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Abstract

In many sequential decision making applications, the change of decision would
bring an additional cost, such as the wear-and-tear cost associated with chang-
ing server status. To control the switching cost, we introduce the problem of
online convex optimization with continuous switching constraint, where the goal
is to achieve a small regret given a budget on the overall switching cost. We
first investigate the hardness of the problem, and provide a lower bound of or-
der Q(v/T) when the switching cost budget S = Q(+/T), and Q(min{T/S, T})
when S = O(v/T), where T is the time horizon. The essential idea is to care-
fully design an adaptive adversary, who can adjust the loss function according to
the cumulative switching cost of the player incurred so far based on the orthogo-
nal technique. We then develop a simple gradient-based algorithm which enjoys
the minimax optimal regret bound. Finally, we show that, for strongly convex
functions, the regret bound can be improved to O(log T') for S = Q(logT'), and
O(min{T/ exp(S) + 5,T}) for S = O(log T).

1 Introduction

Online convex optimization (OCO) is a fundamental framework for studying sequential decision
making problems (Shalev-Shwartz, 2011)). Its protocol can be seen as a game between a player and
an adversary: In each round ¢, firstly, the player selects an action w, from a convex set D C R<.
After submitting the answer, a loss function f; : D — R is revealed, and the player suffers a loss
ft(wy). The goal is to minimize the regret:
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R:th(wt)*glei%th(W)v (1
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which is the difference between the cumulative loss of the player and that of the best action in
hindsight.

Over the past decades, the problem of OCO has been extensively studied, yielding various algo-
rithms and theoretical guarantees (Hazan, 2016} Orabonal 2019). However, most of the existing ap-
proaches allow the player to switch her action freely during the learning process. As a result, these
methods become unsuitable for many real-life scenarios, such as the online shortest paths problem
(Koolen et al.| |2010), and portfolio management (Dekel et al., [2014; |Vittori et al.| 2020), where
the switching of actions brings extra cost, and the budget for the overall switching cost is strictly
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constrained. To address this problem, recent advances in OCO introduced the switching-constrained
problem (Altschuler & Talwar, [2018}; |Chen et al.l |2020), where a hard constraint is imposed to the
number of the player’s action shifts, i.e.,

T

> {we#wia} <K, )

t=2

and the goal is to minimize regret under a fixed budget K. For this problem, (Chen et al.| (2020)
have shown that, given any K, we could precisely control the the overall switching cost in (2)), while

achieving a minimax regret bound of order ©(7/V'K).

One limitation of (IZ]) is that it treats different amounts of changes between w;_; and w; equally,
since the binary function is used as the penalty for action shifts. However, as observed by many
practical applications, e.g., thermal management (Zanini et al., 2010), video streaming (Joseph &
de Veciana, |2012) and multi-timescale control (Goel et al.,[2017)), the price paid for large and small
action changes are not the same. Specifically, for these scenarios, the switching cost between two
consecutive rounds is typically characterized by a ¢5-norm function, i.e., ||w; — w;_1]||. Motivated
by this observation, in this paper, we introduce a novel OCO setting, named OCO with continuous
switching constraint (OCO-CSC), where the player needs to choose actions under a hard constraint
on the overall {5-norm switching cost, i.e.,

T
D lwe —wia <8, 3)
t=2

where S is a budget given by the environment. The main advantage of OCO-CSC is that, equipped
with (3)), we could have a more delicate control on the overall switching cost compared to the binary
constraint in (2).

For the proposed problem, we firstly observe that, an O(T'/+/S) regret bound can be achieved by
using the method proposed for the switching-constrained OCO (Chen et al., 2020) under a proper
configuration of K. However, this bound is not tight, since there is a large gap from the lower
bound established in this paper. Specifically, we provide a lower bound of order (/7)) when
S = Q(VT), and Q(min{Z,T}) when S = O(VT). Our basic framework for constructing the
lower bound follows the classical linear game (Abernethy et al.l [2008), while we adopt a novel
continuous-constraint-related dynamic policy for the adversary, which allows it to adaptively change
the loss function according to the player’s cumulative switching costs. Furthermore, we prove that
the classical online gradient descent (OGD) with an appropriately chosen step size is able to obtain
the matching upper bound. These results demonstrate that there is a phase transition phenomenon
between large and small switching budget regimes, which is in sharp contrast to the switching-
constrained setting, where the minimax bound always decreases with ©(1/ VK ). Finally, we pro-
pose a variant of OGD for A-strongly convex functions, which can achieve an O(log T') regret bound
when S = Q(logT), and an O(T'/ exp(S) + S) regret bound when S = O(log T').

2 Related Work

In this section, we briefly review related work on online convex optimization.

2.1 Classical OCO

The framework of OCO is established by the seminal work of|Zinkevich|(2003). For general convex
functions, |Zinkevich| (2003)) shows that online gradient descent (OGD) with step size on the order
of O(1/+/t) enjoys an O(\/T) regret bound. For \-strongly convex functions, Hazan et al./(2007)
prove that OGD with step size of order O(1/[A¢]) achieves an O(log T') regret bound. Both bounds
have been proved to be minimax optimal (Abernethy et al.| 2008). For exponentially concave func-
tions, the state-of-the-art algorithm is online Newton step (Hazan et al., |2007), which enjoys an
O(dlogT) regret bound, where d is the dimensionality.



2.2 Switching-constrained OCO

One related line of research is the switching-constrained setting, where the player is only allowed
to change her action no more than K times. This setting has been studied in various online learning
scenarios, such as prediction with expert advice (Altschuler & Talwar, 2018)) and bandits prob-
lems (Simchi-Levi & Xu, 2019; |Dong et al., 20205 [Ruan et al.l [2021)). In this paper, we focus
on online convex optimization. Jaghargh et al.| (2019) firstly consider this problem, and develop a
novel online algorithm based on the Poison Process, which can achieve an expected regret of order
O(T®/?/E[K]) for any given expected switching budget E[K]. Therefore, the regret will become
sublinear for E[K] = o(+/T). Later, (Chen et al. (2020) propose a variant of the classical OGD based
on the mini-batch approach. Specifically, the algorithm averagely divides the time horizon into K
intervals, and only update the decision at the end of each interval based on OGD. The show that the
simple algorithm enjoys an O(T'/+/K) regret bound for any given budget K. They also prove that
this result is minimax optimal by establishing a matching Q(7'/v/K) lower bound. We note that,
when the action set is bounded (i.e., maxXw, w,ep ||[W1 — Wa|| < D), since

T
Z [wi —wi1]| < DK,
t=2

we could set K = |S/D] to satisfy (8) and immediately obtain an O(T/+/S) regret for OCO-
CSC, but there is still a large gap from the lower bound we provide in this paper. Very recently, a
concurrent work (Sherman & Koren 2021)) considered switching-constrained OCO under oblivious
adversary setting, and derived ©(T'/S) bounds. However, we note that: (i) lower bound for the
switching-constraint OCO does not translate to a lower bound for our continuous switching cost
setting; and (ii) their upper bound for oblivious only holds in expectation, and has an undesirable

V/d factor.

2.3 0OCO with Ramp Constraints

Another related setting is OCO with ramp constraints, which is studied by Badiei et al.| (2015)). In
this setting, at each round, the player must choose an action satisfying the following inequality:

[wy; —wi—1,4] < X, 4)

where w; ; denotes the i-th dimension of w,, and X; is a constant factor. The constraint in (@)
limits the player’s action switching in a per-round and per-dimension level. This is very different
from the constraint we proposed in (3)), which mainly focus on the long-term and overall switching
cost. Moreover, we note that,|Badiei et al.[{(2015) assume the player could get access to a sequence of
future loss functions before choosing w, while in this paper we follow the classical OCO framework
in which the player can only make use of the historical data.

2.4 OCO with Long-term Constraints

Our proposed problem is also related to OCO with long-term constraints (Mahdavi et al.| 2012}
Jenatton et al., 2016; Yu et al., 2017), where the action set is written as m convex constraints, i.e.,

D={wecR%: g(w)<0,i¢c[m]} )

and we only require these constraints to be satisfied in the long term, i.e., ZtT: 19i(wy) <0, € [m].

The goal is to minimize regret while keeping Zthl gi(w¢) small. We note that, in this setting, the
action set is expressed by the constraint, which is in contrast to OCO-CSC, where the constraint
and the decision set D are independent. Moreover, the constraint in OCO-CSC is time-variant and
decided by the historical decisions, while the constraint in (EI) is static (or stochastic, considered by
Yu et all 2017). Recently, several work start to investigate OCO with long-term and time-variant
constraints, but this task is proved to be impossible in general (Mannor et al., 2009). Therefore,
existing studies have to consider more restricted settings, such as weaker definitions of regret (Neely
& Yu, 2017; |Liakopoulos et al., |2019; Y1 et al., [2020; |Valls et al., [2020).



2.5 Smoothed OCO

The problem of smoothed OCO is originally proposed in the dynamic right-sizing for power-
proportional data centers (Lin et al., 2012b)), and has received great research interests during the
past decade (Lin et al., | 2012a}; |Bansal et al., [2015} |Antoniadis & Schewior, 2017;|Chen et al., [2018j
Goel et al., [2019; |Goel & Wierman, 2019; [Zhang et al., [2021a)). In smoothed OCO, at each round,
the learner will incur a hitting cost f;(-) as well as a switching cost ||[w; — w;_1 ||, and the goal is to
minimize dynamic regret (Zinkevich, |2003) or competitive ratio (Borodin & El-Yaniv, [2005) with
respect to fi(w¢) + ||[wy — wy_1]|. This setting is closely related to but different from OCO-CSC,
where the goal is to minimize regret with respect to f;(+), and the overall switching cost is limited by
a given budget. Additionally, we note that, similar to [Badiei et al.| (2015), studies for the smoothed
OCO typically assume the player could see f;(-) or sometimes a window of future loss functions
(Chen et al., 2015 [2016; [Li et al., [2018) before choosing w;. By contrast, in OCO-CSC the player
can not obtain these additional information.

3 Main Results

In this section, we present the algorithms and theoretical guarantees for OCO-CSC. Before pro-
ceeding to the details, following previous work, we introduce some standard definitions (Boyd &
Vandenberghel 2004) and assumptions (Abernethy et al., 2008)).
Defination 1 A function f : D +— R is convex if Vw1, wo € D,

F(wi) > f(wa) + Vf(wa) " (w1 — wa). (6)

Defination 2 A function f : D — R is A-strongly convex if Ywi,wo € D,
A
Fw1) 2 f(wa) + V f(wa) T (W = wa) + Jllwy = wa|*. 7

Assumption 1 D is a d-dimensional ball of radius 2, i.e., D = {w|w € R?, [|w| < 2}

Assumption 2 The gradients of all the online functions are bounded by G, i.e.,

max [V fi(w)|| < G, vt € [T]. (8)

3.1 Lower Bound for Convex Functions

Algorithm 1 Adversary’s Policy
=110 =1

2: Observe the player’s action wy

3: Choose m; such that mlTwl =0

4: fort =2toT do

5:  Observe the player’s action w;

6: i), i llwj —w;_1]| < & then
7: Choose m; = m;_1

8: else

9: Choose m; such that m,/ w; > 0 and m, (Z?: mj> > 0.
10: Setr=7+1,1, =t
11:  endif
12: end for

We first describe the adversary’s policy for obtaining the lower bound. Following previous work
Abernethy et al.| (2008), our proposed policy is based on the linear game, i.e., in each round, the
adversary chooses from a set of bounded linear functions:

F={f(): D= R|f(w)=m'w,|m| =G},



which is a subset of convex functions satisfying Assumptions [[]and 2} For this setting, the regret
can be written as

T T T T T
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where the third equality is because the minimum is only obtained when

ZtT:1 my
= .
2” Zt:1 th

According to (@), to get a tight lower bound for R, we have to make both Zthl m, w; and

I Zthl my || as large as possible. One classical way to achieve this goal is through the orthogonal
technique (Abernethy et al.} |2008; |Chen et al., 2020), that is, in round ¢, the adversary chooses m;

such that m, w; > 0 and m, (Zf i m;) > 0. Note that such a mt can always be found for d > 2.

For this technique, it can be easily shown that Zt ,m/w; > 0, while || Zt (my|| > GVT,
which implies an Q(DG+/T) lower bound.

The above policy does not take the constraint on the player’s action shifts into account. In the
following, we show that, by designing a more adaptive adversary which automatically adjusts its
action based on the player’s historical switching costs, we can obtain a tighter lower bound when S
is small. The details is summarized in Algorithm [T} Specifically, in the first round, after observmg
the player’s action w, the adversary just simply chooses f;(w) = m; w such that m{ w; = 0
(Step 3). For round ¢ > 2, the adversary divides the time horizon into several epochs. Let the
number of epochs be N. For each round ¢ in epoch 7 € [N], after obtaining wy, the adversary
checks if the cumulative switching cost of the player inside epoch 7 exceeds a threshold (Step 6).
To be more specific, the adversary will check if

i &
> lws—wiall < 5
j=l+1

where [ is the start point of epoch 7, {1 = 1, and ¢ > 0 is a constant factor. If the inequality holds,
then the adversary will keep the action unchanged (Step 7); otherwise, the adversary will find a new
m; based on the orthogonal technique, i.e., find m; such that mtT w; > 0and mtT M;_1 > 0, where

M, = Z; 11 m;, and then start a new epoch (Steps 9-10).

The essential idea behind the above policy is that the adversary adaptively divides T iterations into
N epochs, such that for each epoch 7 € [N], the cumulative switching cost inside of 7 is upper
bounded by

l7+171

> llwy—wya <

=l +1

ol o

and for each epoch 7 € [N — 1],

lry1

3wy - wiall > <
S

j=l+1

The above two inequalities help us obtain novel lower bounds for the two terms at the R.H.S. of (9)
respectively which depend on S. Specifically, we prove the following two lemmas.

Lemma 1 We have

d T cGT
E m, wg > — .

S
t=1

Lemma 2 We have
Tyc

T
m|| > G——.
;t—m




By appropriately tuning the parameter ¢, we finally prove the following lower bound.

Theorem 1 For any online algorithm, under any given switching cost budget S, Algorithm[I| can
generate a series of loss functions f1(-), ..., fr(-) satisfying Assumptions[I|and 2] such that

0.5DGVT, S € [DVT,DT]
R> < 0.05DGEL, S e [D,DVT)
0.05DGT, S €0,D).

Remark 1 The above theorem implies that, when S < D, the lower bound for OCO-CSC is linear
with respect to T; When S' € [D, D\/T), it’s possible to achieve sublinear results, and the lower
bound decreases with T'/.S; for sufficiently large S, i.e., when S = Q(D\/T), the lower bound
is Q(DG\/T), which matches the lower bound for the general OCO problem (Abernethy et al.,
2008)). Note that in this case the lower bound will not further improve as S increases, which is very
different from the switching-constrained setting, where the lower bound is Q(7'/v K ), which means
that increasing the budget K is always beneficial. Finally, we note that, since

T T

1

5 E HWt _Wtle < E {Wt 75 Wtfl}a
t=2 t=2

lower bound for the binary switching cost setting (Altschuler & Talwar, [2018; |Chen et al.| [2020)
does not translate to lower bound for our continuous switching cost setting.

Remark 2 We summarize our main ideas for proving Theorem [I] as follows. For the proposed
adversary, we firstly show that (Lemma 1, Eq. (26)), inside of each batch, there exists a negative error
term caused by the possible non-orthogonality between the player’s decisions and the adversary’s
choice. To maximize this error term and further the lower bound, the adversary should change
its choice as many times as possible (thus require a small threshold); On the other hand, Lemma
2 (Eq. (30)) indicates that, the lower bound is tighter when the number of batches is small (thus
require a large threshold). Based on the two lemmas, in the proof of Theorem 1, we show that the
final lower bound is a function of the threshold. Very luckily, we find that the optimal lower bound
can be derived by choosing a threshold that maximizes the function.

3.2 Upper Bounds

In this section, we provide the algorithm for obtaining the upper bound. Before introducing our
method, we note that, as mentioned in Section [2.2] the mini-batch OGD algorithm proposed by
Chen et al.| (2020) enjoys an O(T'/+/S) regret bound for OCO-CSC, which is suboptimal based on
the lower bound we constructed at the last section. In the following, we show that, perhaps a bit
surprisingly, the classical online gradient descent with an appropriately chosen step size is sufficient
for obtaining the matching upper bound. Specifically, in round ¢, we update w; by

wipr = Up [wy =V fi(wy)], (10)
where I1p [p] denotes projecting p into D, i.e.,

Ip[p] = argmin(w —p) " (w — p).
weD

For this algorithm, we prove the following theoretical guarantee.

Theorem 2 Suppose Assumptions[Ijand[2 hold, and all loss functions are convex. Then, under any
given switching cost budget S, OGD with step size

D
- @, S € [D\VT, DT
&5 S€[0,DVT)
satisfies (3), and achieves the following regret:
DGVT, S € [DVT,DT]

R< ({DGEL  Se[D DVT)
DGT, Sel0,D).

(1)
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Figure 1: Minimax regret of OCO-CSC. Axies are plotted in log-log scale.

Remark 3 Theorems |I| and [2| show that our proposed algorithm enjoys an O(G'D+/T) minimax
regret bound for S = Q(D+/T), and O(DG min{ DT/S, T'}) regret bound for S = O(D+/T). We
illustrate the relationship between the minimax regret and S in Figure[} Finally, we note that the
algorithm requires the paramter 7" as input, but it could be easily extended to an any-time algorithm
by using the doubling trick Shalev-Shwartz| (2011).

Although the analysis above implies that the theoretical guarantee for OCO-CSC is unimproveable
in general, in the following, we show that tighter bounds is still achievable when the loss functions
are strongly convex. Specifically, when there are no constraints on the switching cost, the state-of-
the-art algorithm is OGD with a time variant step size 1; = 1/[At], which enjoys an O(log T') regret
bound. For the OCO-CSC setting, in order to control the overall switching cost, we propose to add
a tuning parameter at the denominator of the step size. To be more specific, in round ¢, we update
w; by

wipr = Ilp [Wt - Utvft(wt)] 5 (12)

1

where 1y = NGE and ¢ > 0 is a constant factor. By configuring c properly, we can obtain the

following regret bound.

Theorem 3 Suppose Assumptions|[I|and 2| hold, and all loss functions are A-strongly convex. Then,
under any given switching cost budget S, the algorithm in with

0, S € 2 log(T + 1), DT 13
C =

satisfies (3), and achieves R < A\D?* + % log (T + 1) . for S € [2¢ log(T + 1), DT), and

AT D?

R <min{ —————
{exp(;&;S) -1

+GS, DGT}

for S € [0, 25 log(T + 1)).

Remark 4 Theorem |3[ implies that, when S > % log(T + 1), the proposed algorithm enjoys
an O(logT') optimal regret bound; for S < % log(T' + 1), the proposed algorithm achieves an

O(T/ exp(S) + S) regret bound. To obtain a sublinear regret bound, consider S = 2% log (T +1).

In this case, we have
2

2
R < AD*T'™> 4 % log(T* + 1),

which is sublinar for o € (0, 1].

4 Theoretical Analysis

In this section, we present the proofs for the main conclusions.



4.1 Proof of Theorem[]

When S > D+/T, the lower bound can be directly obtained by using the minimax linear game
provided by (Abernethy et al.,[2008). When S € [D, D+/T), by the definition of regret, we have

T T T
R:E mtth—min E m; W .
weD
t=1 t=1

——

ai a2

Based on Lemmas [I|and 2] we get

0.5DT\/eé  cGT
VS2+e S

R=a1+a>G (14)

Let ¢ = ¢/ D?, and we have

/T)2 /12 / /
0.5DTVeD?  ¢D GT:GD2T< 0.5V c>>G QS<05\F d).

R>G - AL
=St D? g NIl Jite

where the second inequality is due to D < S. Note that the R.H.S. of the above inequality is a
function of ¢’. To maximize the lower bound, we should solve the following convex problem:

0.5z
argmax -z,
§>O Vvi+z

which is equivalent to finding the solution of the following equation:
162" + 322° +492° + 152 — 1 = 0.

it can be easily shown that the optimal solution x, & 0.056. Thus, by setting ¢’ = 0.056, we get

R> 0.05GD2§ (15)

For S € (0, D], based on (T4) and setting ¢ = 0.05652, we have

v/ 2 2
R>GT 0.5D+v/0.056S _ 0.056.5 > GDT( 0.028
V52 4 0.05652 S v1.056

where the second inequality is because S < D.

— 0.056) > 0.06GDT.

4.2 Proof of Theorem 2|

We first prove that by setting 1 as in (I1)), the constraint in (3) always holds. Let w} = w;_; —
NV fi_1(Wi_1). We have

T
ant wii| <Zuwt wi il @S v we )l £a6T, a6
t=2

where the first inequality is based the following lemma, which describes the non-expansion property
of the projection.

Lemma 3 (McMahan & Streeter, 2010) For the projection operation, we have Vw1, Wo € RY,

|p(wi) — Ip(w2)| < ||wi — wall.

Based on (I6), for S € [DV/T, DT, we have

T
> llwi — w1 || < 9GT = DVT <8.

t=2



For S € [0, D\/T), we have

T g
_ _ < = —GT =2-S.
tgzz lw; — wi_q|| < nGT GTG S

Next, we turn to upper bound the regret. Let w, = argming, ¢ 23:1 fi(w). Based on the classical

analysis of OGD (Hazan, 2016), we have

I < [1wi = wil? =l[wee1 = nV fr1(weo1) — w®
=[[we1 = Wil > + 0?|V fr1(we1) |12

—2n(wi—1 — W) "V fi1(wi_1).

[we —

Thus

) < [wi — W*||2 — |lwip1 — W*HQ
< 2

Based on the convexity of the loss functions and summing the above inequality up from 1 to 7', we
get

(Wi = w.) TV fu(w + 2 folw) %

1 2 1 2 2
w W w W, D G-T
R< E [l I W1 ” 7727 E IV fi(we) ||2<——|—77 . 17

Thus, for S € [D\/T, DT), we have

D2 2
r< 22 G _ pauT (18)
217 2

For S € [0, DVT),

D?  nG?T DT S DT T DT DT DT
R_2n+ 5 DG<2S+ )_DG<2S+ 5 _DG<2S+2S) DG—.

Finally, note that by Assumptions 1 and 2 and the convexity of the loss functions, we always have
R < DGT.

5 Conclusion and Future Work

In this paper, we propose a variant of the classical OCO problem, named OCO with continuous
switching constraint, where the player suffers a £5-norm switching cost for each action shift, and the
overall switching cost is constrained by a given budget S. We first propose an adaptive mini-batch
policy for the adversary, based on which we prove that the lower bound for this problem is Q(+/7T)

when S = Q(vT), and Q(min{Z,T}) when S = O(v/'T). Next, we demonstrate that OGD with
a proper configuration of the step size achieves the minimax optimal regret bound. Finally, for
A-strongly convex functions, we develop a variant of OGD, which has a tunable parameter at the
denominator, and we show that it enjoys an O(logT') regret bound when S = Q(logT'), and an
O(T/ exp(S) + S) regret bound when S = O(log T').

In the future, we would like to investigate how to extend the proposed constraint setting to other
OCO scenarios, such as minimizing adaptive regret (Jun et al., 2017; [Zhang et al., |2019)), dynamic
regret (Zinkevich, 2003 Zhang et al.|[2018)), and Universal OCO (van Erven & Koolen, |2016; Wang
et al.| 2019; Zhang et al., 2021b). Moreover, it is also an interesting question to study the switching
constraint problem under other distance metrics such as the Bregman divergence.
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A Proof of Theorem

Letw;, = w;_1 — -1V fi—1(W—1). We have

T T GT 1
—w_1]] < w4l < = . 19
2 I —wiall < 3 lwi—well < 3350 19

where the first inequality is based on Lemma 3] To further upper bound the theorem, we introduce
the following lemma.

Lemma 4 (Gaillard et al, 2014) Let a9 > 0 and aq,...,a, € [0,1] be real numbers and let
f:10,+00) = [0,400) be a nonincreasing function. then

m

ao+-tam
Zaif(a0+~--+ai_1) Sf(ao)+/ f(z)dz.
i=2

ao

Based on the lemma above, we have

G 1 G
Z ||Wt — Wt_1|| Sxm + X (log(T + C) — log(l + C))

<G 1 +G1 T L1 <2G1 T L1
“Al+c A 1+ec =Ty % 1+¢ ’

where the last inequality is because 1/x < log(T/x + 1) for any © > 1 and T > 3. Thus, for
S > % log(T + 1), by setting ¢ = 0, we have

T
2G T
Z lw: — wiq|| < - log (1—&—0 + 1> <.

t=2
When S < % log(T + 1), we configure

(20)

c=————""-120
exp(555) — 1

and get
T
D olwi—wial| <S.
t=1

Next, we consider the regret bound. For t € [1, T], We have

[Wepr = w|* <[[wiyy — wa?

2D
=[lwe = wl* = 2ne (Wi — w.) TV fu(we) + 17|V fo(we) |12,
thus
Wi — Wi||? — ||[wir1 — w2
(wi = w) TV ) I =L e =l g e
t
By the definition of regret and strong convexity, we have
T T
R=Y"fulwi) = Y fulw.)
t=1 t=1

!

T
gZ(wt w.) Vfi(w,) — = Z [wi — w.||”

t=1 t=1

<IZT H 2 +§:”’fG2+D2
= — — W, — W, —
T2l b 2m
=2\ — - — ——

=0

2G? T
1)D? —1 —_
<Ae+1)D* + 3 Og(1+ + )
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Figure 2: Decomposition of w; when d = 3.

Thus, for S > % log(T + 1), we have ¢ = 0, and thus
2G?
R< )\D2—|—Tlog(T—i—1).

2G _ T
When S < 5= log(T' + 1), we have ¢ = e 1, thus

AT D?
- exp(%S) -1
Finally, under Assumptions[I]and 2] we always have R < DGT.

+GS.

B Proof of Lemmal(l]

For any epoch 7 € [N] of length 1, we have
ml—[ wy, > 0. (23)

For any epoch 7 € [IN] whose length is greater than 1, we have V¢ € [I,, 111 — 1],
¢

Wi —wi [l < D fwy—wjall <
j=l+1
where the first inequality is based on the triangle inequality, and the second inequality is guaranteed

by Step 6 of the adversary’s policy. Next, we decompose w; into two terms: w; = wL‘ + wi,

where wy is the component parallel to m;, and w;- the component parallel to the (d — 1)-normal-

hyperplane of m,. We illustrate the decomposition for d = 3 in Figure[2] Based on the decomposi-
tion, we have

c
o

S (24)

cG
mw, = m/ (w +w)) =m/w} = ~G|w{| > ~Glw, —wi || > -7, @3

where the first inequality is based on the triangle inequality, and the fact that w;_ is always above
the (d — 1)-normal-hyperplane. The second inequality is derived from (24). Combining and
(23), we know that for ¢ € [T], m w, > —<< and thus

T
T
ijwt > —CG . (26)
t=1 5

C Proof of Lemma 2]

Based on Step 6 of the adversary’s policy, we know that, for epoch 7 € [N — 1],

lrt1

C
> lwi—wia] > @7)

57
=l +1
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since otherwise the adversary will not start a new epoch at £, 1 (note that the cumulative switching
cost at the last epoch does not have this lower bound). Thus, the total switching cost in the first
[N — 1] epochs is lower bounded by

N—-1 lr41 c
DD lwi—wial > (V- Dg-
=1 j=l,+1
On the other hand, since the overall budget is .S, we know
N—-1 lry1
o> lwi—wiall <8
=1 j=l,+1
Thus
52
N< —+1. (28)
c

Let L, be the length of epoch 7 € [N]. Based on the Step 9, we know that for each epoch 7,
my_M;__; > 0. Thus, we have

T 2 N—1 2 N-1 2 N
> my|| =|Lymy, + > L.m, > || Lymy, || + > Lymg || >G*> L2 (29)
t=1 T=1 T=1 T=1
Thus
T N
T T\/c
m| > G L2 >0G— > G——, (30)

where the first inequality is derived from ([29), the second inequality is based on Cauchy-Schwarz
inequality, and the final inequality is derived from (28).
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