
Published as a conference paper at ICLR 2024

A AMAGO DETAILS

A.1 SHARING A SINGLE SEQUENCE MODEL IN OFF-POLICY RL

Off-policy actor-critic methods compute loss terms with an ensemble of actor and critic networks
along with a moving-average copy of their parameters used to generate temporal difference targets.
Extending the feed-forward (fully observed) setup to sequence-based learning results in an excessive
number of sequence model forward/backward passes per training step (Figure 10 top left) [69]. This
has created several ways to share parameters and improve efficiency. Ni et al. [22] share a sequence
model between the ensemble of critic networks, which becomes more important when using REDQ
[74] (Fig. 10 top right). Parameters can be shared across the actor and critics, but this has been shown
to be unstable. SAC+AE [72] confronts a similar problem in pixel-based learning and popularized the
solution of detaching the larger base model (the Transformer in our case) from the actor’s gradients
(Fig. 10 bottom left). This approach has also been demonstrated in sequence-learning [71]. AMAGO
removes the target sequence model as well — sharing one Transformer across every actor, critic,
and target network while preserving the actor’s gradients and training with one optimizer (Fig. 10
bottom right). Ni et al. [22] evaluate a fully shared architecture but find it to be unstable and
do not consistently apply it across every domain. We find that instability is caused by the critic
receiving gradients from the actor’s loss and remove these terms during the backward pass of the
joint actor-critic objective (Appendix A.2 Equation 3). Concurrent to our work, [96] addressed the
same problem by using a frozen copy of the critics to compute the actor loss.

Figure 10: Evolution of Off-Policy Actor-Critic Agent Architectures. Black arrows give a high-
level overview of how the actor, critic(s), and target networks combine to compute the training
objective(s). Network borders are color-coded according to the loss function they optimize. Sequence
models (green) are more expensive than feed-forward actors (blue) and critics (gray), which has
motivated several ways to simplify the training process while maintaining stability.

A.2 BASE ACTOR-CRITIC UPDATE

AMAGO’s shared sequence model reduces the RL training process to the standard feed-forward case
where the output of the trajectory encoder becomes the state array (s), and the batch size is effectively
larger by a factor of the context length l. At a high level, we are training a stochastic policy ⇡ with a
custom variant of the off-policy actor-critic update derived from DDPG [69]. In continuous control,
the critic Q takes actions as a network input and outputs a scalar value. In discrete environments, the
critic outputs an array corresponding to the value for each of the |A| actions [70]. The actor is trained

15

Published as a conference paper at ICLR 2024

to maximize the output of the critic (LPG) while the critic is trained to minimize the classic one-step
temporal difference error (LTD):

LPG(s) = �Q(��rs,⇡(s)) Actor Term (1)

LTD(s, a, r, s
0) =

�
Q(s, a)� (r + ���rQ̄(s0, ⇡̄(s0)))

�2
Critic Term (2)

Where ��r is a stop-gradient, and Q̄ and ⇡̄ denote target critic and actor networks, respectively.
AMAGO then combines these two terms into a single shared loss:

LAMAGO = E
⌧⇠D

1

l

lX

t=0

�0LTD(st, at, rt, st+1) + �1LPG(st)

�
(3)

As mentioned in Appendix A.1, we zero gradients to prevent our critic from directly minimizing
the actor’s objective LPG. The weights of each term (�0,�1) can be important but unintuitive
hyperparameters. LPG and LTD do not scale equally with Q, and the scale of Q values depends on
the environment’s reward function and changes over time at a rate determined by learning progress.
This means that the relative importance of our loss terms to their shared trajectory encoder’s gradient
update is shifting unpredictably, making (�0,�1) difficult to set in a new environment.

Figure 11: Scaling AMAGO’s Learning Update with PopArt. PopArt automatically places the
relative importance of the actor and critic loss terms in AMAGO’s shared learning update on a
reasonably predictable scale, and enables stable training without extreme gradient clipping.

PopArt [85] is typically used to normalize the scale of value-based loss functions when training one
policy across multiple domains. However, we use it to reduce hyperparameter tuning by putting Q

(and therefore LPG and LTD) on a predictable scale so that (�0,�1) can have meaningful default values.
Figure 11 demonstrates the problem and PopArt’s solution. In this example, we train context length
l = 128 AMAGO agents on LunarLander-v2 [100]. We use our default values (�0,�1) = (10, 1)
(Table 4). The gray curves track the actor and critic objectives on the environment’s default reward
scale without using PopArt. Performance happens to be quite strong (Fig. 11 lower right), but the
actor and critic loss scales make gradient norms (lower center) destructively large without clipping.
When we scale rewards by a constant (r ⇥ 10, r ⇥ 800), the optimization metrics often cannot be
shown on a readable y-axis and the relative importance of the actor term is now nearly zero (lower
left). PopArt automatically puts the relative importance of the actor loss on a predictable order of
magnitude (blue, green, orange), and we are no longer relying on alarming levels of gradient clipping.

16

Published as a conference paper at ICLR 2024

Critic Ensembling. In practice, the actor’s goal of maximizing the critic’s output leads to value
overestimation that is handled by using the minimum prediction of two critics trained in parallel [73].
Overestimation is especially concerning in our case, because AMAGO’s use of long sequences means
that its effective replay ratio [79] can be unusually high; it is not uncommon for our agents to train on
their entire replay buffer several times between rollouts. We enable the use of REDQ ensembles [74]
with more than two critics as a precaution.

Filtered Behavioral Cloning. One difference between training policies with a supervised objective
(where Transformers are common and relatively stable) and RL is that our actor’s update depends
on the scale and stability of the Q-value surface (Eq. 1). We can improve learning with a “filtered”
behavior cloning (BC) actor objective that is independent of the scale of the critics’ output space,
which is added to Eq. 3 with a third weight �2:

A(s, a) = Q(s, a)� V (s) = Q(s, a)� E
a0⇠⇡(s)

[Q(s, a0)] Advantage Estimate (4)

f(s, a) = {A(s,a)>0} Binary Filter [92] (5)
LFBC(s, a) = �f(s, a)log⇡(a | s) Filtered BC Term (6)

The actor’s standard LPG term has a strong learning signal when the value surface is steep, but LFBC
only depends on the sign of the advantage and behaves more like supervised learning. AMAGO
is now always optimizing a stable sequence modeling objective where we learn to predict replay
buffer actions with positive advantage. Variants of the filtered BC update appear in online RL but
have become more common in offline settings [101, 102]. AMAGO’s gradient flow causes �2LFBC
to impact the objective of the trajectory encoder and actor network but not the critic. We use the
binary filter from CRR [92] because it does not add hyperparameters, and training on batches of long
sequences helps mask its tendency to increase variance by filtering too many actions [103].

Multi-Gamma Learning. Long horizons and sparse rewards can lead to flat Q-value surfaces and
slow the convergence of TD learning. AMAGO computes LPG, LTD, and LFBC in parallel across
�N values of the discount factor �. Each � creates its own value surface — informally making it
less likely that all of our loss terms have converged and improving representation learning of shared
parameters. Discrete actor and critics’ output layers become �N times larger. Actions for each � need
to be an input to continuous critics (along with � values themselves), so the effective batch size of
continuous-action critic networks is multiplied by �N . In either case, however, the relative cost of
this technique becomes low as the size of the shared Transformer increases. An example of the Q

scales learned by different values of � is plotted in Figure 12. During rollouts, we can select the index
of the actor’s outputs corresponding to any of the �N horizons used during training. This selection
could potentially be randomized to generate more diverse behavior, but we select a fixed � = .999 in
our experiments.

Figure 12: Multi-Gamma Actor-Critic Training. AMAGO optimizes one Transformer on actor-
critic loss terms corresponding to many values of the discount factor �, and can use the actions
that maximize any horizon at test-time. We show the average Q-value across trajectory sequences
throughout training at different discounts.

17

Published as a conference paper at ICLR 2024

Our multi-gamma update is motivated by a need to improve learning signal for unstable sequence
models in long-horizon actor-critic updates with discrete and continuous actions. This approach was
developed as a natural extension of a training objective that is already parallelized across timesteps
and an ensemble of critics. After the initial release of our work, we learned that a discrete value-based
[3, 104] version of the multi-gamma update has previously been studied as a byproduct of hyperbolic
discounting in pixel-based MDP environments [91, 105]. The hyperbolic discounting perspective
actually motivates a more diverse range of � values than used in our results (Table 4), and may greatly
improve AMAGO’s sample efficiency (Appendix C.1 Figure 18).

Stochastic Policies and Exploration. AMAGO samples from a stochastic policy during both data
collection and evaluation. Because we do not use entropy constraints [106], we add exploration
noise during data collection. In discrete domains, noise is added as in classic epsilon-greedy, while
continuous domains randomly perturb the action vector as in TD3 [73]. The level of action randomness
is determined by a hyperparameter ✏ that is typically annealed over a fixed number of environment
steps. AMAGO adapts this schedule to more closely align with the exploration/exploitation trade-off
that occurs within the adaption horizon of any given CMDP [64]. ✏ is annealed over the H timesteps
of a rollout, and the intensity of this schedule decreases over training. This process is visualized
in Figure 13. Because the parameters of this schedule are difficult to tune, we heavily randomize
them across AMAGO’s parallel actors — meaning we are always collecting data at varying levels of
action noise. Due to this randomization there are no main experiments where we found tuning the
exploration schedule to be critical to achieving strong results3. In fact, randomizing over ✏ is probably
the more important implementation detail, but we describe the rest of the approach for completeness.
The slope of the episode-level schedule can be set to zero to recover the standard approach.

Figure 13: Exploration Noise in Implicit POMDPs. AMAGO adapts the standard random explo-
ration schedule to more closely align with the exploration/exploitation trade-off that occurs when
acting in an implicit POMDP.

A.3 AMAGO ARCHITECTURE

Transformer. We observe performance collapse when using a standard Pre-LayerNorm [77] Trans-
former in long training runs. In rare cases, we find that this is caused by gradient collapse due to
saturating ReLU activations. For this reason we replace every ReLU/GeLU (including those in the
actor/critic MLPs) with a Leaky ReLU that will allow learning to continue. This idea is also motivated
by work in network plasticity and long training runs in continual RL, where activations other than
ReLU can be a simple baseline [83]. We find that this change fixes gradient instability, but does
not prevent performance collapse. Instead, collapse is now caused by saturating activations in the
residual block of AMAGO’s Transformer. We apply two existing methods that effectively solve this
problem. Normformer’s [88] additional LayerNorms [107] isolate the optimization problem to the
query/key/value activations whose saturation directly causes attention entropy collapse. �Reparam
[87] stabilizes attention by limiting the magnitude of queries, keys, and values. Figure 14 demon-
strates this pattern of activations on a sample POPGym environment where the optimal policy requires
recall of a specific timestep and encourages low-entropy attention matrices. However, we observe

3The toy T-Maze memory result (Figure 5) uses a unique schedule discussed in Appendix C.2, but this
adjustment is motivated by the environment setup and is not based on tuning.

18

Published as a conference paper at ICLR 2024

Figure 14: Transformer Residual Block Activations in a Low-Entropy Attention Environment.
We record the maximum output of a Transformer layer and its query/key/value vectors in our default
POPGym architecture while training in a recall-intensive environment where the optimal policy
encourages a low-entropy attention matrix (Figure 15).

Figure 15: Examples of Low-Entropy Attention Matrices. We visualize representative examples
of AMAGO attention heads in two recall-intensive POPGym environments on the 45th timestep of a
rollout (for readability). Darker blue entries indicate high attention weights. Both policies are nearly
optimal with average returns > .99.

collapse due to saturating activations in many environments in our experiments if training continues
for long enough — even when performance has not yet converged. Our architectural changes let us
stably train sparse attention patterns like those visualized in Figure 15. AMAGO uses Flash Attention
[108] to enable long context lengths on a single GPU (Figure 29). Figure 16 summarizes our default
architectural changes.

Instruction-Conditioning. AMAGO uses a small RNN or MLP to process the instruction sequence
of goal tokens, and the resulting representation is concatenated to the CMDP information that forms
Transformer input tokens. It would be simpler to add the instruction to the beginning of the context
sequence. The only reason for the extra complexity of the goal embedding is to allow for fair baselines
that do not use context sequences (“w/o Memory”).

19

Published as a conference paper at ICLR 2024

Causal	Multi-Head
Attention

Residual	Connection

LayerNorm

Linear

ReLU/GeLU

Linear

Residual	Connection

LayerNorm

Input

Q/K/V	Linear

Causal	HeadScale
Flash Attention

Residual	Connection

LayerNorm

!Reparam Linear

Leaky ReLU

!Reparam Linear

Residual	Connection

LayerNorm

Q/K/V	!Reparam Linear

LayerNorm

LayerNorm

Input

Standard	Pre-LN
Transformer	Block

AMAGO	
Transformer	Block

Figure 16: AMAGO Transformer Block. (Left) A standard Pre-LayerNorm (Pre-LN) Transformer
layer [77]. (Right) AMAGO replaces all saturating activations with Leaky ReLUs and uses additional
LayerNorms [107] (as in NormFormer [88]) and a modified linear layer (�Reparam [87]). These
strategies limit the magnitude of activations along the residual block and effectively prevent attention
entropy collapse.

B RELABELING WITH GOAL IMPORTANCE SAMPLING

AMAGO generates training data in multi-goal domains by relabeling trajectories with alternative
instructions based on hindsight outcomes. Relabeling improves reward sparsity for actor-critic
training, and greatly amplifies the learning signal of existing data by recycling the same experience
with many different instructions. This technique works by saving the rewards for the entire goal space
during rollouts, rather than just the rewards for the goals in the intended instruction (Figure 17 Step
1). While evaluating many different dense reward terms would be unrealistic, it is more practical
in sparse goal-conditioned domains where success can be evaluated with simple rules. Algorithm 1
provides a high-level overview of multi-step relabeling. This technique reduces to HER [45] when:
1) the goal space is a subset of the state space, 2) goal sequence lengths k = 1, and 3) alternative
goals are primarily sampled from the end of the trajectory (Alg. 1 line 4).

Algorithm 1 Simplified Hindsight Instruction Relabeling
Require: Trajectory ⌧ with goal sequence g = (g0, . . . , gk) of length k

1: n number of steps in g successfully completed by ⌧

2: (tg0 , . . . , tgn) timesteps where each sub-goal of g was achieved
3: h relabel count(0, k � n) 2 [0, k � n] . Choose a number of hindsight goals to insert.

Defaults to uniform sampling.
4: (a0, . . . , ah), (ta0 , . . . , tah) sample alternative goals(⌧) . Sample a goal from h

timesteps in ⌧ that completed alternative objectives. Defualts to uniform sampling.
5: r sort

�
(a0, . . . , ah, g0, . . . , gn), by=(ta0 , . . . , tah , tg0 , . . . , tgn)

�
. Insert new goals in

chronological order.
6: ⌧

0 replay(⌧, r) . Recompute rewards and terminals based on goal sequence r (Fig. 2).

Generating a diverse training dataset with relabeled sequences of goals allows our agents to carry out
multi-stage tasks and has important exploration advantages (Appendix C.5), but creates a practical

20

Published as a conference paper at ICLR 2024

issue where we have too many alternative instructions to choose from. Domains like Crafter and
MazeRunner create rollouts with dozens or hundreds of candidate goals over the full length of
the trajectory. There are also goal types that can occur simultaneously and for many consecutive
timesteps. AMAGO relabels by sampling one instruction from the many sub-sequences of these goals
(Alg. 1 line 4). With so many combinations of goal instructions available to us, we need a way to
focus our learning updates on useful information.

Figure 17: Relabeling With Prioritized Goal Sampling. Long rollouts in multi-goal domains lead
to an unmanageable number of candidate instructions for relabeling. AMAGO improves sample
efficiency without domain knowledge by prioritizing rare goals.

Our solution is a weighted relabeling scheme that helps sort through the noise of common outcomes
by prioritizing interesting goals. While there could be opportunities to add domain knowledge in this
process, we prefer to avoid this and sample goals according to their rarity. AMAGO tracks both the
frequency that a particular goal occurs at any given timestep, and the frequency that it occurs at all in
a given episode. We assign a priority score to goals based on their rarity, which then lets us modify
the relabeling scheme to sample based on these scores (Figure 17). AMAGO’s technical details are
designed to reduce hyperparameter sensitivity and prevent individual tricks like this from becoming
unintuitive points of failure that require manual tuning. Therefore we automatically randomize over
several reasonable approaches. Examples include sampling from the top-k most rare goals according
to either frequency statistic, or those above either the median or minimum rarity in a trajectory
to filter trivial goals. AMAGO still relabels uniformly with some frequency, which keeps the full
diversity of our dataset available and prevents information from being lost. Randomization over
these implementation details occurs on a per-trajectory level, meaning every batch has sequences that
were generated with a wide range of strategies. We defer the precise details to our open-source code
release. Appendix C.5 provides a quantitative demonstration of our method.

C EXPERIMENTAL DETAILS AND FURTHER ANALYSIS

This section provides a detailed analysis of AMAGO’s main results. Each subsection will give a
description of our custom learning domains, followed by a more complete discussion of the results
in the main text with additional experiments. Hyperparameter and compute information is listed in
Appendix D.

C.1 POPGYM

We evaluate on 39 environments from the POPGym suite [30] and follow the original benchmark in
using policy architectures with a memory hidden state of 256. Learning curves for each environment
are shown on a full page below. Figure 3 reports results at the benchmark standard of 15M timesteps,
though the learning curves extend slightly further when data is available. We plot the maximum and
minimum value achieved by any seed to highlight the stability of AMAGO relative to the “naive”
off-policy Transformer baseline. Each environment defaults to 3 random seeds, as in [30]. The
variance of AMAGO at convergence is extremely low. However, there can be significant variance
in the timestep where rapid increases in performance begin. There are two environments where
this variance impacts results because it occurs near the 15M sample limit (AutoencodeHard and
CountRecallHard), which we address by running 9 random seeds.

The “naive” agent maintains AMAGO’s shared actor-critic update but disables many of our other
technical details. These include the modified Transformer architecture (Appendix A.3) and multi-

21

Published as a conference paper at ICLR 2024

gamma update. The naive agent also reduces the REDQ ensemble from AMAGO’s default of 4
parallel critics to the standard 2, and uses a lower discount factor of � = .99. This causes learning
to collapse in many seeds. However, collapse generally does not impact the final scores reported in
Figure 3 which indicate the maximum mean episodic return (MMER) achieved during training. The
effects of policy collapse can be much more damaging in longer goal-conditioned experiments where
it occurs before convergence, but is too expensive to demonstrate at this scale.

AMAGO was briefly tuned on one environment (ConcentrationEasy) to meet the benchmark’s sample
limit. However, our results suggest that we likely did not push sample efficiency settings high
enough, as AMAGO is still improving well after 15M timesteps in some difficult environments. The
multi-gamma update (Appendix A.2) provides a useful starting point for increased sample efficiency.
The combination of this techniques’ compute efficiency and our focus on long-horizon learning
motivated a large number of � > .99 (Table 4) throughout our work. However, another motivation
for a similar update inspires a broader range including low � values [91, 105]. We experiment with a
wider range of settings in two POPGym environments where our main results are limited by sample
efficiency in Figure 18.

Figure 18: Alternative Multi-Gamma Settings in POPGym. We evaluate a range of settings for the
discount factor ensemble used in AMAGO’s learning update, and find that the defaults used in our
main experiments may be underestimating the importance of short-horizon � values.

22

Published as a conference paper at ICLR 2024

23

Published as a conference paper at ICLR 2024

C.2 ADDITIONAL MEMORY AND MULTI-EPISODIC META-RL RESULTS

Half-Cheetah Velocity. In Figure 5 (left) we use a classic meta-RL benchmark from [97] as an
example of a case where AMAGO’s long sequences and high discount factors are clearly unnecessary
but do not need tuning. This task is solvable with short context lengths of just a few timesteps. We
evaluate adaptation over the first 3 episodes (H = 600) and report baselines from variBAD [64],
BOReL [109], RL2 [11], and the recurrent off-policy implementation in [22].

Dark-Key-To-Door. Dark-Key-To-Door is a sparse-reward multi-episodic meta-RL problem [28].
Figure 19 compares a version of AMAGO with a Transformer and RNN trajectory encoder on a 9⇥ 9
version of the environment with a max episode length of 50. An agent that always fails to solve the
task will encounter 10 episodes of a new environment during a meta-testing horizon of H = 500
timesteps. The maximum return per episode is 2. An adaptive agent learns to solve the task quickly
once it has identified the key and door location by meta-exploration, and tries to complete as many
episodes as possible in the H = 500 timestep limit. The Transformer and RNN model architectures
have equal memory hidden state size and layer count, and all other training details are held fixed.

Figure 19: Dark Key-To-Door Trajectory Encoder Comparison. On-Policy RNNs have previously
been successful in this environment but fail to make progress at l = H = 500 when directly
substituted into the AMAGO agent.

We replicate Algorithm Distillation [28] (AD) on an 8⇥ 8 version of the task by collecting training
histories from 700 source RL agents. Each history is generated by a memory-free actor-critic as
it improves for 50, 000 timesteps in a fixed environment e. We then train a standard Transformer
architecture on the supervised task of predicting the next action in sequences sampled from these
learning histories. While AD converges to high performance, it does so on roughly the same timescale
as the single-task agents in its training data (Figure 20 right). AMAGO can directly optimize for
fast adaptation over the given horizon H , and learns a much more efficient strategy over the first few
episodes in a new environment (Fig. 20 left).

Figure 20: Fast-Adaptation with Long-Context Transformers. AMAGO uses a long-context
Transformer to directly optimize for fast adaptation to new environments (Left), while AD [28]
converges at approximately the speed of the single-task agents that generated its training data (Right).

24

Published as a conference paper at ICLR 2024

Passive T-Maze. Ni et al. [96] is a concurrent work that includes a T-maze experiment to effectively
unit-test the recall ability of in-context agents; any policy that achieves the maximum return must
be able to recall information from the first timestep at the final timestep H . Their results show that
recurrent approaches fail around context lengths of 100, but that Transformers can stretch as high as
H = 1, 500. The T-Maze task is intended to isolate memory from the effects of credit assignment
and exploration. However, at extreme sequence lengths the reward begins to test the sample efficiency
of epsilon-greedy exploration because reaching the memory challenge requires following the optimal
policy for at least the first H � 1 timesteps. The exploration noise schedule (Appendix A) is modified
to have standard noise near the beginning and end of an episode (when there are interesting actions to
learn) but low noise in-between when it would waste a rollout to deviate from the learned policy. We
avoid sampling from our stochastic policy because numerical stability protections prevent it from
becoming fully deterministic, and this error accumulates over long rollouts. The reward penalty is
also adapted to remain informative after the first timestep the policy disagrees with the optimal policy.
These changes are not important to the main question of long-term recall but allow this environment
to evaluate long sequence lengths in practice. With these adjustments, AMAGO can stably learn the
optimal policy all the way out to the GPU memory barrier with context lengths l = H = 10, 000
(Figure 5 top right). However, as noted in [96] our choice of sequence model has no effect on the
credit assignment problem of RL backups and AMAGO’s Transformer does not lead to a significant
improvement in the “Active T-Maze” variant of this problem.

Wind Environment. Figure 5 (bottom right) reports scores of a sparse-reward meta-RL task from
[22]. This task has continuous actions and is noted to be sensitive to hyperparameters. We evaluate
AMAGO with a Transformer and RNN trajectory encoder — keeping all other details the same as in
the Dark-Key-To-Door experiment. The RNN encoder is much more effective at the shorter sequence
lengths in this environment (H = 75) than the Dark-Key-To-Door environment. It appears that the
RNN is slightly more sample efficient than the Transformer when using the same update-to-data ratio.

Meta-World ML-1. We train AMAGO for up to 10M timesteps with various context lengths
(Figure 6 left). The checkpoint that reached the highest average return on the training tasks is
evaluated on held-out test tasks. Each episode lasts for 500 timesteps and we evaluate for less than the
10 trials used in the original results [98] because we notice the success rates saturate within the first
attempt. We have also experimented with the ML-10 and ML-45 multi-task variants of Meta-World.
Preliminary results suggest that short context lengths are still surprisingly capable of identifying the
task. However, we find that success in these benchmarks is very dependent on the agent’s ability
to independently normalize the scale of rewards in each of the 10 or 45 domains. This issue is not
specific to meta-RL and is common in multi-task RL generally [85, 110]. AMAGO assumes we do
not know how many tasks make up p(e) (because in most of our other experiments this number is
very large), so we leave this to future work.

C.3 PACKAGE DELIVERY

Package Delivery is a toy problem designed to test our central focus of learning goal-conditioned
policies that need to adapt to a distribution of different environments. The agent travels along a
road and is rewarded for making deliveries at provided locations along the way. However, there
are “forks” in the road where it needs to decide whether to turn left or right. If the agent picks the
wrong direction at any fork, or reaches the end of the road, it is sent back to the starting position. The
correct approach is to advance to a fork in the road, pick a direction, note whether it was the correct
choice, and then recall that outcome the next time we reach the same decision. For an added factor of
variation, the action that needs to be taken to be rewarded for dropping off a package is randomized
in each environment, and needs to discovered by trial-and-error and then remembered so we do not
run out of packages.

C.3.1 ENVIRONMENT AND TASK DETAILS

Environment Distribution p(e): we randomly choose f ⇠ U(2, 6) locations for forks on a road
with length L = 30. Each fork is uniformly assigned a correct direction of left or right. These
hyperparmeters could be tuned to create more difficult versions of this problem. We also uniformly
sample a correct action for package delivery from 4 possibilities.

25

Published as a conference paper at ICLR 2024

Goal Space G: all of the locations (0, . . . , L = 30) where packages could be delivered.

Observation Space: current position, remaining packages, and a binary indicator of arriving at a
fork in the road.

Action Space: 8 discrete actions corresponding to moving forwards along the road, left/right at a
fork, standing still (no-op), and the 4 actions that could correspond to successfully dropping off a
package (depending on the environment e).

Instruction Distribution p(g | e): we randomly choose k ⇠ U(2, 4) locations (without replacement)
that are not road forks for package delivery.

Task Horizon H: This is the shortest problem in our goal-conditioned experiments with a maximum
horizon (and therefore a maximum sequence length) of H = 180.

C.3.2 ADDITIONAL RESULTS AND ANALYSIS

Figure 7: Delivery Results (reproduced here for convenience).

Figure 7 compares ablations of AMAGO on the Package Delivery domain. The main result is that
AMAGO can successfully learn the memory-based strategy necessary to adapt to new roads. As
expected, removing its context-based meta-learning capabilities (“w/o Memory”) greatly reduces
performance. The memory challenge of generalizing to new environments makes rewards difficult to
find and relabeling is essential to learning any non-random behavior (“w/o Relabeling”). This gap
between relabeling and not relabeling is a common theme across all our goal-conditioned experiments,
and causes most external baselines to fail in an uninformative way. Figure 7 directly compares
ablations with and without multi-gamma learning. Multi-gamma is one of several implementation
details in AMAGO meant to enable stable learning from sparse rewards with Transformers. Filtered
behavior cloning (“w/o Filtered BC”) [92] is also meant to address sparsity, but we can see that its
impact goes from quite positive (Fig. 7 left) to slightly negative (Fig. 7 right) when combined with
multi-gamma. Filtered BC and multi-gamma are addressing a similar problem, but multi-gamma
does so more effectively and exposes some of the drawbacks of filtered BC once the sparsity issue is
resolved. For example, filtered BC can lead to a higher-entropy policy by cloning sub-optimal actions
that leak through a noisy filter.

AMAGO randomly relabels trajectories to a mixture of returns between the true outcome and a
complete success. The “Relabel All” curves follow the goal-conditioned supervised learning (GCSL)
(Sec. 2) approach of relabeling every trajectory with a successful instruction. While this may improve
data quality, it turns the value learning problem from predicting if a goal will be achieved to when

it will happen, because from the agent’s perspective every goal always does [60]. AMAGO’s high
discount factors cause this to have low learning signal, making actor optimization difficult. Multi-
gamma improves performance (Fig. 7 right), because many of the � values used during training
have a short enough horizon to mask the problem. Relabeling all trajectories to be a success while
turning off the BC filter and policy gradient actor loss would create a GCSL method, which have
shown promise with large Transformer architectures (Sec. 2). However we were unable to achieve
competitive performance with this setup and prefer a more traditional RL learning update.

26

Published as a conference paper at ICLR 2024

C.4 MAZERUNNER

MazeRunner is a difficult but easily simulated problem that combines sparse goal-conditioning with
long-term exploration. The agent needs to learn to navigate a randomly generated maze in order to
reach a sequence of goal coordinates.

C.4.1 ENVIRONMENT AND TASK DETAILS

Environment Distribution p(e): we randomly generate an N ⇥N maze, and then manually adjust
the bottom three rows to have a familiar layout where the agent starts in a small tunnel with open
space on either side. An example 30⇥ 30 environment is rendered in Figure 21. We can optionally
generate a random permutation of the action space, which adjusts the actions that corresponds to each
direction of movement.

Figure 21: 30⇥ 30
MazeRunner. The agent
begins in the bottom center
with goal locations shown as
colored trophies.

Goal Space G: all of the locations ((0, 0), . . . , (N,N)) in the maze.

Observation Space: 4 depth sensors from the agent’s location to
the nearest wall in each direction. By default we include the (x, y)
coordinates of the agent’s position, which can be removed for an
extra challenge that forces the agent to self-localize.

Action Space: Either 4 discrete actions or a 2-dimensional contin-
uous space that is mapped to the 4 cardinal directions. The action
directions can be randomized based on the environment e.

Instruction Distribution p(g | e): we choose k ⇠ U(1, 3) locations
(without replacement) that are not covered by a wall of the maze.

Task Horizon H: The task horizon creates a difficult trade-off
between exploration and exploitation. There can also be worst-case
scenarios where the layout of the random maze and position of the
goals make completing the task impossible in a fixed time limit. We
compute difficulty statistics with an oracle tree-search agent and
use the results to pick safe values where the 15 ⇥ 15 version sets
H = 400 while 30⇥ 30 sets H = 1, 000.

C.4.2 ADDITIONAL RESULTS AND ANALYSIS

Figure 8: MazeRunner Results (reproduced here for convenience).

15⇥ 15 MazeRunner. Figure 8 (left) evaluates the default version of MazeRunner with N = 15.
Without random actions dynamics and with the current status of the task as an input to each timestep,
a standard Recurrent PPO baseline could learn the same kind of adaptive generalization as AMAGO.
The lowest-feature ablation of AMAGO’s core agent (“w/o Relabeling, w/o Multi-Gamma”) uses
a Transformer to match the performance of Recurrent PPO on the 15⇥ 15 domain. However, our
other technical improvements can almost double that performance, albeit with high variance (“w/o
Relabeling, w/ Multi-Gamma”). Adding relabeling to create the full AMAGO method leads to a
nearly perfect success rate in 15⇥ 15 with low variance (“AMAGO”). Position information (x, y)
was included to help baseline performance, but we find that AMAGO can achieve a 91% success rate
without it.

27

Published as a conference paper at ICLR 2024

30⇥ 30 MazeRunner. The larger maze size creates an extremely challenging sparse exploration
problem, and all ablations of the relabeling scheme fail along with the Recurrent PPO baseline.
AMAGO performs well and uses its memory to efficiently explore its surroundings (“w/o Memory”
has about half its final success rate). We believe there is room to continue to use the MazeRunner
environment at larger maze sizes and task horizons to evaluate long-term-memory architectures
at low simulation cost. We experiment with adding a dynamics modeling term to AMAGO’s
training objective (“w/ World Model”). World modeling is a natural fit for AMAGO’s long-context
Transformer backbone but does not appear to have an impact on this low-dimensional domain. The
“w/o Planning” baseline hides future goal locations from the task-conditioned input. In theory, this
effects AMAGO’s ability to make exploration/exploitation trade-offs and take routes that maximize
the chance of finding all k locations, and does make a noticeable but small difference as the agent’s
strategy improves. However, 1, 000 timesteps may be too generous to highlight this trade-off.

Figure 22: MazeRunner with Random
Dynamics. The agent’s action space is
randomized in every environment.

“Rewired” Action Space Adaptation. Figure 22 shows
the final performance of several methods with the ran-
domly permuted action space feature enabled. Generaliz-
ing to new action dynamics requires a level of adaptation
above standard Recurrent PPO, so our baselines shift to
full meta-RL methods. While some multi-episodic meth-
ods can be modified to work in a zero-shot setting [111],
we focus on three techniques that are more natural fits for
this problem: variBAD [64], HyperX [111], and RL2 [11,
10]. In an effort to use validated external implementations
of these algorithms, we switch to the continuous action
space version of MazeRunner. We choose the hyperpa-
rameters from the largest-scale experiment in the original
codebase, with some tuning performed by solving easier
versions of the problem. However, only RL2 shows signs of life on 15⇥ 15 permuted actions (Fig.
22). 30⇥ 30 is too sparse for RL2, but AMAGO’s relabeling and long-sequence improvements allow
us to nearly recover the metrics in Figure 8 while adapting to the randomized action space.

C.5 CRAFTER

Figure 23: Examples of Crafter Terrain Generation (Left). Crafter generates new landscapes and
locations of rare resources every episode (reproduced from [33]). Crafter Observation (Right). An
example of the agent-centric view that forms observations.

Crafter [33] is a simplification of Minecraft with 2D graphics and a high framerate that facilitates
research on building agents with the variety of skills necessary to survive and develop more advanced
technology in a procedurally generated environment. The standard evaluation setting provides a
lightly shaped dense reward that encourages survival and avoiding danger, while giving a sparse
reward the first time the agent completes each of the 22 “achievements” in a new episode. This
represents an undirected kind of multi-task learning, where the agent receives equal credit for
completing any of its skills whenever the opportunity arises, and cannot be prompted with a specific
objective. We create a directed version where the agent is only rewarded for completing the next step
of an instruction we provide.

28

https://github.com/lmzintgraf/hyperx

Published as a conference paper at ICLR 2024

C.5.1 ENVIRONMENT AND TASK DETAILS

Environment Distribution p(e): Crafter generates a new world map that randomizes the locations
of caves, lakes, and rare resources upon every reset. Three examples are shown in Figure 23.

Goal Space G: We create goals from Crafter’s 22 achievements, which include those listed in Table 1
as well as “collect sapling” (where all agents have a near 100% success rate) and more difficult goals
like “make iron sword” and “collect diamond” (where all agents have a near 0% success rate). We
add more complexity by creating goals for traveling to every (x, y) location spaced 5 units apart, such
as “travel to (5, 5)” and “travel to (60, 15)”. An “Expanded” version of Crafter adds goals for placing
blocks at every (x, y) location. All goal strings are represented as three tokens – e.g., “<make>
<stone> <sword>”, “<travel> < 50 > < 5 >”, “<collect> <coal> <PAD>” — which is meant
to improve generalization across goals relative to one-hot identifiers.

Observation Space: Crafter observations are egocentric views of the agent and its surrounding area
(Figure 23 right) along with health and inventory data. AMAGO supports pixel observations, but
our experiments default to a version that maps the image (Figure 23 right) to texture IDs, which can
be processed with an embedding rather than a CNN. This simplification shortens training times and
lets us run many ablations, and is inspired by the NetHack Learning Environment [112] — another
high-throughput generalization benchmark. However, we do evaluate the full AMAGO method on
pixel observations with a CNN (Table 2), and the results are similar to the simplified version.

Action Space: Crafter has 17 discrete actions corresponding to player movement, tool making, and
item placement.

Instruction Distribution p(g | e): By default, our instructions are generated by randomly choosing
an instruction length k ⇠ U(1, 5) and then filling that length by weighted sampling (with replacement)
from the goal space. We pick sample weights that ensured non-relabeling baselines could make some
progress by down-weighting the hardest goals (like diamond collection). We defer the exact weights
to our open-source code release. We also experiment with using the ground-truth Crafter achievement
progression (see Crafter Figure 4 [33]) to generate instructions.

Task Horizon H: We enforce a maximum episode length of H = 2, 000 timesteps. However, a
typical episode is less than 500 timesteps, because the agents either succeed quickly or are defeated
by an enemy.

C.5.2 ADDITIONAL RESULTS AND ANALYSIS

Table 1 evaluates agents on single-goal instructions and lets us measure AMAGO’s knowledge of the
22 main skills similar to existing Crafter results (Table 1 top section). We add a baseline version of our
core agent trained with Crafter’s default reward function to control for changes in state representation,
sample limit, memory, and maximum episode length. Moving from the undirected reward function
to sparse instruction-conditioning leads to a dramatic decline in performance without relabeling or
long-term memory (Table 1 middle section). The lower section of Table 1 compares versions of our
method with different instruction-generation and relabeling schemes, which will be explained below.
AMAGO has learned to complete Crafter’s achievement progression up to collecting iron despite the
added difficulty that comes with being task-conditioned.

Exploring with Instructions. The instruction format lets us discover new behavior by following
sequences of steps from our own goal space, and turns exploration into a multi-task generalization
problem. The process works in three steps. First, relabeling lets AMAGO master sequences of goals
that are frequently achieved early in training. Second, we follow randomly generated instructions that
happen to be made up of those easier goals, eventually reaching the frontier of what we have already
discovered. Random exploration then has a realistic chance of finding new outcomes. We can verify
the first two steps by ablating AMAGO’s ability to follow multi-goal instructions during training
(Table 1 “w/o Multi-Goal”), and observing a steep decline in performance on hard-exploration goals
like tool making. In the third and final step, AMAGO learns to internalize the new discovery so that
it can be achieved without the help of the instruction curriculum. We suspect this is closely tied with
AMAGO’s ability to observe the full instruction that led to the discovery, and test this by hiding the
full task (Table 1 “w/o Planning”), which fails to discover hard goals despite following multi-goal
instructions. The goal discovery process is supported by Figure 24, which measures the progress

29

Published as a conference paper at ICLR 2024

Collect
Wood

Collect
Drink

Place
Plant

Wake
Up

Place
Table

Wood
Sword

Eat
Cow

Defeat
Zombie

Wood
Pickaxe

Collect
Stone

Place
Furnace

Stone
Pickaxe

Stone
Sword

Collect
Coal

Defeat
Skeleton

Collect
Iron

Rainbow (Undirected) [104] 74.9 24.0 94.2 93.3 52.3 9.8 26.1 39.6 4.8 0.2 0.0 0.0 0.0 0.0 0.7 0.0
DreamerV2 (Undirected)[86] 92.7 80.0 84.4 92.8 85.7 40.2 17.1 53.1 59.6 42.7 1.8 0.2 0.3 14.7 2.6 0.0
AMAGO (Undirected) 99.9 93.3 99.9 95.8 99.8 99.1 81.1 91.3 99.4 97.5 93.6 86.3 92.3 69.5 53.5 0.0

w/o Relabeling 97.3 79.2 99.9 4.5 94.4 0.0 15.2 68.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w/o Memory 99.8 91.3 99.9 91.5 98.9 98.4 62.2 85.7 99.2 39.3 0.0 0.0 0.0 0.0 0.0 0.0
w/o Multi-Goal 99.8 93.1 99.9 97.8 99.4 97.8 93.9 88.9 99.5 83.1 0.0 0.0 0.0 0.0 10.4 0.0
w/o Planning 99.9 98.1 98.7 93.6 95.7 93.9 36.0 82.0 98.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w/o Importance Sampling 99.9 98.4 99.8 93.3 99.8 99.9 98.9 95.1 99.9 96.1 92.1 98.6 97.5 81.5 57.5 0.0

AMAGO 99.9 99.9 99.3 99.9 96.7 99.8 96.6 97.2 99.8 99.5 94.2 97.8 98.3 90.1 76.5 0.0
AMAGO (w/ Tech Tree) 99.9 98.3 99.8 96.1 99.9 99.8 98.5 97.3 99.8 97.8 97.0 99.0 99.5 84.0 58.4 0.0
AMAGO (Expanded) 99.9 97.4 99.9 94.3 99.9 99.8 97.9 96.7 99.9 98.6 97.7 99.0 99.0 84.8 40.4 0.0

Table 1: Crafter Achievement Success Rates (%). We compare undirected shaped reward agents
(top section) with directed ablations of our agent (middle). AMAGO (bottom) recovers all the
skills of the undirected reward function while being steerable/instruction-conditioned. The Rain-
bow/DreamerV2 vs. Undirected AMAGO comparison measures how skill coverage changes when
using an increased sample limit, long-term memory, and simplified default observations.

of a single difficult goal relative to an easier multi-step instruction in which it is the final step. We
note that Crafter’s default reward function of giving +1 the first time each achievement occurs in an
episode leads to this same exploration behavior. The best way for an agent to maximize the Crafter
reward is to quickly enumerate every skill it has already mastered, and then start exploring for new
rare possibilities. AMAGO’s instruction format and relabeling scheme create a way to bring this
behavior to a goal-conditioned setting.

Figure 24: Multi-Goal Learning and Exploration. We compare AMAGO’s performance on difficult
single-goal instructions with another task that forms a useful exploration plan. We measure the
average task progress, which is equivalent to return normalized by instruction length.

Figure 25: Crafter Instruction Success Rates. Bar labels are average returns. AMAGO generalizes
well to user-prompted instructions in new Crafter environments.

Figure 25 expands on the results in Figure 9 to show more examples of user-selected multi-goal
instructions in addition to “All Random Instructions”, which corresponds to an expectation over the
procedurally generated p(g | e). Qualitatively, the agents show a clear understanding of instructions
and typically fail by rushing to complete tasks during nighttime when they become surrounded by
enemies.

Impact of Goal Importance Sampling. Learning curves in Crafter can have a sigmoid pattern
where our agent plateaus for long periods of time before suddenly discovering a new skill that
unlocks success in a higher percentage of tasks. Goal importance sampling shortens these plateaus by

30

Published as a conference paper at ICLR 2024

prioritizing new skills during relabeling, and this leads to a significant increase in sample efficiency
(Figure 26). Figure 27 demonstrates this goal prioritization on the kind of low-performance data
AMAGO sees early in training. Unfortunately, all agents eventually reach the exploration barrier
of consistently finding the iron and cannot complete Crafter’s tech-tree. Below we discuss several
preliminary attempts to address this problem.

Figure 26: Learning Curves in Crafter. Goal importance sampling improves sample efficiency
by shortening the “plateaus” between discoveries. However, both agents converge to the same
exploration barrier (Table 1). “w/o Goal Importance Sampling” final performance is indicated by a
dashed yellow line. This plot records train-time success rates and shows one random seed to highlight
the sudden spikes in performance of individual runs.

Figure 27: Importance Sampling Alternative Goal Selection. We use replay buffer data from a
low-performance ablation (“w/o Planning”) to demonstrate how our rarity-based relabeling scheme
improves sample efficiency by prioritizing challenging goals. This plot is interpreted: “given that a
particular goal is achieved in a trajectory that needs to be relabeled, what is the probability that it will
be chosen to create an alternative instruction?” The rarity-based scheme exaggerates the frequency
of challenging goals like “collect coal” and “make stone sword”, and diminishes trivial goals like
“travel (30m, 30m).” As the agent improves, goals that were once rare become more common and this
effect is less extreme.

Following “Tech-Tree” Instructions and “Expanded” Crafter. While AMAGO learns many of
Crafter’s core skills, it still converges without mastering all of the goal space. Our results lead us
to believe there are two main components driving AMAGO’s exploration, and it is not clear which
is the main bottleneck. First is the instruction distribution p(g | e) that forms exploration plans
for new goals. The exploration effect relies on generating useful instructions that can lead to new
discoveries, and could be improved if the instructions we provide are more likely to be helpful. We
can use ground-truth knowledge of Crafter’s skill progression to bias p(g | e) towards instructions that
form useful exploration plans. In this “Tech-Tree” version, half of the instructions are generated by
sampling sub-sequences of Crafter’s progression up until the most advanced goal we have previously
achieved. Unfortunately, this does not lead to the discovery of new skills (Table 1 “w/ Tech-Tree”).
The second opportunity is to expand the goal space that forms exploration curricula. “Expanded”
Crafter experiments with this idea and creates tech-tree instructions with added goals for being nearby

31

Published as a conference paper at ICLR 2024

rare resources like iron and diamond. This does not fully solve the problem, but shows some signs of
improvement, as multi-goal prompts like “make stone pickaxe, collect iron” now find iron nearly 40%
of the time (Figure 25). Finding better ways to improve instruction generation (preferably without
the domain knowledge used here) and extend the goal space by learning in more complex multi-task
domains are exciting directions for future work.

Figure 28: Impact of AMAGO’s (Im-
plicit) Planning on Crafter Instruc-
tions.

Planning and Long-Horizon Tasks. AMAGO’s ability
to see all k steps of its instruction is meant to allow value
learning to form long-term plans. If we only provide the
current step, our instruction is effectively handling all the
agent’s planning. However, if we provide the full instruc-
tion, AMAGO is free to explore its environment with the
future in mind and take actions that are not directly related
to completing the task but will better prepare it for later
events. Figure 28 measures the success rate at increasing
instruction lengths. We can use the fact that our default
instruction distribution samples each step independently
to get a rough upper bound on performance. This is not a
fair expectation because each additional goal extends the
length of the episode and leaves more time for starvation
or dangerous enemies to cause failure. However, AMAGO
holds to this line quite well despite solving complex goals
that take hundreds of timesteps to complete. We would
ideally see the “w/o Planning” ablation fall well below its
upper bound because it would be less careful about resource management. However, it learns to solve
so many fewer complex goals to begin with that looking at long instructions that succeed reduces us
to a sample of mostly trivial tasks that would not require much planning at all.

Instruction-Specific Behavior. One concern is that because Crafter only has 22 different core skills,
our agents could learn an uninteresting strategy of ignoring their instruction and cycling through
every behavior they have learned to accomplish. This is one of the reasons we add travel goals,
which brings the total goal count high enough where this strategy would be very difficult to learn
and execute. “Expanded” Crafter also includes goals for placing stone blocks at each (x, y) location.
Some of the manually-generated instructions in Figure 25 were specifically chosen to be unrelated to
the natural progression of Crafter’s achievement system. For example, “travel to (10, 10), place stone,
travel to (50, 50), place stone” requires the agent to traverse nearly the full length of its world and
would not involve advanced resource-gathering. This task is difficult because long-distance travel
attracts dangerous enemies, but even when AMAGO fails it does so with a clear understanding of
what was being asked and does not waste time on unrelated objectives.

Relabeling Corrects for Missing Instructions. An advantage of hindsight instruction relabeling is
that the train-time p(g | e) it generates includes every goal that is accomplished, rather than just those
we assign during rollouts. This lets us learn about instructions that could not be generated by the
domain’s natural instruction distribution. We create a simple demonstration of this by removing the
“wake up” goal from our instruction generation. Because this goal will occur unintentionally, AMAGO
learns to complete it when requested 99.9% of the time (Table 1). However, the “w/o Relabeling”
ablation has never seen these goal tokens and its 4.5% success rate represents the episodes where it is
achieved by chance due to a stochastic policy.

Collect
Sapling

Collect
Wood

Collect
Drink

Place
Plant

Wake
Up

Place
Table

Place
Furnace

Eat
Cow

Defeat
Zombie

Wood
Pickaxe

Wood
Sword

Collect
Stone

Stone
Pickaxe

Stone
Sword

Collect
Coal

Defeat
Skeleton

Collect
Iron

All
Random

Instructions

Textures 99.9 99.9 99.9 99.3 99.9 99.9 94.5 96.2 96.6 99.9 99.9 99.5 97.8 98.3 90.1 76.5 0.0 62.1
Pixels 99.9 99.9 99.4 99.9 93.7 99.5 94.0 99.3 96.7 99.9 99.9 98.3 98.8 97.7 89.8 80.0 0.0 53.9

Table 2: AMAGO Crafter Success Rates (%) from Pixels.

Learning from Pixels. Our main experiments map Crafter image observations to discrete block
textures. This is primarily a compute-saving measure that lets us study more ablations. However, we
do evaluate the full AMAGO method on pixel observations, with a summary of key results in Table

32

Published as a conference paper at ICLR 2024

2. Learning from pixels performs similarly to texture observations on all single-goal instructions.
However, there is a roughly 9% drop in performance on the full range of instructions p(g | e).

D POLICY ARCHITECTURE AND TRAINING DETAILS

AMAGO Hyperparameter Information. Network architecture details for our main experimental
domains are provided in Table 3. Table 4 lists the hyperparameters for our RL training process. Many
of AMAGO’s details are designed to reduce hyperparameter sensitivity, and this allows us to use a
consistent configuration across most experiments.

POPGym Dark
Key-To-Door Wind Passive

T-Maze Meta-World Package
Delivery MazeRunner Crafter

Transformer

Model Dim. 256 256 128 128 256 128 128 384
FF Dim. 1024 1024 512 512 1024 512 512 1536
Heads 8 8 8 8 8 8 8 12
Layers 3 3 2 2 3 3 3 6

Other Networks

Actor MLP (256, 256) (256, 256) (256, 256) (256, 256) (256, 256) (256, 256) (256, 256) (400, 400)
Critic MLP (256, 256) (256, 256) (256, 256) (256, 256) (256, 256) (256, 256) (256, 256) (400, 400)

Goal Emb. N/A N/A N/A N/A N/A FF (64, 32) FF (64, 32) RNN (Hid. Dim 96)
! 64

Timestep Encoder (512, 512, 200) (128, 128, 64) (128, 128, 64) (128, 128, 128) (256, 256, 200) (128, 128, 128) (128, 128, 128) Embedding
!MLP (384, 384)

Table 3: AMAGO Network Architecture Details.

Package Delivery MazeRunner Crafter Other Domains (POPGym)
Critics 4
Critics in Clipped TD Target 2
Context Length l H

Actor Loss Weight 1
Filtered BC Loss Weight .1
Value Loss Weight 10
Multi-Gamma � Values (Discrete) .7, .9, .93, .95, .98, .99, .992, .994, .995, .997, .998, .999, .9991, .9992, . . . , .9995
Multi-Gamma � Values (Continuous) .9, .95, .99, .993, .996, .999
Target Update ⌧ .003
Gradient Clip (Norm) 1
Learning Rate 3e-4 3e-4 1e-4 1e-4
L2 Penalty 1e-4 1e-4 1e-4 1e-3
Batch Size (in Full Trajectories) 24 24 18 24
Max Buffer Size (in Full Trajectories) 15,000 20,000 20,000 20,000 (80,000)
Gradient Updates Per Epoch 1500 1000 1500 1000

Parallel Actors 24 24 8 12 (24)
Timesteps Per Actor Per Epoch H H H H (1000)
Epochs 600 600 2000 (625)
Exploration Max ✏ at Ep. Start 1. ! .05
Exploration Max ✏ at Ep. End .8! .01
Exploration Annealed (Timesteps - Per Actor) 1, 000, 000

Table 4: AMAGO Training Hyperparameters.

Compute Requirements. Each AMAGO agent is trained on one A5000 GPU. Results are reported
as the average of at least three random seeds unless otherwise noted. Learning curves default to
displaying the mean and standard deviation of trials. The POPGym (Appendix C.1) and Wind (Figure
5) learning curves show the maximum and minimum values achieved by any seed. Wall-clock
training times vary significantly across experiments and were improved over the course of this work.
For reference, POPGym training runs take approximately 8 hours to complete. AMAGO alternates
between data collection and learning updates for consistent comparisons across baselines. However,
these steps could be done in parallel or asynchronously if wall-clock speed was critical.

Sample Efficiency. The AMAGO training loop alternates between collecting trajectory rollouts
from parallel actors and performing learning updates. Sample efficiency in off-policy RL is primarily
determined by the update-to-data ratio between these two stages [79, 74]. It has been shown that
common defaults are often too conservative and that sample efficiency can be greatly improved by

33

Published as a conference paper at ICLR 2024

increasing the update-to-data ratio [113, 80]. AMAGO’s use of Transformers resets this hyperparam-
eter landscape. Due to compute constraints and the large number of technical details we are already
evaluating, our experiments make little effort to optimize sample efficiency. It would be surprising if
the current results represent the best trade-off between sample efficiency and performance.

Figure 29: Training Throughput: AMAGO vs. Off-Policy RNNs. We compare training speed in
terms of gradient updates per second at various context lengths with a batch size of 24 sequences on
a single NVIDIA A5000 GPU. These experiments use a HalfCheetah locomotion environment [97]
and the codebase from [22] to benchmark the RNN agents. We modify AMAGO’s hyperparameters
to create a fair comparison, though AMAGO is loading data from disk while the RNNs are loading
from RAM. “No Flash” baselines remove Flash Attention [108].

34

	Introduction
	Related Work
	Background and Problem Formulation
	Method
	Experiments
	Long-Term Memory, Generalization, and Meta-Learning
	Goal-Conditioned Environment Adaptation

	Conclusion
	AMAGO Details
	Sharing a Single Sequence Model in Off-Policy RL
	Base Actor-Critic Update
	AMAGO Architecture

	Relabeling with Goal Importance Sampling
	Experimental Details and Further Analysis
	POPGym
	Additional Memory and Multi-Episodic Meta-RL Results
	Package Delivery
	Environment and Task Details
	Additional Results and Analysis

	MazeRunner
	Environment and Task Details
	Additional Results and Analysis

	Crafter
	Environment and Task Details
	Additional Results and Analysis

	Policy Architecture and Training Details

