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Abstract

What role do augmentations play in contrastive learning? Recent work suggests1

that good augmentations are label-preserving with respect to a specific downstream2

task. We complicate this picture by showing that label-destroying augmentations3

can be useful in the foundation model setting, where the goal is to learn diverse,4

general-purpose representations for multiple downstream tasks. We perform con-5

trastive learning experiments on a range of image and audio datasets with multiple6

downstream tasks (e.g. synthetic datasets combining two classes, such as images7

and digits, and naturalistic datasets labeled with dozens of attributes). In controlled8

experiments where we destroy features at different rates, we find that destroying9

one feature a modest fraction of the time can improve learning of other features,10

while still enabling the dropped out feature to be learned well. Additionally, we11

show how this hypothesis can help explain the success of Viewmaker Networks,12

which generate augmentations that appear to target and destroy different features13

in the input examples, yet often result in better performance than standard augmen-14

tations across tasks. To support our empirical results, we theoretically analyze a15

simple contrastive learning setting with a linear model. In this setting, we show that16

label-destroying augmentations are crucial for preventing one set of features from17

suppressing the learning of features useful for another downstream task. Our results18

highlight the need for analyzing the interaction between multiple downstream tasks19

when trying to explain the success of foundation models.20

1 Introduction21

In recent years, foundation models [5] have exhibited remarkable progress on a range of AI tasks22

[13; 31; 37; 36; 6; 11; 25; 1; 38]. A crucial characteristic of foundation models is that they can be23

adapted for a range of downstream tasks. For example, a foundation model trained on ImageNet24

should ideally not only perform well at object classification, but should also have learned general25

features useful for localization, segmentation, and other visual tasks. Indeed, this is borne out by26

recent work showing the high accuracy of foundation models on a range of downstream tasks [9], as27

well as a range of analysis work showing that models learn high-level semantic features including28

texture, color, pose, and style [19].29

One popular strategy for training foundation models involves training models to match transformed30

versions (known as views or augmentations) of the same input. For example, image views might31

include common data augmentations such as cropping or color jitter [9], while views for speech32

might include pitch modulation or spectrogram masking [27; 35]. This family of objectives includes33

contrastive approaches such as SimCLR and MoCo, as well as non-contrastive approaches such as34

BYOL and SwAV [9; 23; 20; 7].35
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Given the central importance of these views for defining the self-supervised task, much work36

has focused on the question of what views lead to high-quality representations. The prevailing37

consensus, exemplified by Tian et al. [52], holds that views should be label-preserving with respect38

to a downstream task. In other words, because the contrastive loss will produce representations39

which are invariant to features that vary across views, any information we wish to preserve in the40

representations should not be altered by such views. As Tian et al. [52] write: “A good set of views41

are those that share the minimal information necessary to perform well at the downstream task.”42

Here, we question whether this assumption—in particular, with its focus on a single task—is enough43

to explain why contrastive foundation models succeed on a range of downstream tasks. In Section 2,44

we observe that the actual choice and application of views in practice does not align with this45

prevailing consensus. For example, complete invariance to several common augmentations (e.g. shifts46

in brightness or cropping) is undesirable since augmentations of inputs from different classes can47

collide. Furthermore, in many cases there are explicit ways to specify invariances (e.g. converting48

images to grayscale) that researchers avoid, instead specifying them indirectly via augmentations (e.g.49

hue shifts). These observations suggest that specifying invariances is not the sole role of these views.50

Instead, we suspect that augmentations serve as a form of feature dropout—preventing any one51

feature from becoming a shortcut feature and suppressing the learning of other features. We study52

this idea empirically with a set of synthetic datsets constructed by overlaying a simple element (e.g. a53

digit, shape, letter, or speech snippet) on an image or audio recording. We find that adding such a54

simple feature can dramatically decrease how well the other feature is learned, but that stochastically55

“dropping out” the simple feature can enable both features to be learned well. Next, we use this56

perspective to explain the success of Viewmaker Networks, a recently proposed method that generates57

augmentations for contrastive learning via adversarial training. We apply viewmaker and expert58

views to these same synthetic datasets, as well as a naturalistic dataset of facial images annotated with59

40 different attributes (e.g. “wearing lipstick” or “blond hair”). Across these settings, we find that60

viewmaker augmentations learn to selectively obscure various features in the input. Despite this, the61

viewmaker representations still learn the downstream tasks well, while expert views often struggle62

on one or more of the attributes. This further suggests that being label-preserving is not a necessary63

property of good views, as long as the label information is still sometimes accessible.64

Finally, we formalize the intuition that feature dropout can aid learning with a theoretical analysis65

of a simple linear contrastive setting. In this setting, we characterize how the noisiness of each66

feature directly determines how quickly features are learned, and uncover an interaction between67

features governing how fast they are learned. In particular, we show how learning one feature quickly68

can suppress the learning of other features, and show that adding noise to the “easiest” feature can69

increase the rate at which other features are learned. This further indicates that label-destroying70

augmentations may have a direct role in ensuring that contrastive models learn a broad range of71

features for downstream tasks.72

Overall, these findings suggest the need to revisit common assumptions about the role of augmenta-73

tions for contrastive learning in the foundation model setting, and move towards a better understanding74

of how to train generalist models that learn diverse features from unlabeled data.75

2 Common practices are at odds with the “invariance” explanation76

We begin by briefly exploring several common augmentations used in contrastive learning for natural77

images, and explore how they come into conflict with the common assumption described above. First,78

we observe that many common augmentations can affect the label of the input, depending on the79

downstream task. For example, many downstream image recognition tasks require color information80

(e.g. identifying bird species) or brightness (e.g. scene or time-of-day classification), implying that81

invariance to these characteristics would be undesirable. Yet hue shifts, greyscaling, and brightness82

shifts are common augmentations used in contrastive learning Chen et al. [9]; He et al. [23].83

Second, repeated application of some augmentations causes challenges for all downstream tasks.84

For example, applying brightness shifts repeatedly results in any image turning completely black or85

completely white. Thus the class label cannot be truly invariant to this augmentation, since inputs86

from different classes can experience an “augmentation collision” at this black or white image (this is87
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formalized in Appendix C).1 This argument also applies to other augmentations, including shifts in88

contrast2 and random masking.89

Third, some augmentations are commonly used despite ways of explicitly encoding invariance to90

them. For example, two image augmentations are hue shifts and greyscaling. Invariance to both of91

these augmentations can be explicitly encoded by always converting an image to greyscale. Yet doing92

so is not common practice because color information is still desirable for many downstream tasks.93

The contradictions between the invariance rationale for augmentations in contrastive learning and94

these common practices suggest the need for additional explanations for the role of augmentations.95

3 Controlled experiments demonstrate the benefits of feature dropout in96

settings with multiple features97

In this section, we present controlled experiments on synthetic data demonstrating how label-98

destroying augmentations can balance the learning of multiple features during contrastive learning.99

Our core toolkit is to overlay images with a set of synthetic features. As we will show, the presence100

of these synthetic features causes the network to learn the synthetic features very well at the expense101

of the image features, as measured by downstream classification accuracy. However, “dropping out”102

these features some fraction of the time during contrastive learning enables us to trade-off how well103

each feature is learned, while not resulting in complete invariance to either set of features.104

3.1 Datasets105

We consider the behavior of viewmaker networks on four synthetic datasets, including three image106

and one audio dataset. Each dataset is constructed in such a way as to support two distinct downstream107

classification tasks, enabling us to examine precisely how well each downstream task is learned. The108

presence of two downstream tasks enables us to analyze the foundation model setting where we wish109

to learn features relevant for multiple downstream tasks, as opposed to one set or the other.110

Image datasets The three image datasets are based on the canonical CIFAR-10 image-recognition111

dataset [28] (MIT-License). One task is always to predict the CIFAR-10 object label (e.g. airplane112

or bird). The other task is dependent on an additional feature overlaid on the image: C+Shapes:113

The CIFAR-10 image is overlaid with one of three randomly-colored shapes: a square, a triangle,114

or a circle. The second task is to predict what shape was overlaid (N=3 classes). C+Digits: The115

CIFAR-10 images are overlaid with four copies of a randomly-sampled digit from the MNIST dataset.116

The second task is to predict the digit class (N=10 classes). C+Letters: The CIFAR-10 images are117

overlaid with four copies of a randomly-colored English letter. The second task is to predict the class118

of the letter (N=26 classes).119

Audio dataset The audio dataset is created by overlaying the audio of a spoken digit (from the120

AudioMNIST dataset [3], MIT License) with a random background sound (collected from one of121

three possible classes: cafe, machinery, and traffic) [43; 42]. The tasks are to predict the digit class122

(N=10 classes) and to predict the sound class (N=3 classes). Inputs are presented to the network as123

log mel spectrograms.124

3.2 Experiments125

Pretraining We pretrain with the SimCLR algorithm for 200 epochs with a batch size of 256 and126

a temperature of 0.1. We use a ResNet-18 model with standard modifications for smaller inputs127

(including a smaller stride and no initial maxpool) as used in Tamkin et al. [49]. We use the standard128

SimCLR augmentations for the image datasets [9], and the SpecAug [35] augmentations for the audio129

datasets, which randomly mask out different frequency and time bands, as well as the WaveAug [27]130

augmentations, which alter various properties of the waveform such as the pitch and speed.131

1Note that invariance is not to be confused with the related but distinct property of equivariance, often
discussed as a desirable property of network architectures (e.g. see Fukushima and Miyake [17]; Chen et al. [8]).

2Continuous reduction in contrast eventually produces single-color images, given finite precision images.
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Linear Evaluation We evaluate the quality of the learned representations by training a linear132

softmax classifier on top of the prepool representations. We train for 100 epochs, using the same133

parameters as Tamkin et al. [49], training separate linear classifiers using the same pretrained network134

for each downstream task [9]. Augmentations are applied during training but not evaluation.135

Results As shown in Figure 4 in the appendix, we see an interaction between the two features,136

where dropping out the synthetic feature improves learning of the main image or audio class. Across137

settings, we see regions where both features are still learned well, providing a concrete example of138

how feature dropout can be useful when learning multiple features during contrastive learning.139

4 Viewmaker Networks Succeed Despite Destroying Label Information140

As another point of evidence that good views need not be label-preserving, we consider viewmaker141

networks [49], a generative model which produces augmentations for contrastive learning. Intuitively,142

viewmakers learn a stochastic augmentation policy that makes the contrastive task as hard as possible143

for the encoder. The stochastic augmentations are parameterized as additive perturbations bounded144

by an L1 norm, meaning the viewmaker can alter but not completely destroy the original image.145

Formally, given an input x ∈ N, a viewmaker network Vψ is trained jointly with an encoder Eθ to146

optimize the minimax expression:147

max
ψ

min
θ

L
(
Eθ

(
x+ ϵ

Vψ(x, δ1)

||Vψ(x, δ1)||1

)
, Eθ

(
x+ ϵ

Vψ(x, δ2)

||Vψ(x, δ2)||1

))
Here L is a multiview loss function (e.g. [9; 23]), x is a minibatch of inputs, || · ||1 is the L1 norm, ϵ148

is the distortion budget controlling the strength of the views, and δ1, δ2 ∼ N(0, I) are random inputs149

that enable the viewmaker to learn a stochastic augmentation policy. We clamp the output of the150

viewmaker for images to [0, 1] as in Tamkin et al. [49].151

Viewmaker networks learn to stochastically alter different parts of the input, including task-relevant152

features, meaning that these augmentations are not label-preserving. Nevertheless, as we will see153

shortly, viewmaker networks enable strong performance on multiple downstream tasks, including154

often better performance than expert-designed augmentations. Moreover, this feature dropout155

capability of viewmaker networks may help them learn many features well rather than just the easiest.156

4.1 Experiments and Results157

Experimental Settings We use the same experimental settings as Section 3, however without158

manual dropout of the synthetic features. In one set of experiments, we use the standard augmentations159

from Chen et al. [9], which we henceforth refer to as the expert augmentations. For the experiments160

with viewmaker augmentations, we use a budget of ϵ = 0.05P for the image datasets, and ϵ = 0.125P161

for the audio datasets, where P is the number of pixels in the input.162

Additional naturalistic dataset with 40 attributes To further validate the behavior of viewmaker163

on realistic multi-feature datasets, we consider the CelebA [32] dataset, a large database of faces164

annotated with 40 different features. These features cover a wide spectrum of facial attributes, such as165

“Has Bangs" “Wearing Lipstick" and “Smiling," and enable us to further analyze whether viewmaker166

networks learn a broader range of features than commonly-used augmentations.167

4.2 Results on two-feature datasets168

Qualitative evidence of feature dropout Visually, the viewmaker augmentations seem to stochasti-169

cally alter different aspects of the input, as shown in Figure 1. In addition to modifying the background170

of each input, the viewmaker also selectively modifies the additional synthetic features added to171

each domain: C+Digits: The viewmaker augmentations selectively add pixels to the MNIST digits,172

making it difficult to distinguish which number is present. C+Shapes: The viewmaker augmentations173

sometimes draw squares around the shape in the center, making it difficult to determine the shape174

class. C+Letters: The viewmaker draws letter-like markings on top of the letters, obscuring the letter175

identity and color. Audio: The viewmaker identifies the narrow band corresponding to the speech176

and applies perturbations to it. As can be seen in Figure 1, these label-destroying augmentations are177

quite common, occuring in a sizable fraction of the sampled views.178
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Figure 1: Comparison of viewmaker and expert augmentations on datasets with multiple
features. The viewmaker augmentations adapt to the particular semantics of the input data, and make
targeted perturbations which remove the class-relevant information of the synthetic features (e.g.
occluding the digit, shape, letter, or speech). Despite this, the encoder network is still able to learn
strong representations. Rows (from top): Digits, Shapes, Letters, Audio. Columns (from left): Expert
augmentations, viewmaker augmentations, difference between original and viewmaker augmentation,
rescaled to [0,1]. Center image in each grid is the original. Audio Expert views shown are Spectral
views.
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VM (CIFAR-10) Expert (CIFAR-10) VM (Object) Expert (Object)

CIFAR-10 Only 84.5 86.2 - -

C+Shape 79.8 76.0 100.0 100.0
C+Digit 69.3 58.8 94.3 86.7
C+Letter 71.9 74.8 96.9 94.1

Table 1: Transfer accuracy on different features. Viewmaker (VM) networks are able to achieve
good performance across multiple downstream tasks, while expert views sometimes falter. Networks
are pretrained on the datasets on the left, and transfer accuracy is reported for the different conditions
on the columns. Runs are averages of three seeds (with the exception of CIFAR-10 Only, from [49]).

Speech Accuracy Background Sound Accuracy

Viewmaker Spectral Waveform Viewmaker Spectral Waveform

Speech Only 92.4 97.0 76.7 - - -
Bkgd. Sound Only - - - 100.0 32.64 100.0

Speech + Sound 60.8 10.1 53.6 97.0 47.2 43.3

Table 2: Audio transfer accuracies. Viewmaker networks achieve good performance across multiple
tasks, while expert views sometimes suffer catastrophic drops as another feature is added. Networks
are pretrained on the datasets on the left, and transfer accuracy is reported for the different conditions
on the columns. Runs are averages of three seeds.

Quantitative evidence of feature dropout We also measure this selectivity of features quantita-179

tively in Appendix D.2 and Figure 6. We augment images 1,200 times and observe the resulting180

probability assigned to the correct object class. Two clear modes appear for viewmaker, but not181

expert, augmentations. This corresponds to the fraction of time the viewmaker destroys the overlaid182

feature information (low P(correct object class)) and preserves it (high P(correct object class)).183

Viewmaker succeeds despite destroying label information As shown in Table 1 and Table 2,184

viewmaker networks achieve good accuracy on both tasks, while expert augmentations frequently185

achieve lower performance on one or both. On image tasks, for example, while expert views achieve186

slightly higher performance when classifying the image only, they see a large drop in accuracy when187

the synthetic feature is added. In two of these cases (Shape and Digit) the viewmaker models are188

able to achieve a higher accuracy on both the image and the synthetic feature, while on the third189

(Letters) they achieve slightly lower accuracy on the images but achieve half the error on the synthetic190

object. For the audio experiments the picture is similar—viewmaker avoids catastrophic drops in191

performance learning both features together, achieving the highest accuracy on both, while the expert192

views see larger drops and worse overall performance. Note that the high performance of expert193

views for our control tasks (CIFAR-10/Speech/Sound Only) indicates that the viewmaker views are194

not merely better all-around views, but that they specifically help the model learn multiple features.195

These results provide additional evidence that label-preserving views are not necessary for learning196

good representations—and that feature dropout may improve learning of multiple tasks.197

Figure 2: Viewmaker networks capture a
broader range of features on a naturalistic
dataset. Linear evaluation F1 score on CelebA
for viewmaker and expert views. Attributes are
sorted from lowest to highest accuracy within each
augmentation type.
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Figure 3: We show how label-destroying augmentations can aid learning of other features in a linear
contrastive setting: (a) The correlation of the kth feature of an augmentation pair, shown for d = 2.
Each pair u(i)

k and v
(i)
k have correlated projections onto the ground truth µk direction, representing

the feature conserved across augmentations. (b) Feedforward linear network which computes the
representation fΘ(w). As each feature µk is learned (θk → µk) the representations of the two views
fΘ(u

(i)), fΘ(v
(i)) become more similar, decreasing the contrastive loss.

4.3 Results on naturalistic dataset198

We observe similar qualitative and quantitative results for the CelebA dataset. We train models using199

the same settings in Section 3.2, using a budget of 0.01, and indeed find that viewmakers capture200

a much broader range of features, achieving an average F1 Score of 0.509 over the 40 features,201

compared to 0.334 for the SimCLR augmentations. In addition, the viewmaker augmentations clearly202

capture a wider range of features, as can be seen in Figure 2, especially at the tail of the distribution.203

Furthermore, we see bimodal disruption patterns in over two-thirds of the CelebA features, as shown204

in Figure 9, indicating significant feature dropout across in most attributes. We also show qualitative205

results in Figure 8 demonstrating that the viewmaker alters attributes such as facial features, hair color,206

and background elements in the scene. These results further support the hypothesis that viewmaker207

networks exhibit feature dropout, yet capture a broader range of features than expert views.208

5 Theoretical Analysis of Feature Interactions in Linear Contrastive Setting209

In this section, we analyze a simple linear model that captures the essence of how label-destroying210

augmentations can improve downstream accuracy. We study a setting where the data contains many211

underlying features that are relevant to downstream classification tasks, and where these features are212

preserved to varying degrees across augmentations. We will show that a linear model trained with a213

contrastive objective learns these features, and that adding noise to one feature can speed learning of214

others during gradient descent. One difference between the linear setting we analyze and Section 4 is215

that here add stochastic Gaussian noise to destroy features across augmentations, as opposed to the216

bimodal feature dropout behavior of viewmaker networks seen in Figure 1.217

5.1 Data Model and Setting218

We study a model which consists of data with K distinct features, each corresponding to some219

ground truth unit-vector directions µ1, . . . , µK ∈ Rd. We sample each data point u ∈ RK×d and220

its augmentation (a.k.a. its positive pair or its view) v ∈ RK×d as follows. For k ∈ 1, . . . ,K,221

the kth row of u, which we denote uk, is drawn from the Gaussian distribution N (0, Id). The kth222

row of the augmentation, vk, is drawn from the same distribution, but is correlated with uk in the223

µk-direction (and is otherwise independent in the other directions). The strength of the correlation is224

governed by parameter αk ∈ [0, 1] in the following sense: vTk µk = αku
T
k µk +

√
1− α2

kξ, where225

ξ ∼ N (0, 1). Thus the larger αk, the stronger the correlation in that feature across the two views.226

Figure 3(a) visualizes the correlation of (uk, vk) in an augmented pair. Formally, we can write that227

(uk, vk) ∼ N
(
0,

(
Id αkµkµ

T
k

αkµkµ
T
k Id

))
, for a vector α ∈ [0, 1]k.228
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We will learn a model Θ ∈ RK×d, which represents a collection of K feature extractors, as229

pictured in Figure 3(b). The model Θ, with rows {θk}k∈[K], maps a data point w ∈ RK×d to a230

representation fΘ(w) ∈ RK by computing a score wTk θk for each element in the representation. That231

is, (fΘ(w))k = wTk θk. Our goal is that the model Θ will be useful for a downstream classification232

task which depends on the ground truth features. A good representation will capture ground truth233

features that are correlated across augmentations, such that θk is aligned with µk or −µk.234

Training. We will study the the evolution of Θ as we optimize a standard constrastive learning235

objective using gradient descent [14; 9]. At each round of gradient descent, we sample a fresh batch236

of m data points and their augmentations, (U, V ) := {(u(i), v(i)}i∈[m]. For each i, j ∈ [m], we237

compute a similarity score zij := ⟨fΘ(u(i)), fΘ(v
(j))⟩ =

∑
k(θ

T
k u

(i)
k )(θTk v

(j)
k ) using the dot product238

of their K-dimensional representations. We then compute the logits pij :=
exp(zij)∑
j′ exp(zij′ )

using the239

softmax function, and use the classwise cross entropy loss function L(Θ;U, V ) := − log(pii).240

5.2 Main Result241

We will study gradient descent (GD) on the cross entropy loss, and consider how adding noise to one242

feature affects the learning of the other features. As suggested earlier, we can measure how well we243

learn the kth feature by measuring the alignment of θk with µk or −µk. A natural way to measure244

this alignment is the acute angle between ±µk and θk, given by arccos
(

|µT
k θk|

∥θk∥2

)
. Lemma F.1 in245

Appendix F proves that this quantity directly determines the test accuracy on a natural downstream246

linear classification task.247

Formally, we say we add noise to some feature k′ of a data point v, if for some β ∈ [0, 1), we define248

the new noisy data point ṽ to have coordinates ṽk′ = βvk′ +
√

1− β2ξ, where ξ ∼ N (0, Id), and249

ṽk = vk for k ̸= k′. Thus if (u, v) were a pair generated with the correlation coefficients {αk}k∈[K],250

then the distribution of (u, ṽ) comes from the modified correlation coefficients {α̃}k∈[K] with the251

single modification α̃k′ = βαk. We now present our main theorem:252

Theorem 5.1 (Noise improves feature learning). There exists a universal constant C, such253

that the following holds. Let Θ(t+1) = Θ(t) − η(∇L(U, V ; Θ) + λΘ(t)), and Θ̃(t+1) =254

Θ(t) − η(∇L(U, Ṽ ; Θ) + λΘ(t)), where Ṽ is V with any amount of added noise in the k′ fea-255

ture. This has the effect of changing αk′ to α̃k′ for any α̃k′ < αk′ . Then for any k ̸= k′, if256

|θTk µk| ≤
1−α2

k′
C ∥θk∥, ∥θk′∥3 ≤ |θTk′µk|, and ∥θk∥2 ≤ αk(1−α2

k′ )

C , then for a small enough step size257

η, EU,V
[
arccos

(
|µT

k θ
(t+1)
k |

∥θ(t+1)
k ∥2

)]
> EU,Ṽ

[
arccos

(
|µT

k θ̃
(t+1)
k |

∥θ̃(t+1)
k ∥2

)]
.258

We briefly comment on the three assumptions on Θ in the theorem. The first assumption, |θTk µk| ≤259

1−α2
k′

C ∥θk∥ requires that θk is not too aligned with µk – that is, the result applies to all features k260

that aren’t already learned too well. The second two assumptions are satisfied if the k′th feature has261

been learned to some extent, and the norm of θk and θk′ are small, which can be enforced throughout262

training with ℓ2 regularization.263

The theorem guarantees that at any point in training, if we add noise to the k′th feature, the next step264

of GD learns all other features better than if we didn’t add noise. To validate the implication of this265

result for the complete trajectory of GD, we include simulations in Appendix E. Our experiments266

show that introducing noise part-way through training to dominant features can significantly speed267

the alignment of weak features, with only a small cost to the alignment of the dominant features. We268

prove our result in Appendix F, including intuition and an overview of the ideas in Section F.3.269

6 Related work270

Understanding contrastive and multiview learning Many prior works have laid the foundations271

for current contrastive and multiview learning algorithms [4; 21; 14; 55; 2; 34; 23; 9]. Several272

works analyze contrastive learning to identify important factors [12; 58] or how contrastive models273

differ from supervised learning [57; 15; 26]. HaoChen et al. [22] study contrastive learning using274
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the concept of an augmentation graph. This model assumes the fraction of non-label preserving275

augmentations is “extremely small”; interestingly, we show in practice this can be quite large and still276

yield good performance. Wang et al. [54] theoretically study contrastive learning under an assumption277

of label-preserving augmentations, though they show that such an assumption alone does not suffice278

to learn. Most relevant to our work, Tian et al. [52]; Ericsson et al. [16] study how the information279

shared between different views impacts learning of downstream tasks. We complicate this picture by280

analyzing the foundation model setting where a single model must learn features for multiple tasks281

that are not known in advance. In this setting, we find that label-destroying perturbations, thought to282

be harmful by Tian et al. [52], are useful for preventing one feature from suppressing others.283

Feature suppression Our work is closely connected to the notion of feature suppression [24],284

where the presence of one feature can suppress the learning of others. Several works explore this285

concept in contrastive learning. For example, the original SimCLR paper [9] noted that color jitter286

augmentation was necessary to prevent the network from using only the color profile of the input287

to solve the contrastive task. Followup work [10] characterizes how hyperparameters and dataset288

features affect feature suppression. Other works have attempted to address feature suppression in289

contrastive learning, either via auxiliary losses [29] or by modifying representations in the latent space290

[39]. Our empirically and theoretically investigates feature suppression as an alternate rationale for291

the role of augmentations, as opposed to invariance. We also show that an existing method, viewmaker292

networks [49], can identify and potentially neutralize suppressing features in an interpretable way,293

resulting in better performance than expert augmentations. These insights may also generalize to294

other self-supervised settings, such as language modeling, where multiple features may compete [47].295

Spurious correlations and shortcut features Outside the framing of feature suppression, several296

other works explore how classifiers can learn or make use of unwanted features. Shortcut features297

[18] describe often-simple features (e.g. the average color of an input) which are learned by networks298

at the expense of more salient features (e.g. the object class). This notion is connected to spurious299

correlations [45] in deep learning which have been explored extensively [40; 41; 46; 53; 56], including300

in the context of self-supervised learning [33; 51]. Other works have also performed theoretical301

analysis of how related dynamics affect learning in the supervised setting [30; 44]. Our work suggests302

that viewmaker networks may be a useful tool as well here—both as an interpretability tool to303

visualize the different features a network relies on, and as a way to reduce reliance on particular304

features without completely destroying the information.305

7 Discussion and Conclusion306

We explore the idea that augmentations in contrastive learning function as a sort of “feature dropout.”307

First, we show that in datasets with multiple features, dropping out one set of features improves308

learning of the other features. Second, feature dropout may help explain how viewmaker networks309

can learn a wide range of features well, despite producing augmentations which appear to destroy310

different features in the input. Finally, we theoretically analyze a linear contrastive setting where we311

prove that label-destroying views have a positive effect on contrastive learning if the goal is to avoid312

learning one feature at the expense of others.313

Our work has limitations: for example, while our experiments consider image and audio data, self-314

supervised learning may be applied to a much wider range of modalities [48; 50]. In addition, our315

theoretical analysis considers a linear contrastive setting, whereas current neural networks are highly316

nonlinear. Improving upon both of these fronts is an exciting area for future work. On the other hand,317

understanding augmentations as dropping out easy features suggests possible ways of improving318

the performance of self-supervised learning. For example, a guided version of viewmaker might319

enable prioritizing a subset of important features for learning, or might enable dropping out unwanted320

features such as watermarks, sensitive information, other image artifacts.321

The challenge of learning a broad range of useful features lies at the heart of self-supervised learning.322

We hope our work sheds light on this challenge in contrastive learning, especially as these objectives323

continue to develop and are applied more broadly and at larger scale.324
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A Code release513

We have included our codebase in the supplementary materials and will make it publicly available.514

B Manual feature dropout experiments515

In Figure 4 we plot the linear probing accuracy after contrastive learning with varying rates of dropout516

of the synthetic feature. In all cases, we see a clear tradeoff between features, where dropping out the517

synthetic feature improves learning of the object class.518

(a) Shapes (b) Letters (c) Digits

Figure 4: Linear probing accuracy (y-axis) after contrastive learning with varying rates of dropout of
the synthetic feature (x-axis). In all cases, we see a clear tradeoff between features, where dropping
out the synthetic feature improves learning of the object class.

C Formalization of observation in Section 2519

Definition C.1 (Invariance). A function f : Rm → Rn is invariant to a set of transformations G if520

and only if f ◦ g(x) = f(x) for all x ∈ Rm and for all g ∈ G.521

Definition C.2 (Augmentation collision). An augmentation collision occurs if, for two inputs xa, xb522

and set of transformations G, there exist g(1)a , . . . , g
(na)
a , g

(1)
b , . . . , g

(nb)
b ∈ G for some na, nb ∈ N523

such that g(1)a ◦ . . . ◦ g(na)
a (xa) = g

(1)
b ◦ . . . ◦ g(nb)

a (xb).524

Observation C.3. If there exists an augmentation collision for inputs xa, xb and transformation set525

G, and f is invariant to G, then f(xa) = f(xb).526

Proof. By the definition of an augmentation collision, g(1)a ◦ . . . ◦ g(na)
a (xa) = g

(1)
b ◦ . . . ◦ g(nb)

a (xb).527

By the definition of a function, we have f ◦g(1)a ◦ . . .◦g(na)
a (xa) = f ◦g(1)b ◦ . . .◦g(nb)

a (xb). Applying528

invariance, we obtain f(xa) = f(xb).529

Applying this observation, we observe that if the downstream labeling function f is invariant to a530

class of augmentations, then there cannot be an augmentation collision for inputs with different labels.531

However, common augmentations such as brightness shifts can reduce any image to a black or white532

image, resulting in an augmentation collapse between any two inputs.533

D Additional feature dropout experiments534

D.1 Quantifying the importance of feature dropout535

To assess the importance of label-destroying augmentations to the success of the viewmaker, we536

experiment with a setup where the viewmaker cannot destroy the information in the object class. To537

do this, we compute a mask around the object and zero out any perturbation from the viewmaker538

within that mask. We then perform pretraining and transfer as usual.539

As we report in Table 3, the accuracy of the CIFAR-10 class label drops precipitously, as expected.540

At the same time, the accuracy of two of the other objects remains mostly constant (shape and digits),541

while the accuracy for letters declines modestly (perhaps because the color of the letter is now able to542

suppress the learning of the letter class.543
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Viewmaker (C-10) Mask-Viewmaker (C-10) Viewmaker (Object) Mask-Viewmaker (Object)

C+Shape 79.8 26.0 100.0 95.8
C+Digit 69.3 50.7 94.3 95.0
C+Letter 71.9 23.2 96.9 71.8

Table 3: Experiments with a masked viewmaker which is unable to destroy the object class.
Transfer accuracy on CIFAR-10 (C-10) and the object task (Shape, Digit, or Letter). The Mask-
Viewmaker has its perturbation masked such that it cannot destroy the label of the object. This results
in the features in the object suppressing the CIFAR-10 accuracy, while leaving the object accuracy
relatively unscathed.

Figure 5: Non-label destroying Viewmaker perturbation examples.

D.2 Quantifying the degree of feature dropout544

We perform an exploratory analysis to testing how well different views drop out the features in545

an input. We augment a 1,200 examples (CIFAR-10 image plus an overlaid object) using a given546

augmentation policy (either the expert or viewmaker augmentations). We then encode the model with547

a classifier trained off of the other augmentation policy (i.e. expert for viewmaker augmentations548

or the reverse) in order to test how well the augmentations drop out the features. We use a different549

encoder to see the effects of the augmentations prior to the encoder having a chance to adapt to them.550

We observe a bimodal behavior for the viewmaker views, shown in Figure 6, suggesting that the551

model is adapting to the semantics of the input and has learned to stochastically drop out the simple552

feature some fraction of the time. By contrast, the expert views display no such structure. Using the553

corresponding encoder and views leads to models performing uniformly well, as shown in Figure 7.554

D.3 Additional visualizations for CelebA555

We show feature dropout histograms for CelebA for each of the 40 features in Figure 9. The556

prevalence of bimodal distributions demonstrates a high degree of feature dropout across attributes.557

Histograms shown are viewmaker augmentations on an encoder trained with expert views.558

We also show views and diffs for CelebA in Figure 8. These views show a high degree of sensitivity559

to the input semantics, and appear to modify characteristics such as the background, hair color, and560

facial features.561

E End-to-end Simulations of Linear Setting562

We empirically test the performance of the full trajectory of gradient descent when we add noise to563

the data. We study a setting with one weak feature with correlations coefficient α1 ≤ 0.5, and 50564

dominant features with αk = 1 for k = 2, · · · , 51. We compare two approaches run on the same565

data: in the first approach, we run 150 iterations of GD without adding noise. In the second, we run566

50 iterations of GD without noise, and then add noise to the dominant features for the remaining 100567

iterations.568
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(a) Viewmaker / Shapes (b) Viewmaker / Letters (c) Viewmaker / Digits

(d) Expert / Shapes (e) Expert / Letters (f) Expert / Digits

Figure 6: Viewmaker augmentations stochastically drop out simple features added to the input.
Probability of the correct answer for different augmentations (Viewmaker or Expert) and different
examples from different datasets (Shapes, Letters, Digits). Each histogram shows a single example
from each dataset randomly augmented 1200 times, and the corresponding probabilities of the correct
answer. The viewmaker augmentations display a bimodal structure, indicating that the simple feature
is selectively either destroyed or preserved. The expert augmentations by contrast lack such structure,
reflecting their lack of adaptation to the structure of each input.

(a) Viewmaker / Shapes (b) Viewmaker / Letters (c) Viewmaker / Digits

(d) Expert / Shapes (e) Expert / Letters (f) Expert / Digits

Figure 7: Evaluating views with their respective encoder does not reveal bimodal structure for
viewmaker or expert views. Details are the same as in Figure 6, with the exception that views are
evaluated on their corresponding encoder.

16



Figure 8: Comparison of viewmaker and expert augmentations on CelebA. The viewmaker
augmentations adapt to the particular semantics of the input data, and make targeted perturbations
that alter features such as facial features, hair color, background, and skin tone. Columns (from
left): Expert augmentations, viewmaker augmentations, difference between original and viewmaker
augmentation, rescaled to [0,1]. Center image in each grid is the original.
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Figure 9: Three-quarters of Celeb-A features are dropped out by viewmaker. Accuracy of a
linear classifier trained on expert images and evaluated on 2000 different augmentations of different
images. Over two-thirds of the features exhibit a bimodal structure, indicating feature dropout by the
viewmaker augmentations.

In Figure 10(top), we compare the alignment of Feature 1 (the weak feature) and Feature 2 (one569

of the dominant features) to the ground truth in the two approaches. We observe that adding noise570

consistently accelerates the learning of the weak feature (blue), with little cost to the dominant571

features (red). The affect is consistent among many choices for α1, the correlation coefficient of the572

weak feature. We also plot in Figure 10(bottom) the probability of predicting the correct class (pair)573

of the view under both approaches. We observe that this probability drops sharply when we add noise,574

which we believe is the mechanism for faster learning with noise.575

We remark that we chose to add noise to all the dominant features (instead of a single k′ a in our576

theorem) to accentuate the effect of adding noise. We observed a similar effect, but smaller, when we577

added noise to fewer features, or when there were fewer than 50 dominant features.578

F Full proofs of propositions and theorems579

We begin by stating and proving Lemma F.1 on the downstream classification accuracy.580

Lemma F.1 (Downstream classification accuracy). Suppose we draw labeled data points (u, y) ∈581

RK×d×{+1, 1}, where as before, uk ∼ N (0, Id) for k ∈ [K], and the label is given by sign(uTk µk).582

Then the best linear classifier a ∈ RK on the representations fΘ(u) ∈ RK achieves an test error of583
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Figure 10: Alignment of features with verses without added noise. From left to right: α1 =
0.125, 0.25, 0.375, 0.5. The top plots show the alignment of Features 1 (weak) and 2 (dominant) to
the ground truth; the bottom plots shows the probability of predicting the correct augmentation pair
from the batch. Standard deviation bars are shown for the mean alignment over 200 runs. We used
dimension d = 5, and a batch size of m = 25.

1
π arccos

(
|µT

k θk|
∥θk∥2

)
. That is584

min
a∈RK

Pr
u
[sign(aT fΘ(u)) ̸= sign(µTk uk)] =

arccos
(

|µT
k θk|

∥θk∥2

)
π

. (1)

Thus if θk and µk are orthogonal, then the test error is 50%. If the angle between θk and the ±µk is585

zero, then we achieve perfect classification accuracy.586

Proof. It is easy to see that the best linear classifier a will (up to scaling) be equal to the587

vector sign(µTk θk)ek. Such a classifier predicts the correct sign whenever sign(aT fΘ(u)) =588

sign(µTk θk) sign(θ
T
k uk) equals sign(µTk uk), which occurs exactly a 1 −

arccos

(
|µT

k θk|
∥θk∥2

)
π fraction589

of the time.590

In the rest of this section, we prove our main theoretical result, Theorem 5.1, which shows that591

arccos
(

|µT
k θk|

∥θk∥2

)
decreases faster in expectation during gradient descent if we add noise to the k′592

feature.593

F.1 Notation.594

We let δij denote the δ-function which equals 1 if i = j and 0 otherwise. For a parameter Θ =595

{θk}k∈[K], we let θ∥k := µkµ
T
k θk be the projection of θk in the µk direction. We let θ⊥k = θk − θ

∥
k be596

the projection of θk orthogonal to the feature µk.597

Throughout this section, we consider the ground truth directions to be fixed, and we fix some initial598

correlation vector α. We let Pα denote the distribution from which the pair (u, v) is drawn from599

the Gaussian distribution described in Section 5 with correlation coefficients α. When unspecified,600

the variables U, V are drawn from the distribution Pmα . Since we study what happens when we vary601

αk′ , for x ∈ [0, 1], we use the shorthand Px to denote the distribution Pmα(x), where α(x)k′ = x, and602

α(x)k = αk for all other k.603

We denote Li(Θ;U, V ) = CE({pij}j∈[m], ei) = − log(pii), which we abbreviate by Li. When it is604

clear that we are considering Li for some fixed i, we omit the superscripts on the ith data point or its605

pair. That is, we denote uk := u
(i)
k and vk := v

(i)
k .606

F.2 Preliminaries607

The following facts about of the derivative of the cross entropy loss are easy derived.608

Lemma F.2.
∂Li
∂Θ

=
∑
j

(pij − δij)
∂zij
∂Θ

=
∑
i

∑
j ̸=i

pij

(
∂zij
∂Θ

− ∂zii
∂Θ

)
, (2)

19



where609
∂zij
∂θk

= (u
(i)
k v

(j)
k

T
+ v

(j)
k u

(i)
k

T
)θk. (3)

We will also need the following facts on Gaussian random variables. The first, Stein’s Lemma, is610

well known.611

Lemma F.3 (Stein’s Lemma).
EX∼N (0,σ2)[Xf(X)] = σ2EX∼N (0,σ2)[f

′(X)]. (4)

The next two lemmas are proved in Section F.4.612

Lemma F.4. There exists some constant C such that following holds. If σ ≤ 1
C , and 0 ≤ t ≤ 1

σ , then613

for any c ∈ {0, 1, 2, 3}, and X ∼ N (0, σ2) we have614

EX
[
|X|c exp(t|X|) exp(tX2)

]
≤ Cσc. (5)

If additionally d ∈ {0, 1, 2, 3}, ρ ≤ 1
C and Y ∼ N (0, ρ2), then615

EX
[
|X|c|Y |d exp(t|X|) exp(|XY |)

]
≤ Cσcρd. (6)

Lemma F.5. For some universal constant C, for any σ ∈ [0, 1], t ≥ 0, c ∈ {0, 1, 2, 3, 4}, we have616

EX∼N (0,σ2) [(exp(t|X|)− 1) |X|c] ≤ Ctσc.

F.3 Approach and Lemmas617

Intuition for proof of Theorem 5.1. Our proof involves comparing the gradient of the loss in618

the θk direction, ∇k := ∂
∂θk

L in the setting with noise to the setting without noise. Loosely, our619

goal is to show that for any k, the projection of the this gradient onto the ground truth direction,620

µTk∇k sign(µ
T
k θk), increases when when increase the noise. The main intuition comes from an621

expansion of this gradient in Lemma F.7, which shows that EµTk∇k sign(µ
T
k θk) approximately scales622

with
∑
i(1 − pii). Now observe that pii, the probability of correctly matching the ith view to its623

pair, decreases when we add noise to feature k′. Thus adding noise will increase µTk∇k sign(µ
T
k θk),624

thereby improving the alignment.625

In the remainder of this section, we outline our proof of Theorem 5.1 in this section. We prove all the626

lemmas below in Section F.4.627

To understand EU,V
[
arccos

(
|µT

k θ
(t+1)
k |

∥θ(t+1)
k ∥2

)]
for a small enough step size, we first claim that it suffices628

to understand the expected projection of the gradient with respect to θk in the µk direction and in the629

θk direction. We use the notation ∇k = ∂L(Θ;U,V )
∂θk

.630

Lemma F.6. Let θ+k = θk − η(∇k + λθk). Then631

lim
η→0

1

η

(
EU,V

[
arccos

(
|µTk θ

+
k |

∥θ+k ∥2

)]
− arccos

(
|µTk θk|
∥θk∥2

))
= NEU,V

[
−(µTk θk)(µ

T
k∇k) +

θTk∇k(µ
T
k θk)

2

∥θk∥22

]
,

(7)
where N is some negative value that depends only on θk.632

Now, since we care about the quantity EU,V
[
arccos

(
|µT

k θ
(t+1)
k |

∥θ(t+1)
k ∥2

)]
− EU,Ṽ

[
arccos

(
|µT

k θ̃
(t+1)
k |

∥θ̃(t+1)
k ∥2

)]
633

being positive, it suffices to show that derivative634

d

dx
EU,V∼Px

[
−(µTk θk)(µ

T
k∇k) +

θTk∇k(µ
T
k θk)

2

∥θk∥22

]
,

is negative for all x ∈ [α̃k′ , αk′ ]. Indeed, from Lemma F.6, we have that635

lim
η→0

1

η

(
EU,V∼Pα

k′

[
arccos

(
|µTk θ

+
k |

∥θ+k ∥2

)]
− EU,V∼Pα̃

k′

[
arccos

(
|µTk θk|
∥θk∥2

)])
(8)

= N

∫ αk′

α̃k′

d

dx
EU,V∼Px

[
−(µTk θk)(µ

T
k∇k) +

θTk∇k(µ
T
k θk)

2

∥θk∥22

]
dx, (9)
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so if the derivative is negative for the full range, then the difference in arccosines is positive.636

In the following lemma we compute the derivative of E[∇k] with respect to x.637

Lemma F.7.
d

dx
EU,V∼Px

[∇k] = m
d

dx
EU,V∼Px

[
∂Li
∂θk

]
=

−m

1− x2
θTk′µk′

∑
j ̸=i

EU,V∼Px

[
pijpii

(
θTk′uk′

) (
µTk′u

(i)
k′ − xµTk′v

(i)
k′

)(∂(zij − zii)

∂θk

)]
.

We will analyze this quantity by explicitly taking the expectation with respect to some set of random638

variables. Let S = {Uk, Vk, Uk′ , Vk′} consist of the random variables u
(i)
k′ , u(i)

k , and v
(i)
k′ , v(i)k639

for all i ∈ [m]. Define qij to be the logits when all variables in S are set to 0 (Thus explicitly,640

qij =
exp

(∑
k̃ ̸=k,k′ θ

T
k̃
u
(i)

k̃
θT
k̃
v
(j)

k̃

)
∑

j′ exp
(∑

k̃ ̸=k,k′ θT
k̃
u
(i)

k̃
θT
k̃
v
(j′)
k̃

) ). We will use the notation j ∼ q to denote the distribution on641

[m] with mass qij on j.642

Let643

h(S) :=
(
θTk′uk′

) (
µTk′u

(i)
k′ − xµTk′v

(i)
k′

)(∂(zij − zii)

∂θk

)
, (10)

and644

h1(S) =
(
θTk′uk′

) (
(1− x2)µTk′u

(i)
k′

)
2αk

(
(µTk uk)(θ

∥
kuk)µ

T
k

)
, (11)

which are the terms that appear in the right hand side of Lemma F.7 after piipij . Observe that

ES [h(S)− h1(S)] = 0.

The following four lemmas serve to bound d
dxES

[
µTk∇k

]
and d

dxES
[
θTk∇k

]
. We call the terms of645

the form Epiipij(h(S) − h1(S)) “junk” terms, and our goal will be to show that these terms are646

small. We will control more closely the terms of the form Epiipij(h1(S)).647

Lemma F.8 (Junk Terms for µk term.). If ∥θk∥ ≤ 1 and ∥θk′∥ ≤ 1, then for some universal constant648

C649 ∣∣ES [piipijµTk (h(S)− h1(S))
]∣∣ ≤ Cqiiqij

(
∥θk′∥3∥θk∥3 + ∥θ∥k′∥∥θk∥

3 + αk

(
∥θk′∥3∥θ∥k∥

))
.

Lemma F.9 (Good Term for µk term.). If ∥θk∥ ≤ 1 and ∥θk′∥ ≤ 1, then for some universal constant650

C651 ∣∣ES [piipijµTk h1(S)
]∣∣ ≥ 2αk(1− x2)qiiqij

(
∥θ∥k′∥∥θ

∥
k∥
) (

1− C(∥θk′∥2 + ∥θk∥2)
)
.

Plugging these two lemmas into Lemma F.7 yields the following corollary.652

Corollary F.9.1 (Total µk term.). If for a sufficiently large constant C, |θTk µk| ≤ 1−α2
k′

C ∥θk∥,653

∥θk′∥3 ≤ |θTk′µk|, and ∥θk∥2 ≤ αk(1−α2
k′ )

C , then654

(µTk θk)
d

dx
EPx

[
µTk∇k

]
≥ m

2
EU,V \S

∑
i,j

qiiqij2αk∥θ∥k′∥
2∥θ∥k∥

2

 .

Lemma F.10 (Junk Terms for θk term.). If ∥θk∥ ≤ 1 and ∥θk′∥ ≤ 1, then for some universal constant655

C656 ∣∣ES [piipijθTk (h(S)− h1(S))
]∣∣ ≤ Cqiiqij

(
∥θk′∥3∥θk∥4 + ∥θ∥k′∥∥θk∥

4 + αk

(
∥θk′∥3∥θk∥∥θ∥k∥+ ∥θ∥k′∥∥θk∥

3∥θ∥k∥
))

.

Lemma F.11 (Good Term for θk term.). If ∥θk∥ ≤ 1 and ∥θk′∥ ≤ 1, then for some universal constant657

C658 ∣∣ES [piipijθTk h1(S)
]∣∣ ≤ (1− x2)2αkqiiqij

(
∥θ∥k′∥∥θ

∥
k∥

2
) (

1 + C(∥θk′∥2 + ∥θk∥2)
)
.
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Plugging these two lemmas into Lemma F.7 yields the following corollary.659

Corollary F.11.1 (Total θk term.). If for a sufficiently large constant C, ∥θ∥k∥ ≤ 1−x2

C ∥θk∥, ∥θk′∥3 ≤660

∥θ∥k′∥, ∥θk∥2 ≤ αk(1−x2)
C , then661

(µTk θk)
2

∥θk∥2

∣∣∣∣ ddxEPx

[
θTk∇k

]∣∣∣∣ ≤ m

2
EU,V \S

∑
i,j

qiiqijαk∥θ∥k′∥
2∥θ∥k∥

2

 .

Combining Corollaries F.9.1 and F.11.1, we obtain the following lemma.662

Lemma F.12. If for a sufficiently large constant C, ∥θ∥k∥ ≤ 1−x2

C ∥θk∥, ∥θk′∥3 ≤ ∥θ∥k′∥, ∥θk∥2 ≤663

αk(1−x2)
C , then664

EU,V∼Px

[
−(µTk θk)(µ

T
k∇k) +

θTk∇k(µ
T
k θk)

2

∥θk∥22

]
< 0. (12)

Theorem 5.1 now follows.665

F.4 Proofs of Lemmas666

To prove the Lemmas F.4 and F.5, we will use the following well-known formula for the moment667

generating function (MGF) of the half-normal distribution.668

Lemma F.13 (MGF of half-normal distribution). The MGF of the half-normal distribution is

EX∼N (0,1)|X>0[e
t|X|] = 2et

2/2Φ(t),

where Φ(t) is the cumulative distribution of a normal random variable.669

Proof of Lemma F.4.

EX
[
|X|c exp(t|X|) exp(tX2)

]
=

1

σ
√
2π

∫ ∞

−∞
|x|c exp(t|x|) exp(tx2) exp

(
− x2

2σ2

)
dx

=

√
1− 2σ2t(
σ√

1−2σ2t

)√
2π

∫ ∞

−∞
|x|c exp(t|x|) exp

− x2

2
(

σ√
1−2σ2t

)2
 dx

=
√
1− 2σ2tEZ∼N (0,r)|Z≥0[Z

c exp(tZ)],

where r = σ√
1−2σ2t

. To evaluate this, we use the MGF of the half-normal distribution in Lemma F.13.670

Thus for some constant C, for all c ∈ {1, 2, 3, 4},671

EX∼N (0,1)|X>0

[
c!|X|cet|X|

]
≤ EX∼N (0,1)|X>0

[
dc

dtc
et|X|

]
≤ C (1 + tc) et

2/2.

So for some constant C (whose value changes throughout this equation), so long as σ ≤ 1
C ,672 √

1− 2σ2tEZ∼N (0,r)|Z≥0[Z
c exp(tZ)] =

√
1− 2σ2tEX∼N (0,1)|Z≥0[r

cZc exp(rtZ)]

≤
√
1− 2σ2tCrc (1 + (tr)c) e(tr)

2/2

≤ Cσc.

This proves the first statement in the lemma. To prove the second, we first take the expectation over673

X , and using the half-Gaussian MGF as before, we obtain674

EXEY
[
|X|c|Y |d exp(t|X|) exp(|XY |)

]
≤ CEY

[
|Y |dσc(1 + (t+ |Y |)c)e(t+|Y |)2/2

]
Now applying the first statement to take the expectation over Y , we obtain675

EY
[
|Y |d(1 + (t+ |Y |)c)e(t+|Y |)2/2

]
≤ Cσcρd.

676
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Proof of Lemma F.5. We prove the lemma by induction on c. Suppose c = 0. Then by plugging in677

the MGF for the half-normal distribution from Lemma F.13, for some constant C, we have678

EX∼N (0,1)|X>0[(e
t|X| − 1)] = 2et

2/2Φ(t)− 1 (13)

≤ 2et
2/2

(
1 + t

2

)
− 1 (14)

≤
(
et

2/2 − 1
)
+ tet

2/2 (15)

≤ Ct, (16)

thus679

EX∼N (0,σ2)[(e
t|X| − 1)] = EX∼N (0,σ2)|X>0[(e

σt|X| − 1)] ≤ Ctσ.

Now for c ≥ 1, by Stein’s Lemma, we have (for a new constant C),680

EX∼N (0,σ2)[|X|c(et|X| − 1)] = EX∼N (0,σ2)[X|X|c−1 sign(X)(et|X| − 1)] (17)

= σ2EX∼N (0,σ2)

[
d

dX

(
|X|c−1 sign(X)(et|X| − 1)

)]
(18)

= σ2EX∼N (0,σ2)

[
(c− 2)

(
|X|c−2(et|X| − 1)

)
+
(
|X|c−1(tet|X|)

)]
(19)

≤ Ctσc+1. (20)

where in the last step we used the inductive hypothesis and Lemma F.4.681

Proof of Lemma F.6. First observe that682

lim
η→0

1

η

(
EU,V

[
arccos

(
|µTk θ

+
k |

∥θ+k ∥2

)]
− arccos

(
|µTk θk|
∥θk∥2

))
= lim
η→0

1

η

(
EU,V

[
arccos

(
|µTk (θk(1− ηλ)− η∇k)|
∥θk(1− ηλ)− η∇k∥2

)]
− arccos

(
|µTk θk|
∥θk∥2

))
= lim
η→0

1

η

(
EU,V

[
arccos

(
|µTk (θk −

η
1−ηλ∇k)|

∥θk − η
1−ηλ∇k∥2

)]
− arccos

(
|µTk θk|
∥θk∥2

))

= EU,V
[
d

dη
arccos

(
|µTk (θk − η∇k)|
∥θk − η∇k∥2

)
(0)

]
,

since limη→0
η

1−ηλ = 0. Now683

d

dη
arccos

(
|µTk (θk − η∇k)|
∥θk − η∇k∥2

)
(0) = arccos′

(
|µTk θk|
∥θk∥2

)
d

dη

(
|µTk (θk − η∇k)|
∥θk − η∇k∥2

)
(0)

= arccos′
(
|µTk θk|
∥θk∥2

)− sign(µTk θk)µ
T
k∇k∥θk∥+ |µTk θk|

θTk ∇k

∥θk∥

∥θk∥22


= N

(
−µTk θkµ

T
k∇k + (µTk θk)

2 θ
T
k∇k

∥θk∥2

)
,

where N = arccos′
(

|µT
k θk|

∥θk∥2

)
1

∥θk∥|µT
k θk|

. The lemma follows by taking the expectation over U, V ,684

and observing derivative of arccos(x) is negative whenever x is positive.685

Proof of Lemma F.7. First observe that by symmetry, we have686

d

dx
EU,V∼Px [∇k] = m

d

dx
EU,V∼Px

[
∂Li
∂θk

]
.

23



To make this expectation easier to analyze, we express the random variable (U(x), V (x)) ∼ Px as687

an interpolation of Gaussians in the coordinate µTk′v
(i)
k′ . Let ξ ∼ N (0, 1), and define (U, V ) ∼ P1,688

such that µTk′v
(i)
k′ = µTk′u

(i)
k′ . For x ∈ [0, 1), define (U(x), V (x)) to have689

µTk′v
(i)
k′ (x) = xµTk′u

(i)
k′ +

√
1− x2ξ, (21)

and otherwise be the same as (U, V ). It is easy to check that (U(x), V (x)) ∼ Px.690

Now691
d

dx
EU,V∼Px

[
∂Li(Θ;U, V )

∂θk

]
= EU,V∼P1,ξ

[
d

dx

∂Li(Θ;U(x), V (x))

∂θk

]
.

Taking the derivative of the cross-entropy loss, we have692

d

dx

∂Li(Θ;U(x), V (x))

∂θk
=

d

dx

∑
j ̸=i

pij

(
∂(zij − zii)

∂θk

)
=
∑
j ̸=i

dpij

dµTk′v
(i)
k′ (x)

dµTk′v
(i)
k′ (x)

dx

∂(zij − zii)

∂θk

=
∑
j ̸=i

−pijpii
dzii

dµTk′v
(i)
k′ (x)

(
µTk′u

(i)
k′ − x√

1− x2
ξ

)(
∂(zij − zii)

∂θk

)
where the variables zij and pij are the similarity scores and the softmaxes from the data (U(x), V (x)).693

Here the first line is by Lemma F.2, and the second line holds by chain rule since ∂zij
∂θk

− ∂zii
∂θk

does694

not depend on v
(i)
k′ . The third line uses the proof of Claim F.14 to take the derivative of pij , and695

Equation 21 to take the derivative of µTk′v
(i)
k′ (x).696

Now we reparameterize µTk′u
(i)
k′ − x√

1−x2
ξ as follows:697

µTk′u
(i)
k′ − x√

1− x2
ξ =

(
1

1− x2

)
µTk′u

(i)
k′ − x

1− x2
µTk′v

(i)
k′ (x).

Plugging in this reparameterization and dzii
dµT

k′v
(i)

k′ (x)
= θTk′µk′θ

T
k′uk′ , we obtain698

d

dx
EU,V∼Px

[
∂Li(Θ;U, V )

∂θk

]
=

−1

1− x2

∑
j ̸=i

EU,V∼Px

[
pijpii

(
θTk′µk′θ

T
k′uk′

) (
µTk′u

(i)
k′ − xµTk′v

(i)
k′

)(∂(zij − zii)

∂θk

)]
.

699

We now prove Lemmas F.8, F.9, F.10, and F.11.700

Notation. Since i is fixed throughout, we drop the (i) superscripts and let uk = u
(i)
k and vk =701

v
(i)
k . We will introduce the following random variables, which are all independent, to simplify the702

exposition:703

• ξj := θTk v
(j)
k for j ̸= i. Thus ξj ∼ N (0, ∥θk∥2).704

• ξ′j := θTk′v
(j)
k′ for j ̸= i. Thus ξ′j ∼ N (0, ∥θk′∥2).705

• ξi := (θ⊥k )
T vk + (θ

∥
k)
T (vk − αkuk). Thus ξi ∼ N (0, ∥θ⊥k ∥2 + (1− α2

k)∥θ
∥
k∥2).706

• ξ′i := (θ⊥k′)
T vk′ . Thus ξ′i ∼ N (0, ∥θ⊥k′∥2∥θ

∥
k′∥2).707

• ζ ′i := (θ
∥
k′)

T (vk′ − αk′uk′). Thus ζ ′i ∼ N (0, (1− α2
k′)∥θ

∥
k′∥2).708

• y = (θ
∥
k)
Tuk. Thus y ∼ N (0, ∥θ∥k∥2).709
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• y′ = (θ
∥
k′)

Tuk′ . Thus y′ ∼ N (0, ∥θ∥k′∥2).710

• ηi := (θ⊥k )
Tuk. Thus ηi ∼ N (0, ∥θ⊥k ∥2).711

• η′i := (θ⊥k′)
Tuk′ . Thus η′i ∼ N (0, ∥θ⊥k′∥2).712

For any such random variable X , we use σ2
X to denote its variance. Observe that713

piipij
qiiqij

=
exp

(
θTk ukθ

T
k vk

)
exp

(
θTk′uk′θ

T
k′vk′

)
Ej′∼q exp

(
θTk ukθ

T
k v

(j′)
k

)
exp

(
θTk′uk′θ

T
k′v

(j′)
k′

) exp
(
θTk ukθ

T
k v

(j)
k

)
exp

(
θTk′uk′θ

T
k′v

(j)
k′

)
Ej′∼q exp

(
θTk ukθ

T
k v

(j′)
k

)
exp

(
θTk′uk′θ

T
k′v

(j′)
k′

) .

We will use the following two claims in the proofs of all four lemmas.714

Claim F.14. For β ∈ {ξj , ξ′j , ξi, ξ′i, ζ ′i, ηi, η′i, x, x′}, let β̄j′ := ∂
∂β

(
θTk ukθ

T
k v

(j′)
k + θTk′uk′θ

T
k′v

(j′)
k′

)
.715

Then716 ∣∣∣∣∂piipij∂β

∣∣∣∣ ≤ piipij
(
|β̄j |+ |β̄i|+ 2Ej′∼q|β̄j′ |

)
.

If additionally γ ∈ {ξj , ξ′j , ξi, ξ′i, ζ ′i, ηi, η′i} and γ ⊥ {β̄j′}j′∈[m], then717 ∣∣∣∣ ∂∂γ ∂piipij
∂β

∣∣∣∣ ≤ piipij
((
|β̄j |+ |β̄i|+ 2Ej′∼q|β̄j′ |

)
(|γ̄j |+ |γ̄i|+ 2Ej′∼q|γ̄j′ |)

)
+ piipij

(
2Ej′∼q|β̄j′ γ̄j′ |+ 2(Ej′∼q|β̄j′ |)(Ej′∼q|γ̄j′ |)

)
.

Proof. By a straightforward quotient-rule computation of the derivative of pijqij , recalling that qij is718

independent of S, we obtain719

∂pij
∂β

= pij
(
β̄j − Ej′∼qβ̄j′pij′

)
.

By applying product to the expression above, we obtain720

∂piipij
∂β

= piipij
(
β̄j + β̄i − 2Ej′∼qβ̄j′pij′

)
.

Taking absolute values and using the fact that pij′ ≤ 1, we obtain the first result.721

Next we take the derivative of pij with respect to both β and γ. Using the expression above for ∂pij∂β ,722

we obtain723

∂

∂γ

∂pij
∂β

= pij
((
β̄j − Ej′∼qβ̄j′pij′

)
(γ̄j − Ej′∼qγ̄j′pij′)− Ej′∼qβ̄j′ γ̄j′pij′ + (Ej′∼qβ̄j′pij′)(Ej′∼qγ̄j′pij′)

)
,

and724

∂

∂γ

∂piipij
∂β

= piipij
((
β̄j + β̄i − 2Ej′∼qβ̄j′pij′

)
(γ̄j + γ̄i − 2Ej′∼qγ̄j′pij′)

)
+ piipij

(
−2Ej′∼qβ̄j′ γ̄j′pij′ + 2(Ej′∼qβ̄j′pij′)(Ej′∼qγ̄j′pij′)

)
.

The second result follows by taking absolute values and the fact that pij′ ≤ 1.725

Claim F.15.
pij
qij

≤ exp
(
|θTk ukθTk v

(j)
k |
)
exp

(
|θTk′uk′θTk′v

(j)
k′ |
)
Ej′∼q

[
exp

(
|θTk ukθTk v

(j′)
k |

)
exp

(
|θTk′uk′θTk′v

(j′)
k′ |

)]
.

Proof. This follows directly from using Jenson’s inequality on the distribution j′ ∼ q to show that726

1

Ej′∼q
[
exp

(
θTk ukθ

T
k v

(j′)
k

)
exp

(
θTk′uk′θ

T
k′v

(j′)
k′

)] ≤ Ej′∼q
[
exp

(
−θTk ukθ

T
k v

(j′)
k

)
exp

(
−θTk′uk′θ

T
k′v

(j′)
k′

)]
≤ Ej′∼q

[
exp

(
|θTk ukθTk v

(j′)
k |

)
exp

(
|θTk′uk′θTk′v

(j′)
k′ |

)]
.

727
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Claim F.16. ∣∣∣∣1− pij
qij

∣∣∣∣ ≤ Zj − 1,

where Zj := exp
(
|θTk ukθTk v

(j)
k |
)
exp

(
|θTk′uk′θTk′v

(j)
k′ |
)
Ej′∼q

[
exp

(
|θTk ukθTk v

(j′)
k |

)
exp

(
|θTk′uk′θTk′v

(j′)
k′ |

)]
.728

Proof. Note that for any x ≥ 0, we have |1− x| ≤ max
(
x− 1, 1

x − 1
)
. By Claim F.15, pijqij − 1 is729

at most the desired value given in this claim.730

Now731

qij
pij

=
Ej′∼q

[
exp

(
θTk ukθ

T
k v

(j′)
k

)
exp

(
θTk′uk′θ

T
k′v

(j′)
k′

)]
exp

(
θTk ukθ

T
k v

(j)
k

)
exp

(
θTk′uk′θ

T
k′v

(j)
k′

)
≤ exp

(
|θTk ukθTk v

(j)
k |
)
exp

(
|θTk′uk′θTk′v

(j)
k′ |
)
Ej′∼q

[
exp

(
|θTk ukθTk v

(j′)
k |

)
exp

(
|θTk′uk′θTk′v

(j′)
k′ |

)]
.

This yields the claim.732

Proof of Lemma F.8. Expanding h(S)− h1(S), we see that we need to control the following terms:733

1. (a)
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk ukξj

)]∣∣, (b)
∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
µTk ukξj

)]∣∣734

2. (a)
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk ukξi

)]∣∣, (b)
∣∣ES [piipij ((y′ (µTk′uk′ − xµTk′vk′

)) (
µTk ukξi

)]∣∣735

3. (a)
∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk uky

)]∣∣, (b)
∣∣αkES [piipij (y′(−xξ′i))

(
µTk uky

)]∣∣736

4. (a)
∣∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
ξi(vk − v

(j)
k )Tµk

)]∣∣∣737

(b)
∣∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
ξi(vk − v

(j)
k )Tµk

)]∣∣∣738

5. (a)
∣∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
y(vk − v

(j)
k )Tµk

)]∣∣∣739

(b)
∣∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
y(vk − αkuk − v

(j)
k )Tµk

)]∣∣∣740

We begin by bounding the terms where the expression after piipij has two independent mean-0 terms,741

mainly (1a), (2a), (4a). The first step is to apply Stein’s Lemma (Lemma F.3) twice to these two742

terms, which we will call β and γ. Let βγg(S \ {β, γ}) be the terms after piipij . Then we have743

|ES [piipijβγg(S \ {β, γ})]| ≤ σ2
βσ

2
γ

∣∣∣∣ES [∣∣∣∣ ∂∂γ ∂piipij
∂β

∣∣∣∣ |g(S \ {β, γ})|
]∣∣∣∣ .

Next we apply the final result in Claim F.14 to bound the absolute value of
∣∣∣ ∂∂γ ∂piipij∂β

∣∣∣. Once we do744

this, we achieve745

|ES [piipijβγg(S \ {β, γ})]| ≤ σ2
βσ

2
γqiiqijES

Z|g(S \ {β, γ})|
∑

j′,ℓ∈[m]

cj′,ℓ|β̄j′ ||γ̄ℓ|

 ,

where
∑
j′,ℓ∈[m] cj′,ℓ ≤ C for some constant C, and Z :=

piipij
qiiqij

. Finally, we use the bound on Z746

from Claim F.15, and then Lemma F.4 to take the expectation over S, iteratively applying Lemma F.4747

to each variable in S. Thus we have, for some (different) constant C,748

1.
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk ukξj

)]∣∣ ≤ Cqiiqijσ
2
η′i
σ2
ξj
∥θk′∥∥θk∥ =749

Cqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥3 ≤ Cqiiqij∥θk′∥3∥θk∥3.750

2.
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk ukξi

)]∣∣ ≤ Cqiiqijσ
2
η′i
σ2
ξi
∥θk′∥∥θk∥ ≤751

Cqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥3 ≤ Cqiiqij∥θk′∥3∥θk∥3.752
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3.
∣∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
ξi(vk − v

(j)
k )Tµk

)]∣∣∣ ≤ Cqiiqijσ
2
η′i
σ2
ξi
∥θk′∥∥θk∥ ≤753

Cqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥3 ≤ Cqiiqij∥θk′∥3∥θk∥3.754

Now we consider the remaining 7 terms. Here we decompose the expression inside the expectation755

as piipijβg(S \ β), where β ∈ S. We proceed as before, but we only apply Stein’s Lemma once, to756

β. Applying Steins, the expression for ∂piipij∂β given in the first result of Claim F.14, we obtain757

|ES [piipijβg(S \ β)]| ≤ σ2
β

∣∣∣∣ES [∣∣∣∣∂piipij∂β

∣∣∣∣ |g(S \ β)|
]∣∣∣∣ ≤ σ2

βqiiqijES

Z|g(S \ β)|
∑
j′∈[m]

cj′ |β̄j′ |

 ,

(22)
where

∑
j′∈[m] cj′ ≤ C for some constant C, and Z :=

piipij
qiiqij

. Finally, we plug in a bound for Z in758

Claim F.15, an use Lemma F.4 to take the expectation over S, again iteratively over each variable.759

Thus we have, for some (different) constant C,760

1.
∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
µTk ukξj

)]∣∣ ≤ Cqiiqijσ
2
ξj
∥θk∥∥θ∥k′∥ =761

Cqiiqij∥θk∥3∥θ∥k′∥.762

2.
∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
µTk ukξi

)]∣∣ ≤ Cqiiqijσ
2
ξi
∥θk∥∥θ∥k′∥ ≤763

Cqiiqij∥θk∥3∥θ∥k′∥.764

3.
∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
µTk uky

)]∣∣ ≤ Cαkqiiqijσ
2
η′i
∥θk′∥∥θ∥k∥ =765

Cαkqiiqij∥θ⊥k′∥2∥θk′∥∥θ
∥
k∥ ≤ Cαkqiiqij∥θk′∥3∥θ∥k∥.766

4.
∣∣αkES [piipij (y′(−xζ ′i))

(
µTk uky

)]∣∣ ≤ Cαkqiiqijσ
2
ζ′i
∥θk′∥∥θ∥k∥ =767

Cαkqiiqij∥θ∥k′∥2∥θk′∥∥θ
∥
k∥.768

5.
∣∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
ξi(vk − v

(j)
k )Tµk

)]∣∣∣ ≤ Cqiiqijσ
2
ξi
∥θk∥∥θ∥k′∥ ≤769

Cqiiqij∥θk∥3∥θ∥k′∥.770

6.
∣∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
x(vk − v

(j)
k )Tµk

)]∣∣∣ ≤771

Cαkqiiqijσ
2
η′i
∥θk′∥∥θ∥k∥ = Cαkqiiqij∥θ⊥k′∥2∥θk′∥∥θ

∥
k∥ ≤ Cαkqiiqij∥θk′∥3∥θ∥k∥.772

7.
∣∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
x(vk − αkuk − v

(j)
k )Tµk

)]∣∣∣ ≤773

Cqiiqijσ
2
x∥θk∥∥θ

∥
k′∥ = Cqiiqij∥θ∥k∥2∥θk∥∥θ

∥
k′∥.774

Combining the bounds on these 10 terms proves the lemma:775 ∣∣ES [piipijµTk (h(S)− h1(S))
]∣∣ ≤ Cqiiqij

(
∥θk′∥3∥θk∥3 + ∥θ∥k′∥∥θk∥

3 + αk

(
∥θk′∥3∥θ∥k∥

))
.

776

Proof of Lemma F.10. The proof of Lemma F.10 is nearly identical, besides some differences in the777

terms we need to bound. We list them below:778

1. (a)
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk ukξj

)]∣∣ (b)
∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
θTk ukξj

)]∣∣779

2. (a)
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk ukξi

)]∣∣ (b)
∣∣ES [piipij ((y′ (µTk′uk′ − xµTk′vk′

)) (
θTk ukξi

)]∣∣780

3. (a)
∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk uky

)]∣∣ (b)
∣∣αkES [piipij (y′ (µTk′uk′ − xµTk′vk′

))
(ηiy)

]∣∣781

4.
∣∣αkES [piipij (y′ (−xζ ′i))

(
θTk uky

)]∣∣782
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We use the same approach as before. For the terms (1a) and (2a) we apply Stein’s Lemma to (η′i, ξj)783

and (η′i, ξi) respectively. For (1b), (2b), (3a) and (3b) and (4), we apply Stein’s Lemma to ξj , ξi, η′i,784

ηi, and ξ′i respectively. Using Claim F.15 and then Lemma F.4 as before, we obtain the following785

result:786

1.
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk ukξj

)]∣∣ ≤ Cqiiqijσ
2
η′i
σ2
ξj
∥θk′∥∥θk∥∥θk∥ =787

Cqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥4 ≤ Cqiiqij∥θk′∥3∥θk∥4.788

2.
∣∣ES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk ukξi

)]∣∣ ≤ Cqiiqijσ
2
η′i
σ2
ξi
∥θk′∥∥θk∥∥θk∥ ≤789

Cqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥4 ≤ Cqiiqij∥θk′∥3∥θk∥4.790

3.
∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
θTk ukξj

)]∣∣ ≤ Cqiiqijσ
2
ξj
∥θk∥∥θk∥∥θ∥k′∥ =791

Cqiiqij∥θk∥4∥θ∥k′∥792

4.
∣∣ES [piipij (y′ (µTk′uk′ − xµTk′vk′

)) (
θTk ukξi

)]∣∣ ≤ Cqiiqijσ
2
ξi
∥θk∥∥θk∥∥θ∥k′∥ ≤793

Cqiiqij∥θk∥4∥θ∥k′∥794

5.
∣∣αkES [piipij (η′i (µTk′uk′ − xµTk′vk′

)) (
θTk uky

)]∣∣ ≤ Cαkqiiqijσ
2
η′i
∥θk′∥∥θk∥∥θ∥k∥ =795

Cαkqiiqij∥θ⊥k′∥2∥θk′∥∥θk∥∥θ
∥
k∥796

6.
∣∣αkES [piipij (y′ (µTk′uk′ − xµTk′vk′

))
(ηiy)

]∣∣ ≤ Cαkqiiqijσ
2
ηi∥θk∥∥θ

∥
k′∥∥θ

∥
k∥ =797

Cαkqiiqij∥θ⊥k ∥2∥θk∥∥θ
∥
k′∥∥θ

∥
k∥.798

7.
∣∣αkES [piipij (y′ (−xζ ′i))

(
θTk uky

)]∣∣ ≤ Cαkqiiqijσ
2
ζ′i
∥θk′∥∥θk∥∥θ∥k∥ ≤799

Cαkqiiqij∥θ∥k′∥2∥θk′∥∥θk∥∥θ
∥
k∥.800

Combining the bounds on these 7 terms, proves the lemma:801 ∣∣ES [piipijθTk (h(S)− h1(S))
]∣∣ ≤ Cqiiqij

(
∥θk′∥3∥θk∥4 + ∥θ∥k′∥∥θk∥

4 + αk

(
∥θk′∥3∥θk∥∥θ∥k∥+ ∥θ∥k′∥∥θk∥

3∥θ∥k∥
))

.

802

We now prove the lemmas on the non-junk terms.803

Proof of Lemma F.9.

ES
[
piipij

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2µTk ukαk(θ

∥
k)
Tuk

)]
= ES

[
qiiqij

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2µTk ukαk(θ

∥
k)
Tuk

)]
+ ES

[
(piipij − qiiqij)

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2µTk ukαk(θ

∥
k)
Tuk

)]
= 2αkqiiqijθ

T
k′µk′θ

T
k µk + 2αkqiiqijES

[(
piipij
qiiqij

− 1

)(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
µTk uk(θ

∥
k)
Tuk

)]
.

Now by Claim F.16, we have
∣∣∣piipijqiiqij

− 1
∣∣∣ ≤ ZiZj − 1 (where the variable’s Zi, Zj are defined in the804

Claim F.16) so805 ∣∣∣∣ES [(piipij
qiiqij

− 1

)(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
µTk uk(θ

∥
k)
Tuk

)]∣∣∣∣ ≤ ES
[
(ZiZj − 1)

∣∣∣(θ∥k′)Tuk′uTk′µk′ ∣∣∣ ∣∣∣µTk uk(θ∥k)Tuk∣∣∣]
≤ C

(
∥θk∥2 + ∥θk′∥2

)
∥θ∥k′∥∥θ

∥
k∥.

Here the second inequality follows from applying Lemma F.5 first, and then Lemma F.4 repeatedly for806

the remainder of the variables in S. This proves the lemma. Note that we need to apply Lemma F.5807

several times to a single variable X ∈ S. Indeed we can write808

(ZiZj − 1)
∣∣∣(θ∥k′)Tuk′uTk′µk′ ∣∣∣ ∣∣∣µTk uk(θ∥k)Tuk∣∣∣ = (Eℓ exp(|tℓX|)Sℓ − 1)B|X|c

= (EℓSℓ(exp(|tℓX|)− 1))B|X|c + (EℓSℓ − 1))B|X|c
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for some distribution on ℓ, and for some terms Sℓ, tℓ, and B that are independent of X , and c ∈809

{0, 1, 2}. Then to take the expectation of this term over X , we first apply Lemma F.5 to on X to the810

first term, and iteratively apply Lemma F.5 to the random variables appearing in the next terms.811

Proof of Lemma F.11.

1

1− x2
ES
[
piipijθ

T
k h1(S)

]
= ES

[
piipij

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2(θ

∥
k)
Tukαk(θ

∥
k)
Tuk

)]
= ES

[
qiiqij

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2αk((θ

∥
k)
Tuk)

2
)]

+ ES
[
(piipij − qiiqij)

(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
2αk((θ

∥
k)
Tuk)

2
)]

= 2αkqiiqijθ
T
k′µk′∥θ

∥
k∥

2 + 2αkqiiqijES
[(

piipij
qiiqij

− 1

)(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
(θ

∥
k)
Tuk

)2]
.

Now by Claim F.16, we have
∣∣∣piipijqiiqij

− 1
∣∣∣ ≤ ZiZj − 1, so812 ∣∣∣∣ES [(piipij

qiiqij
− 1

)(
(θ

∥
k′)

Tuk′u
T
k′µk′

)(
(θ

∥
k)
Tuk

)2]∣∣∣∣ ≤ ES
[
(ZiZj − 1)

∣∣∣(θ∥k′)Tuk′uTk′µk′ ∣∣∣ ((θ∥k)Tuk)2]
≤ C

(
∥θk∥2 + ∥θk′∥2

)
∥θ∥k′∥θ

∥
k∥

2,

Again the second inequality follows from applying Lemma F.5 first (several times as described in the813

previous lemma), and then Lemma F.4 repeatedly for the remainder of the variables in S. Taking814

absolute values proves the lemma.815

816
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