 𝐸𝐶𝐶𝐸 ∈ [0, 1]. These metric respectively calculate the ratio
of energy distribution along angular and radial directions on polar
coordinates in the frequency domain of the original image 𝑜 and
the foreground 𝑓 as follows:

𝐸𝐶𝐶𝐸 =

ln(∑𝑀
𝑗=1

(
𝐸
𝑓

𝑗
− 𝐸 𝑓

)2
)

ln(∑𝑀
𝑗=1

(
𝐸𝑜
𝑗
− 𝐸𝑜

)2
)
, 𝐸𝐷𝐸 =

ln(∑𝑁
𝑖=1

(
𝐸
𝑓

𝑖
− 𝐸 𝑓

)2
)

ln(∑𝑀
𝑖=1

(
𝐸𝑜
𝑗
− 𝐸𝑜

)2
)
, (4)

where𝑀 and 𝑁 denote the total number of energy values measured
along the radial and angle direction respectively, 𝐸 𝑗 and 𝐸𝑖 denote
the energy values along angular and radial directions on polar
coordinates in the frequency domain, and 𝐸 represents the average
energy value. The mask evaluation in spatial aspect is composed of
two evaluations as follows:

𝐸𝑠𝑝 = 𝛽 · 𝐸𝐶𝐶𝐸 + (1 − 𝛽) · 𝐸𝐷𝐸 , (5)

where 𝛽 is utilized to balance the contributions of the two evalua-
tion metrics. Guided by mask evaluation results in semantic and
spatial aspects, we iteratively fuse two kinds of masks and generate
the final pseudo masks. Secondly, the evaluation metrics 𝐸𝑠𝑒 and
𝐸𝑠𝑝 directly influence the weight of semantic mask and spatial mask
during the fusion,. Higher metrics indicate better quality in the cor-
responding masks, resulting in increased weights. Specifically, we
first merge the initial masks generated by spectral decomposition
and CAM with fixed weight. In each iteration, we use momentum
weighted iterative fusion to update the pseudo mask guided by 𝐸𝑠𝑒
and 𝐸𝑠𝑝 . The whole updating process can be formulated as:

𝑊 𝑡+1
𝑠𝑒 = (1 − 𝛼) ·𝑊 𝑡

𝑠𝑒 + 𝛼 · 𝐸𝑠𝑒 , (6)

𝑊 𝑡+1
𝑠𝑝 = (1 − 𝛼) ·𝑊 𝑡

𝑠𝑝 + 𝛼 · 𝐸𝑠𝑝 , (7)

𝑀𝑡+1 =𝑊 𝑡+1
𝑠𝑝 ·𝑀𝑠𝑝 +𝑊 𝑡+1

𝑠𝑒 ·𝑀𝑠𝑒 , (8)

where𝑊 𝑡+1
𝑠𝑒 and𝑊 𝑡+1

𝑠𝑝 denote weight for the semantic and spatial
mask respectively in the next iteration. 𝛼 denotes momentum pa-
rameter controlling the influence of previous iterations’ results on
the current iteration.𝑀𝑡+1 mean the pseudo mask generated in the
iteration 𝑡 + 1, and this iterative process is carried out three times
to achieve a significantly refined mask.

3.3 Graduated Camouflage Learning
It is crucial to note that images with varying level of camouflage
within the same dataset exhibit different levels of camouflage. Even
for the same semantic instance, the level of camouflage can sig-
nificantly differ as a function of scene complexity. This variation
presents a challenge for the first stage of pseudo mask generation,
where the quality of the masks is directly impacted by the degree
of camouflage. As illustrated in Fig. 4, image (a) shows a highly
camouflaged image where the cat is extremely difficult to discern,
resulting in a pseudo mask that poorly captures the object. In con-
trast, image (f) shows a cat that is not well camouflaged, resulting
in a pseudo mask that is comparatively more accurate and easier
to generate. In other words, as the camouflage level increases, the
difficulty of achieving precise segmentation rises, and the quality
of the pseudo masks correspondingly declines.

If these less refined pseudo masks from the first stage were to
be directly utilized in the typical self-supervised training setup,
they would not fully exploit the potential of the data, potentially
leading to suboptimal model performance. This insight has been
supported by previous research [3], highlighting the need for a
more sophisticated training approach.

Inspired by the human learning process and curriculum learning
[3, 40], we propose a graduated camouflage learning mechanism to
train an instance segmentation model based on camouflage level,
which can acquire the ability to segment and learn from highly
camouflaged samples after learning from simple samples. The core
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of our proposed mechanism is to gradually introduce more challeng-
ing camouflage samples for training once the model is proficient in
handling simple samples. This ensures that more difficult samples
are introduced to the model only after it has acquired sufficient
foundational knowledge. This graduated learning mechanism can
help the model better adapt to various degrees of camouflage and
improve its performance in different camouflaged situations. To this
end, we design twomodules: CamouflageMeasurer and Camouflage
Scheduler for Graduated Camouflage Learning.
Camouflage Measurer.While prior works on camouflaged object
detection [19, 21] have conducted analyses on the degree of cam-
ouflage, they all rely on pixel-level annotations. To quantify the
level of image camouflage without mask, we ingeniously propose
the Camouflage Measurer, which use CLIP [32] to measure the
level of camouflage. We empirically design 6 different formats of
CLIP prompts 𝑃𝑐 with GPT [1], each representing a different level
of quantization. For each image in the camouflaged datasets, we
employ CLIP to embed it and compute its similarity scores with
each prompt. Subsequently, by identifying the prompt associated
with the highest similarity score, we confirm the camouflage level
of the image. Formally, this process is represented as:

𝐿(𝐼 ) =
𝑁∑︁
𝑖=1

𝜔𝑖 · 𝑆𝐼𝑀 (𝐼 , 𝑃𝑖𝑐 ), (9)

where 𝜔𝑖 denotes the weight associated with the similarity prompt,
and 𝑆𝐼𝑀 (𝐼 , 𝑃𝑖𝑐 ) denotes the similarity between the image 𝐼 and the
prompt 𝑃𝑖𝑐 .

Figure 4: These six images all depict the same category - a cat,
yet with varying level of background camouflage. The images
are accompanied by pseudomasks generated in the first stage.
From (a) to (e), the cat’s level of camouflage progressively
intensifies, with (a) being nearly imperceptible. Noting that
as the camouflage level increases, the accuracy of the mask
decreases.

Camouflage Scheduler. As shown in Figure. 2, the training frame-
work details the workflow of the Camouflage Scheduler. The camou-
flage levels of all samples are evaluated by the CamouflageMeasurer,

and then the samples are sorted in descending order of camouflage
level. In the initial stages of training, priority is given to selecting
samples with lower camouflage levels, specifically the "easily camo
subset and pseudo mask" and "slightly camo subset and pseudo
mask", allowing the model to begin learning from easier camou-
flage instances. For each training batch, the training gradients are
adjusted based on the camouflage level of the samples in the batch.
Lower camouflage instances are emphasized by receiving higher
gradients by increasing learning rate, highlighting the learning of
their features. Conversely, higher camouflage instances are allo-
cated lower gradients to mitigate the potential negative impact of
inaccuracies in the masks. The loss function can be formulated as:

L𝑐𝑎𝑚𝑜 = 𝐿(𝐼 ) · L𝑜𝑟𝑖 , (10)

where 𝐼 denotes the camouflaged image, 𝐿 denotes the level evalu-
ated by Camouflage Measurer and L𝑜𝑟𝑖 denotes original loss result.

As training progresses, the camouflage scheduler gradually ad-
justs the camouflage levels of samples in the training batches. More
complex and highly camouflaged samples, such as those in the
"highly camouflaged subset and pseudo mask", are progressively
introduced, enabling the model to adapt to increasingly complex
camouflage instance. The systematic increase in training with more
challenging samples, ensures that the complexity of the learning
task gradually escalates, thereby enabling the model to effectively
adapt to a broader range of camouflage scenarios.

4 EXPERIMENTS
4.1 Implementation Details
We utilize four NVIDIA RTX 2080ti GPUs for all experiments and
implemented our model using PyTorch[30]. For pseudo mask gen-
eration stage, we employ the ViT-B-8 DINO [6] in spatial mask
generator and CLIP pre-trained models ViT-B-16 [32] in sematic
mask generator. The images are resized to 360 × 360 pixels for
mask generation. In the self-training process of second stage, we
employ Cascade R-CNN [4] for all experiments. To ensure fairness
in comparisons, we utilize a ResNet-50 backbone [17] initialized
with pre-trained weights from ImageNet [10]. The self-training
models are trained for 30,000 iterations with batch size of 8, while
the maximum learning rate was set to 2.5 × 10−4 and then decays
by the step strategy.

4.2 Datasets and Evaluation Metrics
Dataset. Since CIS is an emerging task and labeling data for it is
challenging, datasets for this task are relatively limited. Currently,
there are only two publicly available benchmark datasets, COD10K
[13] and NC4K [28], which offer instance-level annotations for CIS
training. COD10K comprises 5066 images, while NC4K provides
instance-level annotations for 4121 images. In this research, we
follow the methods and procedures detailed in OSFormer [31] and
utilize the COD10K training data as unlabeled images to generate
pseudo masks. Additionally, we evaluate our model’s performance
on both the COD10K and NC4K test sets.
Evaluation metrics. We adopt the evaluation metrics of AP50,
AP75, and AP scores [23], employing the same settings as used in
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Table 1: Quantitative comparison of our proposed TPNet with state-of-the-art full supervision, point supervision and unsuper-
vision on two benchmark datasets including COD10K and NC4K. The number appended to point-supervised methods typically
represents the number of random points utilized.

Method Supervision Origin COD10K NC4K

AP AP50 AP75 AP AP50 AP75

Mask R-CNN[16] fully-supervised CVPR’2017 25.0 55.5 20.4 27.7 58.6 22.7
Cascade R-CNN[4] fully-supervised CVPR’2018 25.3 56.1 21.3 29.5 60.8 24.8
OSFormer[31] fully-supervised ECCV’2023 41.0 71.1 40.8 42.5 72.5 42.3
UQFormer[11] fully-supervised MM’2023 45.2 71.6 46.6 47.2 74.2 49.2
DCNet[26] fully-supervised CVPR’2023 45.3 70.7 47.5 52.8 77.1 56.5

PointSup(5)[7] point-supervised CVPR’2022 17.4 43.8 11.4 17.9 45.7 11.1
PointSup(10)[7] point-supervised CVPR’2022 17.9 44.1 11.9 19.1 47.6 11.6

Tokencut[44] unsupervised TPAMI’2023 2.6 6.5 2.0 3.5 8.3 2.5
Freesolo[42] unsupervised CVPR’2022 12.9 37.9 6.4 16.3 46.2 7.9
Cutler[41] unsupervised CVPR’2023 11.7 29.1 7.3 15.5 37.9 10.5

TPNet text-prompt ours 18.3 41.8 14.3 21.4 48.3 16.6

Table 2: Ablation study of each component in TPNet on camouflage instance segmentaion.

Method’s component settings on camouflaged instance segmentation
COD10K NC4K

No. Baseline Text prompt Semantic-Spatial Iterative Fusion Graduated Camouflage Learning AP AP50 AP75 AP AP50 AP75
① ✓ 11.7 29.1 7.3 15.5 37.9 10.5
② ✓ ✓ 16.3 37.2 12.0 18.8 43.7 14.0
③ ✓ ✓ ✓ 16.1 37.2 11.9 19.1 44.4 14.1
④ ✓ ✓ ✓ 18.2 41.7 14 21.0 48.3 15.3
⑤ ✓ ✓ ✓ ✓ 18.3 41.8 14.3 21.4 48.3 16.6

OSFormer [31] to evaluate the segmentation results. These met-
rics is used to evaluate the performance of a model at different
Intersection over Union (IoU) thresholds.

4.3 Experiment Results and Analysis
To validate the effectiveness of TPNet, we compare various super-
vision settings for camouflaged instance segmentation, including
unsupervised, point supervision, and full supervision, as depicted in
Table. 1. The considered methods encompass general unsupervised
approaches utilizing Tokencut [44], FreeSolo [42] and Cutler [41];
general point-supervised method employing PointSup [7]; fully-
supervised methods such as Mask R-CNN[16], cascade R-CNN [4],
OSFormer [31], UQFormer [11] and DCNet [26]; and our proposed
weakly-supervised approach TPNet. All methods or results are
obtained from official downloads.

Based on the experimental results presented in Table. 1, our
method, TPNet, comprehensively outperforms existing unsuper-
vised and point-supervised methods in terms of segmentation per-
formance on both datasets. Specifically, our results demonstrate a
significant improvement over the best-performing unsupervised
instance segmentation model Freesolo [42], with a 41% increase
in AP on the COD10K dataset and a 31.3% increase in AP on the
NC4K dataset. Furthermore, when compared to point supervision
methods, our approach achieves a 19.6% increase in AP. While
there is still a gap when compared to fully-supervised methods,

Table 3: Quantitative comparison of our proposed SSIF with
simple fusion.

Method COD10K NC4K

AP AP50 AP75 AP AP50 AP75
w/o SSIF 16.3 37.2 12.0 18.8 43.7 14.0
w/ fusion 15.4 35.5 11.7 18.5 42.8 13.5
w/ SSIF 18.3 41.8 14.3 21.4 48.3 16.6

TPNet’s performance is notably close to that of Mask R-CNN [16].
This demonstrates that TPNet effectively bridges the gap between
weak supervision and the high accuracy required for camouflaged
instance segmentation.

4.4 Ablation Studies
We conduct ablation studies to validate the respective roles of pro-
posed components in the overall framework.
Effect of text prompt.To validate the effectiveness of text prompts,
we first establish the DINO encoder and cascade R-CNN in self-
training as our baseline, denoted as ①. Building upon this foun-
dation, we incorporate the text branch with text prompt, setting
this configuration as ②. Compared to baseline ①, it is evident that
the introduction of text prompt in ② leads to a significant perfor-
mance improvement, achieving a 10% increase in AP. This further
demonstrates the effectiveness of semantic information in CIS.
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Figure 5: Visual comparison of different iterative qualitative
results. The third to fifth lines demonstrate the results after
iterative fusion for 1 to 3 iterations.

Effect of Semantic-Spatial Iterative Fusion. Firstly, we conduct
a comparison between a segmentation method that excludes se-
mantic information and a basic vanilla weighted fusion approach,
as shown in Table 3. The results indicate that the simple weighted
method falls short in accurately segmenting camouflaged instances.
This indicates that in camouflaged instance segmentation, direct
fusion may not fully leverage semantic information.

To better integrate spatial information with semantic insights,
then we employ our proposed method SSIF based on the setting
of ②. The results are shown in the rows of ④. Compared results
of the setting of ④ with the setting of ②, we can find significant
improvements with an increase of 11.16% and 12% on COD10K in
terms of AP and AP50, respectively. The significant improvement
in quality observed with SSIF demonstrates its effectiveness in
identifying and leveraging rich semantic and spatial features to
enhance mask results.

We also verify the effectiveness of iterative fusion technique in
SSIF. As shown in Fig. 5, we conduct experiments with one, two,
and three iterations, and observe a significant improvement in the
quality of camouflaged instance segmentation results as the number
of iterations increased. Particularly, with three iterations, we find
that the details and edges of the images were segmented more
clearly, confirming the effectiveness of the iterative fusion method
in enhancing image quality. Therefore, we choose three iterations
as our final approach.
Effect of Graduated Camouflage Learning. To assess the impact
of GCL on model performance, we implement GCL as a modifica-
tion to the original self-training process based on ② and ④. The

Table 4: Result on varying level of camouflaged dataset sam-
pled from COD10K.

camouflage level of test dataset AP AP50 AP75
highly camouflage 16.9 36.1 12.9

moderately camouflage 17.3 39.2 12.4
lowly camouflage 19.5 49.4 12.4

outcomes of this experiment are detailed in ③ and ⑤. ⑤ represents
the complete combination of our method. GCL, through graduated
learning on training images based camouflage levels, acquires the
ability to segment challenging samples. Our ablation experiment
results clearly demonstrate the significant improvement in accuracy
and robustness achieved by the GCL module.
Effect of camouflage level. To assess the influence of varying
degrees of camouflage on segmentation accuracy, we conduct a vali-
dation experiment by sampling three subsets from the COD10K test
dataset based on different levels of camouflage: highly camouflaged
dataset, moderately camouflaged dataset, and lowly camouflaged
dataset. In Table. 4, as the level of camouflage increases, all metrics
decline accordingly. This validation experiment not only validates
the effectiveness of our Camouflage Measurer but also emphasizes
that images with higher levels of camouflage yield worse segmen-
tation results.

4.5 More Consideration
While TPNet shows promising results, challenges remain in the
quality of image prompt generated and current unsupervised object
region detection. Firstly, the quality of image propmt generated
presents a significant challenge, directly impacting the efficacy of
text prompt-supervised learning. Improving the generation qual-
ity of image descriptions is imperative for advancing the perfor-
mance of our approach. Secondly, the limitations of current unsu-
pervised object region detection frameworks, particularly the lack
of fine-tuning, pose challenges in accurately identifying camou-
flaged objects. This limitation adversely affects the overall perfor-
mance of our model. Overcoming these bottlenecks necessitates
innovative approaches to enhance image description generation
and fine-tuning strategies for unsupervised object region detection
frameworks. We will do more in-depth research in the future to
meet these challenges.

5 CONCLUSION
In this study, we proposed TPNet, the first text prompt based frame-
work for camouflaged instance segmentation, aiming to leverage
both visual and semantic information from images and text streams
for camouflaged instances mask. In the pseudo mask generation
and self-training stages, we introduce the Semantic-Spatial Iterative
Fusion (SSIF) and Graduated Camouflage Learning (GCL) modules
respectively. SSIF assimilate spatial information with semantic in-
sights, iteratively refining pseudo mask guided by the mask evalua-
tor. Additionally, we introduce GCL, a self-training strategy that
uses images of different camouflage levels to establish a gradient
affected by the level of camouflage to overcome the accuracy issues
caused by camouflage images. Experimental results demonstrate
that our proposed network achieves outstanding performance on
two common benchmark.
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