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Abstract

Direct Preference Optimization (DPO) has shown significant promise in reducing halluci-
nations in Multimodal Large Language Models (MLLMs). However, existing multimodal
DPO methods suffer from overfitting due to difficulty-level imbalance in preference data.
Our analysis reveals that MLLMs tend to overfit on easily distinguishable pairs, which lim-
its their ability to remove hallucinations in a fine-grained manner and impairs the model’s
comprehensive ability. To address this challenge, we introduce Difficulty-Aware Direct
Preference Optimization (DA-DPO), a cost-effective framework comprising two key compo-
nents: (1)Difficulty Estimation, where we leverage pre-trained vision-language models with
complementary generative and contrastive objectives, integrating their outputs through a
distribution-aware voting strategy to obtain robust difficulty scores without additional train-
ing; and (2) Difficulty-Aware Training, where we reweight preference data according to the
estimated difficulty, down-weighting easy samples while emphasizing harder ones to miti-
gate overfitting. This paradigm enhances preference optimization by efficiently exploiting
challenging examples without requiring new data or additional fine-tuning stages. Exten-
sive experiments demonstrate that DA-DPO significantly improves multimodal preference
optimization, achieving stronger robustness against hallucinations and better generalization
on standard benchmarks, all in a cost-efficient manner.

1 Introduction

Recent advancements in Multimodal Large Language Models (MLLMs) (Liu et al., 2023a; OpenAI, 2023; Li
et al., 2024b) have significantly improved vision-language tasks, such as image captioning (Lin et al., 2014),
visual question answering (Agrawal et al., 2015; Mathew et al., 2021; Marino et al., 2019). By combining
powerful large language models with state-of-the-art vision models, MLLMs have enhanced multimodal
understanding and reasoning. However, a persistent challenge for MLLMs is their tendency to produce
responses that are not reliably grounded in visual inputs, often resulting in "hallucinations" where descriptions
include non-existent or inaccurate visual details. This limitation affects the reliability of MLLMs, posing a
significant barrier for applications that require high factual accuracy.

Recent efforts have turned to Direct Preference Optimization (DPO)(Rafailov et al., 2024) as a promising
approach to mitigate hallucinations in MLLMs. DPO encourages models to align their outputs with prefer-
ence data that favor faithful responses and reduce hallucinations. Crucially, the effectiveness of DPO hinges
on the quality of pairwise preference data. To address this, early approaches (Sun et al., 2023c; Yu et al.,
2024a) rely on manual annotation, but such data collection is both labor-intensive and difficult to scale.
More recently, several works (Pi et al., 2024; Li et al., 2023d; Zhou et al., 2024c; Yang et al., 2025) have
proposed automated strategies for constructing multimodal preference data. These methods exploit trained
models to produce pairwise preference data at scale, significantly increasing data coverage across diverse
scenarios and thereby improving the model’s ability to reduce hallucinations.

Despite their effectiveness in reducing hallucinations, vanilla DPO methods trained on existing pairwise
preference data often lead to noticeable degradation in general multimodal capabilities, as shown in Figure 1a.
We attribute this limitation to an imbalance between easy and hard samples in the training data, as illustrated

1



Under review as submission to TMLR

(a) (b)

Figure 1: ( 1a) Performance Comparison of DPO and DA-DPO.. We provide the performance
improvements of DPO and DA-DPO compared to the LLaVA v1.5 7B without preference optimization. The
Hallucination indicates the performance on 4 hallucination benchmarks, and Comprehensive indicates the
performance of 4 comprehensive MLLM benchmarks. The details are described in the experiments section.
( 1b) Easy and hard pairwise samples: "Easy Samples" have a large score gap due to clear differences
between preferred and dispreferred responses, while "Hard Samples" show minor differences, making them
more valuable for learning.

in Figure 1b. Easy samples typically involve clearly distinguishable faithful and hallucinated responses,
whereas hard samples require more nuanced reasoning to differentiate. This imbalance leads to a training
bias where models overfit to easy cases while failing to learn from more challenging examples. We provide a
detailed empirical analysis of this phenomenon in Section 3, showing that while models quickly adapt to easy
samples, they struggle to generalize to hard ones, ultimately limiting the effectiveness of preference-based
alignment.

To address this limitation, we propose a difficulty-aware training framework that dynamically balances the
contribution of easy and hard samples during preference optimization. A key challenge in implementing this
strategy is the lack of explicit supervision for estimating sample difficulty. We tackle this by introducing a
lightweight, training-free strategy: by aggregating signals from multiple pre-trained vision–language models
(VLMs) trained under diverse paradigms, we obtain robust difficulty scores that estimate the difficulty of
pairwise preference data without explicit training a specific model. These difficulty scores are then used to
reweight preference data, enabling effective difficulty-aware training that emphasizes harder samples while
preventing overfitting to easier ones.

Specifically, we propose Difficulty Aware Direct Preference Optimization (DA-DPO), a framework that
consists of two steps: difficulty estimation and difficulty-aware training. The first step assesses the difficulty
of each pairwise preference sample using multiple VLMs. In particular, we leverage both contrastive VLMs
(e.g., CLIP (Radford et al., 2021b)) and generative VLMs (e.g., LLaVA (Liu et al., 2023b)) to estimate
difficulty from complementary perspectives. Their outputs are aggregated through a distribution-aware
voting strategy, in which the weight of each VLM is adaptively derived from its observed classification
reliability over the training data. Building on these scores, the second step performs difficulty-aware training
by dynamically adjusting the optimization strength of each sample in DPO. Specifically, the difficulty scores
adjust the degree of divergence permitted between the learned policy and the initial policy. This mechanism
strengthens learning from challenging samples while limiting unnecessary drift on trivial ones.

We conduct experiments on three popular MLLMs with different scales and abilities. To provide a com-
prehensive comparison, we report the performance comparison and analysis on two sets of benchmarks,
hallucination benchmarks (Wang et al., 2023a; Rohrbach et al., 2018; Sun et al., 2023c; Li et al., 2023e) and
general MLLM benchmarks (Hudson & Manning, 2019; Liu et al., 2023b; Fu et al., 2023b; Li et al., 2023a),
which demonstrate the effectiveness of our approach.

Our main contributions are summarized as follows:

• We conduct analysis on the multimodal preference optimization training and empirically demonstrate the
existence of an overfitting issue, which can lead to suboptimal performance.
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• We propose a cost-effective framework that leverages vision-language models (VLMs) to estimate the
sample difficulty without additional training and utilize the estimation to improve preference modeling
via difficulty-aware training.

• We evaluate our method on hallucination and comprehensive benchmarks, and experimental results show
that it significantly enhances the performance of various MLLMs in a cost-efficient manner.

2 Preliminaries

In this section, we provide a brief overview of the Reinforcement Learning from Human Feedback (RLHF)
to Direct Preference Optimization (DPO) pipelines.

RLHF Reinforcement Learning from Human Feedback (RLHF) is a widely used framework for aligning
LLMs with human values and intentions. The standard approach (Bai et al., 2022a; Ouyang et al., 2022) first
trains a reward model and then optimizes a KL-regularized reward objective to balance preference alignment
with output diversity. The optimization can be written as:

max
πθ

Ex∼D, y∼πθ(x)[rϕ(x, y)] − β KL[πθ(y|x) ∥ πref(y|x)], (1)

where πref is a reference policy (typically the SFT model) and β controls the trade-off between reward
maximization and staying close to πref. The objective is usually optimized with PPO (Ouyang et al., 2022).

Pair-wise Preference Optimization Despite the success of the above RLHF, PPO is challenging to
optimize. To enhance the efficiency of PPO, DPO (Rafailov et al., 2024) reparameterizes the reward function
with the optimal policy:

r(x, y) = β log
(

πθ(y | x)
πref(y | x)

)
+ β log Z(x), (2)

where Z(x) denotes the partition function ensuring proper normalization. The hyperparameter β, analogous
to the KL weight in Eq. (1), controls the trade-off: a larger value encourages πθ to remain closer to the
reference policy, preserving generalization and robustness, while a smaller value places greater emphasis on
preference alignment but risks overfitting.

Building on this reward formulation, we can directly integrate it into the Bradley-Terry model, which treats
pairwise preferences probabilistically. By doing so, we can optimize the preference objective without learning
a separate reward model. The optimization objective is described as:

min
πθ

−Ex,yc,yr
[log σ(r(x, yc) − r(x, yr))], (3)

where r(x, y) can be any reward function parametrize by πθ, such as those defined in Eq. ( 2) and yc and yr

denote the chosen and rejected responses in pairwise preference data, respectively.

3 Multimodal Preference Optimization Analysis

In this section, we present a systematic investigation of the prevalent overfitting challenge in multimodal
preference optimization. Through empirical analysis, we demonstrate that models exhibit a tendency to
overfit to simpler training samples, while progressively reducing their effective learning from harder instances.
This phenomenon is particularly pronounced in pairwise training paradigms like DPO (Rafailov et al., 2024).
This overfitting behavior ultimately compromises model performance when applied to diverse real-world
scenarios. We substantiate these findings with quantitative evidence drawn from training dynamics and
reward trend analyses.

Analysis Setting To systematically analyze overfitting in preference optimization, we construct a con-
trolled evaluation setup. We split the dataset into a training set and a held-out validation set with a ratio of
90% to 10%. Both DPO and DA-DPO models are trained on the 90% training portion, while their reward
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Figure 2: Reward Dynamics and Area-Under-Gap (AUG) Between the Easiest and Hardest
Samples. We present the reward trajectories on a held-out validation set of LLaVA-v1.5-7B for both DPO
and DA-DPO trained on the BPO dataset. The first row depicts how the rewards of data buckets with
different estimated difficulty levels evolve over training iterations. The difficulty is estimated using three
distinct proxies, as detailed in Section 4.1. Here, the Easiest samples (Top 75–100% in the legend) correspond
to samples with the largest gap between chosen and rejected responses. The second row reports the Area
Under Gap (AUG), quantifying the cumulative reward gap between the easiest and hardest samples across
training, serving as a compact indicator of reward disparity dynamics. Shaded regions in the plots indicate
the standard deviation across three independent seeds, though the effect is subtle due to the low variance
induced by training randomness.

performance is periodically evaluated on the validation set across training iterations. Since there is no oracle
annotation for sample difficulty, we estimate the difficulty of each validation sample using three different
proxy metrics, as introduced in Section 4.1. Based on the difficulty ranking derived from each proxy, we
partition the validation samples into four equally sized buckets, ranging from the easiest to the hardest. This
setup allows us to examine how the model’s reward evolves for samples of varying difficulty, thereby providing
insights into overfitting behavior during preference optimization. To assess the statistical reliability of the
results, we repeat the experiments with three different random seeds and report the corresponding standard
deviations.

Reward Dynamics Analysis We analyze the reward dynamics from two complementary perspectives.
The first perspective examines how the rewards of samples with different difficulty evolve throughout the
training process. Based on three different proxy metrics (as detailed in Section 4.1), the validation samples
are ranked by difficulty and partitioned into multiple buckets, from the easiest to the hardest. As shown in
the first row of Figure 2, we observe that for both DPO and our proposed DA-DPO, the rewards of harder
buckets consistently remain lower than those of easier buckets. This trend indicates a limited capacity to fit
hard samples, which typically require fine-grained understanding capabilities. Moreover, we observe that in
DA-DPO, the reward of the easier buckets increases more slowly compared to that in naive DPO. This slower
growth is a result of DA-DPO’s adaptive weighting mechanism, which adjusts the importance of each training
instance based on its estimated difficulty. By doing so, DA-DPO effectively reduces over-optimization on
easier samples, thereby alleviating the overfitting tendency frequently observed in standard DPO training.

To further quantify this phenomenon, we introduce a second perspective: the Area Under Gap (AUG)
between the easiest and hardest samples. The AUG is computed by first taking the difference between
the reward of the easiest bucket and that of the hardest bucket at each evaluation point across training
iterations, and then integrating this gap over the entire training trajectory. This provides a cumulative
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Figure 3: Illustration of the two contrastive and generative VLMs. As shown on the right side,
CLIP captures the misalignment between the image and the answer such that the CLIP score gap is large
when chosen and rejected answers differ in image relevance. However, as shown on the left side, the MLLM
is better at capturing the logical connection between the question and answers, such that the MLLM score
gap is large when chosen and rejected answers differ in question relevance.

measure of the reward disparity between easy and hard samples throughout training. A larger AUG indicates
a stronger optimization bias toward easier samples. As shown in the second row of Figure 2, the AUG in
DA-DPO remains consistently smaller than that in naive DPO, demonstrating that DA-DPO achieves a
more balanced optimization across samples of varying difficulty. These analyses collectively highlight the
presence of overfitting in multimodal preference optimization and the effectiveness of DA-DPO in mitigating
it.

4 Methods

In this section, we introduce the DA-DPO framework, which addresses the overfitting issue in standard multi-
modal DPO training in a cost-efficient manner. In Section 4.1, we first discuss the estimation of preference
data, where CLIP and MLLMs to evaluate the difficulty of preference data. In Section 4.2, we explain how
the data difficulty estimation from pretrained VLMs informs and guides the difficulty-aware DPO training.

4.1 Data Difficulty Estimation

The key challenge in evaluating the difficulty of preference data is the lack of explicit supervision. To address
this, we propose a lightweight, training-free strategy that leverages pre-trained contrastive and generative
VLMs to estimate sample difficulty from complementary perspectives, as illustrated in Figure 3. To combine
the estimates from multiple models, we adopt a distribution-aware voting strategy, where each model’s
contribution is proportional to its preference classification accuracy on the training set. This results in a
robust difficulty score for each sample without requiring additional model training. The details are described
in the following sections.

Contrastive Estimation CLIP is trained on web-scale image captions via contrastive training objectives
and is proven to contain generalized knowledge regarding image and text relevance. We utilize CLIP to
evaluate the difficulty of pairwise DPO data. Specifically, we first compute the CLIP text embeddings
for the chosen response yc and rejected response yr (denoted as fc and fr, respectively), and the CLIP
image embedding for the image in DPO data m (denoted as vm). The CLIP scores cc and cr represent the
image-text relevance of both responses is computed as follows:

cc = CosSim(fc, vm), cr = CosSim(fr, vm). (4)

We then introduce CLIP score gap cg, which reflects the difficulty of a DPO sample; a larger gap indicates
that the chosen and rejected responses are easily distinguishable in terms of image-text relevance. Formally,
the CLIP score gap cg is defined as follows:

cg = cc − cr. (5)
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Figure 4: Preference classification comparison. Preference classification evaluates whether the pre-
trained VLMs output a higher reward score for the chosen answer compared with the rejected answer. We
report the classification accuracy on three subcategories and the overall performance on the BPO training
dataset.

To integrate this metric with other VLM-based estimates, we normalize cg to a common scale via dataset-level
Gaussian projection. Given a dataset of N samples, the normalized score is computed as follows:

ĉg = Φ(
cg − µcg

σcg

), (6)

where µcg and σcg are the mean and variance of all CLIP score gaps cg in the DPO dataset. The normalized
CLIP score gap ĉg ∈ [0, 1], and Φ(·) denotes the cumulative distribution function of the standard Gaussian
distribution.

Generative Estimation Recent Multi-modal large language models (MLLMs) are built on large language
models (LLMs) and learn to interact with the visual world by connecting a visual encoder to an LLM with
language modeling objectives. For simplification, we denote this as a generative VLM. Although such models
are prone to hallucination, they provide an informative evaluation of DPO data difficulty from another
perspective complementary to CLIP. We extract the MLLM score for the chosen responses yc and rejected
responses yr, denoted as mc ∈ R and mr ∈ R, which is defined as follows:

mc =
T∑

t=1
log

(
P(yt

c|m, y1
c , . . . , yt−1

c ; πref)
)

, (7)

mr =
T∑

t=1
log

(
P(yt

r|m, y1
r , . . . , yt−1

r ; πref)
)

, (8)

where yt
c and yt

r are the tth tokens in the chosen and rejected responses, and T is the sequence length. To
evaluate the difficulty of pairwise DPO data, the MLLM score gap mg is computed as follows:

mg = mc − mr. (9)

For a similar reason as the normalization of CLIP score, we utilize a Gaussian normalization to acquire a
normalized MLLM score gap m̂g ∈ [0, 1]. The process is defined as follows:

m̂g = Φ(
mg − µmg

σmg

), (10)

where µmg
, σmg

is the mean and variance of all the MLLM score gaps mg in the DPO dataset.

Distribution-aware Voting Fusion To this end, we evaluate the pairwise DPO data from two perspec-
tives, resulting in two difficulty scores. As shown in Figure 4, the two VLMs perform differently in preference
classification: CLIP excels on caption-related preference data, while MLLM performs better on VQA-related
data. We propose a data-driven voting strategy to adaptively combine the difficulty scores based on the pref-
erence classification results. Specifically, we use the classification accuracies of CLIP and MLLM, denoted
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as clsc and clsm, to determine the weight of beta for each DPO sample, as described below:

β̂ = [( clsc

clsc + clsm
ĉg + clsm

clsc + clsm
m̂g) + 1], (11)

where we add a constant term of 1 to improve the stability of the training process. Without this term, when
both ĉg and m̂g are close to zero, the resulting β̂ would also approach zero, potentially leading to training
collapse.

4.2 Difficulty-aware Training

After estimating the difficulty of the preference pairs, we obtain a robust score that reflects the difficulty
of the pairwise DPO data. Building on previous work (Wu et al., 2024a), we perform difficulty-aware DPO
training by adaptively calibrating the β in Eq. ( 1). This approach allows us to adjust the weight of each
training sample, reducing overfitting on easy samples compared to standard DPO training. Formally, the
proposed difficulty-aware DPO objective is defined as:

LDA-DPO = −E(x,yc,yr,β̂)∼D

[
log σ

(
β̂ r(x, yc) − β̂ r(x, yr)

)]
, (12)

where β̂ is the difficulty-aware scaling factor, r(x, y) denotes the reward function as defined in Eq. 12, which
itself incorporates the temperature coefficient β, yc and yr are the chosen and rejected responses, respectively,
and σ(·) is the sigmoid function.

5 Experiments

5.1 Implementation Details

Training Setup To validate the effectiveness of the proposed methods, we use the pair preference datasets
from BPO (Pi et al., 2024). This dataset contains 180k pairwise preference data, where the negative responses
are generated by the Image-Weakened prompting and LLM Error Injection. For training parameters, we
train the model for 1 epoch and set the β to 0.2. For LLaVA V1.5, we follow previous work (Pi et al.,
2024) to adopt the LoRA (Hu et al., 2021) training with rank 32 and LoRA alpha 256. The learning rate
is set to 2e-6. For LLaVA-OneVision, we use the recommended official training script to perform full fine-
tuning where the learning rate is 5e-7. The training takes about 7 hours for LLaVA V1.5 7B models and
22 hours for LLaVA-OneVision 7B. For the analysis section, we preserve the top and bottom 20% scores as
high-confidence CLIP-based predictions.

Choice of VLMs For the choice of VLMs, we employ the CLIP (Radford et al., 2021a) ViTL/14@336.
For the preferred and negative text responses in each data sample, we encode the longest possible text from
the start and truncate the rest of the text. For MLLM, we use the LLaVA v1.5 7B (Liu et al., 2023a) to
compute the probability of responses given the image and question. We also provide an ablation study on
the choice of these models in Section 5.5.

5.2 Evaluation Benchmarks

To comprehensively evaluate the impact of preference optimization on MLLMs, we select two types of
benchmarks. Hallucination benchmarks measure the model’s ability to reduce factual errors, which is the
primary goal of multimodal preference alignment. Comprehensive benchmarks assess general multimodal
capabilities, ensuring that improvements in hallucination do not come at the cost of overall performance.

Hallucination Evaluation. Following previous works (Pi et al., 2024; Wang et al., 2024a; Ouali et al.,
2024), we comprehensively evaluate the DA-DPO on various hallucination benchmarks such as AM-
BER (Wang et al., 2023a), MMHalBench (Sun et al., 2023c), Object HalBench (Rohrbach et al., 2018),
and POPE (Li et al., 2023e). 1) AMBER provides a multidimensional framework suitable for assessing both
generative and discriminative tasks. 2) MMHalBench is a question-answering benchmark with eight question
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Table 1: Results on hallucination and comprehensive benchmarks. For each column, the ↑ symbol
indicates that higher values are better, while the ↓ symbol indicates that lower values are better. The AMB.
Gen. and AMB. Dis. refer to the generative and discriminative components of the AMBER benchmark.
The ∗ symbol denotes the evaluation results of the official model weights from BPO (Pi et al., 2024). We
clarify that ‡ focuses on utilizing CLIP knowledge to construct preference data, whereas we leverage CLIP
to address the overfitting issue in standard DPO training. The mDPO† provides an alternative approach to
improving multimodal preference optimization by addressing the over-prioritization of language preference,
which is orthogonal to the DA-DPO approach.

AMB.G AMB.D ObjHal MMHal POPELLaVAW GQASeedI MMEP MMEC

Cs ↓Cov. ↑Hal. ↓Cog. ↓ F1 ↑ Cs ↓Ci ↓Score ↑HalRate ↓ F1 ↑ Score ↑ Acc↑ Acc↑ Score↑ Score↑

Reference Only (Not directly comparable)

CogVLM 5.6 57.2 23.6 1.3 - - - - - - - - - - -
mPLUG-Owl2 10.6 52.0 39.9 4.5 - - - - - - 56.1 - - - -
InstructBLIP 8.8 52.2 38.2 4.4 - - - - - - 58.2 - 58.8 1212.8 -
Qwen-VL 5.5 49.4 23.6 1.9 - 36.0 21.3 2.89 0.43 - - 59.3 - 1487.6 360.7
GPT-4V 4.6 67.1 30.7 2.6 - 13.6 7.3 3.49 0.28 - - - - - -

LLaVA-v1.5-7B 7.8 51.0 36.4 4.2 74.7 54.7 15.9 2.19 0.57 85.8 63.8 62.0 66.1 1510.7 307.5
+ HA-DPO 7.2 33.6 19.7 2.6 - 39.9 19.9 1.97 0.60 - - - - - -
+ CLIP-DPO‡ 3.7 47.8 16.6 1.3 - - - - - 85.8 - - - 1468.7 -
+ mDPO† 4.4 52.4 24.5 2.4 - 35.7 9.8 2.39 0.54 - - - - - -

Main Results

LLaVA-v1.5-7B 7.8 51.0 36.4 4.2 74.7 54.7 15.9 2.19 0.57 85.8 63.8 62.0 66.1 1510.7 307.5
+ DPO∗ 5.5 58.4 35.7 2.0 83.9 43.3 10.0 2.24 0.53 84.3 70.5 45.3 57.8 1409.4 315.0
+ DA-DPO 4.3 57.4 28.0 2.1 85.6 39.7 9.9 2.22 0.50 85.9 75.4 59.8 64.8 1406.6 323.2

LLaVA-v1.5-13B 7.1 52.4 33.9 3.8 88.6 56.3 15.8 2.22 0.57 86.9 71.2 63.0 67.5 1496.7 308.9
+ DPO 6.6 61.9 45.7 2.5 85.5 39.0 8.8 2.05 0.55 86.0 74.1 60.9 53.5 1450.6 276.4
+ DA-DPO 5.1 59.0 32.2 1.9 87.3 37.0 8.3 2.39 0.48 85.6 74.5 61.5 61.4 1474.2 276.4

LLaVA-OV-7B 8.4 74.8 70.4 9.8 90.6 41.3 8.1 2.76 0.37 87.2 80.0 59.6 75.8 1580.4 406.4
+ DPO 7.7 66.5 59.0 4.3 91.9 34.3 8.6 2.61 0.38 86.1 72.9 55.0 73.7 1545.4 364.6
+ DA-DPO 7.0 64.1 51.8 3.7 91.7 28.0 8.0 2.78 0.30 86.0 73.7 59.2 75.6 1551.4 381.8

types and 12 object topics. We follow the official evaluation scripts with GPT-4. 3) Object HalBench is a
standard benchmark for assessing object hallucination, and we follow the settings in (Wang et al., 2024a).
4) POPE utilizes a polling-based query to evaluate the model’s hallucination. We report the average F1
score of three kinds of questions in POPE.

Comprehensive Evaluation. For evaluating MLLM helpfulness, we use: 1) LLaVA-Bench (Liu et al.,
2023b), a real-world benchmark with 60 tasks assessing LLaVA’s visual instruction-following and question-
answering abilities. We use official scripts to compute scores with GPT-4. 2) Seedbench (Li et al., 2023a),
which consists of 14k multiple-choice VQA samples to evaluate the comprehensive ability of MLLMs. 3)
MME (Fu et al., 2023a) which measures both perception and cognition abilities using yes/no questions. 4)
GQA Hudson & Manning (2019) evaluates real-world visual reasoning and compositional question-answering
abilities in an open-ended answer generation format.

5.3 Baselines

The proposed DA-DPO framework is designed to improve pairwise preference optimization by introducing
the pretrained VLMs in a cost-efficient manner. We mainly compare DA-DPO with standard DPO (Rafailov
et al., 2024) under three MLLMs, LLaVA V1.5 7B/13B (Liu et al., 2023a) and LLaVA-OneVision 7B (Li
et al., 2024b). Additionally, we provide results from other multimodal LLMs, such as GPT4-V (OpenAI,
2023), CogVLM (Wang et al., 2023b), mPLUG-Owl2 (Ye et al., 2023), InstructBLIP (Dai et al., 2023),
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Table 2: The impact of estimation from different VLMs. We report the performance of the model
trained with different strategies on hallucination benchmarks such as the AMBER benchmark and the
comprehensive benchmark SeedBench. The row with the blue color indicates the adopted strategy.

VLMs AMB.G AMB.D SeedI

CLIP MLLM Cs ↓ Cov. ↑ Hal. ↓ Cog. ↓ F1 ↑ Score ↑

DPO × × 5.5 58.4 35.7 2.0 83.9 57.8

Ours
✓ × 4.7 58.0 31.9 2.0 85.2 63.8
× ✓ 4.6 57.6 29.9 2.3 85.3 64.3
✓ ✓ 4.3 57.4 28.0 2.1 85.6 64.8

Table 3: Results of LLaVA v1.5 7B trained with VLFeedback and LLaVA-RLHF dataset. The
VLFeedback is an automatically constructed dataset by collecting responses from multiple VLMs and filtering
the results with GPT4-V. The LLaVA-RLHF is a human-annotated dataset.

AMB.G AMB.D ObjHal MMHal POPELLaVAW GQASeedI MMEP MMEC

Cs ↓Cov. ↑Hal. ↓Cog. ↓ F1 ↑ Cs ↓Ci ↓Score ↑HalRate ↓ F1 ↑ Score ↑ Acc↑ Acc↑ Score↑ Score↑

LLaVA-v1.5-7B 7.8 51.0 36.4 4.2 74.7 54.7 15.9 2.19 0.57 85.8 63.8 62.0 66.1 1510.7 307.5

VLFeedback

+ DPO 6.5 55.1 34.5 2.3 84.6 49.0 13.0 2.19 0.65 84.6 72.1 59.8 63.5 1368.5 294.2
+ DA-DPO 5.6 53.0 29.7 2.7 85.8 48.312.8 2.23 0.53 84.2 73.0 60.3 65.0 1422.7 297.1

LLaVA-RLHF

+ DPO 7.3 50.8 33.7 3.9 86.6 58.3 16.9 2.10 0.57 84.4 68.7 60.7 64.5 1415.9 343.9
+ DA-DPO 5.8 50.7 27.6 3.0 86.6 48.013.8 2.02 0.59 84.5 71.3 60.9 64.8 1464.1 301.4

Qwen-VL (Bai et al., 2023), HA-DPO (Zhao et al., 2023), CLIP-DPO (Ouali et al., 2024), mDPO (Wang
et al., 2024a) for reference.

5.4 Results Analysis
Hallucination Benchmarks To demonstrate the effectiveness of the proposed methods in reducing hallu-
cinations, we present evaluation results on various hallucination benchmarks in Table 1. We observe that the
DA-DPO improves model performance on most benchmarks compared to DPO, such as the HalRate in AM-
BER generative decrease from 35.7 to 28.0 when training with LLaVA v1.5 7B. Moreover, the performance
of three MLLMs is improved significantly on the Object Hallucination benchmark, which demonstrates that
the DA-DPO greatly reduces the hallucination in the caption.

Comprehensive Benchmarks We evaluate the proposed methods on five comprehensive benchmarks.
The results, shown in Table 1, indicate that while preference optimization reduces hallucination, perfor-
mance on general abilities suffers. However, DA-DPO mitigates this degradation on most benchmarks when
compared to standard DPO. Furthermore, DA-DPO significantly enhances conversational ability, with per-
formance on the LLaVA-Bench reaching 75.4, compared to 70.5 for DPO using LLaVA v1.5 7B.

5.5 Ablation Study

Impact of the Difficult-aware Training To better understand the proposed methods, we conduct an
ablation study to assess the effectiveness of each design. As shown in Table 2, we begin with the standard
Direct Preference Optimization (DPO) (Rafailov et al., 2024). We then add the reward score from the CLIP
to control sample weight during training, followed by results for DPO with only the MLLM’s reward score.
Finally, we combine both reward scores using the adaptive fusion strategy. The results show that using
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Table 4: Choices of VLMs. The ViTL indicate the CLIP ViTL/14@336 and EVA 8B is the EVA-CLIP
8B. The LLaVA 7B is the LLaVA v1.5 7B and the OV 7B is the LLaVA-Onevision 7B.

Model Choice AMB.G AMB.D SeedI

CLIP MLLM Cs ↓ Cov. ↑ Hal. ↓ Cog. ↓ F1 ↑ Score ↑

ViTL LLaVA 7B 4.3 57.4 28.0 2.1 85.6 64.8
EVA 8B LLaVA 7B 4.9 57.1 31.8 2.6 83.4 56.2

ViTL OV 7B 4.6 57.7 31.4 2.0 85.7 65.2
EVA 8B OV 7B 4.3 55.6 25.5 2.0 86.0 65.5

Table 5: Comparison of DA-DPO with direct filtering baselines (10%, 25%, 50% easy samples
removed). Metrics with ↑ indicate higher is better; with ↓ indicate lower is better.

Model AMBERG AMBERD POPE MMHal ObjHall LLaVAW GQA Seed MME
Cs ↓ Cov. ↑ Hal. ↓ Cog. ↓ F1↑ F1↑ Score↑ HalRate↓ Cs ↓ Ci ↓ Score↑ Acc↑ Acc↑ P↑ C↑

DPO 5.5 58.4 35.7 2.0 83.9 84.3 2.23 0.53 43.3 10.0 70.48 45.3 57.7 1409.4 315.0

Filter 10% 5.6 63.2 39.6 2.6 85.9 84.9 2.22 0.51 39.0 9.3 72.49 53.4 50.3 1365.1 300.0
Filter 25% 5.3 61.3 37.8 2.3 85.8 84.3 2.29 0.50 38.3 9.0 67.04 53.3 51.1 1318.6 330.3
Filter 50% 5.3 62.2 38.3 2.0 86.0 85.5 2.03 0.56 42.7 10.2 71.21 56.3 52.2 1359.7 306.7

DA-DPO 4.3 57.4 28.0 2.1 85.6 85.9 2.22 0.50 37.7 9.8 75.38 59.8 64.8 1406.5 323.2

either CLIP or MLLM’s reward score improves both HalRate and CHAIRs, with the combination of both
achieving the best performance, highlighting the necessity of each framework design.

Influence of Preference Datasets To demonstrate that the proposed methods mitigate data bias in
different types of multimodal pairwise preference data, we use VLFeedBack (Li et al., 2023d), which consists
of 80k responses generated by MLLMs with varying levels of ability, and rated by GPT4-V (OpenAI, 2023).
This dataset is automatically generated through a different approach compared to BPO (Pi et al., 2024), and
it covers the mainstream data generation pipeline for multimodal preference data. We follow the settings
of mDPO (Wang et al., 2024a) to select 10k preference data samples. Moreover, we trained on LLaVA-
RLHF (Sun et al., 2023c), the most widely used human-annotated multimodal preference dataset with
10k samples. As shown in Table 3, DA-DPO outperforms DPO on most benchmarks, demonstrating that
overfitting is a common issue in multimodal preference data, and DA-DPO effectively alleviates this problem
in a cost-efficient manner.

Choices of the VLMs We present an ablation study on the selection of VLMs. These models estimate
the difficulty of pairwise preference data and guide difficulty-aware preference optimization during training
in the proposed framework. We experiment with two CLIP models of varying parameter scales: CLIP ViT-
L/14@336 (Radford et al., 2021a) and EVA-CLIP 8B (Sun et al., 2023a). For MLLMs, we use LLaVA v1.5
7B (Liu et al., 2023a) and LLaVA-OneVision 7B (Li et al., 2024b). As shown in Table 4, we observe that
performance remains similar across VLMs with different capabilities, which is attributed to the Gaussian
normalization in Eq. ( 10) and Eq. ( 6). This normalization ensures that the VLMs only provide a ranking
of preference data, making our proposed framework robust to variations in the choice of VLMs.

Comparison with Direct Filtering Baseline To further validate the effectiveness of our sample re-
weighting strategy, we compare DA-DPO against a baseline that directly filters out easy samples from the
training data. Specifically, we remove 10%, 25%, and 50% of the easy samples from the BPO dataset based
on our difficulty metric and train a model using the DPO algorithm. Table 5 summarizes the performance
of DA-DPO and the direct filtering baselines across a wide range of benchmarks. We observe that DA-DPO
consistently outperforms the filtering-based approaches on most metrics, especially on hallucination-related
benchmarks such as POPE, MMHal, and Object Hallucination. Notably, the performance of the direct
filtering baseline fluctuates across different filtering ratios, with no consistent improvement as more easy
samples are removed.
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Table 6: Performance across difficulty buckets estimated using CLIP-based and MLLM-based
proxies. We fine-tune LLaVA-1.5-7B using vanilla DPO, where the training data in each bucket is sampled
from the BPO dataset based on the estimated reward gap. The Top 0–25% bucket corresponds to samples
with the smallest reward gaps.

AMB.G AMB.D ObjHal POPE
Bucket Cs↓ Cov.↑ Hal.↓ Cog.↓ F1↑ Cs↓ Ci↓ F1↑

CLIP Estimation

Top 0–25% 5.3 62.0 37.6 2.2 86.8 41.3 10.8 85.6
Top 25–50% 5.1 62.7 37.5 2.0 86.2 43.0 9.7 85.8
Top 50–75% 5.2 61.1 37.9 2.4 85.7 51.0 10.8 85.8
Top 75–100% 5.4 55.0 38.9 2.5 85.6 52.7 12.9 85.7

MLLM Estimation

Top 0–25% 4.9 59.1 35.4 2.5 85.6 46.7 11.8 85.7
Top 25–50% 4.6 53.9 32.3 1.9 86.6 42.3 9.0 85.8
Top 50–75% 5.4 55.5 30.5 2.0 84.6 48.3 11.4 86.5
Top 75–100% 5.5 54.3 32.4 2.2 84.8 46.3 10.8 86.3

We attribute the limited effectiveness of direct filtering to its inherent trade-off: while it removes truly
uninformative samples, it also discards a portion of valuable training data, thereby reducing the diversity
and coverage of preference information. In contrast, DA-DPO addresses this issue by softly down-weighting
easy samples instead of hard filtering, preserving data diversity while emphasizing informative examples.
This allows DA-DPO to maintain robustness across benchmarks with varying difficulty and annotation
styles.

Estimated Reward Gap and Model Hallucination To examine the relationship between the reward
gap and hallucination behavior, we design a controlled validation experiment. Specifically, we utilize CLIP-
based and MLLM-based proxies to estimate the reward gaps of training samples and evenly divide the data
into four buckets according to the estimated gap range. We then train a vanilla DPO model on each bucket
independently to analyze how sample difficulty affects preference optimization. As shown in Table 6, we
observe that the largest reduction in hallucination occurs for samples in the 25–50% bucket, while the extent
of hallucination reduction gradually decreases as the reward gap increases. Interestingly, the bucket with the
smallest reward gap (0–25%) does not yield the most significant hallucination improvement. We attribute
this to noisy or confusing samples within this subset during data construction—such as cases where the
“rejected” answer is actually semantically correct—which may interfere with effective model optimization.

6 Related Works

6.1 Vision-Language Models

Vision-Language Models (VLMs) (Radford et al., 2021b; Jia et al., 2021; Li et al., 2022) have substan-
tially advanced multimodal understanding, achieving strong performance across a wide range of downstream
tasks (Guo et al., 2022; Ning et al., 2023). Contrastive VLMs, such as CLIP (Radford et al., 2021a),
align images and text via large-scale contrastive objectives and demonstrate impressive zero-shot transfer
on recognition tasks (Nukrai et al., 2022; Qiu et al., 2024; Liao et al., 2022; Ning et al., 2023; Yao et al.,
2022; Peebles & Xie, 2022). With the rise of large language models (LLMs), subsequent works integrate
LLMs with visual encoders to enhance image-conditioned text generation (Li et al., 2023b; Dai et al., 2023;
Liu et al., 2023b; Zhu et al., 2023; Liu et al., 2023a; Chen et al., 2023), enabling instruction following and
open-ended reasoning. More recent efforts (Li et al., 2024a;b; Gao et al., 2024) further improve visual ca-
pabilities by leveraging higher-resolution inputs, multi-image contexts, and even video sequences. Despite
these advances, VLMs remain prone to hallucinations when aligning visual evidence with textual responses,
motivating preference-based optimization approaches to improve faithfulness.
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6.2 Preference Alignment in Large Language Models

The alignment problem (Leike et al., 2018) aims to ensure that agent behaviors are consistent with human
intentions. Early approaches leveraged Reinforcement Learning from Human Feedback (RLHF) (Bai et al.,
2022a;b; Glaese et al., 2022; Nakano et al., 2021; Ouyang et al., 2022; Scheurer et al., 2023; Stiennon et al.,
2020; Wu et al., 2021; Ziegler et al., 2019), where policy optimization methods such as PPO (Schulman
et al., 2017) were used to maximize human-labeled rewards. More recently, Direct Preference Optimization
(DPO) (Rafailov et al., 2024) reformulates alignment as a direct optimization problem over offline preference
data, avoiding the need for reinforcement learning. Extensions such as Gibbs-DPO (Xiong et al., 2023) enable
online preference optimization, while β-DPO (Wu et al., 2024b) addresses sensitivity to the temperature
parameter β by introducing dynamic calibration with a reward model. However, such approaches are less
effective in multimodal domains, where reward models are vulnerable to reward hacking (Sun et al., 2023b).
Other works explore alternative strategies, such as self-rewarding mechanisms or data reweighting (Wang
et al., 2024b; Zhou et al., 2024a), to mitigate issues like overconfident labeling and distributional bias in
preference data.

6.3 Preference Alignment in Multi-modal Models

Recent efforts have extended preference alignment from language-only models to the multi-modal domain.
A major line of work focuses on constructing multimodal preference datasets. (Sun et al., 2023b; Yu
et al., 2024a) collect human annotations, while others rely on powerful multimodal models such as GPT-
4V (Li et al., 2023c; Yu et al., 2024b; Zhou et al., 2024d; Yang et al., 2025) to generate preference signals.
However, both human annotation and large model inference incur prohibitive costs, limiting scalability. To
address this, alternative approaches (Deng et al., 2024; Pi et al., 2025) explore automatic or self-training
methods for preference data generation. These works synthesize dis-preferred responses from corrupted
images or misleading prompts, enabling the model to learn preferences without external supervision. Another
direction (Ouali et al., 2024) leverages CLIP to score diverse candidate responses, ranking preferred versus dis-
preferred outputs using image–text similarity. From the perspective of training objectives, most multimodal
alignment methods adopt the standard DPO objective (Li et al., 2023c; Zhao et al., 2023; Zhou et al.,
2024b) to optimize preferences on paired data. Other approaches employ reinforcement learning (Sun et al.,
2023b) or contrastive learning (Sarkar et al., 2024; Jiang et al., 2024) to improve alignment. To further
reduce overfitting to language-only signals, (Ouali et al., 2024) extends DPO by jointly optimizing both
textual and visual preferences. Despite these advances, multimodal DPO remains vulnerable to overfitting,
especially when trained on imbalanced preference data. In this work, we introduce a general difficulty-
aware training framework that explicitly accounts for sample difficulty, thereby mitigating overfitting and
improving robustness in multimodal preference optimization.

7 Conclusion

In this work, we present an empirical analysis of the overfitting issue in multimodal preference optimization,
which often stems from imbalanced data distributions. To address this, we introduce DA-DPO, a cost-
efficient framework consisting of difficulty estimation and difficulty-aware training. Our method leverages
pretrained contrastive and generative VLMs to estimate sample difficulty in a training-free manner, and
uses these estimates to adaptively reweight data—emphasizing harder samples while preventing overfitting
to easier ones. Experiments across hallucination and general-purpose benchmarks demonstrate that this
paradigm effectively improves multimodal preference optimization.

Limitations Despite these promising results, our framework relies on the assumption that pretrained
VLMs provide reliable evaluations of preference data. Although the adaptive voting strategy shows ro-
bustness on existing datasets, its generalizability to domains that differ substantially from the pretraining
objectives of these VLMs remains uncertain. Future work may explore integrating domain-adaptive or self-
improving mechanisms to further enhance robustness.
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Figure 5: Reward Trends and Relative Reward Gaps Between Easy and Hard Samples. We
present training dynamics of LLaVA-OV-7B for both DPO and DA-DPO on two datasets: BPO and VLFeed-
back. The first row shows the reward trajectories of easy and hard samples over training iterations, high-
lighting how the reward evolves for different difficulty levels. The second row illustrates the relative reward
gap between easy and hard samples, providing a quantitative measure of the reward difference throughout
training.

A Additional Multimodal Preference Optimization Analysis

To further validate the generality of the overfitting phenomenon discussed in the main paper, we conduct
additional experiments on more recent MLLM, LLaVA-OneVision-7B, using the same DPO and DA-DPO
training protocols as illustrated in Figure 5. We observe similar trends: the reward of easy samples increases
steadily while the reward of hard samples plateaus or improves slowly under naive DPO, and DA-DPO helps
narrow this gap. These results reinforce the universality of the overfitting issue and the effectiveness of our
proposed method across different model variants.

B Influence of Adaptive Score Fusion

The proposed framework integrates two types of pretrained VLMs to assess the difficulty of pairwise pref-
erence data. We design an adaptive score fusion mechanism to determine the weight of each reward model
without requiring hyperparameter selection from the data perspective. As shown in Table 7, we present
the results for multiple fixed fusion scores. We observe that the adaptive score fusion achieves the best
performance.

C Sensitivity of β

We propose a difficult-aware preference optimization strategy that aims to alleviate the overfitting-to-easy-
sample issue during alignment training. To achieve this, we dynamically calibrate the β, which is described in
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Table 7: Fusion Ratio Ablation. The Fusion Ratio indicate the weight for the ĉg and m̂g in Equation 11.
The row with blue color is the weight of adaptive score fusion weight.

Fusion Ratio AMB.G AMB.D SeedI

CLIP MLLM Cs ↓ Cov. ↑ Hal. ↓ Cog. ↓ F1 ↑ Score ↑

20% 80% 4.9 57.7 30.9 2.0 85.4 63.2
40% 60% 4.3 57.5 28.3 2.0 85.6 64.0
53% 47% 4.3 57.4 28.0 2.1 85.6 64.8
60% 40% 4.5 57.6 28.4 2.1 85.3 63.8
80% 20% 4.6 58.3 28.6 2.0 85.5 62.8

Table 8: Performance with different β for DA-DPO and DPO. We provide the results of DPO and
our difficulty-aware DPO trained in the BPO dataset. We mark the reported hyperparameter with blue. For
DA-DPO, we chose the best performance β, which is 0.2. For DPO, we follow previous work reports that β
equals to 0.1.

AMB.G AMB.D ObjHal POPE GQA SeedI MMEP MMEC

Cs ↓ Cov. ↑ Hal. ↓ Cog. ↓ F1 ↑ Cs ↓ Ci ↓ F1 ↑ Score ↑ Acc ↑ Score ↑ Score ↑

DA-DPO

β = 0.1 4.6 59.0 32.5 2.0 85.4 40.4 10.2 85.6 58.6 64.2 1398.2 312.8
β = 0.2 4.3 57.4 28.0 2.1 85.6 39.7 9.9 85.9 59.8 64.8 1406.6 323.2
β = 0.3 4.7 53.6 25.8 2.4 86.3 38.6 9.5 84.8 56.4 58.4 1414.2 315.6
β = 0.4 4.9 54.2 28.4 2.6 86.0 41.6 10.4 85.2 58.4 62.2 1378.2 306.9

DPO

β = 0.1 5.5 58.4 35.7 2.0 83.9 43.3 10.0 84.3 45.3 57.7 1409.4 315.0
β = 0.2 4.8 58.5 30.0 2.0 83.4 44.2 10.2 83.8 58.5 47.9 1369.1 299.6
β = 0.3 4.9 56.6 29.4 2.0 84.4 45.3 10.8 84.3 56.8 54.7 1387.1 310.7
β = 0.4 4.9 56.5 30.8 2.0 84.5 45.3 12.1 85.2 58.9 55.4 1402.4 312.3

the main paper. However, our method affects the scale of the β in the DPO objective. As shown in Table ??,
we provide the ablation of the β between the DPO and DA-DPO. From the results, we observe that varying
β leads to mixed performance across different benchmarks for both DPO and DA-DPO. Nevertheless, the
proposed DA-DPO consistently achieves better overall performance compared to vanilla DPO, indicating
that our difficulty-aware calibration effectively enhances robustness while mitigating hallucinations.

D Pretrained VLMs Correlation

In our proposed DA-DPO framework, we utilize the CLIP and the MLLM to evaluate the difficulty of pref-
erence data from different perspectives. To validate this claim, we provide the score of difficulty correlation
between the two VLMs. As shown in Figure 6, the scores from the two models exhibit no significant positive
correlation, as evidenced by their weak correlation coefficient. This indicates that the two models capture
different aspects of the response evaluation, and their scoring patterns do not align consistently across the
datasets.

E Fusion Score Classification Accuracy

To provide a comprehensive understanding of the score fusion process, we supplement the main text with
detailed numerical results and evaluation metrics. Score fusion is conducted at the dataset level, where
distinct fusion scores are employed for the BPO and VLFeedback datasets.
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(a) BPO (b) VLFeedBack

Figure 6: The visualization correlation between pretrained VLMs. We present the normalized
MLLM and CLIP scores for the same preference data sample in three datasets, BPO and VLFeedBack. The
x-axis is the CLIP score and the y-axis is the MLLM score. The red line indicates the MLLM and CLIP’s
predictions are the same.

Table 9: Classification accuracy of fusion scores on the BPO and VLFeedback datasets.

Dataset RM Type VQA Caption Text VQA Overall
BPO CLIP 0.5877 0.8947 0.9827 0.7732
BPO MLLM 0.8478 0.5053 0.6282 0.6415
VLFeedback CLIP 0.5827 0.6352 – 0.5897
VLFeedback MLLM 0.8104 0.5193 – 0.7715

Evaluation Metric. We compute classification accuracy on pairwise preference data using the following
criterion: for each sample, the VLM assigns a score to both the chosen and rejected answers. A sample is
considered correctly classified if the chosen answer receives a higher score than the rejected one.

Results. Table 9 reports classification accuracy for each category (VQA, Caption, and Text VQA, where
applicable) and the overall accuracy on both datasets. We evaluate two types of VLMs: a vision encoder
(CLIP) and a multimodal large language model (MLLM). Specifically, we use EVA-CLIP 8B as the CLIP
model and LLaVA-1.5 7B as the MLLM.

Based on the overall accuracy, we designate the CLIP-based classification score (cls_c) and MLLM-based
classification score (cls_m) as follows: For the BPO dataset, cls_c = 0.7732 and cls_m = 0.6415; for the
VLFeedback dataset, cls_c = 0.5897 and cls_m = 0.7715. These results demonstrate the complementary
strengths of CLIP and MLLM-based reward estimations across different categories.

F Efficiency Comparison

To validate the efficiency advantage of our proposed framework, we compare the computational cost in terms
of FLOPs and wall-clock time between traditional reward model training and evaluation, and our estimation-
based approach. As summarized in Table 10, training a full reward model requires over 6 times the wall-
clock time of MLLM-based estimation and approximately 345 times that of CLIP-based estimation. These
results clearly demonstrate that our method achieves significantly higher efficiency compared to conventional
approaches.

G Difficulty Estimation Normalization Ablation

To evaluate the impact of different normalization strategies on data difficulty estimation, we conducted
experiments with two alternative approaches. The first strategy, Ranked-based, normalizes scores by ranking

3
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Table 10: Compute and Time Estimation for Reward Model and Proxies. FLOPs are shown in
scientific notation, and Wall-clock hours are estimated on an NVIDIA A100 GPU. The data for the reward
model training is set to 180k.

Task FLOPs Wall-clock hours (A100)

Traditional Approach

Training Reward Model 2.6 × 1019 241.9
Reward Model Estimation 5.1 × 1018 40

DA-DPO

CLIP Estimation 1.4 × 1016 0.7
MLLM Estimation 5.1 × 1018 40

Table 11: Ablation of data difficulty normalization. We report the performance of different normal-
ization strategies trained with LLaVA-v1.5 7B on the BPO dataset.

AMB.G AMB.D ObjHal POPE GQA SeedI MMEP MMEC

Cs ↓ Cov. ↑ Hal. ↓ Cog. ↓ F1 ↑ Cs ↓ Ci ↓ F1 ↑ Score ↑ Acc ↑ Score ↑ Score ↑

DPO 5.5 58.4 35.7 2.0 83.9 43.3 10.0 85.6 45.3 57.7 1409.4 315.0

Ranked-based 4.8 57.2 31.3 1.9 85.7 42.7 10.7 86.1 59.5 62.1 1404.8 302.5
Length-controlled 4.7 57.0 29.3 1.9 85.9 37.7 9.6 85.9 60.0 64.1 1402.6 316.0
Gaussian Normalization 4.3 57.4 28.0 2.1 85.6 39.7 9.9 85.9 59.8 64.8 1406.6 323.2

the data and projecting the values linearly into the [0, 1] range, instead of using Gaussian normalization.
The second strategy, Length-controlled, is applied during the MLLM generative estimation: the sum of log
probabilities in Equations 7 and 8 is divided by the response token length to mitigate length bias. As shown
in Table 11, all three normalization strategies achieve performance improvements over vanilla DPO. We also
observe that the Ranked-based approach slightly underperforms the other two strategies, suggesting that
preserving the original distribution of estimated scores is beneficial for effective difficulty estimation.

H Experiments with more Model Variants

To validate the effectiveness of our proposed method beyond the LLaVA series, we conduct a small-scale
experiment on Qwen2.5-VL 3B. We use a subset of 50k samples from the BPO dataset to train both the
baseline DPO and our proposed DA-DPO. The results are presented in Table 12. We observe that DA-
DPO achieves better reductions in hallucination metrics compared to DPO, while retaining performance
on comprehensive benchmarks. This demonstrates that DA-DPO is a general framework, not limited to
LLaVA-series models.

Visualization To provide a better understanding of our method’s performance, we present visualizations
of the model’s outputs, comparing them with the results obtained from both the DPO and reference models
in Figure 7. These visualizations highlight the ability of our approach to more effectively reduce hallucina-
tions. By examining the outputs, it is evident that our method aligns better with the expected responses,
demonstrating superior accuracy in scene understanding and coherence in generated content.
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Table 12: Comparison of hallucination and general benchmarks across methods. Results are re-
ported on Qwen2.5-VL 3B and models trained with DPO and DA-DPO. The proposed DA-DPO consistently
reduces hallucination metrics while maintaining or improving general ability.

AMB.G AMB.D ObjHal POPE GQA SeedI MMEP MMEC

Cs ↓ Cov. ↑ Hal. ↓ Cog. ↓ F1 ↑ Cs ↓ Ci ↓ F1 ↑ Score ↑ Acc ↑ Score ↑ Score ↑

Qwen2.5-VL 3B 7.5 68.0 48.8 5.0 89.6 30.7 7.6 88.6 62.5 75.9 1607.9 625.7
DPO 6.6 62.5 47.7 3.4 87.3 30.0 8.4 78.5 55.5 75.9 1558.5 616.4
DA-DPO 6.5 57.6 42.3 2.6 88.3 25.0 7.3 80.6 56.4 76.0 1561.5 623.9

Figure 7: Visualization of Predictions. We present the outputs from the proposed method alongside
baseline models to highlight the characteristics of our approach. The results are derived from the generative
component of AMBER, which is designed to detect hallucinations in image captions.
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