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A PROOFS OF LEMMAS

In this Appendix, we provide the proofs of the lemmas from Section 3.

Lemma 1. If R is non-constant, then for any state s there exists trajectories ζ1, ζ2, ζ3 starting in s
such that G(ζ1) ̸= G(ζ2), G(ζ2) ̸= G(ζ3), and G(ζ1) ̸= G(ζ3).

Proof. First note that if R is non-constant, then there must be some state s and some trajectories
ξ1, ξ2 starting in s such that G(ξ1) ̸= G(ξ2) (this follows from Theorem 3.8 in Skalse et al. (2022a)).
We will establish that there is a ξ3 starting in s such that G(ξ3) ̸= G(ξ1) and G(ξ3) ̸= G(ξ2), and
then show that this implies that such trajectories exist for all states.

Suppose for contradiction that for any ξ3 starting in s, either G(ξ3) = G(ξ1) or G(ξ3) = G(ξ2).
Consider a transition ⟨s, a, s⟩, and let ζ1 = ⟨s, a, s⟩ + ξ1 and ζ2 = ⟨s, a, s⟩ + ξ2; we will do a
case enumeration, and show that either G(ζ1) or G(ζ2) must be distinct from both G(ξ1) and G(ξ2).
Note that G(ζ1) = R(s, a, s) + γG(ξ1) and G(ζ2) = R(s, a, s) + γG(ξ2).

Case 1: G(ζ1) = G(ξ1), G(ζ2) = G(ξ2). If R(s, a, s) + γG(ξ1) = G(ξ1) then R(s, a, s) =
(1− γ)G(ξ1), and similarly, if R(s, a, s) + γG(ξ2) = G(ξ2) then R(s, a, s) = (1− γ)G(ξ2). This
is a contradiction, since G(ξ1) ̸= G(ξ2) and γ ̸= 1.

Case 2: G(ζ1) = G(ζ2) = G(ξ1). If R(s, a, s)+ γG(ξ1) = G(ξ1) then R(s, a, s) = (1− γ)G(ξ1).
Using R(s, a, s) + γG(ξ2) = G(ξ1), we get (1 − γ)G(ξ1) + γG(ξ2) = γG(ξ1). By rearranging,
we get γ(G(ξ1)−G(ξ2)) = 0. This is a contradiction, since G(ξ1) ̸= G(ξ2) and γ ̸= 0.

Case 3: G(ζ1) = G(ζ2) = G(ξ2). This is analogous to Case 2.

Case 4: G(ζ1) = G(ξ2), G(ζ2) = G(ξ1). If R(s, a, s) + γG(ξ1) = G(ξ2) then R(s, a, s) =
G(ξ2)− γG(ξ2), and similarly, if R(s, a, s) + γG(ξ2) = G(ξ1) then R(s, a, s) = G(ξ1)− γG(ξ2).
Combining this, and rearranging, gives (1+γ)G(ξ1) = (1+γ)G(ξ2). This is a contradiction, since
G(ξ1) ̸= G(ξ2) and γ ̸= −1.

This exhausts all cases, which means that if R is non-constant, then there must be some state s and
some trajectories ζ1, ζ2, ζ3 starting in s such that G(ζ1) ̸= G(ζ2), G(ζ2) ̸= G(ζ3), and G(ζ1) ̸=
G(ζ3). Finally, note that this means that we can construct such trajectories for any state s′, by simply
composing a transition ⟨s′, a, s⟩ with each of ζ1, ζ2, ζ3.

Lemma 2. If G2(ξ) = f(G1(ξ)) for all ξ and some f , then for any transition ⟨s, a, s′⟩ and any
trajectory ζ starting in s′, R2(s, a, s

′) = f(R1(s, a, s
′) + γG1(ζ))− γf(G1(ζ)).

Proof. Suppose that G2(ξ) = f(G1(ξ)) for all trajectories ξ. Let ⟨s, a, s′⟩ be an arbitrary transition,
let ζ be an arbitrary trajectory starting in s′, and let ξ = ⟨s, a, s′⟩ + ζ. We have that G2(ξ) =
R2(s, a, s

′) + γG2(ζ), and also that G2(ξ) = f(G1(ξ)), which implies that

R2(s, a, s
′) + γG2(ζ) = f(G1(ξ)).

Since G1(ξ) = R1(s, a, s
′) + γG1(ζ), this implies that

R2(s, a, s
′) + γG2(ζ) = f(R1(s, a, s

′) + γG1(ζ)).

By using the fact that G2(ζ) = f(G1(ζ)), and rearranging, we get that

R2(s, a, s
′) = f(R1(s, a, s

′) + γG1(ζ))− γf(G1(ζ)).

Since ⟨s, a, s′⟩ and ζ were chosen arbitrarily, this completes the proof.

Lemma 3. For any non-constant reward R1 and any f that is injective on range(G1), if for any
y ∈ range(R1) and any γ ∈ (0, 1) there are at most two distinct x1, x2 such that f(y + γx1) −
γf(x1) = f(y + γx2)− γf(x2) then there is no reward R2 such that G2(ξ) = f(G1(ξ)) for all ξ.

Proof. Suppose for contradiction that G2(ξ) = f(G1(ξ)) for all ξ. Let ⟨s, a, s′⟩ be an arbitrary
transition. Applying Lemma 2, we get that

R2(s, a, s
′) = f(R1(s, a, s

′) + γG1(ζ))− γf(G1(ζ))
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for all trajectories ζ starting in s′. For clarity, let x = G1(ζ) and y = R1(s, a, s
′), so that f(y +

γx)−γf(x). By assumption, there can be at most two distinct values x1, x2 such that f(y+γx1)−
γf(x1) = f(y + γx2) − γf(x2). However, Lemma 1 implies that there are at least three ζ1, ζ2, ζ3
starting in s′ with distinct values of G1. Since f is injective on range(G1), this means that there
are at least three distinct values of x for which f(y + γx) − γf(x) must be constant (and equal to
R2(s, a, s

′)), which is a contradiction.

B TOWARDS NECESSARY AND SUFFICIENT CONDITIONS

In this paper, we have provided several examples of “natural” policy orderings which cannot be
represented using a reward function. It would be desirable to have a set of necessary and sufficient
conditions to characterise those orderings over Π that can be expressed by reward functions, similar
to that provided by the VNM axioms (the VNM axioms themselves do not provide this, see Ap-
pendix C). We consider this to be an important topic for future work. In this section, we will discuss
a few interesting properties which are shared by all policy orderings which can be represented by re-
ward functions. We believe that these examples will help with building an intuition for what reward
functions can and cannot express.

We would first like to point out that, while it seems difficult to characterise the policy orderings
which can be expressed by reward functions, it is fairly straightforward to exactly characterise the
sets of policies Π̂ that can be optimal under some reward function:

Proposition 1. A set of policies Π̂ is the optimal policy set for some reward function if and only if
there is a function o : S → P(A)\∅ that maps each state to a (non-empty) set of “optimal actions”,
and π ∈ Π̂ if and only if supp(π(s)) ⊆ o(s).

Proof. For the “if” part, consider the reward function R where R(s, a, s′) = 0 if a ∈ o(s), and
R(s, a, s′) = −1 otherwise. The “only if” part follows from the fact that the optimal Q-function Q⋆

is the same for all optimal policies.

This immediately lets us rule out many policy orderings as inexpressible. For example, consider the
task “always go in the same direction” — this task cannot be expressed as a reward function, because
any policy that mixes the actions of two other optimal policies must itself be optimal. It also shows
that Markovian reward functions cannot be used to encourage stochastic policies. For example,
there is no reward function under which “play rock, paper, and scissors with equal probability” is
the unique optimal policy.

The next thing we would like to point out is that no reward function can express an ordering over
Π that has a countable number of equivalence classes (except trivial reward functions, which have
only one equivalence class). This simple fact also rules out many orderings.

Proposition 2. If R is non-trivial then J has an uncountable number of equivalence classes.

Proof. This follows from the intermediate value theorem, and the fact that J is continuous in Π.

This simple observation can be used to e.g. create an alternative proof of Theorem 4, which says
that the MaxSat objective cannot be represented as a (scalar) reward function. It also shows that
objectives such as e.g. J(π) = minξ∈supp(π) G(ξ), which evaluates policies according to the worst
trajectory in their support, cannot be represented (since any policy then has the same value as some
deterministic policy, and since there is only a finite number of deterministic policies).

C A DIGRESSION ON THE VON NEUMANN–MORGENSTERN AXIOMS

The famous VNM axioms, due to von Neumann & Morgenstern (1947), provide necessary and
sufficient conditions for when a utility function can be used to represent a preference ordering for
lotteries over a finite choice set. In an MDP, a policy induces a distribution over trajectories, and
a reward function assigns a value to each trajectory. One might then wonder if the VNM axioms
could provide necessary and sufficient conditions for when an ordering over Π can be realised using
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a reward function. This is not the case, and in this appendix, we briefly point out why. These results
are not novel to this paper, but are instead provided to help with intuition building.

First of all, the VNM theorem assumes that the choice set is finite, whereas in an MDP, the number
of trajectories is (countably) infinite. There are preferences between distributions over countable
choice sets which satisfy the VNM axioms, but which can nonetheless not be represented using
utility functions.1 Second, not all distributions over trajectories can be represented as a policy (unless
we allow both the policy and the transition function to be non-stationary). Third, there is a special
structure to how a reward function assigns value to a trajectory, and not all functions Ξ → R can
be represented in this way. This means that the VNM axioms are not applicable to RL. However, it
may still be possible to provide similar intuitive necessary and sufficient conditions for the RL case.
We consider this to be an important topic for future work.

D MORE MORL OBJECTIVES

In this Appendix, we give even more examples of MORL objectives, and some comments on how
to construct them – the purpose of this is mainly just to show how rich this space is. First, similar to
the MaxMin objective, we might want to judge a policy according to its best performance:
Definition 9. Given J1 . . . Jk, the MaxMax objective ≺Max is given by π1 ≺Max π2 ⇐⇒
maxi Ji(π1) < maxi Ji(π2).

We would next like to point out that it is possible to create smooth versions of almost any MORL
objective. In Section 5, we outline an approach for learning any continuous, differentiable MORL
objective, so this is quite useful. We begin with a soft version of the MaxMax objective:
Definition 10. Given J1 . . . Jk and α > 0, the Soft MaxMax objective ≺MaxSoft is given by

JMaxSoft(π) =

(
k∑

i=1

Ji(π)e
αJi(π)

)/(
k∑

i=1

eαJi(π)

)
.

This is of course not the only way to continuously approximate MaxMax, it is just an example of
one way of doing it. Here α controls how “sharp” the approximation is – the larger α is, the closer
JMaxSoft gets to the sharp max function, and the smaller α is, the closer it gets to the arithmetic
mean function (so by varying α, we can continuously interpolate between them). Similarly, we can
also create a smooth version of MaxMin:
Definition 11. Given J1 . . . Jk and α > 0, the Soft MaxMin objective ≺MinSoft is given by

JMinSoft(π) =

(
k∑

i=1

Ji(π)e
−αJi(π)

)/(
k∑

i=1

e−αJi(π)

)
.

As before, the larger α is, the closer JMinSoft gets to the sharp min function, and the smaller α is,
the closer it gets to the arithmetic mean function We can also smoothen MaxSat:
Definition 12. Given J1 . . . Jk, c1 . . . ck, and α > 0, the Soft MaxSat objective ≺SatSoft is

JSatSoft(π) =

k∑
i=1

(
1

1 + e−α(Ji(π)−ci)

)
.

The larger α is, the closer JSatSoft gets to the sharp MaxSat function (and the smaller α gets, the
closer JSatSoft gets to a flat 0.5). And, again, this is of course not the only way to create a smooth
version of MaxSat. It is unclear if it is possible to create a smooth version of ConSat without having
any prior knowledge of (a lower bound of) the value of minπ J1(π), but with this value it should be
reasonably straightforward (see the construction in Theorem 5). As for LexMax, we can of course
create a smooth approximation of it by taking a linear approximation of the weights, but here we
would need some prior knowledge of maxπ J1(π) . . .maxπ Jk(π).

1For example, consider the ordering that prefers all distributions with infinite support over all distributions
with finite support, and which is indifferent between any two distributions in either of these classes.
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E A METHOD FOR SOLVING MODAL TASKS

In this Appendix, we give an outline of one possible method for solving modal tasks. We mainly
want to show that it is feasible to learn modal tasks, and so we only provide a solution sketch; the
task of implementing and evaluating this method is something we leave as a topic for future work.

We will first define a restricted class of modal tasks, which is both very expressive, and also more
amenable to learning than the more general version given in Definition 7:

Definition 13. An affordance consists of a reward function and a discount factor, ⟨R, γ⟩, and an
affordance-based reward is a function R♢ : S × A × S × R2k → R, that is continuous in the last
2k arguments. An affordance-based MDP is a tuple ⟨S,A, τ, µ0, R

♢, γ, ⟨R, γ⟩k⟩, where the reward
given for transitioning from s to s′ via a is R♢(s, a, s′, V ⋆

1 (s) . . . V
⋆
k (s), V

⋆
1 (s

′) . . . V ⋆
k (s

′)), where
V ⋆
i is the optimal value function of the i’th affordance.

This definition requires some explanation. In psychology (and other fields, such as user interface
design), an affordance is, roughly, a perceived possible action, or a perceived way to use an object.
For example, if you see a button, then the fact that you can press that button, and expect something
to happen, is part of how you perceive it, in a way that might not be the case if you could somehow
show the button to a premodern human. It can also be used to refer to a choice or action that is
perceived as available in some context (without being tied to an object). Here, we are using it to
refer to a task that could be performed in an MDP. The intuition is that R♢ is allowed to depend on
what could be done from s and s′, in addition to the state features of s and s′.

Before outlining an algorithm, let us first give a few examples of how to formalise modal tasks
within this framework. First consider the instruction “you should always be able to return to the
start state”. We can formalise this using a reward function R1 that gives 1 reward if the start state
is entered, and 0 otherwise, and pair it up with a discount parameter γ that is very close to 1. We
could then set R♢ to, for example, R♢(s, a, s′, V ⋆

1 (s), V
⋆
1 (s

′)) = R(s, a, s′) · tanh(V ⋆
1 (s

′)), where
R describes some base task. In this way, no reward is given if the start state cannot be reached from
s′. Next, consider the instruction “never enter a state from which it is possible to quickly enter an
unsafe state”. To formalise this, let R1 give 1 reward if an unsafe state is entered, and 0 otherwise,
and let γ correspond to a very high discount rate (e.g. 0.7). We could then set R♢ to, for example,
R♢(s, a, s′, V ⋆

1 (s), V
⋆
1 (s

′)) = R(s, a, s′)− V ⋆
1 (s

′), where R again describes some base task.

These examples show that our “affordance-based” MDPs are quite flexible, and that they should be
able to formalise many natural modal tasks in a satisfactory way, including most of our motivating
examples.2 However, the definition could of course be made more general. For example, we could
allow the affordances to themselves be based on affordance-based reward functions, etc. However,
it is not clear if this would bring much benefit in practice.

Let us now outline an approach for solving affordance-based MDPs using reinforcement learn-
ing, specifically using an action-value method. First, let the agent maintain k + 1 Q-functions,
Q♢, Q1, . . . , Qk, one for R♢ and one for each affordance ⟨Ri, γi⟩. Next, we suppose that the
agent updates each of Q1, . . . , Qk using an off-policy update rule, such as Q-learning; this will
ensure that Q1, . . . , Qk converge to their true values (i.e. to Q⋆

1 . . . Q
⋆
k), as long as the agent ex-

plores infinitely often. Note that the use of an off-policy update rule is crucial. Next, let the agent
update Q♢ as if it were an ordinary Markovian reward function, using the reward R̂(s, a, s′) =
R♢(s, a, s′, V1(s) . . . Vk(s), V1(s

′) . . . Vk(s
′)), where Vi(s) is given by maxa Qi(s, a). In other

words, we let it update Q♢ using an estimate of the true value of R♢, expressed in terms of its
current estimates of V ⋆

1 . . . V ⋆
k . The fact that Q1, . . . , Qk converge to Q⋆

1, . . . , Q
⋆
k, and the fact that

R♢ is continuous in its value function arguments, will ensure that the estimate R̂ also converges to
the true value of R♢. The update rule used for Q♢ could be either on-policy or off-policy. We then
suppose that the agent selects its actions by applying a Bandit algorithm to Q♢, and that this Bandit
algorithm is greedy in the limit, but also explores infinitely often, as usual.

This algorithm should be able to learn to optimise the reward in any affordance-based MDP. In the
tabular case, it should be possible (and reasonably straightforward) to prove that it always converges
to an optimal policy (assuming that appropriate learning rates are used, etc), using Lemma 1 in

2This arguably excludes “you should never enter a state where you would be unable to receive a feedback
signal”. However, this instruction only makes sense in a multi-agent setting.
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Singh et al. (2000). We would also expect it to perform well in practice, when used with function
approximators (such as neural networks). However, we leave the task of implementing and properly
evaluating this approach as a topic for future work.

There are also several ways that this algorithm could be tweaked or improved. For example, the
algorithm we have described is an action-value algorithm, but the same approach could of course
be used to make an actor-critic algorithm instead. We also suspect that there could be interesting
modifications one could make to the exploration strategy of the algorithm. If a standard Bandit
algorithm (such as ϵ-greedy) is used, then the agent will mostly take actions that are optimal under
its current estimate of Q♢. In the ordinary case, this is good, because it leads the agent to spend
more time in the parts of the MDP that are relevant for maximising the reward. However, in this
case, there is a worry that it could lead the agent to neglect the parts of the (affordance-based) MDP
that are relevant for learning more about V ⋆

1 . . . V ⋆
k , which might slow down the learning. Again,

we leave such developments for future work, since our aim here only is to show that it is feasible to
learn non-trivial modal tasks.

We also want to point out that the work by Wang et al. (2020) could provide another starting point for
learning modal tasks using RL. In their work, they present some RL-based methods for determining
whether a specification in Probabilistic Computational Tree Logic (PCTL) holds in an MDP. PCTL
can be used to specify many kinds of properties of states in MDPs which depend on the transition
function, including e.g. what states can and cannot be reached from a particular state, and with what
probability, etc. We can therefore specify non-trivial modal tasks by providing a number of PCTL
formulas, and allowing the reward function to depend on the truth values of these formulas. That is,
we could consider a setup that is analogous to that which we give in Definition 13, but where the
“affordances” are replaced by PCTL formulas. It should then be possible to learn tasks specified in
this manner by using the techniques of Wang et al. (2020) to learn the values of the PCTL formulas,
and then using ordinary RL to train on the resulting reward function.
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