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A USE OF LARGE LANGUAGE MODELS

We used a large language model (GPT4V) as an assistive tool during the preparation of this paper.
Specifically, it was employed for language polishing, grammar refinement, and providing alternative
phrasings to improve readability. The model was not involved in generating research ideas, design-
ing experiments, analyzing results, or drawing conclusions. All substantive contributions, including
research conception, methodology, data analysis, and interpretation, were performed solely by the
authors, who take full responsibility for the content.

B ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive user information. All experi-
ments are conducted on publicly available datasets or synthetic data generated via HTML rendering.
The newly introduced Infinity-Doc-400K dataset combines automatically generated synthetic docu-
ments with real-world samples that are pseudo-labeled through cross-model agreement and manually
filtered to ensure quality. We have taken care to remove potentially harmful or inappropriate content,
and the dataset will be released strictly for research purposes under an academic license. We believe
our contributions do not pose risks of discrimination, bias, or privacy violations, and instead aim
to advance the robustness and reliability of document parsing technologies for broad scientific and
practical use.

C REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we will release the full
Infinity-Doc-400K dataset, the implementation of LayoutRL with verifiable reward functions, and
the pretrained Infinity-Parser model. Detailed training configurations, hyperparameters, and eval-
uation protocols are provided in the appendix and supplementary materials. Our experiments are
conducted on widely used benchmarks, including OmniDocBench, olmOCR-Bench, PubTabNet,
and FinTabNet, ensuring comparability with prior work. We will also provide scripts for prepro-
cessing, training, and evaluation to facilitate reproducibility and further research by the community.

D TRAINING DETAILS

D.1 TRAINING CONTEXT LENGTH DISTRIBUTION

Our model was trained with a maximum context length of 8K tokens. To provide a clearer picture
of the training data, we report detailed statistics of the context length distribution in Table [6] and
Table The average context length is 1,765 tokens, with a maximum of 31,147 tokens. More
than 73% of the samples fall within the [512, 4K) range. For sequences exceeding the 8K limit, we
applied a left-truncation strategy to retain the semantically more relevant content at the end of the
sequence.

Metric Min Max  Average Median  Std
Value 17 31,147 1,765 1,127 1,692

Table 6: Summary statistics of training context length.

Context Length (tokens) [1,256) [256,512) [512,1K) [1K,2K) [2K4K) [4K,8K) [8K,16K) >16K

Frequency (count) 25,125 40,680 119,041 102,757 70,554 39,780 2,482 63
Distribution (%) 6.27 10.16 29.72 25.66 17.62 9.93 0.62 0.02

Table 7: Distribution of training samples across different context length intervals.
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E DATA DETAILS

As illustrated in Figure |/} the dataset spans seven diverse document domains, making it one of
the most richly annotated and structurally varied resources to date. Each domain is represented
by two sample pages, highlighting the broad variability in layout design, content structure, and
semantic density. For instance, Medical Reports typically contain structured tables with clinical
measurements and diagnostic notes. Synthetic Documents are algorithmically generated to replicate
real-world formats, providing layout diversity for training robust parsers. Financial Reports fea-
ture dense tables and formal accounting records, while Academic Papers often follow two-column
layouts with references, equations, and figures. Books combine narrative content with visual illus-
trations, and Magazines blend images and stylized text for reader engagement. Finally, Web Pages,
when saved as PDFs, preserve HTML-based structures that integrate tables, lists, and dynamic ele-
ments. This visual taxonomy exemplifies the structural and semantic diversity present in real-world
documents, highlighting the core challenge faced by document Al systems: reliably parsing hetero-
geneous layouts and extracting structured information across a wide variety of formats.

~

PDF Types

k Medical Reports Synthetic Documents Web Pages J

Figure 7: This figure illustrates a diverse collection of PDF document types commonly encountered
in Infinity-Doc-55K, grouped into seven categories: Medical Reports, Synthetic Documents, Finan-
cial Reports, Academic Papers, Books, Magazines, and Web Pages.

Magazines

Financial Reports Academic Papers Books

Table [8] provides an overview of the document types included in the Infinity-Doc-400K dataset,
detailing the composition across both real-world and synthetic sources. The real-world portion
consists of 331K documents spanning six domains: financial reports, medical reports, academic
papers, books, magazines, and web pages. These documents were collected from the web and
annotated using a pseudo-labeling pipeline based on expert model agreement. While this approach
enables large-scale data acquisition, the resulting label quality is relatively low due to occasional
inconsistencies across models. Additionally, real-world data collection incurs a high cost, especially
in terms of manual filtering, formatting normalization, and layout validation.

Data Source Document Types Size Annotation Method  Cost
Real-World Doc Financial Reports 58.0K  Web + Pseudo-Label ~ High
Real-World Doc Medical Reports 5.0K Web + Pseudo-Label ~ High
Real-World Doc Academic Papers 717K Web + Pseudo-Label  High
Real-World Doc Books 11.3K Web + Pseudo-Label ~ High
Real-World Doc Magazines 180.0K  Web + Pseudo-Label ~ High
Real-World Doc Web Pages 5.0K Web + Pseudo-Label  High
Synthetic Synthetic Documents ~ 69.0K  CC3M + Web + Wiki  Low

Table 8: Overview of document types in the Infinity-Doc-400K dataset, including data source, doc-
ument type, annotation method, and collection cost.

Quality Control Measures To ensure reliable annotations at scale, we designed a hybrid quality
control strategy for Infinity-Doc-400K. First, three domain experts with doctoral degrees in docu-
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ment analysis manually inspected about 5% of the data. Their feedback not only identified potential
errors but also served as a quality anchor for evaluating annotation consistency. Guided by these in-
spections, we iteratively refined the screening rules no fewer than five times, continuously improving
the labeling pipeline. Finally, to achieve scalability, we employed a model-based cross-verification
mechanism: multiple models generated annotations for real-world samples, with high-consistency
outputs retained and inconsistent cases fed back into further rule refinement. This layered frame-
work—anchored by expert inspection, strengthened through iterative rule optimization, and scaled
via model cross-checking—effectively balances annotation reliability with dataset scalability.

F BENCHMARKS DETAILS

OmniDocBench (Ouyang et al., 2024) We conduct evaluation on OmniDocBench, a comprehen-
sive benchmark that covers diverse document types and content modalities. To assess parsing perfor-
mance across different structural elements, we employ two primary evaluation metrics: Normalized
Edit Distance (NED), which measures the minimum edit operations required to transform one string
into another normalized by the target string length, and Tree Edit Distance-based Similarity (TEDS),
which captures structural similarities by comparing tree representations of HTML tables. These met-
rics are applied to different subtasks: NED is used to evaluate pure text, formula transcription, and
reading order; TEDS combined with NED is used to evaluate both structural and content accuracy
of table parsing.

PubTabNet (Zhong et al., |2020) A widely used benchmark for table recognition, containing
500,777 training and 9,115 validation images with diverse scientific table structures. Evaluation
is conducted on the validation set.

FinTabNet (Zheng et al., 2021) Focused on financial documents, this dataset includes 112,000
single-page scanned documents, with 92,000 cropped training images and 10,656 for testing. It
features dense layouts and detailed annotations for both structure and content evaluation.

olmOCR-Bench (Poznanski et al.,2025) This is a benchmark developed to automatically and
reliably evaluate document-level OCR performance across a wide range of tools. Unlike traditional
evaluation metrics such as edit distance—which may penalize valid variations or fail to capture
critical semantic errors—olmOCR-Bench focuses on verifying simple, unambiguous, and machine-
checkable “facts” about each document page, similar to unit tests. For instance, it checks whether
a specific sentence appears exactly in the OCR output. The benchmark operates directly on single-
page PDFs to preserve digital metadata, which can be beneficial for certain OCR systems, and to
maintain the integrity of the original document format. Designed for flexibility, olmOCR-Bench
supports outputs in Markdown or plain text, allowing for seamless evaluation of both open-source
and custom OCR pipelines.

G IMPLEMENTATION DETAILS

We fine-tune the Qwen2.5-VL-7B model using GRPO within a distributed training setup based
on Verl Sheng et al.| (2024); |Yaowei Zheng| (2025)), utilizing 8 A100 GPUs (80GB). Throughout
our experiments, we set the KL coefficient 5 = 1.0 x 10~2. And for each problem instance, we
sample 8 responses, each with a maximum length of 8192 tokens and a temperature of 1.0. Both
the rollout batch size and the global batch size are set to 128. The actor model is updated using
the AdamW optimizer with parameters (3; = 0.9, 82 = 0.99) and a learning rate 1.0 x 107°.
The model is trained for 1.0 epoch for all experiments. Due to limited computational resources,
we randomly sampled 43K documents from the 400K corpus for training. In our main results, we
directly performed reinforcement learning on the base model using the 43K subset.

H MORE RESULTS

Diverse Page Types Evaluation To further investigate model behavior across diverse document
types, we evaluated text recognition performance on nine distinct page categories. As shown in
Table 9] pipeline-based systems such as MinerU [Wang et al.| (2024b) and Mathpix achieved strong
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results on structured formats like academic papers and financial reports. General-purpose vision-
language models (VLMs) demonstrated better generalization on less formal page types, including
presentation slides and handwritten notes. However, for challenging formats such as newspapers,
most VLMs underperformed, while pipeline tools maintained relatively lower error rates. Notably,
our proposed Infinity-Parser-7B achieved consistently low edit distances across all document types,
outperforming both pipeline-based systems and general-purpose VLMs in overall accuracy. This
highlights the robustness and adaptability of our reinforcement learning approach across diverse and
complex document layouts.

Models Book  Slides Financial Textbook Exam Magazine Academic Notes Newspaper | Overall |
Report Paper Papers

Based on Pipeline Tools

MinerU 0.055 0.124 0.033 0.102 0.159 0.072 0.025 0.984 0.171 0.206

Marker 0.074  0.34 0.089 0.319 0.452 0.153 0.059 0.651 0.192 0.274

Mathpix 0.131 0.22 0.202 0.216 0.278 0.147 0.091 0.634 0.69 0.3

Based on Expert VLMs

GOT-OCR 0.111 0222 0.067 0.132 0.204 0.198 0.179 0.388 0.771 0.267

Nougat 0.734 0958 1.000 0.820 0.930 0.83 0.214 0.991 0.871 0.806

Based on General VLMs

GPT-40 0.157  0.163 0.348 0.187 0.281 0.173 0.146 0.607 0.751 0.316

Qwen2-VL-72B 0.096  0.061 0.047 0.149 0.195 0.071 0.085 0.168 0.676 0.179

InternVL2-76B 0.216  0.098 0.162 0.184 0.247 0.150 0.419 0.226 0.903 0.3

Qwen2.5-VL-7B 0.222  0.131 0.194 0.268 0.203 0.230 0.195 0.249 0.394 0.230

InternVL3-8B 0311 0.233 0.320 0.222 0.238 0.157 0.438 0.268 0.726 0.328

Based on Reinforcement Learning

Infinity-Parser-7B ~ 0.112  0.107 0.070 0.093 0.082 0.082 0.087 0.141 0.153 | 0.104

Table 9: End-to-end text recognition performance on OmniDocBench: evaluation using edit dis-
tance across 9 PDF page types. We compare with Mathpix, MinerU (Wang et al.| 2024b),
Marker (Paruchuri, [2024), GOT-OCR (Wei et al., 2024), Nougat (Blecher et al., 2024), GPT-40 (?),
Qwen2-VL-72B (Wang et al.| 2024c), InternVL2-76B (Chen et al., [2024), Qwen2.5-VL-7B (Bai
et al., |2025b), InternVL3-8B (Zhu et al., 2025)).

Table [E] summarizes the performance of various models on the OmniDocBench table subset, eval-
uated along three dimensions: language diversity, table frame types, and special layout conditions.
Notably, Infinity-Parser-7B achieves the best overall performance with an impressive score of 86.4,
outperforming all other models across most individual metrics. It leads in nearly every category,
including mixed-language settings (94.8), complex frame layouts (e.g., omission and three-line for-
mats), and challenging special situations such as merged cells, formulas, and rotations. This demon-
strates its strong generalization ability and robustness across diverse and noisy table formats.

Language Table Frame Type Special Situation

Model EN ZH Mixed| Full Omission Three Zero|Merge Cell(+-) Formula(+-) Colorful(+/-) Rotate(+/-)| OVeraM T
PaddleOCR (Li et al.|2022a) 768 718 80.1 |67.9 743 811 745| 70.6/752 713/741 1277740  233/746 | 136
RapidTable (RapidAll[2023] 80.0 832 912 |83.0 797 834 784| 77.1/854 76.7/839  77.6/849  252/837 | 825
StructEqTable (Zhou et alj2024]  |72.8 759 834 | 729 762 769 $8.0| 64.5/81.0 69.2/76.6  72.8/764 305762 | 758
GOT-OCR (Wei et al.|[2024] 722 755 854 |73.1 727 782 757| 65.0/80.2 64.3/773 708769  8.5/763 | 749
Qwen2-VL-7B (Wang et al.|2024c] |70.2 707 824 |702 628 745 80.3| 60.8/76.5 63.8/72.6 7147708  20.0/72.1 | 710
InternVL2-8B (Chen et al. 2024} |70.9 71.5 77.4 | 69.5 692 748 758| 58.7/78.4 62.4/73.6  682/73.1  204/72.6 | 715
Qwen2.5-VL-7B (Wang ot al|[J024c} | 87.4 80.7 93.5 | 864  85.1  84.1 8$8.7| 77.5/89.8 821872 71.1/87.5  56.5/86.0 | 85.5
InternVL3-8B (Zhu et al.][2025] 795 860 917 | 855 807 839 859| 71.9/90.9 74.0/867  82.1/85.3  12.6/85.5 | 843
Infinity-Parser-7B |84.7 867 948 | 855 865 87.4 894| 78.6/90.7  81.9/87.5  83.2/88.0 68.8/86.7 | 86.4

Table 10: Component-level Table Recognition evaluation on OmniDocBench table subset. (+/-)
means with/without special situation.

I PROMPT STRATEGY FOR PARSING TASKS.

Prompt Template summarizes the prompt designs for two key parsing tasks: document parsing and
table parsing. For document parsing, the prompts instruct the model to recognize visual regions
and convert their contents into structured Markdown. This design ensures consistent region-level
extraction across documents with diverse layouts.

For table parsing, although the prompts are phrased differently, they share the same objective: trans-
forming table content from images into HTML. This diversity encourages the model to general-
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Prompt Template

Document Parsing: You are an Al assistant specialized in converting PDF images to Markdown
format. Please follow these instructions for the conversion:

1. Text Processing:

- Accurately recognize all text content in the PDF image without guessing or inferring.

- Convert the recognized text into Markdown format.

- Maintain the original document structure, including headings, paragraphs, lists, etc.

2. Mathematical Formula Processing:

- Convert all mathematical formulas to LaTeX format.

- Enclose inline formulas with $ $. For example: This is an inline formula E = mc
- Enclose block formulas with $$ $$. For example:

2

—b+Vb? — 4ac
2a

3. Table Processing:

- Convert tables to Markdown format.

4. Figure Handling:

- Ignore figures content in the PDF image. Do not attempt to describe or convert images.

5. Output Format:

- Ensure the output Markdown document has a clear structure with appropriate line breaks between
elements.

- For complex layouts, try to maintain the original document’s structure and format as closely as
possible.

Please strictly follow these guidelines to ensure accuracy and consistency in the conversion. Your
task is to accurately convert the content of the PDF image into Markdown format without adding
any extra explanations or comments.

Table Parsing:

1. Please encode the table from the image into HTML format.

2. Render the table in the image as HTML code, please.

3. Please transform the table from the image into HTML format.
4. Convert the image’s table data into the HTML structure.

5. Transform the image’s table into the HTML format, please.

6. Convert the table found in the image into HTML format.

Example Input: A PDF with headings, paragraphs, and a table.
Example Output: Markdown reconstruction with proper hierarchy.

ize across variations in phrasing and reduces overfitting to a single instruction template. Notably,
HTML is used here to match the evaluation format, but the resulting outputs can be easily converted
to Markdown if needed for downstream use.

J CASE ANALYSIS

Figure [§] illustrates a progressive improvement in Markdown generation quality across different
training strategies. The zero-shot model fails to capture key structural elements, omitting titles and
producing redundant or incomplete content. With SFT, the model better identifies section headers
and general layout but still suffers from symbol-level errors and repeated outputs. In contrast, the
layout-aware RL model demonstrates the most accurate and coherent result, successfully preserving
the document hierarchy and eliminating redundancy. This highlights the effectiveness of layout-
aware rewards in guiding the model toward semantically and structurally faithful document parsing.

Infinity-Parser exhibits consistent improvements across a wide spectrum of document types, in-
cluding academic papers, books, colorful textbooks, exam papers, magazines, government notices,
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Figure 8: Comparison of four Markdown generation results on a single case, illustrating progressive
improvement from direct inference to full reward integration.

newspaper articles, and PowerPoint-style slides. These gains are reflected in structural parsing,
title and content recognition, formatting accuracy, and robustness to diverse visual layouts. As
shown in Figures[9]through[T4] we provide detailed visual comparisons with existing models, where
Infinity-Parser consistently achieves superior results. These findings underscore the effectiveness
and generalizability of our layout-aware RL approach across complex, real-world PDF formats.
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Figure 9: Comparison of Markdown extraction from academic literature using different models. The
figure shows the original PDF (a), ground truth annotations (b), and extraction results from three
models: MinerU, GPT-4o, and Infinity-Parser (c—e). Infinity-Parser produces the most accurate
output, correctly identifying titles and content while avoiding redundancy and omissions.
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Figure 10: Comparison of Markdown extraction from a book-style PDF using different model
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In this part of the experiment you will need the equipment shown in
Fig. 1.6.
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Figure 1.6 Equipment for experiment 1.3 shown i the figure: &
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Remove the black felt pad from the lens. The LDM should now be
placed in the following set-up: Place two self-adhesive foam pads on
the angle iron, see A on Fig. 17.

(d) 6PT-40

(e) Infinity-Parser

Speedofilight Title level error x

1.3 Laser distance meter at an angle from
the vertical

In this part of the experiment you will need the equipment shown in
Fig. 16.
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Figure 1.6 Equipment for experiment 1.3 shown in the figure:
A: Optical vessel with water and measuring tape

B: Magnet to secure the angle iron on top of the black box. (You find
magnet placed on the angle iron).

C: Angle iron with self-adhesive foam pads.

D: Self-adhesive foam pads

Remove the black felt pad from the lens.
‘The LDM should now be placed in the following set-up:

Place two self-adhesive foam pads on the angle iron, see A on Fig.
17.

pagaserel Redundant recognition

1.3 Laser distance meter at an
angle from the vertical J

Correct title
In this part of the experiment you will need the equipment shown in
Fie 18 Correct content

Figure 1.6 Equipment for experiment 1.3 shown in the figure:
A: Optical vessel with water and measuring tape

B: Magnet to secure the angle iron on top of the black box. (You find
magnet placed on the angle iron).

C: Angle iron with self-adhesive foam pads
D: Self-adhesive foam pads

Remove the black felt pad from the lens. The LDM should now be
placed in the following set-up: Place two self-adhesive foam pads on
the angle iron, see A on Fig. 17.

Figure 11: Comparison of Markdown extraction from an exam-style PDF. The figure presents the
original exam document (a), ground truth annotations (b), and the extraction results from MinerU,
GPT-4o0, and Infinity-Parser (c—e). GPT-40 and MinerU both introduce redundant text and format-
ting errors, such as incorrect title levels and misplaced content. In contrast, Infinity-Parser accurately
captures the heading hierarchy and structured list format, faithfully reproducing the content as in-
tended in the original layout.
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Figure 12: Comparison of Markdown extraction from a magazine-style PDF. The figure shows
the original visually-rich page (a), ground truth annotations (b), and results from MinerU, GPT-
40, and Infinity-Parser (c—e). Due to the complex layout and dark background, GPT-40 suffers
from significant formatting errors. Infinity-Parser accurately preserves the structural hierarchy and
formatting, demonstrating robustness in handling stylized layouts.

(a) Origin pdf (b) Ground truth (¢) MinerU
Two Kentucky Cave Beetles (Loisville Cave Beetle Cave Beaties Louisile
(Pseudanophthalmus troglodytes) and Tatum Cave ¢
Beetle (Pseudanophthalmus paruus) (Pseudanophthalmus parvus)

Previcus FederalActions! Title level error x

2008 okt
20, P Samorsern
200 67 i pighnd -
406 Wl 200863 4876 Moy . 2005 0P 24470 oo o200 20201
oecanter s 200 s, 77m oo 5 200
November 102000 s Rzl oo,
P S —
Background

(d) 6PT-40 (e) Infinity-Parser
Federal Register / Vol. 81, No. 194 | Thursday, October 6, Two Kentucky Cave Beetles (Louisville Cave Beetle
2016 / Rules and Regulations (Pseudanophthalmus troglodytes) and Tatum Cave

Redundant recognition Beetle (Pseudanophthalmus paruus) «
Beetles (Louisville Cave Beetle — n
imus rogiodyies and Tatum Cave Boetle — i) Corvect title
)

PreviousFederalactions Title recognition error x

Novwriber 15,1994, CNOR (60 R 58982)a Category 2 socin.
Correct format

soamwsamorowrsemsims,  Format error

Moy 1, 2005: R 7O PR 24870

* Stbsequnt s eimed ot o (2006-205)
Background

Error recognition
Summary of Status Review Backarouns Correct content
it o et ettt o s i Jflron County K.
 Totin Cove et e o cave i Mo Courty, Y.

Figure 13: Comparison of Markdown extraction from a newspaper-style PDF. This figure presents
the original densely formatted page (a), ground truth annotations (b), and the results from MinerU,
GPT-40, and Infinity-Parser (c—e). Due to the complex multi-column layout and title hierarchy,
both MinerU and GPT-40 exhibit issues such as incorrect title levels, redundant content, and format
errors. In contrast, Infinity-Parser accurately identifies the main title, maintains structural formatting,
and preserves content integrity, demonstrating strong layout understanding in challenging document
types.
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Figure 14: Comparison of Markdown extraction from a PowerPoint-style PDF slide. The figure
includes the original slide (a), human-annotated ground truth (b), and outputs from MinerU, GPT-4o,
and Infinity-Parser (c—e). MinerU and GPT-40 both struggle with layout fidelity, introducing spacing
and formatting errors. In contrast, Infinity-Parser preserves the dialogue structure and formatting
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accurately, demonstrating its capability to handle informal, visually decorated slides effectively.
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