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1 Database organization

The dataset introduced in the main paper is publicly available on Kaggle. The root directory
contains two folders, GMAS_LOTE and GM AS_LOTE?2, which together include 580 thin-
section samples (383 in the former, 197 in the latter). Each thin section is stored as a subfolder
that contains multiple grain-level annotations. Each folder comprises three files at the grain level:
PPL-0.png and XPL-0.png images captured under plane- and cross-polarized light, respectively,
and an annotation file named center_component.csv. This CSV file includes detailed attributes
for each grain: Multiclass_label_name, Multiclass_label (numeric), Binary_label_name,
Binary_label (Quartz vs. Non-Quartz), Major — azis and Minor — azis (grain size in mm),
x_annot, y_annot (coordinates of the annotated point based on the point-counting method), z_inter,
y_inter (intersection point of the annotated paths), and path_1, path_2 (HTML path elements).
All coordinates and HTML paths are in reference to the original high-resolution mosaic image
of the thin section. To convert these values to the 256x256 patch-level reference, one must cen-
ter the coordinate system on (128, 128), corresponding to the transformed position of (z_inter,
y_inter). The main folder also contains two partition files, F'old1_complete_in fo_allclasses.csv
and Fold2_complete_in fo_allclasses.csv, specifying the relative paths to the PPL-0.png image of
each grain assigned to the respective fold. As described in the main text, all grains from a given thin
section belong exclusively to either Fold 1 or 2. The code provided below illustrates the conversion
of path HTML elements to vectors in the patch space.

from svgpathtools import parse_path
import pandas as pd

annot_info = pd.read_csv(annot_file)

path_1 = annot_info["path_1"][0]

path_2 = annot_info["path_2"][0]

data_path = {’path_1’:path_1,’path_2’:path_2}

center_coords_or = [annot_info["x_inter"],annot_info["y_inter"]]
center_coord_patch = [patch_size/2, patch_size/2]

dx = center_coord_patch[0] - center_coords_or [0]
dy center_coord_patch[1] - center_coords_or [1]

line_points = {’path_1’:[]1,’path_2’:[]1}
both_paths = [’path_1’,’path_2’]

image = Image.open(image_path)
draw = ImageDraw.Draw(image)

for path_name in both_paths:
path_x = data_path[path_name]
path_x = parse_path(path_x)



end_point = ((path_x.start.real*24786) +dx,
(path_x.start.imag*24786) +dy)

start_point = ((path_x.end.real*24786) +dx,
(path_x.end.imag*24786) +dy)

line_points[path_name] = [start_point,end_point]

draw.line(line_points[’path_1’], £ill=(255,0,0), width=10)
draw.line(line_points[’path_2’], £fill=(255,0,0), width=10)

Listing 1: Convert HMTL paths to vectors.

2 Architecture Complexity and Inference Performance

Table 1: Model complexity and average inference time for binary (2-class) and multi-class (25-class)
classification. Params in millions (M), FLOPs in billions (B).
Model complexity and inference performance
DL Architecture Task Params (Trainable / Total) FLOPs (B) Avg. Time (ms)

ResNet Binary 23M/23M 4.14 4.46
GoogLeNet Binary SM/5M 1.51 5.18
ViT Binary 303M /303M 59.7 17.45
Swin Transformer Binary 86.9M / 86.9OM 17.1 2591
LITHOS Baseline Binary 67M / 673M 133.26 40.18
ResNet Multi-class 23M /23M 4.14 4.46
GoogLeNet Multi-class SM/5M 1.51 5.18
ViT Multi-class 303M /303M 59.7 17.60
Swin Transformer Multi-class 86.9M / 86.9M 17.1 26.07
LITHOS Baseline  Multi-class 67M / 673M 133.28 40.18

Table [1) shows the model complexity and inference performance for all architectures evaluated in
both binary and multi-class classification tasks. The table compares the number of trainable and
total parameters, the computational cost in FLOPs, and the average inference time per image. The
LITHOS Baseline has a large total parameter count and a high number of FLOPs compared to the
other baselines, due to its dual ViT encoders. However, these encoders are kept frozen during training,
meaning only about 10% of the parameters are updated. This design reduces the effective training
cost and memory consumption while leveraging strong, pretrained features from each polarization
stream, which is key to improving classification performance.



3 Binary Precision-Recall Curves
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Figure 1: Precision-Recall curves across both folds (mean = std) for the binary Quartz vs. No-Quartz
classification task. Our LITHOS Baseline achive the best performance in both folds.

4 Multiclass Precision-Recall Curves
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Figure 2: Precision-Recall curves across both folds (mean =+ std) for the multiclass classification task
for the 25 minerals in the LITHOS Dataset. Our LITHOS baseline achieves higher performance in
the most represented mineral classes of our database. In some classes, there is a noticeable increase
in performance on models that incorporate XPL images of the minerals, instead of PPL-only models.
This behavior might be related to distinctive features that are revealed under cross-polarized light. For
example, cross-hatched twinning patterns reveal microcline’s gridiron structure hidden in featureless
PPL views. 5



5 Multiclass Confusion Matrix

Confusion Matrix of LITHOS Baseline normalized by row (25 classes) - Fold 1

Monocrystalline JRERE 8.7% 10.3% 2.2% 3.4% 00% 00% 04% 00% 02% 00% 00% 02% 00% 0.0% 02% 00% 0.0% 00% 00% 00% 00% 0.0% 00% 00% o
Rock fragment. 41% 04% 0.1% 0.0% 08% 0.0% 0.1% 02% 0.0% 02% 0.0% 0.0% 02% 02% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Polycrystalline 125.4% 11.7% 26% 22% 00% 0.0% 0.1% 00% 00% 00% 00% 01% 00% 00% 0.0% 00% 00% 00% 00% 00% 00% 00% 0.0% 0.0%
Feldspar {19.2% 22.5% 8.4% 413% 33% 4.3% 0.0% 0.1% 0.0% 02% 00% 00% 02% 00% 00% 00% 00% 00% 02% 01% 00% 00% 02% 00% 0.0%
Quartz {18.6% 4.8% 13.2% 10.9% - 18% 00% 01% 0.0% 06% 00% 00% 02% 00% 03% 00% 00% 00% 00% 01% 00% 00% 0.0% 00% 0.0%
Plagioclase { 1.9% 7.1% 0.2% - 2.8% 36.3% 0.0% 0.2% 02% 1.0% 0.0% 0.0% 06% 0.0% 01% 0.1% 0.0% 0.1% 03% 1.8% 0.0% 0.0% 01% 0.0% 0.2% o8
Foraminifer { 0.1% 0.5% 0.0% 0.0% 0.0% 0.0% 13.8% 0.0% 0.0% 16% 58% 00% 0.1% 00% 0.0% 10% 0.0% 0.0% 0.0% 0.0% 05% 0.0% 0.1% 0.0%
Fossil fragment 4 1.4% 10.5% 0.5% 0.0% 0.3% 0.0% 23.3% 36.0% 0.0% 0.0% 114% 7.4% 0.0% 03% 00% 02% 74% 00% 00% 00% 05% 06% 00% 03% 0.0%
Opaque { 4.6% 29.6% 3.3% 9.2% 184% 0.0% 00% 07% 11.8% 66% 0.0% 00% 20% 00% 13% 59% 00% 20% 07% 07% 20% 00% 00% 00% 13%
Amphibole { 0.5% 14.6% 0.0% 3.7% 2.2% 13% 0.0% 04% 04% 09% 0.1% 0.0% 04% 00% 3.0% 00% 12.0% 00% 0.0% 0.0% 0.0% 9.0%
Calcareous fossil 1 0.7% 4.3% 0.0% 0.4% 0.0% 0.0% 11% 14.0% 0.0% 0.0% 0.0% 0.0% 1.8% 04% 0.0% 0.0% 0.0% 0.0% 04% 0.0% 0.0% 0.4% 06
] Red algae { 0.5% 0.7% 0.0% 0.0% 0.0% 0.0% 7.0% 7.6% 0.0% 0.0% 0.0% 0.0% 1.0% 05% 0.0% 00% 0.0% 00% 05% 00% 0.0% 0.0%
2
?’: Mica {20.4% 37.1% 2.4% 8.0% 9.6% 0.0% 0.0% 02% 0.0% 0.2% 0.0% 0.0% 17.6% 0.0% 09% 0.0% 0.0% 11% 0.0% 04% 0.0% 0.0% 0.0% 0.0% 2.0%
'g Calcite {15.4% 6.0% 0.5% 54% 3.6% 52% 04% 183% 00% 14% 11% 00% 0.0% 141% 00% 0.0% 02% 00% 00% 07% 56% 19.0% 02% 0.9% 2.0%
Muscovite { 1.3% 36.4% 0.4% 56% 22.1% 04% 00% 04% 00% 69% 00% 00% 13% 13% 147% 0.0% 00% 09% 00% 22% 00% 00% 00% 00% 6.1%
Heavy mineral 136.4% - 38% 17% 08% 00% 0.0% 08% 00% 00% 04% 08% 00% 00% 00% 75% 00% 0.0% 00% 00% 00% 00% 0.0% 00% 0.0% (o4
Coral { 0.8% 0.0% 0.0% 00% 00% 00% 59% 414% 00% 00% 51% 63% 00% 00% 00% 00% 384% 00% 00% 00% 00% 21% 00% 0.0% 0.0%
Hornblende { 0.0% 30.7% 0.0% 33% 05% 09% 00% 0.0% 00% 292% 00% 00% 0.0% 00% 00% 0.0% 00% 335% 00% 00% 00% 00% 00% 00% 19%
Microline 4 3.1% 1.6% 1.6% 23% 3.9% 0.0% 0.0% 0.0% 0.0% 00% 0.0% 00% 0.0% 0.0% 0.0% 0.0% 0.0% 225% 0.0% 0.0% 0.0% 3.1% 0.0% 0.0%
Pyroxene { 1.7% 16.6% 0.0% 10.0% 3.7% 5.8% 0.0% 04% 08% 124% 0.0% 00% 21% 0.0% 08% 04% 00% 12% 0.0% 344% 00% 00% 00% 00% 9.5%
Dolomite { 2.4% 4.8% 0.0% 08% 00% 00% 00% 16% 00% 00% 00% 16% 00% 08% 00% 08% 08% 00% 00% 0.0% 0.0% 0.0% 16.9% 0.0% [o2
Echinoderm 4 1.3% 2.5% 0.0% 0.0% 0.0% 0.0% 12.7% 253% 0.0% 0.0% 25% 63% 00% 19% 00% 00% 13% 00% 00% 0.0% 0.0% - 0.0% 0.0% 0.6%
Sanidine { 6.2% 1.2% 3.8% 0.0% 3.8% 0.0% 0.0% 00% 0.0% 00% 0.0% 00% 0.0% 00% 0.0% 00% 0.0% 50% 0.0% 00% 0.0% 188% 0.0% 0.0%
Crystalline mosaic { 2.9% 4.3% 0.0% 58% 14% 0.0% 43% 13.0% 00% 00% 0.0% 14% 0.0% 87% 00% 14% 14% 00% 00% 00% 159% 0.0% 0.0% 37.7% 14%
Other {11.7% 23.5% 5.7% 16.4% 52% 09% 25% 55% 00% 7.0% 07% 07% 05% 08% 08% 10% 09% 43% 03% 24% 06% 02% 01% 06% 7.8%
T T —=0.0
e
Predicted label
Confusion Matrix of LITHOS Baseline normalized by row (25 classes) - Fold 2
Monocrystalline 8.0% 10.0% 24% 3.4% 00% 00% 00% 00% 00% 00% 00% 02% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0.0% 10
Rock fragment 45% 04% 02% 0.0% 0.0% 0.0% 0.0% 01% 0.0% 0.3% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%
Polycrystalline 31% 23% 01% 00% 00% 00% 00% 00% 00% 01% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0.0%
Feldspar {18.0% 19.9% 6.7% 42.1% 5.0% 7.0% 0.0% 0.0% 0.0% 04% 00% 0.0% 03% 00% 00% 00% 00% 00% 01% 02% 00% 00% 02% 0.0% 0.0%
Quartz 120.8% 3.2% 13.4% 5.6% LS " 0.0% 0.1% 01% 02% 0.0% 0.0% 04% 0.1% 01% 0.0% 00% 0.0% 00% 0.0% 0.0% 0.0% 00% 0.1% 0.0%
Plagioclase { 1.2% 5.3% 0.2% 32.7% 0.0% 01% 09% 00% 00% 01% 0.0% 00% 00% 00% 01% 01% 06% 00% 00% 00% 00% 0.0% 08
Foraminifer 4 0.2% 0.6% 0.0% 0.0% 39% 0.0% 00% 03% 18% 00% 01% 00% 00% 15% 00% 00% 0.0% 00% 03% 00% 01% 0.0%
Fossil fragment { 2.6% 19.5% 0.4% 0.5% 0.6% 0.8% 15.9% 27.0% 0.0% 18% 4.6% 7.1% 0.1% 25% 00% 0.1% 13.1% 00% 0.0% 01% 01% 27% 00% 0.1% 03%
Opaque { 4.7% - 0.0% 4.7% 62% 125% 0.0% 0.0% 7.8% 141% 0.0% 00% 00% 00% 0.0% 16% 00% 0.0% 00% 16% 16% 00% 00% 00% 16%
Amphibole 1 0.9% 6.5% 0.6% 1.5% 1.8% 4.4% 0.0% 0.0% 0.3% g 0.0% 0.0% 0.0% 0.0% 06% 0.0% 0.0% 15% 00% 4.4% 0.0% 0.0% 0.0% 0.0% 1.5%
Calcareous fossil 1 2.2% 13.6% 0.3% 0.4% 0.0% 0.1% 20.8% 11.4% 0.0% 0.7% 33.2% 0.0% 0.7% 00% 0.0% 11.9% 0.0% 00% 0.0% 00% 08% 00% 03% 01% o6
T Red algae { 0.2% 2.9% 0.0% 02% 0.0% 0.0% 6.4% 4.5% 00% 02% 05% 0.0% 0.0% 0.0% 0.0% 19% 0.0% 0.0% 0.0% 0.0% 1.0% 00% 0.0% 0.0%
2
:r'; Mica {23.3% - 5.0% 3.5% 0.0% 23% 0.0% 0.3% 0.0% 03% 03% 0.0% 155% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
'g Calcite { 5.3% 11.4% 0.0% 0.0% 0.0% 0.0% 26% 26.3% 00% 26% 35% 35% 00% 325% 00% 00% 35% 00% 00% 00% 26% 35% 00% 26% 0.0%
Muscovite { 1.4% 4.2% 2.8% 14% 31.9% 14% 0.0% 0.0% 00% 14% 00% 0.0% 27.8% 00% 83% 00% 00% 00% 00% 28% 00% 00% 00% 0.0% 16.7%
Heavy mineral 34% 09% 06% 0.0% 0.0% 22% 03% 06% 06% 03% 06% 03% 00% 34% 06% 0.0% 00% 0.0% 00% 0.0% 00% 0.0% 0.0% [o4
Coral { 3.3% 29.7% 0.0% 07% 0.0% 00% 23% 222% 00% 07% 03% 03% 00% 03% 00% 00% 386% 00% 00% 03% 00% 10% 00% 0.0% 03%
Hornblende { 0.0% 4.0% 0.0% 0.0% 0.0% 4.0% 00% 0.0% 51% 293% 20% 00% 81% 0.0% 20% 0.0% 0.0% - 0.0% 0.0% 00% 0.0% 00% 0.0% 1.0%
Microline { 4.4% 1.1% 1.1% 28.9% 7.8% 133% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 356% 0.0% 0.0% 0.0% 22% 0.0% 0.0%
Pyroxene { 0.0% 55% 0.0% 7.5% 3.5% 19.1% 0.0% 0.0% 0.0% 412% 0.0% 0.0% 15% 0.0% 05% 00% 00% 10% 00% 19.6% 00% 0.0% 00% 0.0% 0.5%
Dolomite { 2.4% 0.8% 0.0% 0.0% 00% 00% 08% 79% 00% 00% 12% 00% 00% 32% 00% 00% 04% 00% 00% 0.0% 0.0% 0.0% 7.9% 0.4% [o2
Echinoderm 4 2.2% 6.5% 0.0% 0.0% 11% 0.0% 7.5% 14.0% 00% 00% 00% 43% 00% 86% 00% 00% 32% 00% 00% 00% 00% 0.0% 0.0% 0.0%
Sanidine { 0.8% 0.0% 1.6% 6.3% 11.9% 0.0% 0.0% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 7.1% 0.0% 0.0% 0.0% 143% 0.0% 0.0%
Crystalline mosaic { 0.5% 0.0% 0.0% 0.0% 0.0% 00% 16% 9.8% 00% 00% 16% 00% 00% 65% 00% 00% 27% 00% 00% 0.0% 0.0% 0.0% 23.4% 0.0%
Other 4 5.1% 20.2% 2.1% 9.3% 4.0% 5.5% 3.6% 01% 0.1% 08% 0.1% 0.0% 11.5% 25% 0.3% 0.1% 19% 57%
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Figure 3: Confusion matrices of the LITHOS Baseline model for the 25-class mineral classification
task across both data folds.
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