
A Formal description of our method

In this section we present pseudocode for our method.

Algorithm 1 Weighted distillation with unlabeled examples
Require: model Teacher, model Student, labeled dataset S` = {(xi, yi)}mi=1, unlabeled dataset

Su = {xi}m+n
i=m+1, validation dataset Sv = {(xi, yi)}m+n+q

i=m+n+1, number of weights-estimating
iterations r

1: Train Teacher and Student on S`
2: Use Teacher to generate labels for Su to obtain set S`u = {(x,Teacher(x)) | x ∈ Su}
3: for i = m+ 1 to n+m do
4: yi ← Teacher(xi)

5: S ← {(xi, yi)}m+n
i=1

6: for i = 1 to m do
7: w(xi)← 1

8: for i = 1 to r do
9: {w(xm+1), . . . , w(xm+n)} ← ESTIMATEWEIGHTS(Teacher, Student, Sv , S`u)

10: Train Student on S using the weighted empirical risk:

1

m+ n

m+n∑
i=1

w(xi)`(yi,Student(xi))

Algorithm 2 Procedure for estimating the weights
1: procedure ESTIMATEWEIGHTS(Teacher,Student, V,D)
2: . V is the validation dataset and D is the teacher-labeled dataset
3: U ← ∅, k ← d 1

2

√
|V |e

4: for every (x, y) ∈ V do
5: X ← (Confidence(Teacher(x)),Confidence(Student(x)))
6: if arg max(Teacher(x)) = arg max(y) then:
7: (p,distortion)← (0, 1)
8: else:
9: (p,distortion)←

(
1, `(Teacher(x),Student(x))

`(y,Student(x))

)
10: Y ← (p,distortion)
11: U ← U ∪ {(X,Y)}
12: Weights = ∅ . Initialize and empty list for the weights
13: for every (x, y) ∈ D do
14: Query← (Confidence(Teacher(x)),Confidence(Student(x)))

15: (p̂, d̂)← k-NN(U,Query) . Predict p(x) and distortionf (x) from the k nearest
neighbors of Query in U

16: w(x)← min
{

1, 1
1+p̂(d̂−1)

}
17: Append w(x) to Weights

18: return Weights

B Extended experiments

B.1 The student’s test-accuracy-trajectory

In this section we provide extended experimental results that show the student’s test accuracy over the
training trajectory corresponding to experiments we mentioned in Section 3.1. Notice that in the vast
majority of cases our method significantly outperforms the conventional approach almost throughout
the training process.

15

Figure 11: SVHN experiments. The student’s test accuracy over the training trajectory using hard-
distillation corresponding to the experiments of Figure 4. See Section 3.1.2 for more details.

Figure 12: CIFAR-10 experiments. The student’s test accuracy over the training trajectory
corresponding to the experiments of Figure 5. See Section 3.1.2 for more details.

Figure 13: CIFAR-100 experiments. The student’s test accuracy over the training trajectory
corresponding to the experiments of Figure 6. See Section 3.1.2 for more details.

Figure 14: CelebA experiments. The student’s test accuracy over the training trajectory corresponding
to the experiments of Figure 7. See Section 3.1.3 for more details.

Figure 15: ImageNet experiments. The student’s test accuracy over the training trajectory using
hard-distillation (first row) and soft-distillation (second row) corresponding to the experiments of
Figure 8. See Section 3.1.4 for more details.

16

B.2 Considering the effect of temperature

Temperature-scaling, a technique introduced in the original paper of Hinton et. al. [20], is one the
most common ways for improving student’s performance in distillation. Indeed, it is known (see
e.g. [43]) that choosing the right value for the temperature can be quite beneficial, to the point it
can outperform other more advanced techniques for improving distillation. Here we demonstrate
that our approach provides benefits on top of any improvement on can get via temperature-scaling
by conducting an ablation study on the effect of temperature on CIFAR-100. In our experiment,
the teacher model is a Resnet-110 achieving accuracy 56.0%, the student model is a Resnet-56, the
number of labeled examples is 12500, the validation set consists of 500 examples, and we use the
entropy of a prediction as a metric of confidence. We apply our method using one-shot estimation
of the weights. We compare training the student model using conventional distillation to using our
method for different values of temperature. The results can be found in the table below. We see that
in almost all cases the student-model trained using our method outperforms the student-model trained
using conventional distillation and, in particular, the best student overall is the result of choosing 2.0
for the value of temperature and applying our method.

Temperature Unweighted Weighted (ours)
0.01 52.84 ± 0.08% 53.73 ± 0.11%
0.10 54.63 ± 0.09% 54.84 ± 0.12%
0.50 56.45 ± 0.12% 57.01 ± 0.1%
0.80 56.67 ± 0.12% 57.60 ± 0.15%
1.00 57.17 ± 0.15% 57.56 ± 0.09%
2.00 57.54 ± 0.11% 57.8 ± 0.21%
3.00 57.20 ± 0.18% 57.09 ± 0.25%
5.00 56.92 ± 0.11% 57.01 ± 0.2%

Figure 16: Ablation study on the effect of temperature on CIFAR-100. See Appendix B.2 for details

C Implementation details

In this section we describe the implementation details of our experiments. Recall the description of
our method in Section 2.3.

C.1 Experiments on CelebA, CIFAR-10, CIFAR-100, SVHN

All of our experiments are performed according to the following recipe. In all cases, the loss function
` : RL × RL → R+ we use is the cross-entropy loss. We train the teacher model for 200 epochs
on dataset S`. We pretrain the student model for 200 epochs on dataset S` and save its parameters.
Then, using the latter saved parameters for initialization each time, we train the student model for
200 epochs optimizing either the weighted or conventional (unweighted) empirical risk, and report its
average performance over three trials.

We use the Adam optimizer. The initial learning rate is lr = 0.001. We proceed according to the
following learning rate schedule (see e.g., [19]):

lr←


lr · 0.5 · 10−3, if #epochs > 180

lr · 10−3, if #epochs > 160

lr · 10−2, if #epochs > 120

lr · 10−1, if #epochs > 80

Finally, we use data-augmentation. In particular, we use random horizontal flipping and random
width and height translations with width and height factor, respectively, equal to 0.1.

C.2 Experiments on ImageNet

For the ImageNet experiments we follow a similar although not identical recipe to the one described
in Appendix C.1. In each training stage above, we train the model (teacher or student) for 100
epochs instead of 200. We also use SGD with momentum 0.9 instead of Adam as the optimizer. For
data-augmentation we use only random horizontal flipping. Finally, the learning rate schedule is as

17

follows. For the first 5 epochs the learning rate lr is increased from 0.0 to 0.1 linearly. After that, the
learning rate changes as follows:

lr =


0.01, if #epochs > 30

0.001, if #epochs > 60

0.0001, if #epochs > 80

C.3 Details on the experimental setup of Section 3.3

In the CIFAR-10 experiments of Section C.3 the teacher model is a MobileNet with depth multiplier
2, and the student model is a MobileNet with depth multiplier 1. In the CIFAR-100 experiments of
the same section, the teacher model is a ResNet-110, and the student model is a ResNet-56. We use a
validation set consisting of 500 examples (randomly chosen as always). The student of each method
has access to the same number of labeled examples, i.e., the validation set is used for training the
student model as we describe in Remark 2.1. We compare the following three methods:

• Fidelity weighting scheme [12]. For every example x we use the entropy of the teacher’s
prediction as an uncertainty/confidence measure, which we denote by entropy(x). We then
compute the exponential weights described in [12] as w(x) = exp(−entropy(x)/entropy),
where entropy is the average entropy of the teacher’s predictions over all training examples.

• Our method. We use the entropy as the metric for confidence. In the case of CIFAR-10 we
re-estimate the weights at the end of every epoch. In the case of CIFAR-100 the weights are
estimated only once in the beginning of the process.

• Composition. We reweight each example in the loss function by multiplying the weights
resulting from the two methods above.

D Extended theoretical motivation: statistical aspects

In this section we study the statistical aspects of our approach. In Section D.1 we revisit and formally
state Theorem 4.1 — see Corollary D.2 and Remark D.1. In Section D.2 we perform a Mean-Squared-
Error analysis that provides additional justification of our choice to always project the weights on
the [0, 1] interval (recall Line 16 of Algorithm 2). Finally, in Section D.3 we provide the proof of
Proposition 2.1 which was omitted from the main body of the paper.

D.1 Statistical motivation

Recall the background on multiclass classification in Section 2.1. In this section we study hypothesis
classes F and loss functions ` : RL × RL :→ R that are “well-behaved” with respect to a certain
(standard in the machine learning literature) complexity measure we describe below.

For ε > 0, a classH of functions h : X → [0, 1] and an integer n, the “growth function"N∞(ε,H, n)
is defined as

N∞(ε,H, n) = supx∈XnN (ε,H(x), ‖ · ‖∞), (6)

whereH(x) = {(h(x1), . . . , h(xn)) : h ∈ H} ⊆ Rn and for A ⊆ Rn the numberN (ε, A, ‖ · ‖∞) is
the smallest cardinality A0 of a set A0 ⊆ A such that A is contained in the union of ε-balls centered
at points in A0, in the metric induced by ‖ · ‖∞ The growth number is a complexity measure of
function classes commonly used in the machine learning literature [3, 17].

The following theorem from [30] provides large deviation bounds for function classes of polynomial
growth.

Theorem D.1 (Theorem 6, [30]). Let Z be a random variable taking values in Z distributed
according to distribution µ, and let H : Z → [0, 1] be a class of functions. Fix δ ∈ (0, 1), n ≥ 16
and set

M(n) = 10N∞(1/n,H, 2n).

18

Then with probability at least 1− δ in the random vector Z = (Z1, . . . , Zn) ∼ µn, for every h ∈ H
we have: ∣∣∣∣∣E[h(Z)]− 1

n

n∑
i=1

h(Zi)

∣∣∣∣∣ ≤
√

18Vn(h, Z) ln(2M(n)/δ)

n
+

15 ln (2M(n)/δ)

n− 1
,

where Vn(h, Z) is the sample variance of the sequence {h(Zi)}ni=1.

A straightforward corollary of Theorem D.1 and Proposition 2.1, and the main motivation for our
method, is the following corollary.
Corollary D.2. Let ` : RL × RL → [0, 1] be a loss function and fix δ > 0. Consider any
hypothesis class F of predictors f : X → RL, and the two induced classesH ⊆ [0, 1]R

L×RL ,Hw ⊆
[0, 1]R

L×RL of functions hf (x, y) := `(y, f(x)) and hwf (x, y) := wf (x)`(y, f(x)), respectively. Fix
δ > 0, n ≥ 16, and setM(n) = 10N∞(1/n,H, 2n) andMw(n) = 10N∞(1/n,Hw, 2n). Then,
with probability at least 1− δ over S = {xi, yi}ni=1 ∼ Dn,

|R(f) + Bias(f)−RS(f)| = O


√
VS(f) ·

ln M(n)
δ

n
+

ln M(n)
δ

n

 (7)

|R(f)−RwS (f)| = O


√
VwS (f) ·

ln M
w(n)
δ

n
+

ln M
w(n)
δ

n

 (8)

where VS(f),VwS (f) are the sample variances of the loss values {hf (xi, yi)}ni=1, {hwf (xi, yi)}ni=1,
respectively.

The following remark formally captures Theorem 4.1.
Remark D.1. Under the assumptions of Corollary D.2, if we additionally have that M(n) and
Mw(n) are polynomially bounded in n, then, for every f ∈ F it holds that

lim
|S|→∞

RwS (f) = R(f) and lim
|S|→∞

RS(f) = R(f) + Bias(f).

D.2 Studying the MSE of a fixed prediction

In this section we study the Mean-Squared-Error (MSE) of a fixed prediction f(x) for an arbitrary
instance x ∈ X , predictor f , and loss function ` : RL × RL → R+, in order to gain some
understanding on when the importance weighting scheme could potentially underperform the standard
unweighted approach from a bias-variance perspective (i.e., when the training sample is “small
enough” so that asymptotic considerations are ill-suited). These considerations lead us to an additional
justification for always projecting the weights to the [0, 1] interval (recall Line 16 of Algorithm 2).

Formally, we study the behavior of the quantities:

MSE(x) = Ey|x
[
(`(ftrue(x), f(x))− `(y, f(x)))2

]
,

MSEw(x) = Ey|x[(`(ftrue(x), f(x))− wf (x)`(y(x), f(x)))2].

Recalling the definition of distortion (4) we have the following proposition.
Proposition D.3. Let ` : RL × RL → R+ be a bounded loss function. Fix x ∈ X and a predictor
f : X → RL. We have MSE(x) < MSEw(x) if and only if:

1. distortionf (x) < 1/2; and

2. p(x) ∈
(

0,
1−2·distortionf (x)
(1−distortionf (x))2

)
.

Proof sketch. Via direct calculations we obtain:

MSE(x) = Ey|x
[
(`(ftrue(x), f(x))− `(y, f(x)))2

]
= p(x)(`(ftrue(x), f(x))− `(yadv(x), f(x)))2

= p(x)`(ftrue(x), f(x))2(1− distortionf (x))2 (9)

19

and

MSEw(x) = Ey|x[(`(ftrue(x), f(x))− wf (x)`(y, f(x)))2]

= (1− p(x))`(ftrue(x), f(x))2(1− wf (x))2

+p(x)(`(ftrue(x), f(x))− wf (x)`(yadv(x), f(x)))2

= (1− p(x))`(ftrue(x), f(x))2(1− wf (x))2

+p(x)`(ftrue(x), f(x))2(1− wf (x)distortionf (x))2 (10)

Recalling the definition of weights (4), and combining it with (9) and (10) implies the claim.

In words, Proposition D.3 implies that when the adversary does not have the power to corrupt the
label of an instance x with high enough probability, i.e., p(x) is sufficiently small, and the prediction
of the student is “close enough" to the adversarial label (i.e., when distortionf (x) is small enough),
then it potentially makes sense to use the unweighted estimator instead of the weighted one from
a bias-variance trade-off perspective, as the former has smaller MSE in this case. Notice that this
observation aligns well with our method as we always project wf (x) to [0, 1] (observe that wf (x) > 1
iff distortionf (x) < 1 and p(x) > 0).

D.3 Proof of Proposition 2.1

Recall the weight, distortion and bias definitions in (4) and Proposition 2.1. We prove the first claim
of Proposition 2.1 via direct calculations:

E[RS(f)] = ES∼Dn
[

1

n

n∑
i=1

`(yi, f(xi))

]
= E(x,y)∼D [`(y, f(x))]

= Ex∼X[Ey|x[`(y, f(x))]]

= Ex∼X[p(x)`(yadv(x), f(x)) + (1− p(x))`(ftrue(x), f(x))]

= Ex∼X[`(ftrue(x), f(x))] + Ex∼X[p(x) · (`(yadv(x), f(x))− `(ftrue, f(x)))]

= Ex∼X[`(ftrue(x), f(x))] + Ex∼X
[
p(x) ·

(
`(yadv(x), f(x))

`(ftrue(x), f(x))
− 1

)
· `(ftrue(x), f(x))

]
= Ex∼X[`(ftrue(x), f(x))] + Ex∼X [p(x) · (distortionf (x)− 1) · `(ftrue(x), f(x))]

= R(f) + Bias(f).

Similarly for the second claim:

E[RwS (f)] = ES∼Dn
[

1

n

n∑
i=1

wf (xi)`(yi, f(xi))

]
(11)

= Ex∼X
[
Ey|x [wf (x)`(y, f(x))]

]
= Ex∼X[wf (x) · (p(x)`(yadv(x), f(x)) + (1− p(x))`(ftrue(x), f(x)))]

= Ex∼X
[
p(x)`(yadv(x), f(x)) + (1− p(x))`(ftrue(x), f(x))

1 + p(x) · (distortionf (x)− 1)

]
= Ex∼X

[
`(ftrue(x), f(x)) + `(ftrue(x), f(x)) · p(x) · (distortionf (x)− 1)

1 + p(x) · (distortionf (x)− 1)

]
= R(f),

concluding the proof.

E Extended theoretical motivation: optimization aspects

To prove our optimization guarantees, we analyze the reweighted objective in the fundamental case
where the model f(x; Θ) is linear, i.e., f(x; Θ) = Θx ∈ RL, and the loss `(y, z) is convex in z for

20

every y. In this case, the composition of the loss and the model f(x; Θ) is convex as a function of
the parameter Θ ∈ RL×d. Recall that we denote by ftrue(x) : Rd 7→ RL the ground truth classifier
and by P the “clean” distribution, i.e., a sample from P has the form (x, ftrue(x)) where x is drawn
from a distribution X supported on (a subset of) Rd. Finally, we denote by D the “noisy” labeled
distribution on Rd × RL and assume that the x-marginal of D is also X.

Notation In what follows, for any elements r, q of the same dimensions we denote by r · q their
inner product. For example for two vectors r, q ∈ Rd we have r · q =

∑d
i=1 riqi. Similarly, for two

matrices Θ, Q ∈ RL×d we have Θ ·Q =
∑L
i=1

∑d
j=1 ΘijQij . We denote by ‖ · ‖2 the `2 for vectors

and the spectral norm for matrices. We use ⊗ to denote the standard tensor (Kronecker) product
between two vectors or matrices. For example, for two matricesA,B we have (A⊗B)ijkl = AijBkl
and for two vectors v, u we have (v ⊗ u)ij = viuj . We denote by ‖ · ‖F the Frobenious norm for
matrices. We remark that we use standard asymptotic notation O(·), etc. and Õ(·) to omit factors
that are poly-logarithmic (in the appearing arguments).

For example, training a linear model f(x; Θ) = Θx with the Cross Entropy loss corresponds to using
`(t, y) =

∑L
i=1 ti log(eyi∑L

j=1 e
yj

) and minimizing the objective

R(Θ) = E(x,y)∼P[`(y, f(x; Θ))] = E(x,y)∼P[`(y,Θx)] .

More generally, in what follows we shall refer to the population loss over the clean distribution P as
R(·), i.e.,

R(Θ) , E(x,y)∼P[`(y, f(x; Θ))] .

We next give a general definition of debiasing weight functions, i.e., weighting mechanisms that
make the corresponding objective function an unbiased estimator of the clean objective R(Θ) for
every parameter vector Θ ∈ Rd.
Definition E.1 (Debiasing Weights). We say that a weight function w(x, yadv; Θ) : Rd × RL 7→ R
is a debiasing weight function if it holds that

Rw(Θ) , E(x,yadv)∼D[w(x, yadv; Θ)`(yadv, f(x,Θ))] = R(Θ) .

Remark E.1. We remark that the weight function w(·) depends on the current hypothesis, Θ, and
also on the noise advice p(x) that we are given with every example. In order to keep the notation
simple, we do not explicitly track these dependencies and simply write w(x, yadv; Θ). We also remark
that, in general, in order to construct the weight function w we may also use “clean” data, which
may be available, e.g., as a validation dataset, as we did in Section 2.2.

Our main result is that, given a convex loss `(·) and a debiasing weight function w(·) that satisfy
standard regularity assumptions, stochastic gradient descent on the reweighted objective produces a
parameter vector with good generalization error. We first present the assumptions on the example
distributions, the loss, and the weight function. In what follows, we view the gradient of a function
q(Θ) : RL×d 7→ R as an L× d-matrix and the hessian ∇2q(Θ) as an (L× d)× (L× d)-tensor (or
equivalently as a dL× dL-matrix).
Definition E.2 (Regularity Assumptions). The x-marginal X of D and P is supported on (a subset
of) the ball of radius R > 0, BR , {x ∈ Rd : ‖x‖2 ≤ R}.
The training model is linear f(x; Θ) = Θx and the parameter space is the unit ball, i.e., ‖Θ‖F ≤ 1.

For every label yadv ∈ RL in the support of D, the loss z 7→ `(yadv, z) is a twice differentiable, convex
function in z. Moreover `(yadv, z) is M`-bounded, L`-Lipschitz, and B`-smooth, i.e., |`(yadv, z)| ≤
M`, ‖∇z`(yadv, z)‖2 ≤ L`, and ‖∇2

z`(yadv, z)‖2 ≤ B`, for all z with ‖z‖2 ≤ R.

For every example (x, yadv) ∈ Rd × RL in the support of D the weight function Θ 7→ w(x, yadv; Θ)
is twice differentiable, Mw-bounded, Lw-Lipschitz, and Bw-smooth, i.e., |w(x, yadv; Θ)| ≤ Mw,
‖∇Θw(x, yadv; Θ)‖F ≤ Lw, and ‖∇2

Θw(x, yadv; Θ)‖2 ≤ Bw for all Θ with ‖Θ‖F ≤ 1 2.
Remark E.2. Observe that if a property in the above definition is satisfied by some parameter-value
Q, then it is also satisfied for any other Q′ > Q. For example, if the loss function is 0.5-Lipschitz it is

2Recall that, formally,∇2
Θw(x, yadv; Θ) is a (L× d)× (L× d)-tensor G. For this tensor G we overload

notation and set ‖G‖2 to be the standard `2 operator norm when we view G as an (Ld)× (Ld)-matrix.

21

also 1-Lipschitz. Therefore, to simplify the expressions, in what follows we shall assume (without loss
of generality) that all the regularity parameters, i.e., R,M`, L`, B`,Mw, Lw, Bw, are larger than 1.

Since the loss is convex, it is straightforward to optimize the naive objective that does not reweight
the loss and simply minimizes `(·) over the noisy examples, Rnaive(Θ) , E(x,yadv)∼D[`(yadv,Θx)].
We first show that (unsurprisingly) it is not hard to construct instances (even in binary classification)
where optimizing the naive objective produces classifiers with large generalization error over clean
examples. For simplicity, since in the following lemma we consider binary classification, we assume
that the labels y ∈ {±1} and the parameter of the linear model is a vector θ ∈ Rd.

Proposition E.3 (Naive Objective Fails). Fix any c ∈ [0, 1]. Let `(·) be the Binary Cross Entropy
loss, i.e., `(t) = log(1 + e−t). There exists a “clean” distribution P and a noisy distribution D on
Rd × {±1} so that the following hold.

1. The x-marginal of both P and D is uniform on a sphere.

2. The clean labels of P are consistent with a linear classifier sign(θ∗ · x).

3. D has (total) label noise Pr(x,yadv)∼D[yadv 6= sign(θ∗ · x)] = c ∈ [0, 1].

4. The minimizer θ̂ of the (population) naive objective Rnaive(θ) = E(x,y)∼D[`(yadvθ · x)],
constrained on the unit has generalization error

R(θ̂) ≥ min
‖θ‖2≤1

R(θ) + c/2 ,

where R(θ) is the “clean” risk, R(θ) = E(x,y)∼P[`(yθ · x)].

Our positive results show that, having a debiasing weight function w(·) that is not very “wild” (see
the regularity assumptions of Definition E.2) and optimizing the corresponding weighted objective
Rw(Θ) = E(x,yadv)∼D[w(x, yadv; Θ)`(yadv,Θx)] with SGD, gives models with almost optimal
generalization. The main issue with optimizing the reweighted objective is that, in general, we have
no guarantees that the weight function preserves its convexity (recall that it depends on the parameter
Θ). However, we know that its population version corresponds to the clean objective R(·) which
is a convex objective. We show that we can use the convexity of the underlying clean objective to
show results for both single- and multi-pass stochastic gradient descent. We first focus on single-pass
stochastic gradient descent where at every iteration a fresh noisy sample (x, yadv) is drawn from D,
see Algorithm 3.

Algorithm 3 Single-Pass Stochastic Gradient Descent Algorithm

Input: Number of iterations T , Step size sequence η(t)

Output: Parameter vector Θ(T).
Initialize Θ(1) ← 0.
For t = 1, . . . , T :

Draw sample (x(t), y
(t)
adv) ∼ D.

Update using the gradient of the weighted objective:

Θ(t+1) ← projB

(
Θ(t) − η(t)∇Θ

(
w(x(t), y

(t)
adv; Θ(t)) `(y

(t)
adv,Θ

(t)x(t))
))

Return Θ(T).

Theorem E.4 (Generalization of Reweighted Single-Pass SGD). Assume that the example
distributions P,D, the loss `(·), and the weight function w(·) satisfy the assumptions of Definition E.2.
Set κ = LwM` + RMwL`. After T = Ω(κ2/ε2) SGD iterations (with a step size sequence that
depends on the regularity parameters of Definition E.2, see Algorithm 3), with probability at least
99%, it holds

R(Θ(T)) ≤ min
‖Θ‖F≤1

R(Θ) + ε .

22

The main observation in the single-pass setting is that, since the weight function w(·) is debiasing, we
can view the gradients of the reweighted objective as stochastic gradients of the true objective over
the clean samples. Therefore, as long as we draw a fresh i.i.d. noisy sample (x, y) ∼ D at each round,
the corresponding sequence of gradients corresponds to stochastic unbiased estimates of the gradients
of the true loss R(Θ). We next turn our attention to multi-pass SGD (see Algorithm 4), where at
each round we pick one of the N samples with replacement and update according to its gradient.
The key difference between single- and multi-pass SGD is that the expected loss over the stochastic
algorithm for single-pass SGD is the population risk, while the expected loss for multi-pass SGD is
the empirical risk. In other words, in the multi-pass setting we have a stochastic gradient oracle to
the empirical reweighted objective R̂w(Θ) = 1

N

∑N
i=1 w(x(i), y

(i)
adv; Θ) `(y

(i)
adv,Θx

(i)) , which is not
necessarily convex. Our second theorem shows that under the regularity conditions of Definition E.2
multi-pass SGD also achieves good generalization error.

Theorem E.5 (Generalization of Reweighted Multi-Pass SGD). Assume that the example
distributions P,D, the loss `(·), and the weight function w(·) satisfy the assumptions of
Definition E.2. Set κ = RM`L`B`MwLwBw and define the empirical reweighted objective with
N = (dL)2/ε2 poly(κ) i.i.d. samples (x(1), y

(1)
adv), . . . , (x(N), y

(N)
adv) from the noisy distribution D as

R̂w(Θ) =
1

N

N∑
i=1

w(x(i), y
(i)
adv; Θ) `(y

(i)
adv,Θx

(i)) .

Then, after T = poly(κ)/ε4 iterations, multi-pass SGD with constant step size sequence η(t) =

C/
√
T 3 (see Algorithm 4) on R̂w(·) outputs a list Θ(1), . . . ,Θ(T) that, with probability at least 99%,

contains a vector Θ̂ that satisfies

R(Θ̂) ≤ min
‖Θ‖F≤1

R(Θ) + ε .

We remark that our analysis also applies to the multi-pass SGD variant where, at every epoch we pick
a random permutation of the N samples and update with their gradients sequentially.

Algorithm 4 Multi-Pass Stochastic Gradient Descent Algorithm

Input: Number of Rounds T , Number of Samples N , Step size sequence η(t).
Output: List of weight vectors Θ(1), . . . ,Θ(T).

Draw N i.i.d. samples (x(1), y
(1)
adv), . . . , (x(N), y

(N)
adv) ∼ D.

Initialize Θ(1) ← 0.
For t = 1, . . . , T :

Pick I uniformly at random from {1, . . . , N} and update using the gradient of the
reweighted objective:

Θ(t+1) ← projB

(
Θ(t) − η(t)∇Θ

(
w(x(I), y

(I)
adv; Θ(t))`(y

(I)
adv,Θ

(t)x(I))
))

.

Return Θ(1), . . . ,Θ(T).

E.1 The proof of Proposition E.3

In this subsection we restate and prove Proposition E.3.

Proposition E.6 (Naive Objective Fails (Restate of E.3)). Fix any c ∈ [0, 1]. Let `(·) be the Binary
Cross Entropy loss, i.e., `(t) = log(1 + e−t). There exists a “clean” distribution P and a noisy
distribution D on Rd × {±1} so that the following hold.

1. The x-marginal of both P and D is uniform on a sphere.

3C is a constant that depends on the regularity parameters of Definition E.2.

23

2. The clean labels of P are consistent with a linear classifier sign(θ∗ · x).

3. D has (total) label noise Pr(x,yadv)∼D[yadv 6= sign(θ∗ · x)] = c ∈ [0, 1].

4. The minimizer θ̂ of the (population) naive objective Rnaive(θ) = E(x,y)∼D[`(yadvθ · x)],
constrained on the unit has generalization error

R(θ̂) ≥ min
‖θ‖2≤1

R(θ) + c/2 ,

where R(θ) is the “clean” risk, R(θ) = E(x,z)∼P[`(zθ · x)].

Proof. We set the X-marginal to be the uniform distribution on a sphere of radius R > 0 to be
specified later in the proof. We first observe that the unit vector θ∗ minimizes the (clean) Binary
Cross Entropy R(θ). We can now pick a different parameter vector θ̃ with angle φ ∈ [0, π] with θ∗,
and construct a noisy instance as follows: we first draw x ∼ X (recall that we want the x-marginal of
the noisy distribution to be the same as the “clean”) and then set yadv = sign(θ̃ ·x). By the symmetry
of the uniform distribution on the sphere we have that

Pr(x,y)∼D[yadv 6= sign(θ∗ · x)] = Prx∼Dx [sign(θ̃ · x) 6= sign(θ∗ · x)] =
φ

π
.

Therefore, by picking the angle φ to be equal to πcwe obtain that Prx∼Dx [sign(θ̃·x) 6= sign(θ∗·x)] =
c as required by Proposition E.3. Moroever, we have that the minimizer of the “naive” BCE objective
(constrained on the unit ball) is θ̃ and the minimizer of the clean objective is θ∗. We have that

R(θ̃) = Ex∼X[log(1 + e−sign(θ∗·x)θ̃·x)] ≥ Ex∼X[1{sign(θ∗ · x)θ̃ · x < 0}]

= Prx∼X[sign(θ̃ · x) 6= sign(θ∗ · x)] = c .

Moreover, we have that

R(θ∗) = Ex∼X[log(1 + e−sign(θ∗·x)θ∗·x)]

= Ex∼X[log(1 + e−|θ
∗·x|)]

We next need to bound from below the “margin” of the optimal weight vector θ∗, i.e., provide a
lower bound on |θ∗ · x| that holds with high probability. We will use the following anti-concentration
inequality on the probability of a origin-centered slice under the uniform distribution on the sphere.
For a proof see, e.g., Lemma 4 in [10].

Lemma E.7 (Anti-Concentration of Uniform vectors, [10]). Let v ∈ Rd be any unit vector and let X
be the uniform distribution on the sphere. It holds that

Prx∼X

[
|v · x| ≤ γ√

d

]
≤ γ .

Using Lemma E.7, we obtain that

Ex∼X[log(1 + e−|θ
∗·x|)] ≤ log(2)γ + log(1 + e−γR/

√
d)(1− γ) ≤ 2γ + e−γR/

√
d ,

where, at the last step, we used the elementary inequality log(1 + x) ≤ x. Assuming that R/
√
d

is much larger than 1, we can pick γ = (
√
d/R) log(R/

√
d). For this choice of γ we obtain that

Ex∼X[log(1 + e−|θ
∗·x|)] = O(

√
d/R log(d/R)). Therefore, for R = O(

√
d/c) we obtain that

Ex∼X[log(1 + e−|θ
∗·x|)] ≤ c/2 .

Therefore, combining the above bounds we obtain that R(θ̂)−R(θ∗) ≥ c− c/2 ≥ c/2.

24

E.2 The Proof of Theorem E.4

In this section we restate and prove our result on the generalization error of single-pass stochastic
gradient descent on the weighted objective.
Theorem E.8 (Generalization of Reweighted Single-Pass SGD (Restate of E.4)). Assume that
the example distributions P,D and the `(·) and weight function w(·) satisfy the assumptions of
Definition E.2. Set κ = LwM` +RMwL`. After T = Ω(κ2/ε2) SGD iterations (see Algorithm 3),
with probability at least 99%, it holds

R(Θ(T)) ≤ min
‖Θ‖F≤1

R(Θ) + ε .

Proof. We observe that, since w is a debiasing weight function, given a sample (x(t), y
(t)
adv) ∼ D

it holds that ∇(w(x(t), y
(t)
adv; Θ)`(yadv,Θx

(t))) is an unbiased gradient estimate of ∇ΘR(Θ). We
will use the following result on the convergence of the last-iterate of SGD for convex objectives.
For simplicity, we state the following theorem for the case where the parameter θ is a vector in Rd
(instead of a L× d matrix).

Lemma E.9 (Last Iterate Stochastic Gradient Descent [22]). LetW be a closed convex set of diameter
R. Moreover, let F : Rd 7→ R be a convex, L-Lipschitz function. Define the stochastic gradient
descent iteration as

θ(0) ← 0

θ(t+1) ← projW

(
θ(t) − η(t)g(t)(θ(t))

)
where g(t)(θ(t)) is an unbiased gradient estimate of ∇θftrue(θ(t)). Assume that for all t ∈ [T] it
holds ‖g(t)(θ)‖2 ≤ L for all θ ∈ W . There exists a step size sequence η(t) that depends only on
T, L,R such that, with probability at least 1− δ, it holds

F (θ(T)) ≤ F (θ∗) +O

(
RL

√
log(1/δ)

T

)
.

To simplify notation we let `(t)(Θ) , `(y
(t)
adv,Θx

(t)) and w(t)(Θ) , w(x(t), y
(t)
adv; Θ). For a sample

(x(t), y
(t)
adv), the gradient g(t) of the weighted loss is:

g(t) = ∇Θ(w(t)(Θ)`(t)(Θ))

= `(t)(Θ)∇Θw
(t)(Θ) + w(t)(Θ)∇Θ`

(t)(Θ)

= `(t)(Θ)∇Θw
(t)(Θ) + w(t)(Θ)∇z`(x(t)y

(t)
adv, z)

∣∣
z=Θx(t)(x

(t))T ∈ RL×d .
Using the triangle inequality for the Frobenious norm and the assumptions of Definition E.2 on the
functions w(·) and `(·), we obtain that ‖g(t)‖F ≤ LwM` +RMwL`. Using Lemma E.9 we obtain
that with T = Ω((LwM` + RMwL`)

2/ε2), the last iteration of Algorithm 3 satisfies the claimed
guarantee.

E.3 The proof of Theorem E.5

In this section we prove our result on multi-pass SGD. For convenience, we first restate it.
Theorem E.10 (Generalization of Multi-Pass SGD (Restate of E.5)). Set κ = RM`L`B`MwLwBw
and define the empirical reweighted objective with N = d2/ε2 poly(κ) i.i.d. samples
(x(1), y

(1)
adv), . . . , (x(N), y

(N)
adv) from the noisy distribution D as

R̂w(Θ) =
1

N

N∑
i=1

w(x(i), y
(i)
adv; Θ) `(θ · x(i)y

(i)
adv) .

Then, after T = poly(κ)/ε4 iterations, multi-pass SGD (see Algorithm 4) on R̂w(·) outputs a list
θ(1), . . . , θ(T) that, with probability at least 99%, contains a vector θ̂ that satisfies

R(Θ̂) ≤ min
‖Θ‖F≤1

R(Θ) + ε .

25

Proof. To prove the theorem we shall first show that all stationary points of the empirical objective
(which for arbitrary weight functions w(·) may be non-convex) will have good generalization
guarantees. Before we proceed we formally define approximate stationary points. To simplify
notation we shall assume that the parameter is a vector θ ∈ Rd. The definition extends directly to the
case where L is a function of a parameter matrix Θ by using the corresponding matrix inner product.

Definition E.11 (ε-approximate Stationary Points). Let L : Rd 7→ R be a differentiable function and
C be any convex subset of Rd. A vector θ ∈ Rd is an ε-approximate stationary point of L(·) if for
every θ′ ∈ C it holds that ∣∣∣∣∇θL(θ) · θ′ − θ

‖θ′ − θ‖2

∣∣∣∣ ≤ ε .
Proposition E.12. Set κ = RM`L`B`MwLwBw and define the empirical reweighted objective
with N = Õ((dL/ε)2) poly(κ) log(1/δ) i.i.d. samples (x(1), y(1)), . . . , (x(N), y(N)) from the noisy
distribution D as

R̂w(θ) =
1

N

N∑
i=1

w(x(i), y(i); Θ) `(y(i),Θx(i)) .

Let Θ̂ be any ε-stationary point of R̂w(Θ) constrained on BR. Then, with probability at least 1− δ,
it holds that

R(Θ̂) ≤ min
‖Θ‖F≤1

R(Θ) + ε .

Proof. We first show that, as long as the empirical gradients are close to the population gradients,
any stationary point of the weighted empirical objective will achieve good generalization error. In
what follows we shall denote by Θ∗ the parameter that minimizes the clean objective:

Θ∗ , arg min
‖Θ‖F≤1

R(Θ) .

Since the population objective is convex in Θ, we have that for any Θ it holds that

R(Θ)−R(Θ∗) ≤ ∇ΘR(Θ) · (Θ−Θ∗)

= (∇ΘR(Θ)−∇ΘL̃w(Θ)) · (Θ−Θ∗) +∇ΘR̂
w(θ) · (Θ−Θ∗)

≤ 2‖∇ΘR̂
w(Θ)−∇ΘR̂

w(Θ)‖2 +∇ΘR̂
w(Θ) · (Θ−Θ∗) .

We have that the contstraint set ‖Θ‖F ≤ 1 is convex and therefore for a stationary point Θ̂ of Lw(Θ)

we have that |∇θR̂w(Θ) · (Θ−Θ∗)| ≤ ε‖Θ−Θ∗‖F ≤ 2ε. Therefore, Θ̂ satisfies

R(Θ̂)−R(Θ∗) ≤ 2‖∇ΘR(Θ̂)−∇ΘR̂
w(Θ̂)‖2 + 2ε .

Since w(·) is a debiasing weighting function, we know that, as the number of samples N → ∞,
the empirical gradients of the reweighted objective will converge to the gradients of the population
clean objective R(·), i.e., it holds that ∇θR̂w(Θ) → ∇ΘR(Θ). Therefore, to finish the proof, we
need to provide a uniform convergence bound for the gradient field of the empirical objective. We
first consider estimating the gradient of some fixed parameter matrix Θ. We will use McDiarmid’s
inequality.

Lemma E.13 (McDiarmid’s Inequality). Let x1, . . . , xn be n i.i.d. random variables taking values
in X . Let φ : Xn → R be such that |φ(x)− φ(x′)| ≤ bi whenever x and x′ differ only on the i-th
coordinate. It holds that

Pr [|φ(x1, . . . , xn)− E[φ(x1, . . . , xn)]| ≥ ε] ≤ 2 exp

(
− 2ε2∑n

i=1 b
2
i

)

We consider the n i.i.d. random variables (x(t), y
(t)
adv). We have that the empirical gradient of the

weighted loss function is equal to

ĝ(Θ) ,
1

N

N∑
t=1

(
`(yadv; Θx(t))∇Θw(x(t), y

(t)
adv; Θ) + w(x(t), y

(t)
adv; Θ)∇`(y(t)

adv,Θx
(t)) (x(t))T

)
.

26

We have that w(x(t), y
(t)
adv; Θ) is Mw-bounded and Lw-Lipschitz, ` is M`-bounded and L`-Lipschitz,

and ‖x(t)‖2 ≤ R. Therefore, the maximum value of each coordinate of each term in the sum of the
empirical gradient ĝ(θ) is bounded by Lq , LwM` +RMwL`. Using this fact we obtain that each
coordinate of the empirical gradient is a function of the N i.i.d. random variables (x(t), y

(t)
adv) that

satisfies the bounded differences assumption with constants b1, . . . , bN that satisfy bt ≤ Lq/N . From
Lemma E.13, we obtain that

Pr [‖ĝ(Θ)−∇ΘR(Θ)‖F ≥ ε] ≤
d∑
i=1

L∑
j=1

Pr
[
|(ĝ(Θ))ij − (∇ΘR(Θ))ij | ≥ ε/

√
dL
]

≤ 2dL exp
(
−Ω

(
Nε2/(dL L2

q)
))

4 .

We next need to provide a uniform convergence guarantee over the whole parameter space ‖Θ‖F ≤ 1.
We will use the following standard lemma bounding the cardinality of an ε-net of the unit ball in
d-dimensions. For a proof see, e.g., [46].

Lemma E.14 (Cover of the Unit Ball [46]). Let B be the d-dimensional unit ball around the origin.
There exists an ε-net of B with cardinality at most (1 + 2/ε)d.

Since we plan to construct a net for the gradient of w(x, yadv; Θ)`(yadv; Θx) we first need to show
that the weighted loss w(x, yadv; Θ)`(yadv; Θx) is a smooth function of its parameter Θ or, in other
words, that its gradients do not change very fast with respect to Θ. The following lemma follows
directly from the regularity assumptions of Defintion E.2 and the chain and product rules for the
derivatives.

Lemma E.15. For all (x, y) ∈ BR × RL, it holds that the function q(Θ) = w(x, y; Θ)`(y; Θx) is
Bq-smooth for all Θ with ‖Θ‖F ≤ 1, with Bq = M`Bw + 2L`LwR+MwB`R

2.

Proof. For simplicy we shall denote ∇z`(y; z) simply by ∇`(y; z) and similarly ∇2
z`(y; z) by

∇2`(y; z). Using the chain rule, we have that the gradient of the weighted loss q(Θ) is equal to

∇Θq(Θ) = ∇Θw(x, y; Θ) `(y; Θx) + w(x, y; Θ)∇`(y; Θx)xT .

Using again the chain and product rules we find the Hessian of q(Θ):

∇2
Θq(Θ) = ∇2

Θw(x, y; Θ) `(y; Θx) + (∇`(y; Θx)xT)⊗∇Θw(x, y; Θ)

+∇Θw(x, y; Θ)⊗ (∇`(y; Θx)xT) + w(x, y; Θ)H ,

where H is the (L× d)× (L× d) tensor with element Hijkl = ∇2`(y; Θx)ikxjxl. Recall that we
view ∇2

Θq(Θ) as an Ld × Ld and to prove that it is smooth we have to find its operator (spectral)
norm. Using the assumptions of Definition E.2 we obtain that ‖∇2

Θw(x, y; Θ)‖2 ≤ BwM`. For the
term (∇`(y; Θx)xT)⊗∇Θw(x, y; Θ) we consider any q ∈ RLd with ‖q‖2 = 1. We assume that q
is indexed as qij for i = 1, . . . , L and j = 1, . . . , d. We have

qT ((∇`(y; Θx)xT)⊗∇Θw(x, y; Θ))q =

∑
ij

qij(∇`(y; Θx))ixj

(∑
kl

qkl(∇Θw(x, y; Θ)kl

)
≤ RL`Lw .

Similarly, we bound the spectral norm of the term ∇Θw(x, y; Θ)⊗ (∇`(y; Θx)xT). Finally for the
term H we have

qTHq =
∑
ijkl

qijxj(∇`(y; Θx))ikqklxl =
∑
ik

si(∇`(y; Θx))iksk,

where s ∈ RL has si =
∑
j qijxj . Observe that since ‖x‖2 ≤ R and ‖q‖2 = 1 we have that

‖s‖2 ≤ R. Therefore, from the assumption of Definition E.2, we obtain that ‖H‖2 ≤ R2B`.

We conclude that the function q(θ) is Bq-smooth on the unit ball B with Bq = M`Bw + 2L`LwR+
MwB`R

2.

27

Let Nε be an ε-net of the unit ball B. Using Lemma E.15 we first observe that the vector maps θ 7→
g̃(Θ) and Θ 7→ ∇ΘR(Θ) are both Bq-Lipschitz, where Bq is the constant defined in Lemma E.15.
Using the triangle inequality and the fact that ĝ(·) and ∇ΘR(·) are Bq-Lipschitz, we have that

max
‖Θ‖F≤1

‖ĝ(Θ)−∇ΘR(Θ)‖2 ≤ 2Bqε+ max
Θ∈Nε

‖ĝ(Θ)−∇ΘR(Θ)‖2 .

Combining the above, and performing a union bound over the ε-net Nε, we obtain that

Pr

[
max
‖Θ‖F≤1

‖g̃(Θ)−∇ΘR(Θ)‖F ≥ (2Bq + 1)ε

]
≤ (1 + 2/ε)dL exp

(
−Ω

(
Nε2/(dL L2

q)
))
.

We conclude that with N = Ω̃((dL)2L2
qB

2
q/ε

2 log(1/δ)) samples, it holds that ‖ĝ(Θ) −
∇ΘR(Θ)‖2 ≤ ε, uniformly for all parameters Θ with ‖Θ‖F ≤ 1, with probability at least 1− δ.

We now have to show that the multi-pass SGD finds an approximate stationary point of the empirical
objective. We will use the following result on non-convex projected SGD. To simplify notation, we
state the following optimization lemma assuming that the parameter is a vector θ ∈ Rd.

Lemma E.16 (Non-Convex Projected Stochastic Gradient Descent [11]). LetW be a closed convex
set of diameter R. Moreover, let F : Rd 7→ R be an L-Lipschitz and B-smooth function. Define the
stochastic gradient descent iteration as

θ(0) ← 0

θ(t+1) ← projW

(
θ(t) − η(t)g(t)(θ(t))

)
where g(t)(θ(t)) is an unbiased gradient estimate of ∇θF (θ(t)). Fix a number of iterations T ≥ 1
and assume that for all t ∈ [T] it holds ‖g(t)(θ)‖2 ≤ L for all θ ∈ W . Set the step-size η(t) =

Θ(
√
R/(BL2T)). With probability at least 99%, there exists a t ∈ {1, . . . , T} such that θ(t) is an

O
(√

BLR
T 1/4

)
-stationary point of F (·) constrained onW .

Theorem E.5 now follows directly by applying Lemma E.16 on the empirical objective to find an
ε-approximate stationary point and then using Proposition E.12.

28

