
A Supplementary Material

A.1 Side-by-side comparison of MDP and tMDP

A temporal MDP process: (S,A, pinit, ptrans, r)

Probability of a trajectory τ : pπ(τ) = pinit(s0)
∏|τ |−1
t=0 π(at|st)ptrans(st+1|st, at)

Markov property: St+1 ⊥⊥ S<t | St, At,∀t

Temporal MDP

A tree MDP process: (S,A, pinit, p
−
ch, p

+
ch, r, l)

Probability of a trajectory τ : pπ(τ) = pinit(s0)
∏
i∈N\L π(ai|si)p

−
ch(sch−i

|si, ai)p+ch(sch+i
|si, ai).

Markov property: Sch−i
, Sch+i

⊥⊥ Sndi | Si, Ai,∀i

Tree MDP

A.2 Proofs

Proposition 4.1. For any tree MDP tM, the policy gradient can be expressed as

∇πV π = E
τ∼pπ

[∑
i∈N\L

∇π log π(at|st)
∑
j∈di

r(sj)

]
. (5)

Proof. This proof draws closely to the proof of the temporal policy gradient theorem. First, let us
re-write (3) as

V π = Es0∼pπ [V π(s0)] ,

where

V π(si) :=r(si) if l(si) = 1 (leaf node), and

V π(si) :=r(si) + Eai,sch−
i
,s

ch+
i
∼pπ

[
V π(sch−i

) + V π(sch+i
)
]

if l(si) = 0 (non-leaf node).

The corresponding gradients when l(si) = 1 and l(si) = 0 are, respectively,

∇πV π(si) = 0, and

∇πV π(si) = Eai,sch−
i
,s

ch+
i
∼pπ

[
∇ππ(ai|si)
π(ai|si)

(
V π(sch−i

) + V π(sch+i
)
)
∇πV π(sch−i

) +∇πV π(sch+i
)

]
.

Let us now write the gradient of V π ,

∇πV π = Es0∼pinit [∇πV π(s0)] .

Either we have l(s0) = 1 and thus ∇πV π = 0, or we can expand ∇πV π(s0) to obtain

∇πV π =Es0,a0,sch−0
,s

ch+0
∼pπ

[
∇ππ(a0|s0)
π(a0|s0)

(V π(sch−0
) + V π(sch+0

)) +∇πV π(sch−0
) +∇πV π(sch+0

)

]
.

Then again, each of of the terms ∇πV π(sch−0
) and ∇πV π(sch+0

) can be replaced by 0 if the corre-
sponding node is a leaf node, or can be expanded further in the same way if it is a non-leaf node. By

14

applying this rule recursively, we finally obtain

∇πV π = Eτ∼pπ

 ∑
i∈N\L

∇ππ(ai|si)
π(ai|si)

(V π(sch−i
) + V π(sch+i

))


= Eτ∼pπ

 ∑
i∈N\L

∇ππ(ai|si)
π(ai|si)

∑
j∈di

r(sj)


= Eτ∼pπ

 ∑
i∈N\L

∇π log π(ai|si)
∑
j∈di

r(sj)

 .

Lemma A.1. In B&B, both children MILPs MILPch−i
and MILPch+i

can be derived from the local
MILP MILPi and branching decision ai = (j, x?j), with j the index of a variable in MILPi, and x?j
the value to be used for branching.

Proof. From the definition of B&B in Section 2, MILPch−i
(resp. MILPch+i

) consist of MILPi
augmented with the additional constraint xj ≤ bx?jc (resp. xj ≥ dx?je).

Proposition 4.3. A vanilla B&B algorithm that satisfies Assumption 4.2 forms a tree MDP.

Proof. We shall now prove that, under Assumption 4.2, the B&B process can be formulated as a
tree MDP tM = (S,A, pinit, p

−
ch, p

+
ch, r, l), with states si = (MILPi,GUBi) and actions ai = (j, x?j).

First, the algorithm starts at the root node with an initial MILP, MILP0, and an initial global upper
bound GUB0 = ∞. Thus, the root state s0 follows an arbitrary, user-defined MILP distribution
pinit(s0), which is independent of the B&B algorithm. Second, Lemma A.1, together with Assump-
tion 4.2, ensures the existence of (deterministic) distributions p−ch(sch−i

|si, ai) and p+ch(sch+i
|si, ai),

from which the B&B children states sch−i
and sch+i

are generated. Third, the reward function r(si)
is not part of the B&B algorithm, and can be arbitrarily defined to match any (compatible) B&B
objective. Last, the leaf node indicator l(si) is exactly the vanilla B&B leaf node criterion, and is
obtained by solving the LP relaxation of MILPi constrained with upper bound GUBi, which results
in either an infeasible LP (leaf node), a MILP-feasible LP solution (leaf node), or a MILP-infeasible
LP solution (non-leaf node). This concludes the proof.

Proposition 4.4. In Optimal Objective Limit B&B (ObjLim B&B), that is, when the optimal solution
value of the MILP is known at the start of the algorithm (GUB0 = GUB?), Assumption 4.2 holds.

Proof. Because GUB0 = GUB?, the initial global upper bound is equal to the optimal solution value
to the original MILP. Then, B&B will never be able to find a feasible solution that tightens that bound,
and we necessarily have GUBi = GUB0,∀i. Hence GUBch−i

= GUBch+i
= GUBi, and both GUBch−i

and GUBch+i
can be directly derived from si. This concludes the proof.

Proposition 4.5. In Depth-First-Search B&B (DFS B&B), that is, when nodes are processed depth-
first and left-first by the algorithm, Assumption 4.2 holds.

Proof. First, it is trivial to show that GUBch−i
can be derived from si. Because node i is not a leaf

node, it has not resulted in an integral solution, and hence processing node i does not change the
GUB. And since ch−i is processed directly after node i, we necessarily have GUBch−i

= GUBi. This,
combined with Lemma A.1, shows that sch−i

can be inferred from si and ai. Second, we show how
GUBch+i

can be derived from si and ai. Because node ch+i is processed right after the whole subtree
below ch−i has been processed, GUBch+i

is necessarily the minimum of GUBi and the optimal solution
value of MILPch−i

. Now, because sch−i
can be inferred from si and ai, MILPch−i

can be recovered as
well, and solved to obtain its optimal solution value. Therefore, GUBch+i

can be recovered from si
and ai. This, together with GUBch−i

= GUBi, concludes the proof.

15

(a) Combinatorial Auctions (b) Set Covering (c) Maximum Independent Set

(d) Capacitated Facility Location (e) Multiple Knapsack

Figure 3: All training curves. We report the final B&B tree size (geometric mean over 20 validation
instances × 5 seeds, the lower the better). On the x-axis we report the number of processed training
samples. Solid lines show the moving average. The compared methods are REINFORCE with
temporal policy gradients (MDP), with tree policy gradients and objective limit (tMDP+ObjLim),
and with tree policy gradients and depth-first search node selection (tMDP+DFS).

A.3 Extended results

Here we provide all training curves (Figure 3) and the extended evaluation results (Table 2) with the
geometric mean of the solving times in seconds (Time) and the geometric mean of the final B&B
tree size (Nodes). The results are averaged over the solving runs that finished successfully for all
methods. This is, if a solving run reached the time limit for any method, this is excluded from the
average. Table 3 shows the number of solving runs that timed out per method.

A.4 SCIP’s default branching rule

SCIP assigns maximum priority by default to the hybrid branching rule [2]. This means that the
choice of branching variable is based on a weighted sum of different criteria. The biggest weight
is placed on the variable’s pseudocosts. A variable’s pseudocost is calculated as a function of the
change in LP objective value we observe (on each of the branches) as a consequence of branching on
that variable. This value can be explicitly calculated by tentatively branching on candidate variables
(in which case the rule is called strong branching), or estimated based on past observed values. SCIP
runs strong branching until it has stored a sufficient amount of observations for each variable, and
then switches to the estimation strategy. Other than pseudocosts, SCIP also considers information
about the implied reductions of other variables’ domains and conflicts where the variable is involved,
though with smaller importance.
It is important to consider that a call to strong branching can trigger a series of side-effects within the
solver that are not accounted for in the node count. This was first observed by Gamrath and Schubert
[14], who point out that this gives an unfair advantage to methods that use strong branching when
comparing branching rules according to the final tree size.

A.5 Instance collections

This section presents the models used to generate our instance benchmarks. The parameters used to
generate each benchmark are shown in Table 4.

16

Table 2: Evaluation on test instances (same size as training) and transfer instances (larger size). We
report the geometric mean and standard deviation of the final B&B tree size and the solving time
(lower is better for both).

Test Transfer

Model Nodes Time Nodes Time

SCIP default 7.3± 39% 3.3± 10% 733.9± 26% 27.4± 7%
IL 52.2± 13% 2.1± 6% 805.1± 9% 14.6± 5%
RL (MDP) 86.7± 16% 2.2± 6% 1906.3± 18% 20.9± 11%
RL (tMDP+DFS) 86.1± 17% 2.2± 6% 1804.6± 17% 20.1± 9%
RL (tMDP+ObjLim) 87.0± 18% 2.2± 6% 1841.9± 18% 20.4± 10%

Combinatorial auctions
Model Nodes Time Nodes Time

SCIP default 10.7± 24% 5.8± 6% 61.4± 19% 12.6± 5%
IL 51.8± 10% 4.0± 5% 145.0± 6% 8.0± 4%
RL (MDP) 196.3± 20% 5.1± 8% 853.3± 27% 14.9± 13%
RL (tMDP+DFS) 190.8± 20% 5.1± 7% 816.8± 25% 14.6± 12%
RL (tMDP+ObjLim) 193.5± 23% 5.1± 8% 826.4± 26% 14.6± 13%

Set covering
Model Nodes Time Nodes Time

SCIP default 19.3± 52% 13.2± 13% 2867.1± 35% 167.4± 23%
IL 35.9± 36% 8.7± 10% 1774.8± 38% 85.7± 22%
RL (MDP) 91.8± 56% 9.5± 16% 2768.5± 76% 85.6± 51%
RL (tMDP+DFS) 89.8± 51% 9.5± 17% 2970.0± 76% 90.6± 51%
RL (tMDP+ObjLim) 85.4± 53% 9.4± 17% 2763.6± 74% 86.1± 47%

Maximum independent set
Model Nodes Time Nodes Time

SCIP default 203.6± 63% 16.9± 34% 344.3± 57% 40.3± 36%
IL 247.5± 39% 7.2± 26% 407.8± 37% 13.6± 24%
RL (MDP) 393.2± 47% 8.7± 29% 679.4± 52% 17.2± 33%
RL (tMDP+DFS) 360.4± 46% 8.3± 30% 609.1± 47% 15.9± 29%
RL (tMDP+ObjLim) 325.4± 41% 7.9± 26% 496.0± 48% 14.5± 28%

Facility location
Model Nodes Time Nodes Time

SCIP default 267.8± 96% 1.5± 54% 592.3± 75% 3.7± 42%
IL 228.0± 95% 1.8± 66% 1066.1± 101% 7.1± 82%
RL (MDP) 143.4± 76% 1.3± 48% 518.4± 79% 4.5± 58%
RL (tMDP+DFS) 135.8± 75% 1.3± 48% 495.1± 81% 4.3± 59%
RL (tMDP+ObjLim) 142.4± 78% 1.4± 48% 425.3± 64% 3.9± 46%

Multiple knapsack

A.5.1 Combinatorial auctions

For m items, we are given n bids {Bj}nj=1. Each bid Bj is a subset of the items with an associated
bidding price pj . The associated combinatorial auction problem is of the following form:

maximize
n∑
j=1

pjxj

subject to
∑
j:i∈Bj

xj ≤ 1, i = 1, ...,m

xj ∈ {0, 1} j = 1, ..., n

where xj represents the action of choosing bid Bj .

17

Table 3: Number of solving runs (instance-seed pairs) out of 200 that hit the 1h time limit.

Model C. Auct. Set Cov. M.Ind.Set Fac. Loc. M. Knap.

SCIP default 0 0 0 1 0
IL 0 0 0 0 0
RL (MDP) 0 0 1 0 0
RL (tMDP+DFS) 0 0 1 0 0
RL (tMDP+ObjLim) 0 0 1 0 0

Test

Model C. Auct. Set Cov. M.Ind.Set Fac. Loc. M. Knap.

SCIP default 0 0 1 13 0
IL 0 0 0 0 3
RL (MDP) 0 0 20 1 2
RL (tMDP+DFS) 0 0 18 1 0
RL (tMDP+ObjLim) 0 0 16 1 0

Transfer

Table 4: Size of the instances used for training and evaluation, for each problem benchmark. We
evaluate the final performance on instances of the same size as training (test), and also larger instances
(transfer).

Benchmark Generation method Parameters Train / Test Transfer

Combinatorial Leyton-Brown et al. [24] Items 100 200
auction with arbitrary relationships Bids 500 1000

Set covering Balas and Ho [4] Items 400 500
Sets 750 1000

Maximum Bergman et al. [6] Nodes 500 1000
independent set on Erdős-Rény graphs Affinity 4 4

Facility Cornuéjols et al. [8] Customers 35 60
location with unsplittable demand Facilities 35 35

Multiple Fukunaga [13] Items 100 100
knapsack Knapsacks 6 12

A.5.2 Set covering

Given the elements 1, 2, ...,m, and a collection S of n sets whose union equals the set of all elements,
the set cover problem can be formulated as follows:

minimize
∑
s∈S

xs

subject to
∑
s:e∈s

xs ≥ 1, e = 1, ...,m

xs ∈ {0, 1} ∀s ∈ S

A.5.3 Maximum independent set

Given a graph G the maximum independent set problem consists in finding a subset of nodes of
maximum cardinality such that no two nodes in that subset are connected. We use the clique
formulation from [6]. Given a collection C ⊆ 2V of cliques whose union covers all the edges of the

18

graph G, the clique cover formulation is

maximize
∑
v∈V

xv

subject to
∑
v∈C

xv ≤ 1, ∀C ∈ C

xv ∈ {0, 1} ∀v ∈ V

A.5.4 Capacitated facility location with unsplittable demand

Given a number n of clients with demands {dj}nj=1, and a number m of facilities with fixed operating
costs {fi}mi=1 and capacities {si}mi=1, let cij/dj be the unit transportation cost between facility i and
client j, and let pij/dj be the unit profit for facility i supplying client j. We try to solve the following
problem

minimize
m∑
i=1

n∑
j=1

cijxij +

m∑
i=1

fiyi

subject to
n∑
j=1

djxij ≤ siyi, i = 1, ...,m

m∑
i=1

xij ≥ 1, j = 1, ..., n

xij ∈ {0, 1} ∀i, j
yi ∈ {0, 1} ∀i

where each variable xij represents the decision of facility i supplying client j’s demand, and each
variable yi representing the decision of opening facility i for operation.

A.5.5 Multiple knapsack

Given n items with respective prices {pj}nj=1 and weights {wj}nj=1, andm knapsacks with capacities
{ci}mi=1, the multiple knapsack problem consists in placing a number of items in each of the knapsacks
such that the price of the selected items is maximized, while the capacity of the knapsacks is not
exceeded by the total weight of the items therein. Formally:

maximize
m∑
i=1

n∑
j=1

pjxij

subject to
n∑
j=1

wjxij ≤ ci, i = 1, ...,m

m∑
i=1

xij ≤ 1, j = 1, ..., n

xij ∈ {0, 1} ∀i, j

where each variable xij represents the decision of placing item j in knapsack i.

19

	Supplementary Material
	Side-by-side comparison of MDP and tMDP
	Proofs
	Extended results
	SCIP's default branching rule
	Instance collections
	Combinatorial auctions
	Set covering
	Maximum independent set
	Capacitated facility location with unsplittable demand
	Multiple knapsack

