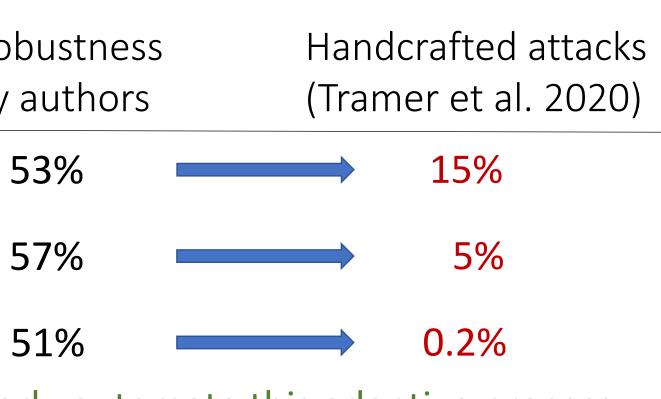

LatticeFlow

Automatic Discovery of Adaptive Attacks on Adversarial Defenses

Introduction

Adversarial defenses are proposed to address the problem of adversaria the authors of many defenses provide over-estimated robustness evaluation defenses are broken later with handcrafted adaptive attacks which are of reflect the defense mechanism, yet this approach requires strong domai


Our Work: We present an extensible tool A^3 that defines a search space blocks and automatically discovers an effective attack given the defense

Chengyuan Yao, Pavol Bielik, Petar Tsankov, Martin Vechev

Motivation

ial examples, but Jation. These	Example Defenses				
designed to	ME-Net (Yang et al. 2019)				
ain expertise.	Error Correcting Codes (Verma&Swami, 2019)	5			
ce over reusable e.	K-Winner Takes All (Xiao et al. 2020)	5			
		Our wor			

ork: automate this adaptive process

Loss Functions

Space Formulation:

(Loss Function Search Space) \mathbb{L} := targeted Loss, n with Z | untargeted Loss with Z | targeted Loss, n - untargeted Loss with Z Z ::= logits | probs

Difference between targeted and untargeted loss is the sign of the loss function.

Logits/Probs means whether

to add a softmax to logits.

Loss Functions

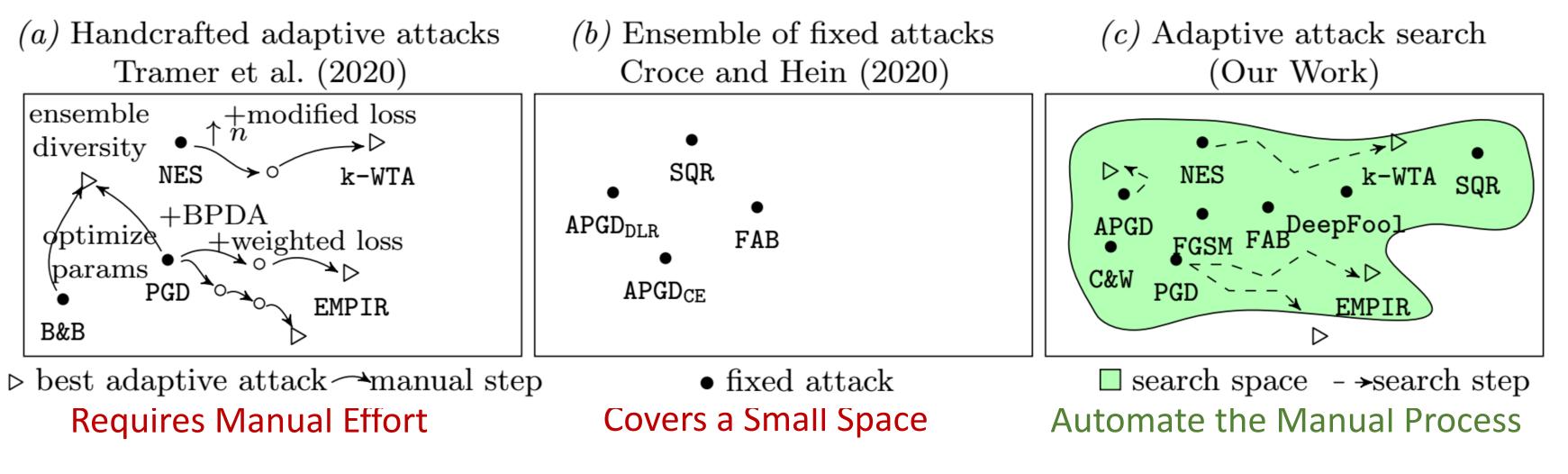
 $\ell_{\text{CrossEntropy}} = -\sum_{i=1}^{K} y_i \log(Z(x)_i)$

 $\ell_{\text{HingeLoss}} = \max(-Z(x)_y + \max Z(x)_i, -\kappa)$ (Carlini & Wagner, 2017)

 $\ell_{\rm DLR} = -\frac{Z(x)_y - \max_{i \neq y} Z(x)_i}{Z(x)_{\pi_1} - Z(x)_{\pi_3}}$ (Croce & Hein, 2020b) $\ell_{\text{LogitMatching}} = \|Z(x') - Z(x)\|_2^2$

 $\ell_{\rm L1} = -Z(x)_y$

Attack Search


Goal: Find the best sequence of attacks **s**

Search: For number of attacks in the **s**, repeat 1-3 (Greedy):

- 1. Get a set of samples from **D** for attack evaluation
- 2. Use Tree Parzen Estimation to select attacks
- 3. Use Successive Halving to select the best attack

Complexity: We constrained the per sample attack runtime. The search time bound is 4/3 of the attack runtime bound.

Robustness Evaluation Paradigms

 13 cases: ~2x faster attack time. AutoAttack contains expensive but ineffective attacks. 											
	-	Robust Accuracy (1 - Rerr)			Rı	Search					
CIFA	R-10, l_∞ , $\epsilon=4/255$	AA	A^3	Δ	AA	A^3	Speed-up	A^3			
$A1^*$	Stutz et al. (2020)	77.64	26.87	-50.77	101	205	$0.49 \times$	659			
A2	Madry et al. (2018)	44.78	44.69	-0.09	25	20	$1.25 \times$	88			
$A3^{\dagger}$	Buckman et al. (2018)	2.29	1.96	-0.33	9	7	$1.29 \times$	116			
$\mathbf{A4}^{\dagger}$	Das et al. (2017) + Lee et al. (2018)	0.59	0.11	-0.48	6	2	3.00 imes	40			
A5	Metzen et al. (2017)	6.17	3.04	-3.13	21	13	$1.62 \times$	80			
A6	Guo et al. (2018)	22.30	12.14	-10.16	19	17	$1.12 \times$	99			
$A7^{\dagger}$	Ensemble of A3, A4, A6	4.14	3.94	-0.20	28	24	$1.17 \times$	237			
A 8	Papernot et al. (2015)	2.85	2.71	-0.14	4	4	$1.00 \times$	84			
A9	Xiao et al. (2020)	19.82	11.11	-8.71	49	22	$2.23 \times$	189			
A10	Xiao et al. $(2020)_{ADV}$	64.91	17.70	-47.21	157	$2,\!280$	$0.07 \times$	$1,\!54$			
CIFA	R-10, l_∞ , $\epsilon=8/255$										
B11*	Wu et al. $(2020)_{RTS}$	60.05	60.01	-0.04	706	255	$2.77 \times$	690			
$B12^*$	Wu et al. $(2020)_{\text{TRADES}}$	56.16	56.18	0.02	801	145	$5.52 \times$	677			
$B13^*$	Zhang and Wang (2019)	36.74	37.11	0.37	381	302	$1.26 \times$	720			
B14	Grathwohl et al. (2020)	5.15	5.16	0.01	107	114	0.94 imes	749			
B15	Xiao et al. $(2020)_{ADV}$	5.40	2.31	-3.09	95	146	0.65 imes	828			
B16	Wang et al. (2019)	50.84	50.81	-0.03	734	372	$1.97 \times$	755			
$B17^*$	Wang et al. (2020)	50.94	50.89	-0.05	742	486	$1.53 \times$	807			
$B18^*$	Sehwag et al. (2020)	57.19	57.16	-0.03	671	429	$1.56 \times$	691			
B19 [†]	B11 + Defense in A4	60.72	60.04	-0.68	621	210	$2.96 \times$	585			
$B20^{\dagger}$	B14 + Defense in A4	15.27	5.24	-10.03	261	79	3.30 imes	746			
B21	B11 + Rand Rotation	49.53	41.99	-7.54	255	462	$0.55 \times$	900			
B22	B14 + Rand Rotation	22.29	13.45	-8.84	114	374	0.30 imes	1,02			
B23	Hu et al. (2019)	6.25	3.07	-3.18	110	56	$1.96 \times$	502			

Results

 A^3 is evaluated on 23 diverse defenses.

Compared with AutoAttack (AA), the state of art ensemble of fixed attacks (Croce and Hein 2020)