
A Details of Environment464

We conduct the experiments in a multi-sensor multi-target tracking environment. This environment is465

developed based on the previous version in HiT-MAC[12]. Differently, we add some new features to466

make it more complex and realistic.467

First, HiT-MAC assumes that all the agents can see all the targets in the environment, which is468

unreasonable for real applications. Therefore, we change this setting into a Dec-POMDP. An469

agent can only obtain the information in its local observation. For those targets out of view, the470

corresponding observation will be a zero vector.471

Secondly, we add another kind of objects, obstacles, into the environment. The obstacles are all472

circles in this 2D plain simulator, varying in the radius. The targets within the observation radius will473

still be invisible if it is shadowed by an obstacle.474

Finally, in the original environment all the targets move in a goal-oriented manner. The targets475

sample their destinations at the beginning of an episode and navigate themselves to the destinations.476

Nevertheless, not all targets in real world follow the same action pattern. Therefore, we fill the477

environment with a mixed-type population of targets. The target can either be goal-oriented or478

random-walking. When the target is random-walking, it will randomly sample a primitive action to479

take at each step. In this way, the movement of targets is harder to predict, raising the difficulty of the480

planning.481
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Figure 7: Snapshots of the multi-sensor multi-target tracking environments with different scales.
From the upper left figure, in the clockwise direction, they are 4 vs 3, 4 vs 7, 6 vs 12, and 2 vs 5,
respectively.

B ToM2C482

Network Architecture and Hyper-parameters for ToM2C. The observation encoder consists of483

2-layer multilayer perceptron (MLP) and an attention module:att1. The ToM net consists of a Gated484
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Recurrent Unit (GRU) and 2-layer MLP. The message sender is a Graph Neural Network (GNN) and485

the actor consists of one fully connected layer. The critic consists of an attention module att2 that486

can handle different number of agents. As mentioned before, the basic RL training algorithm is A2C,487

and the hyper-parameters are detailed in Tab. 1.488

Table 1: Hyper-parameters for ToM2C

Hyper-parameters # Description

GRU hidden units 32 the # of hidden units for GRU
att1 hidden units 64 the # of hidden units for att1
att2 hidden units 192 the # of hidden units for att1
max steps 3M maximum environment steps sampled in workers
episode length 100 maximum time steps per episode
discount factor 0.9 discount factor for rewards
entropy weight 0.005 parameter for entropy regularization
learning rate 1e-3 learning rate for all networks
workers 6 the # of workers for sampling
update frequency 20 the network updates every # steps in A2C
ToM Frozen 5 the ToM net is frozen for every # times of RL training
gamma rate 0.002 the increasing rate of discounting factor γ

Training Strategy. There are two training strategies adopted to accelerate training and stabilize the489

result. As mentioned in Sec.3.5, one is to increase episode length L and γ factor gradually during490

training, the other one is to split the optimization of the ToM and RL model.491

In this paper, we propose this curriculum learning strategy that gradually increases episode length492

L and discounting factor γ. Usually, the discounting factor γ is set larger than 0.9 to encourage493

long-term planning in RL algorithms. Furthermore, the length of an episode is usually determined by494

the environment. We notice that if using the default hyper-parameters, the agents performs sample495

inefficient and unstable while learning. In our experiments, we set L = 20 and γ = 0.1 initially.496

After 2000 episodes of warm up, the γ factor will be updated according to a pre-set rate β. Each time497

the network is optimized through reinforcement learning, γ = γ ∗ (1 + β), where β = 0.002 in this498

paper. Simultaneously, the episode length L is updated with γ. In fact, L = bγ+0.1
0.2 c × 20. In the499

end, γ = 0.9 and L = 100. By doing so, the agents learn short-term plan first, and then adapt to a500

longer horizon. We find in experiments that such strategy accelerates the training process, leading to501

a faster convergence and a better performance.502

Furthermore, we separate the optimizing of the ToM and RL model in implementation. Before503

the training process starts, the parameters of our model are split into two parts: θToM and θother.504

Each part is optimized by an individual optimizer. Since we adopt A2C as the basic RL training505

algorithm, we collect trajectories data from different worker processes and send them to the training506

process when all the running episodes end. After that, θother is optimized with regard to the A2C507

loss. Meanwhile, the trajectories data for ToM training are saved instead of being used for training508

ToM net immediately. In this way, the ToM net is ’frozen’. θToM will be optimized with regard509

to ToM loss after θother has been optimized for TF times. Here we choose TF = 5. Just like the510

discussion before, the separation of ToM and RL training avoids the nested loop of influence among511

the ToM net and the policy network.512

The environment and model are implemented in Python. The model is built on PyTorch and is trained513

on a machine with 7 Nvidia GPUs (Titan Xp) and 72 Intel CPU Cores.514

C Baselines515

Heuristic Search Method. To evaluate the performance of our ToM2C model, we choose to516

implement a heuristic search policy to serve as a reference. This search policy is applied to select low-517

level sensor action(Stay,Turn Left/Right). At each step, the policy searches all the 3n possibilities of518

combination of actions, where n is the number of sensors. The goal is to find the action combination519

that minimizes the angle distance of targets to sensors. Specifically, we denote the angle distance520
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Table 2: Coverage Rate in 4 sensors vs 5 targets scenario

Methods Coverage Rate(%)↑
A2C 38.44± 0.54
HiT-MAC 61.48± 1.45
I2C 66.29± 1.40
ToM2C-ToM 67.66± 0.63
ToM2C-Comm 71.61± 0.31
ToM2C(Ours) 75.38± 0.57

Table 3: Communication Statistics

Methods Communication Edges Communication Bandwidth↓
I2C 7.16 257.76
HiT-MAC 8.0 164
FC 12.0 60
ToM2C w/o CR 9.36 46.81
ToM2C(Ours) 6.02 30.08

of target j to sensor i as αij . Then the objective is to minimize
∑m
j=1 mini{αij}. It is obvious that521

such searching policy only considers one step, thus not the optimal policy. However, we show that522

this naive heuristic search can reach 80% target coverage. As a result, it can serve as a reference523

‘upper bound’ that evaluates all the MARL baselines.524

MARL Baselines. The code of HiT-MAC and I2C are from their official repositories. We follow the525

default hyper-parameters in their code, except that we change the learning rate, discounting factor526

γ and episode length to be the same as ToM2C. Moreover, HiT-MAC is a hierarchical method, so527

we simply train the high-level coordinator and use the same rule-based low-level policy utilized in528

ToM2C. On the other hand, I2C is not a hierarchical method and it is not target-oriented. As a result,529

we concatenate all the target information into one vector as the observation for I2C. The action space530

is modified as the set of choice of all the targets, so the space size is 2m, where m is the number of531

targets. In this way, the output action of I2C agent is the selection of goal targets, same as HiT-MAC532

and ToM2C. Once the goal target is selected, the primitive actions will be chosen by the rule-based533

policy.534

D Quantitative Results535

We list the coverage rate achieved by different methods in Tab. 2. The mean and standard deviation536

is computed based on the data collected in 1000 episodes.537

Apart from coverage rate, we analyze the communication efficiency of different methods. There are 2538

metrics introduced in this paper. Communication edges refers to the count of directed communication539

pairs. One edge from i to j means that agent i sends a message to agent j. Communication bandwidth540

refers to the total volume of messages. As we explained in the experiment section, it is the volume of541

messages that has decisive effect on the cost of communication. Since the messages are all float-type542

vectors, we use the length of message instead of the number of bits to represent the volume of a single543

message. For I2C, the message from agent i is the local observation oi, containing the information of544

all the targets. For HiT-MAC, the communication happens between the executors and coordinator.545

The executors send its local observation to the coordinator, and the coordinator returns the goal546

assignment. For fully connected communication (FC), ToM2C w/o CR and ToM2C, the message is547

simply the inferred goals of the receiver. ToM2C w/o CR means that the trained ToM2C model is not548

further optimized to reduce communication.549

The experiment is conducted in the 4 sensors 5 targets scenario. As is shown in Tab. 3, our method550

achieves the lowest communication cost both in communication edges and bandwidth. Moreover,551
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even FC beats I2C and HiT-MAC in communication bandwidth. It is because FC only sends the552

inferred goals, which is much simpler than the raw observation.553

E Demo Sequence554

For a better understanding of the learned behavior, we render the environment and show a typical555

demo sequence in Fig. 8. It consists of 4 consecutive keyframes in one episode. The arrows between556

sensors indicate communication connection. Note that communication only happens every 10 steps.557

In step 16, sensor D can track target 1, 2 and 4. However when it comes to step 22, sensor D can558

no longer track all the three targets, so it starts to hesitate about which targets to track. Then in step559

24, A sends a message to D, and D inferred that A would track target 1 and 2. Therefore, it re-plans560

its own goal to be target 4. In the end, we can see that sensor D really abandons target 1 and 2, and561

focuses on target 4.562

Step 16 Step 22 Step 24 Step 29

Figure 8: An exemplar sequence in 4 sensors and 5 targets environment. The gray circle indicates the
obstacle. The arrows are rendered as solid only when the communication happens, and transparent at
other times.
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