
7 Appendix

7.1 Details of CutMix

To sample the binary mask M, we first sample the bounding box coordinates B = (rx, ry, rw, rh)
indicating the cropping regions on xi and xj . The region B in xi is removed and filled in with the
patch cropped from B of xj . In our experiments, we sample rectangular masks M whose aspect ratio
is proportional to the original image. The box coordinates are uniformly sampled according to the:

rx ∼ Unif(0,W ), rw = W
√
1− λ,

ry ∼ Unif(0, H), rh = H
√
1− λ

(11)

making the cropped area ratio rwrh
WH = 1 − λ. With the cropping region, the binary mask M ∈

{0, 1}W×H is decided by filling with 0 within the bounding box B, otherwise 1.

7.2 More Comparison Results

In this section, we conduct comparison studies with mixup-based long-tailed methods, including
Remix [21], Unimix [22], and CMO [20] under various loss functions. We summarize the results on
CIFAR-LT-10 and CIFAR-LT-100 in Table 6 and list the results on ImageNet-LT and iNaturalist 2018
in Table 5. We can find that our OTmix surpasses related mixup-based methods with varying loss
functions and enhances the imbalanced classification. Besides, OTmix with different losses produces
different classification performances due to their characteristics, where OTmix with BALMS can
achieve better or competing performance than OTmix with other loss functions. These results reveal
the effectiveness of our proposed method when combined with other loss functions.

Table 5: Top-1 errors (%) of mixup-based long-tailed methods under various loss functions on
ImageNet-LT and iNaturalist 2018. "⋆": results reported in CMO. "†": results reported in origin
paper.

Method ImageNet-LT iNaturalist 2018
Mixup Loss ALL Many Medium Few ALL Many Medium Few

None⋆ ERM 58.4 36.0 66.2 94.2 39.0 26.1 36.5 44.5
Remix† ERM 58.3 – – – 38.7 – – –
CMO† ERM 50.9 33.0 57.7 79.5 31.1 23.1 30.7 33.4
OTmix ERM 48.0 30.0 54.1 77.7 30.5 30.7 29.5 31.6

None ERM-DRW 49.9⋆ 38.3⋆ 52.7⋆ 71.2⋆ 36.3† – – –
Remix† ERM-DRW – – – – 29.5 – – –
CMO† ERM-DRW 48.6 39.2 51.4 64.5 29.1 31.8 29.8 27.8
OTmix ERM-DRW 46.6 33.0 51.0 69.6 28.9 29.4 28.1 29.6

None⋆ LDAM-DRW 50.2 39.6 53.1 69.3 30.0 30.0 29.8 30.1
CMO† LDAM-DRW 48.9 38.0 52.6 69.2 30.9 24.7 30.5 32.7
OTmix LDAM-DRW 47.5 37.2 48.9 71.8 30.4 31.5 29.8 30.6
None⋆ BALMS 49.0 39.1 51.2 67.9 30.0 30.0 29.8 30.1
CMO† BALMS 47.7 38.0 50.9 63.3 29.1 31.2 30.0 27.7
OTmix BALMS 44.4 36.0 47.6 57.3 28.5 28.9 28.0 29.2

7.3 More Analytical Results

Confusion Matrix To verify whether our method improves the performance of minority classes,
we show the confusion matrices of ERM-DRW, ERM-DRW+CMO, and ERM-DRW+OTmix on
CIFAR-LT-10 with φ = 100 in Fig. 6. We can find that ERM-DRW suffers a severe performance
drop in the minority classes even though it can almost accurately predict the samples in the majority
classes. ERM-DRW+CMO can improve the accuracy of the minority classes, which coincides
with the statement of CMO. OTmix further enhances the generalization of minority classes and
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Table 6: Top-1 (%) errors of mixup-based long-tailed methods with various loss functions on CIFAR-
LT-10 and CIFAR-LT-100. "‡ ": our reproduced results. "†": results reported in the original paper.

Method CIFAR-LT-10 CIFAR-LT-100
Mixup Loss 100 50 10 100 50 10

None‡ ERM 26.9 22.9 12.9 63.2 56.3 43.4
CMO ERM 25.0‡ 18.6‡ 11.5‡ 56.1† 51.7† 40.5†

Remix† ERM 24.6 – 11.8 58.1 – 40.6
UniMix† ERM 23.5 – – 58.5 – –
OTmix ERM 21.7 16.6 9.8 53.6 49.3 38.4

None‡ LDAM 26.3 21.6 13.4 61.1 56.0 44.4
CMO‡ LDAM 25.9 22.7 13.1 58.0 54.3 44.1
UniMix† LDAM 24.6 – – 58.3 – –
OTmix LDAM 22.3 18.0 12.0 56.3 50.9 41.5

None‡ ERM-DRW 24.3 18.9 11.9 58.0 54.3 41.8
Remix† ERM-DRW 20.2 – 11.0 53.2 – 38.8
CMO ERM-DRW 19.5‡ 16.6‡ 11.3‡ 53.0† 49.1† 38.3†

OTmix ERM-DRW 16.9 13.8 9.4 52.0 47.4 37.3

None‡ LDAM-DRW 23.0 19.1 11.8 57.4 52.2 45.0
Remix† LDAM-DRW 20.7 – 13.2 55.0 – 40.5
CMO LDAM-DRW 19.0‡ 16.2‡ 12.4‡ 52.8† 48.3† 41.6†

OTmix LDAM-DRW 18.2 16.0 11.8 52.0 47.6 41.0

None‡ BALMS 22.7 19.1 11.8 58.0 53.1 41.6
CMO BALMS 19.7‡ 15.9‡ 11.0‡ 53.4† 48.6† 37.7†

OTmix BALMS 16.0 13.5 9.8 53.2 47.7 37.7

None‡ Focal 30.4 23.4 13.6 61.6 56.3 45.0
CMO‡ Focal 29.0 22.6 12.5 58.1 53.6 41.8
OTmix Focal 27.0 20.9 12.0 57.8 53.3 40.6

None‡ CB Softmax 26.0 21.1 12.3 – – –
CMO‡ CB Softmax 25.7 20.2 12.2 – – –
OTmix CB Softmax 24.0 18.8 12.0 – – –

None‡ CB Sigmoid 26.5 22.4 12.5 – – –
CMO‡ CB Sigmoid 27.4 20.8 12.1 – – –
OTmix CB Sigmoid 24.9 20.6 11.8 – – –

maintains performance in majority classes, which thus outperforms the strong baselines on the overall
performance. In Fig.7, we plot the classification results for each class on CIFAR-LT-10 with φ = 100,
where we adopt the BALMS loss and LDAM loss, respectively. Compared with these baselines,
OTmix provides a significant improvement in minority classes. We specifically note that the proposed
method improves the accuracy over BALMS by 23% and over LDAM by 15% for the least frequent
class 9 while degrading the accuracy for class 0 and class 1 by less than 2%. These results indicate
that ours can achieve a more balanced classifier and ameliorate the generalization of minority classes.

Discussion of Hyper-parameters and Training Settings To analyze the effect of different hyper-
parameters and settings of OTmix, we conduct analytical experiments on CIFAR-LT-10 with φ = 100.
The hyper-parameters include ω, α, and r, respectively. ω in (7) is employed to manage the degree of
combination of the confusion matrix and feature information in Fig. 8(a). The best performance is
achieved when ω = 0.05, indicating the class-level cost based on the confusion matrix dominating
the cost function. α affects the combined ratio in Cutmix in Appendix 7.1. As shown in Fig. 8(b),
the larger the value of α is, the more complementary the distribution tends to be closer to a uniform
distribution. The OTmix achieves an accuracy of 46.4% when α = 4.
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Figure 6: Confusion matrices of the ERM-DRW, ERM-DRW+CMO, and ERM-DRW+OTmix on
CIFAR-LT-10 with φ = 100.

(a) BALMS baseline (b) LDAM baseline

Figure 7: The classification results of different methods for each class on CIFAR-LT-10 with φ = 100,
where (a) uses the BALMS loss and (b) adopts the LDAM loss. Class 0 stands for the majority class,
and class 9 stands for the minority class.

(a) Hyper-parameter ω (b) Hyper-parameter α

(c) Hyper-parameter r (d) Training factor µ

Figure 8: Analytical experiments of different hyper-parameters and settings of the proposed method
on CIFAR-LT-100 with φ = 100: (a-c) with various hyper-parameters, (d) with the setting of training
factor.
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The hyper-parameter r controls the smoothness of qk, which further decides the sample weight of
foreground distribution in (4). As shown in Fig. 8(c), the smoothness factor r = 1 achieves the
best performance, which indicates the inverse class frequency. Recalling that we adopt yrandom ∼
Bernoulli( t

T ) to decide whether mixing the background and foreground pair with our OTmix, where
we use µ to set yrandom ∼ Bernoulli( t

T )
µ and explore the effect of µ. As plotted in Fig. 8(d), ours

with µ = 1 produces the best performance. That is to say, we will randomly mix the background and
foreground images with a high probability during the first half of training epochs, and we are more
likely to use OTmix to mix the background and foreground pairs in the latter half of epochs.

Mixed Fractions To examine the indispensability of the images unchanged in every batch, we
conduct an additional experiment with the fraction of the mixed images in every batch on CIFAR-LT-
10 and CIFAR-LT-100 under different methods and fractions. We denote Fraction = Mixed

Overall
in

every batch. From the results in Table 7, when the number of mixed samples decreases (Fraction ↓),
the performance of OTmix deteriorates significantly, which suggests that it is better to use mixed
samples alone in every batch in our method.

Table 7: Classification errors of ResNet-32 on CIFAR-LT-10 and CIFAR-LT-100 under different
methods and mixed fractions.

Method Fraction
CIFAR-LT-10 CIFAR-LT-100

100 50 10 100 50 10

ERM / 26.9 22.9 12.9 63.2 56.3 43.4
ERM + CMO 100% 25.0 18.6 11.5 56.1 51.7 40.5

ERM + OTmix 100% 21.7 16.6 9.8 53.6 49.3 38.4
ERM + OTmix 50% 24.7 20.0 12.3 55.1 52.0 40.4
ERM + OTmix 25% 23.6 20.1 11.1 58.1 53.1 40.5
ERM + OTmix 12.5% 27.2 21.8 12.1 57.1 52.7 41.1

Discussion of Confusion matrix Considering the confusion matrix played an important role in
learning the cost function based class-level, we discuss the performance of our method and the
computational cost of the normalized confusion matrix calculated on a balanced validation set, an
imbalanced training set, and a small balanced subset sampled from imbalanced training set in Table 8.
Meanwhile, the confusion matrix is represented as two states, fixed and adaptive. The former denotes
where the confusion matrix remains unchanged in our approach and the latter changes dynamically in
each epoch. From Table 8, we can draw a few observations: (1) With the same settings, the adaptive
methods perform significantly better overall and few than the fixed methods. (2) Compared with
the fixed balanced training setting Dbal

fixed, the fixed imbalanced training setting Dim
fixed is preferable

by providing more sample information (Dim
fixed ≫ Dbal

fixed). However, large-scale samples can
drastically increase the computational cost, making it difficult to implement adaptively. (3) Despite
the time spent in the balanced training setting less, the balanced validation setting exhibits superior in
terms of overall performance. To summarize, OTmix with the adaptively balanced validation setting
enhances the suitability of OTmix for long-tailed classification.

Table 8: Classification errors of the ERM+OTmix with different confusion matrices under various
methods and calculated settings on iNaturalist 2018.

Method Setting ALL Many Medium Few Time
Fix Balanced validation 31.0 29.3 29.5 33.3 86s
Fix Imbalanced training 31.5 31.0 30.2 33.2 1277s
Fix Balanced training 31.8 32.7 30.3 33.5 58s

Adaptive Balanced validation (OTmix) 30.5 30.7 29.5 31.6 86s
Adaptive Balanced training 31.1 32.9 30.6 31.1 58s
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7.4 Computational Cost

The optimal transport (OT) problem in our method between probability distributions is computed by
the Sinkhorn algorithm [68], which introduces the entropic regularization term for fast computation.
To compute the OT distance between n dimensional discrete distributions, the Sinkhorn algorithm
requires the computational cost of O(n2log(n)/ε2) reach ε-accuracy. In our case, n corresponds to
the batchsize, which is set to 128 in our experiments. We compare the computational cost of different
methods on a Pentium PC with a single GTX 3060 GPU.

Table 9: Computational cost (s) per training epoch on long-tailed datasets.
Method CIFAR-LT-10 CIFAR-LT-100 ImageNet-LT iNaturalist 2018
ERM 2.85 2.17 310.47 1251.29
ERM+CMO 3.35 2.85 319.73 1360.66
ERM+OTmix 4.59 3.79 333.64 1382.54

In addition, we also report the computational cost (s) per training epoch on long-tailed and balanced
datasets, respectively. As shown in Table 9 and Table 10, mixup-based methods usually take more time
than ERM. It is reasonable since mixup-based methods need to mix images. Besides, OTmix spends
more time than CMO since we solve an OT problem to pair a background image and a foreground
image. Still, introducing OTmix to existing mixup-based methods in balanced classification consumes
more time. However, it is worth noticing that we only need to employ the OTmix during the late half
phase of the training process. In summary, combining ours with others produces a better performance
on long-tailed and balanced datasets with an acceptable cost.

Table 10: Computational cost (s) per training epoch on balanced datasets.
Method CIFAR-10 CIFAR-100
ERM 11.9 12.8

ERM+Mixup 12.1 13.8
ERM+OTmix (Mixup) 17.1 18.1

ERM+Cutmix 13.2 15.7
ERM+OTmix (Cutmix) 19.1 21.5

ERM+SaliencyMix 14.2 17.9
ERM+OTmix (SaliencyMix) 21.5 24.9

7.5 More Visualization Results and Analysis

Statistical Results of Mixed Images To intuitively reveal that OTmix is more effective than CMO,
we show the statistical results of the mixed images generated by CMO and OTmix on CIFAR-LT-10,
respectively. Specifically, we summarize the 10× 10 matrix m for the ten-class classification task in
one training epoch, where element mij denotes the number of pairs between the foreground images
from the i-th class and the background images from the j-th class. As shown in Fig. 9(a), we can see
that regardless of the foreground image from which class, CMO mainly mixes it with the background
image from the majority classes. For example, the foreground images from the “truck” will be
mixed with the background images from the “airplane” class, even if the truck is more similar to the
automobile. However, Fig. 9(b) indicates that our proposed method builds more reasonable pairs by
selecting the most relevant background image for each foreground image. For example, the “horse” is
more easily confused with “deer” than “airplane”. These results validate that ours can provide more
reasonable generated samples than CMO.

Visualization Results of Mixed Image Pairs To gain a more intuitive insight into the dynamic
changes within the mixing process of our method, we provide more visualization results of mixed
image pairs on iNaturalist 2018 in Fig. 10. The foreground image and the selected background image
commonly have significant semantic similarity. It suggests that OTmix has the capacity to generate
reasonably mixed samples for long-tailed classification.
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(a) CMO (b) OTmix

Figure 9: Image-mixing statistical results of OTmix and CMO on CIFAR-LT-10 with φ = 100.

Figure 10: The visualization results of image pairs used to semantically meaningful mixed images on
iNaturalist 2018.

7.6 Negative Societal Impacts and Limitations

This work develops a simple and effective image-mixing method for long-tailed learning, which
has the potential to encourage researchers to derive new and better methods for the line of mixing
images or long-tailed learning. However, if there is a sufficiently malicious or ill-informed choice of
a long-tailed classification task or an image-mixing task, it may indirectly lead to a negative impact.
Employing an imprecise or incorrect confusion matrix can mislead our method to build unsatisfactory
pairs for image-mixing.
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