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Abstract

Black-box optimization has gained great attention for its success in recent ap-1

plications. However, scaling up to high-dimensional problems with good query2

efficiency remains challenging. This paper proposes a novel Rank-1 Lattice Tar-3

geted Sampling (RLTS) technique to address this issue. Our RLTS benefits from4

random rank-1 lattice Quasi-Monte Carlo, which enables us to perform fast local5

exact Gaussian processes (GP) training and inference with O(n log n) complexity6

w.r.t. n batch samples. Furthermore, we developed a fast coordinate searching7

method with O(n log n) time complexity for fast targeted sampling. The fast8

computation enables us to plug our RLTS into the sampling phase of stochastic op-9

timization methods. This improves the query efficiency while scaling up to higher10

dimensional problems than Bayesian optimization. Moreover, to construct rank-111

lattices efficiently, we proposed a closed-form construction. Extensive experiments12

on challenging benchmark test functions and black-box prompt fine-tuning for13

large language models demonstrate the query efficiency of our RLTS technique.14

1 Introduction15

Black-box optimization has gained great attention for its success in many recent applications, such as16

prompt fine-tuning for large language models Sun et al. [2022b,a], policy search for robot control17

and reinforcement learning Choromanski et al. [2019], Lizotte et al. [2007], Barsce et al. [2017],18

Salimans et al. [2017], automatic hyper-parameters tuning in machine learning problems Snoek19

et al. [2012], black-box architecture search in engineering design Wang and Shan [2007], drug20

discovery Negoescu et al. [2011] and accelerated simulation for scientific discovery Maddox et al.21

[2021], Hernández-Lobato et al. [2017], etc. Many efforts have been made for black-box optimization22

in the literature, including Bayesian optimization (BO) methods Srinivas et al. [2010], Gardner et al.23

[2017], Nayebi et al. [2019], stochastic optimization methods like evolution strategies (ES) Back et al.24

[1991], Hansen [2006], Wierstra et al. [2014b], Lyu and Tsang [2021] and genetic algorithms Srinivas25

and Patnaik [1994], Mirjalili and Mirjalili [2019].26

Bayesian optimization usually builds a global (GP) model as a surrogate and provides queries by27

optimizing some acquisition functions Snoek et al. [2012]. Although BO achieves good query28

efficiency for low-dimensional problems, it often fails to handle high-dimensional problems with29

large sample budgets Eriksson et al. [2019]. The computation of GP with a large number of samples30

itself is expensive, and the internal optimization of the acquisition functions is challenging. Recently,31

Müller et al. [2021], Nguyen et al. [2022] builds a GP model for both the function value and the32

gradient and performs local Bayesian optimization. Although these methods improve the scalability33

of global BO, they usually cannot scale up to five hundred dimensional complex problems. This may34

be because the learned gradient heavily depends on the accuracy of the GP model. However, achieving35
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an accurate GP model is challenging for high-dimensional problems. A slightly misspecified GP36

model may lead to a wrong estimated gradient due to the highly nonlinear acquisition functions.37

On the other line, stochastic optimization methods, e.g., ES Rechenberg and Eigen [1973], Nesterov38

and Spokoiny [2017], natural evolution strategies (NES) Wierstra et al. [2014b], CMAES Hansen39

[2006], and implicit natural gradient optimizer (INGO) Lyu and Tsang [2021], typically sampling form40

Gaussian distribution and approximate the (natural) gradient for the update of the Gaussian distribution41

parameters for continuous optimization. These methods can scale up to higher dimensional problems42

compared with BO. However, the gradient approximation may have a large variance, especially for43

high-dimensional problems. Thus, the update direction may not be toward the descent direction,44

leading to inferior query efficiency.45

To address high-dimensional black-box problems with good query efficiency, we propose a novel46

Rank-1 Lattice Targeted Sampling (RLTS) technique. Our RLTS has a O(n log n) time complexity,47

which is fast for plugging into the sampling phase of stochastic optimization methods. In this way,48

our methods can improve the query efficiency of stochastic optimization methods while addressing49

higher-dimensional problems than BO. Our contributions are summarized as follows:50

• We propose a novel Rank-1 Lattice Targeted Sampling (RLTS) technique. Our RLTS builds51

a local GP with a random rank-1 lattice, which enables fast exact GP training and inference52

with O(n log n) time complexity w.r.t. n batch samples. Furthermore, we develop a fast53

coordinate search that enables target sampling with O(n log n) time complexity.54

• We propose a closed-form subgroup rank-1 lattice by considering the dual lattice regarding55

the integral approximation error of functions in Korobov space. Our rank-1 lattice has a56

more regular pattern of approximation error. With our closed-form subgroup rank-1 lattice,57

we can perform the target sampling efficiently. Moreover, our closed-form subgroup rank-158

lattice may be potential for other applications beyond black-box optimization.59

• We plug our RLTS into the sampling phase at each step of stochastic optimization methods to60

improve query efficiency. In this way, during the optimization procedure, our RLTS sampling61

from an updated promising region instead of a fixed one at each step. This approach can62

scale up to address higher dimensional problems than most Bayesian optimization.63

• Empirically, extensive experiments on high-dimensional challenging benchmark test func-64

tions and practical black-box prompt fine-tuning for large language models demonstrate the65

effectiveness of our RLTS technique.66

2 Background67

2.1 Black-box Optimization68

Given a proper function f(x) : Rd → R such that f(x) > −∞, black-box optimization is to69

minimize f(x) by using function queries only. Black-box stochastic optimization methods typically70

employ a sampling distribution p(x;θ) and optimizes the parameter of the distribution regarding the71

relaxed problem: J(θ) := Ep(x;θ)[f(x)].72

Evolution Strategies (ES) Rechenberg and Eigen [1973], Nesterov and Spokoiny [2017] employ a73

Gaussian distribution N (µ, σ2I) for sampling. The approximate gradient descent update is given as74

µt+1 = µt −
β

nσ2

n∑
i=1

ϵif(µt + σϵi), (1)

where ϵi ∼ N (0, I) and β denotes the step-size. The ES method performs the approximate first-order75

gradient descent update. As a result, the convergence of ES may be slow. Several second-order76

gradient descent methods have been proposed to improve convergence. Wierstra et al. [2014a]77

proposed the natural evolution strategies (NES), which perform the approximate natural gradient78

update. When a Gaussian distribution N (µ,Σ) is employed for sampling. The update rule of NES is79

given in Eq.(2) and Eq.(3):80

Σt+1 = Σt −
β

n

n∑
i=1

f(µt +Σ
1
2
t ϵi)

(
Σ

1
2
t ϵiϵ

⊤
i Σ

1
2
t −Σt

)
(2)

µt+1 = µt −
β

n

n∑
i=1

f(µt +Σ
1
2
t ϵi)Σ

1
2
t ϵi. (3)
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where ϵi ∼ N (0, I) and Σ
1
2 = Σ

1
2⊤ and Σ

1
2Σ

1
2 = Σ. The NES takes advantage of second-order81

gradient information, which improves the convergence of ES.82

Lyu and Tsang [2021] proposed an implicit natural gradient optimizer (INGO) for black-box opti-83

mization, which provides an alternative way to compute the natural gradient update. The update rule84

of INGO is given as in Eq.(5) and Eq.(6):85

Σ−1
t+1 = Σ−1

t + β

n∑
i=1

f(xi)− µ̂

nσ̂

(
Σ−1

t (xi−µt)(xi−µt)
⊤Σ−1

t −Σ−1
t

)
(4)

= Σ−1
t + β

n∑
i=1

f(xi)− µ̂

nσ̂

(
Σ−1

t (xi−µt)(xi−µt)
⊤Σ−1

t

)
(5)

µt+1 = µt − β

n∑
i=1

f(xi)− µ̂

nσ̂
(xi − µt). (6)

where xi ∼ N (µt,Σt), µ̂ =
∑n

i=1 f(xi)

n and σ̂ denotes the standard deviation of f(xi). The86

normalization f(xi)−µ̂
σ̂ is employed to reduce the variance.87

CMAES Hansen [2006] provides a more sophisticated update rule and performs well on a wide range88

of black-box optimization problems. All the above stochastic optimization methods rely on sampling.89

Thus, the sampling phase is vitally important. And a better sampling technique is promising to90

achieve further improvement.91

2.2 Rank-1 Lattice92

A rank-1 lattice is a particular case of the general lattice with a simple operation for point-set93

construction. It can be used as Quasi-Monte Carlo for integral approximation Sloan [2000], Dick94

et al. [2013]. A rank-1 lattice point set P = {x1, · · · ,xn} can be constructed as Eq.(7):95

xi :=
iz mod n

n
, i ∈ {1, · · · , n}, (7)

where z ∈ Zd is the so-called generating vector, and mod denotes the modulo operation.96

Korobov [1960] proposes a rank-1 lattice with the generating vector having a particular form as Eq.(8)97

z := [1, k, · · · , kd−1] mod n, (8)

where k is searching over {1, · · · , n−1} to reduce approximation error.98

Sloan and Reztsov [2002] further proposed a component-by-component searching method for the99

generating vector without assuming the Korobov form in Eq. (8). Recently, Lyu et al. [2020] proposed100

a simple closed-form subgroup-based rank-1 lattice by considering the Toroidal distance in the primal101

lattice space. The generating vector is given as Eq.(9)102

z = [g0, g
n−1
2d , g

2(n−1)
2d , · · · , g

(d−1)(n−1)
2d ] mod n, (9)

where g denotes the primitive root modulo the prime number n.103

In this paper, we proposed a closed-form subgroup rank-1 lattice by ensuring the approximation error104

terms of the dual lattice has a more regular pattern. In contrast, Lyu et al. [2020] construct the rank-1105

lattice evenly spaced in the primal lattice space.106

3 Fast Rank-1 Lattice Targeted Sampling107

3.1 Random Rank-1 Lattice Quasi-Monte Carlo Gaussian Sampling108

We first show how to construct random rank-1 lattice Quasi-Monte Carlo Gassuain samples. These109

samples enable us to perform the black-box stochastic optimization listed in section 2.1. More110

importantly, the nice property of the structure of these samples facilitates a fast targeted sampling.111

Given a rank-1 lattice point set P = {x1, · · · ,xn}, we first construct a random shifted rank-1112

lattice Dick et al. [2013] as Eq. (10),113

x̄i = xi +∆ mod 1 ∀i ∈ {1, · · · , n}, (10)
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(a) Dual Subgroup Rank-1 Lattice Sampling
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(b) i.i.d. Gaussian Sampling
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(c) Dual Subgroup Rank-1 Lattice Sampling
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(d) i.i.d. Gaussian Sampling

Figure 1: Illustration of the our Dual Subgroup Rank-1 Lattice sampling and i.i.d. Gaussian sampling.

where ∆ ∼ Uniform[0, 1]d, and the mod 1 operation denotes a modulo operation that takes the114

non-negative fractional part of the input number element-wise. Then, we can construct random QMC115

Gaussian samples as Eq. (11)116

ϵi = Φ−1(x̄i) ∀i ∈ {1, · · · , n}, (11)

where Φ−1(·) computes the inverse cumulative density function of the standard Gaussian distribution117

w.r.t. the input element-wise. Then, the samples for Gaussian N (µ,Σ) can be constructed as follows:118

Xi = µ+Σ
1
2 ϵi. (12)

An illustration of the random QMC Gaussian samples constructed by our closed-form rank-1 lattice119

is shown in Figure 1. We can see that our rank-1 lattice QMC Gassuan samples are spaced more120

evenly w.r.t. the density.121

3.2 Fast Exact GP Training and Inference with Rank-1 Lattice122

This subsection will show how to perform fast exact GP training and inference using our rank-1123

lattice samples with a O(n log n) time complexity w.r.t n samples.124

Let Kθ denotes the Gram kernel matrix, i.e., Kθ = [kθ(xi,xj)]1≤i,j≤n, the marginal log-likelihood125

of a GP model Williams and Rasmussen [2006] can be formulated as Eq. (13)126

L(p(y|X)) = −1

2
y⊤(Kθ + σ2I)−1y − 1

2
log(

∣∣Kθ + σ2I
∣∣)− n

2
log 2π. (13)

The standard GP model needs a O(n3) time complexity to compute the marginal log-likelihood,127

which is prohibitive for fast training as an inner step for stochastic optimization.128
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In this paper, we construct the random QMC samples based on rank-1 lattice, which enables us to129

perform fast GP training. Specifically, we build the GP model with the rank-1 lattice as the training130

data instead of the Gaussian samples. Define modulo kernel as Eq. (14):131

k(xi,xj) := k∆(ϕ(xi − xj)), (14)

where k∆(·) is a shift-invariant kernel, and the function ϕ(xi − xj) is given as Eq. (15)132

ϕ(xi − xj) = min
(
(xi − xj) mod 1,1− (xi − xj) mod 1

)
, (15)

where operation min(·, ·) outputs the minimum among its two inputs element-wise, and mod 1 output133

the positive fractional parts of its inputs element-wise.134

For a GP model with a modulo kernel defined in Eq.(14), the Gram kernel matrix is a circulant matrix135

thanks to the properties of rank-1 lattice. To be concrete, for rank-1 lattice data, we have Eq.(16)136

k(xi,xj) = k(xi+1,xj+1) = k∆

(
min

( (i− j)z mod n

n
,1− (i− j)z mod n

n

))
. (16)

Then the marginal log-likelihood L(p(y|X)) can be computed with a O(n log n) time complexity by137

Fast Fourier Transform. Let k∆
1 be the shift-invariant kernel vector with elements given as Eq. (17):138

k∆i = k∆

(
min

( (i− 1)z mod n

n
,1− (i− 1)z mod n

n

))
,∀i ∈ {1, · · · , n}. (17)

Then, we have the fast computation as Eq.(18) and Eq.(19):139

y⊤(Kθ + σ2I)−1y = y⊤ifft(fft(y)/fft(k∆)) (18)

log(
∣∣Kθ + σ2I

∣∣) = n∑
i=1

log(λi + σ2) = 1⊤fft(k∆), (19)

where ifft(·), fft(·) denotes the inverse FFT and FFT operation, respectively, the operator / in Eq.(18)140

performs divide element-wise. And λi in Eq.(19) denotes the eigenvalue of Gram kernel matrix Kθ.141

For inference, GP model has closed-form posterior mean and variance Williams and Rasmussen142

[2006] given as Eq.(20) and Eq.(21) :143

m̂(x) = kθ(x)
⊤(Kθ + σ2I)−1y (20)

σ̂2(x) = kθ(x,x)− kθ(x)
⊤
(Kθ + σ2I)−1kθ(x), (21)

where kθ(x) = [kθ(x,x1), ..., kθ(x,xn)]
⊤.144

With rank-1 lattice input data, we can perform fast inference by Eq.(22) and Eq.(23):145

m̂(x) = kθ(x)
⊤ifft(fft(y)/fft(k∆)) (22)

σ̂2(x) = kθ(x,x)− kθ(x)
⊤ifft(fft(kθ(x))/fft(k∆)). (23)

Both the exact GP training and inference benefit from the structure of rank-1 lattice and FFT146

acceleration, which can be performed with a O(n log n) time complexity. A deep learning toolbox,147

e.g., Pytorch, can be used to train the parameters of the kernel.148

3.3 Fast Coordinate Search for Targeted Sampling149

This subsection shows how to perform a fast coordinate search for targeted sampling. A rank-1 lattice150

with n points is contained in a grid {0, 1
n , · · · ,

n−1
n }d. We thus perform a coordinate descent search151

from the index set {0, 1, · · · , n−1}d to minimize the GP posterior mean in Eq.(20).152

Let k(·, ·) = k∆(·) be a shift-invariant kernel with a decomposition structure as Eq. (24):153

k(x∗,x) = k∆(ϕ(x
∗ − x)) = Πd

q=1k∆(ϕ(x
∗
q − xq)), (24)

1The element corresponding to k∆(0) is set to k∆(0) + σ2.
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Algorithm 1 Fast Coordinate Search
Input: Number of iterations T , weight vector w, and generating vector z = [z1, · · · , zd] for
rank-1 lattice X .
Initialization: Initialize x∗ by uniformly sampling from grids {0, 1

n , · · · ,
n−1
n }d.

for t= 1:T do
for q= 1:d do

Compute cq = ifft(fft(kq
∆(0))⊙ fft(k̂

q

∆ ⊙w)) by Eq.(28).
Get the index i∗ of the minimum elements in cq , and set x∗

q =
i∗zq mod n

n .
end for

end for
Return: x∗

where x∗
q , xq denotes the qth element in x∗, x, respectively. We can perform a coordinate search by154

fixing all the components except the qth one as the current working component for index searching.155

Formally, let w = (Kθ +σ2I)−1y. Then, we have the GP posterior mean function given as Eq. (25):156

m̂(x∗) = kq⊤
∆ (x∗

q)
(
k̂
q

∆ ⊙w
)
, (25)

where ⊙ denotes the element-wise product, and kq
∆(x

∗
q) denotes a vector with ith element given as157

kq
∆i = k∆(ϕ(x

∗
q −Xqi)), and Xqi denotes the element in qth-row and ith-column of the rank-1158

lattice matrix X = [x1, · · · ,xn]. The vector k̂
q

∆ denotes the remainder vector with its ith-element159

given as Eq. (26):160

k̂
q

∆i =
1

k∆(ϕ(x∗
q −Xqi))

Πd
q=1k∆(ϕ(x

∗
q −Xqi)). (26)

To optimize the qth component x∗
q of x∗, we fix the other components of x∗ and the corresponding161

vector k̂
q

∆. We find x∗
q by solving the subproblem given in Eq. (27)162

x∗
q = argmin

x∈{0,··· ,n−1}
kq
∆(x)

⊤(k̂q

∆ ⊙w
)
. (27)

Directly enumerate computation of the problem (27) needs a O(n2) time complexity. In our paper,163

we can perform a fast computation with O(n log n) time complexity thanks to the rank-1 lattice164

X . Specially, when X is a rank-1 lattice with the generating vector z = [z1, · · · , zd], then the165

matrix Kq
∆ = [kq

∆(0),k
q
∆(

1zq mod n
n ), · · · ,kq

∆(
(n−1)zq mod n

n )] forms a circulant matrix, and the166

problem (27) can be accelerated via FFT by Eq. (28)167

cq = Kq⊤
∆

(
k̂
q

∆ ⊙w
)
= ifft(fft(kq

∆(0))⊙ fft(k̂
q

∆ ⊙w)), (28)

where fft(·) and ifft(·) denote the FFT and inverse FFT operation. Then, we can achieve x∗
q by the168

index i∗ of the minimum element in vector cq = Kq⊤
∆

(
k̂
q

∆ ⊙w
)
, and set x∗

q =
i∗zq mod n

n .169

We present the algorithm of the fast coordinate search in Algorithm 1. The Algorithm 1 return a170

targeted sample with a small prediction value in a fast manner. We can use the targeted sample171

to accelerate the stochastic optimization. Finally, we present our overall stochastic optimization172

algorithm in the Algorithm 2. We choose INGO Lyu and Tsang [2021] as our backbone algorithm173

because of its simple implementation and fewer hyperparameters. One can plug our RLTS into other174

stochastic optimization methods to improve query efficiency.175

3.4 Closed-form Rank-1 Lattice Construction176

This subsection will show how to construct our closed-form dual subgroup rank-1 lattice for fast177

sampling. For ∀x,y ∈ [0, 1]d and α > 1, define a reproducing kernel as Eq. (29)178

K(x,y) =
∑
k∈Zd

γα(k) exp
(
2πik⊤(x− y)

)
, (29)
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Algorithm 2 Rank-1 Lattice Targeted Sampling
Input: Number of Samples n, step-size β and η, number of internal iterations T for Fast Coordinate
Search, and initial variance σ2.
Initialization: Initialize µ0 = 0 and Σ0 = σ2I .
while Termination condition not satisfied do

Sample a shift vector ∆ uniformly from [0, 1]d.
Construct shifted rank-1 lattice X̄ = [x̄1, · · · , x̄n] by Eq.(10).
Construct QMC Gaussian Samples ϵ1, · · · , ϵn by Eq.(11).
Set xi = µt +Σ

1
2
t ϵi for i ∈ {1, · · ·n}.

Query the batch observations {f(x1), ..., f(xn)}
Compute σ̂ = std(f(x1), ..., f(xn)).
Compute µ̂ = 1

n

∑n
i=1 f(xi).

Set yi =
f(xi)−µ̂

σ̂ for i ∈ {1, · · ·n}.
Perform fast exact GP training with rank-1 lattice X̄ and y by Eq.(18) and Eq.(19).
Get targeted grid sample x̄∗ by Algorithm 1 with T steps.
Get targeted Gaussian sample x∗ = Φ−1(x̄∗ +∆ mod 1)
Query the observation f(x∗).

Set Σ−1
t+1 = Σ−1

t + β
n

∑n
i=1 yiΣ

− 1
2

t ϵiϵ
⊤
i Σ

− 1
2

t .

Set µt+1 = µt −
β
n

∑n
i=1yiΣ

1
2
t ϵi

if f(x∗) < mini∈{1,··· ,n} f(xi) then
Set µt+1 = (1− η)µt+1 + ηx∗

end if
end while

where i2 = −1 and γα(k) =
∏d

j=1 γα(kj) with γα(k) is given as follows:179

γα(k) =

{
1 if k = 0

|k|−α if k ̸= 0.
(30)

The reproducing kernel Hilbert space (RKHS) associated with the kernel in Eq.(29) is a Korobov180

space, denoted as Hk. Our closed form of the generating vector is given as Eq.(31):181

z = [g0, g
n−1
2d−1 , g

2(n−1)
2d−1 , · · · , g

(d−1)(n−1)
2d−1 ] mod n, (31)

where g denotes the primitive root modulo the prime number n, and (2d−1)|(n−1). Then, our dual182

subgroup rank-1 lattice can be achieved by Eq. (7)183

Given a point set P = {x1, · · · ,xn}, the square worst case integral approximation error for f ∈ Hk184

is defined as Eq.(32):185

e2(Hk;P) = sup
f∈Hk,∥f∥Hk

≤1

∣∣∣ ∫
[0,1]d

f(x)dx− 1

n

n−1∑
j=0

f (xj)
∣∣∣2. (32)

We further show that our rank-1 lattice constructed by Eq. (31) has a regular worst-case error pattern186

in Theorem 1. The proof is given in the Appendix.187

Theorem 1. Let n be a prime number such that (2d− 1)|(n− 1). Suppose the integrand function188

f ∈ Hk, ∥f∥Hk
≤ 1, the square worst-case integral approximation error of rank-1 lattice P189

constructed by Eq.(31) is given as Eq.(33):190

e2(Hk;P) = 1
2n1

⊤(h0 ⊙ · · · ⊙ h2d−2−1− (h1 ⊙ · · · ⊙ hd−1−1)⊙ h0 ⊙ (h−1 ⊙ · · · ⊙ h−(d−1)−1)
)
+ 1

nα ζ(α, 1),

(33)
where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones,191

and hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn ), and F i denotes192

the matrix after permutation of the rows of F such that the jth row of F i equals to the j̃th row of193

F , where j̃ = jg
i(n−1)
2d−1 mod n. And γ = [γ1, · · · , γn]⊤ with γk = 1

nα

(
ζ(α, ki

n ) + ζ(α, n−ki

n )
)

for194

k ∈ {1, · · · , n− 1} and γn = 1 + 2
nα ζ(α, 1), where ζ(·, ·) denotes the Hurwitz zeta function.195
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0 5000 10000 15000 20000 25000 30000
Number of Evaluations

0

5000

10000

15000

20000

25000

Ob
je

ct
iv

e 
Va

lu
e

RLTS
INGO
CMAES

(b) Rastrigin10-dim-50

0 5000 10000 15000 20000 25000 30000
Number of Evaluations

0

100

200

300

400

500

600

700

Ob
je

ct
iv

e 
Va

lu
e

RLTS
INGO
CMAES

(c) Nesterov-dim-50

0 50000 100000 150000 200000 250000 300000
Number of Evaluations

0

1

2

3

4

Ob
je

ct
iv

e 
Va

lu
e

1e7
RLTS
INGO
CMAES

(d) Rosenbrock-dim-500

0 50000 100000 150000 200000 250000 300000
Number of Evaluations

0

50000

100000

150000

200000

250000

Ob
je

ct
iv

e 
Va

lu
e

RLTS
INGO
CMAES

(e) Rastrigin10-dim-500

0 50000 100000 150000 200000 250000 300000
Number of Evaluations

0

1000

2000

3000

4000

5000

6000

7000

Ob
je

ct
iv

e 
Va

lu
e

RLTS
INGO
CMAES

(f) Nesterov-dim-500

Figure 2: Cumulative min objective value v.s. the number of queries on 50-dimensional and 500-
dimensional benchmark test functions.

Remarks: The term H = h0⊙· · ·⊙h2d−2−1−(h1⊙· · ·⊙hd−1−1)⊙h0⊙(h−1⊙· · ·⊙h−(d−1)−1)196

has a regular pattern because of {g0, g
n−1
2d−1 , g

2(n−1)
2d−1 , · · · , g

(d−1)(n−1)
2d−1 , · · · , g

(2d−2)(n−1)
2d−1 } mod n197

forms a subgroup of {1, · · · , n − 1} mod n. According to the Lagrange’s theorem in group198

theory Dummit and Foote [2004], the vector h0 ⊙ · · · ⊙ h2d−2 has n−1
2d−1 different elements.199

4 Experiments200

We replace the i.i.d. Gaussian sampling of the INGO Lyu and Tsang [2021] with our RLTS. We201

evaluate our RLTS by comparing it with the standard INGO and the CMAES Hansen [2006]. In202

all the experiments, we keep the number of batch samples and the initialization the same for RLTS,203

INGO and CMAES. For all the methods, we initialize the µ = 0. For INGO and RLTS, we set204

the step-size parameter β = 0.2 in all experiments. For RLTS, we set the parameter η = 1 in all205

experiments.206

4.1 Evaluation on Benchmark Functions207

We first evaluate our RLTS on challenging benchmark test functions: Rosenbrock, Rastrigin, and208

Nesterov. Rastrigin and Rosenbrock are smooth multi-mode functions, and Nesterov is a non-smooth209

function. These functions are very challenging benchmarks for black-box optimization. We offset the210

optimum by setting x = x− 5 of the test functions. This increases the distance between the optimum211

and the initial point 0, which makes the test problems more challenging. We implement INGO by212

ourselves. For CMAES, we use the publicly available code 2213

We evaluate RLTS on 50 and 500-dimensional problems. All the experiments are performed in ten214

independent runs. The experimental results are shown in Figure 2. From Figure 2, we can observe that215

RLTS consistently converge faster than INGO on all the test functions on both 50-dimensional and216

500-dimensional cases. It shows that our RLTS significantly improves the query efficiency of INGO,217

which verifies the effectiveness of RLTS. Moreover, we can see that RLTS outperforms CMAES on218

all the test functions on both 50-dimensional and 500-dimensional cases. In addition, we see that219

CMAES converge slowly on the 500-dimensional benchmark problems, while RLTS converges faster.220

2https://pypi.org/project/cma/
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Figure 3: Hinge loss v.s. the number of queries on different black-box fine-tuning models.

4.2 Evaluation on Black-box Prompt Fine-tuning Tasks221

The great success of ChatGPT shows the promising potential of large language models. Prompt222

fine-tuning of large language models is a promising direction to achieve expertise models efficiently223

for downstream tasks. We further evaluate our RLTS on black-box prompt fine-tuning tasks.224

We employ the publicly available code 3 as the backbone model of black-box prompt fine-tuning.225

We employ the hinge loss of the training set as the black-box objective. Six benchmark datasets226

for different language tasks are employed for evaluation: DBpedia, SS2, SNLI, AG’s News, MRPC227

and RTE. The SST2 Socher et al. [2013] dataset is a dataset for the sentiment analysis task. AG’s228

News and DBPedia datasets Zhang et al. [2015] are used for topic classification tasks. SNLI Bowman229

et al. [2015] and RTE Wang et al. [2019] are employed for natural language inference. MRPC230

dataset Dolan and Brockett [2005] is used for the paraphrasing task.231

The dimension of the continuous prompt is set to 24× 50. All the experiments are performed in five232

independent runs with seeds in {1, 2, 3, 4, 5}. The experimental results are shown in Figure 3. From233

Figure 3, we can observe that RLTS decreases the loss consistently faster than INGO and CMAES on234

all benchmark datasets. More importantly, RLTS decreases the loss significantly faster than INGO.235

Note that RLTS employs INGO as the backbone algorithm, which shows that RLTS improves the236

query efficiency of INGO. More experimental results can be found in the Appendix.237

5 Conclusion238

We proposed a novel Rank-1 Lattice Targeted Sampling technique in this paper. Our RLTS has239

a O(n log n) time complexity w.r.t. n batch samples, which is fast for plugging into stochastic240

optimization methods to improve query efficiency while scaling up to high-dimensional problems.241

Empirically, we plugged our RLTS into the sampling phase of INGO, significantly improving the242

query efficiency on benchmark test functions and black-box prompt fine-tuning tasks. Moreover, we243

proposed a closed-form rank-1 lattice by analyzing the integral approximation error of functions in244

Korobov space. Our closed-form rank-1 lattice provides an efficient way for QMC Gaussian sampling,245

with properties enabling fast exact GP training and inference with a O(n log n) time complexity,246

which is critical for our RLTS to be a fast internal step for stochastic optimization. In addition, our247

closed-form rank-1 lattice is a fundamental tool that may have potential applications beyond the248

black-box optimization task.249

3https://github.com/txsun1997/Black-Box-Tuning
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A Proof of Theorem 1341

We provide an improved Theorem 1 in the current version, which builds an improved result regarding342

the exact error e2(Hk;P) instead of the asymptotic order in the previous version.343

Theorem 1. Let n be a prime number such that (2d− 1)|(n− 1). Suppose the integrand function344

f ∈ Hk, ∥f∥Hk
≤ 1, the square worst-case integral approximation error of rank-1 lattice P345

constructed by Eq.(31) is given as Eq.(34):346

e2(Hk;P) = 1
2n1

⊤(h0 ⊙ · · · ⊙ h2d−2−1− (h1 ⊙ · · · ⊙ hd−1−1)⊙ h0 ⊙ (h−1 ⊙ · · · ⊙ h−(d−1)−1)
)
+ 1

nα ζ(α, 1),

(34)
where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones,347

and hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn ), and F i denotes348

the matrix after permutation of the rows of F such that the jth row of F i equals to the j̃th row of349

F , where j̃ = jg
i(n−1)
2d−1 mod n. And γ = [γ1, · · · , γn]⊤ with γk = 1

nα

(
ζ(α, ki

n ) + ζ(α, n−ki

n )
)

for350

k ∈ {1, · · · , n− 1} and γn = 1 + 2
nα ζ(α, 1), where ζ(·, ·) denotes the Hurwitz zeta function.351

To prove our main Theorem 1, we begin with several Lemma.352

Lemma 1. For ∀x,y ∈ [0, 1]d and α > 1, define a reproducing kernel as Eq.(35)353

K(x,y) =
∑
k∈Zd

γα(k) exp
(
2πik⊤(x− y)

)
, (35)

where γα(k) =
∏d

j=1 γα(kj) with γα(k) given in Eq.(36)354

γα(k) =

{
1 if k = 0

|k|−α if k ̸= 0.
(36)

Let P = [x1, · · · ,xn] be a rank-1 lattice constructed by the generating vector z with a prime number355

n. Then, for ∀f ∈ Hk, ∥f∥Hk
≤ 1 associated with the reproducing kernel Eq.(35), we have the356

square worst-case integral approximation error of P as Eq.(37).357

e2(Hk;P) = sup
f∈Hk,∥f∥Hk

≤1

∣∣∣∣∣∣
∫
[0,1]d

f(x)dx− 1

n

n−1∑
j=0

f (xj)

∣∣∣∣∣∣
2

=
∑

k∈L⊥\{0}

γα(k) (37)

where L⊥ denote the dual lattice defined in Eq.(38).358

L⊥ := {k|k⊤z ≡ 0 (mod n),k ∈ Zd}. (38)

Proof. Given a point set P = {x1, · · · ,xn}, the worst case approximation error for ∀f ∈359

Hk, ∥f∥Hk
≤ 1 is360

e2(Hk;P) = sup
f∈Hk,∥f∥Hk

≤1

∣∣∣∣∣∣
∫
[0,1]d

f(x)dx− 1

n

n−1∑
j=0

f (xj)

∣∣∣∣∣∣
2

(39)

= sup
f∈Hk,∥f∥Hk

≤1

∣∣∣∣∣∣
〈
f,

∫
[0,1]d

K(x, ·)dx− 1

n

n−1∑
j=0

K (xj , ·)

〉
Hk

∣∣∣∣∣∣
2

(40)

= sup
f∈Hk,∥f∥Hk

≤1

∥f∥Hk

∥∥∥∫
[0,1]d

K(x, ·)dx− 1

n

n−1∑
j=0

K (xj , ·)
∥∥∥
Hk

(41)

=

∫
[0,1]d

∫
[0,1]d

K(x,y)dxdy − 2

n

n∑
j=1

∫
[0,1]d

K(x,xj)dx+
1

n2

n∑
i,j=1

K(xi,xj)

(42)
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Then, from the definition of the reproducing kernel K(x,y) in Eq.(35), we know that361 ∫
[0,1]d

∫
[0,1]d

K(x,y)dxdy =

∫
[0,1]d

∫
[0,1]d

∑
k∈Zd

γα(k) exp
(
2πik⊤(x− y)

)
dxdy (43)

= 1 +
∑

k∈Zd,k ̸=0

γα(k)

∫
[0,1]d

∫
[0,1]d

exp
(
2πik⊤(x− y)

)
dxdy

(44)

= 1 +
∑

k∈Zd,k ̸=0

γα(k) · 0 = 1 (45)

In addition, the second term in Eq.(42) as follows362

− 2

n

n∑
j=1

∫
[0,1]d

K(x,xj)dx (46)

= − 2

n

n∑
j=1

∫
[0,1]d

∑
k∈Zd

γα(k) exp
(
2πik⊤(x− xj)

)
dx (47)

= − 2

n

n∑
j=1

γα(0)−
2

n

n∑
j=1

∑
k∈Zd,k ̸=0

γα(k)

∫
[0,1]d

exp
(
2πik⊤(x− xj)

)
dx (48)

= − 2

n

n∑
j=1

γα(0)−
2

n

n∑
j=1

∑
k∈Zd,k ̸=0

γα(k) · 0 (49)

= −2 (50)
Moreover, from the definition of rank-1 lattice P with prime n and generating vector z, we have the363

third term in Eq.(42) as follows364

1

n2

n∑
i,j=1

K(xi,xj) (51)

=
1

n2

n∑
i,j=1

∑
k∈Zd

γα(k) exp
(
2πik⊤(xi − xj)

)
(52)

= 1 +
1

n2

n∑
i,j=1

∑
k∈Zd,k ̸=0

γα(k) exp

(
2πi(i− j)k⊤z

n

)
(53)

= 1 +
∑

k∈Zd,k ̸=0

γα(k)
1

n2

n∑
i,j=1

exp

(
2πi(i− j)k⊤z

n

)
(54)

= 1 +
∑

k∈Zd,k ̸=0

γα(k)
1

n

n∑
j=1

exp

(
2πijk⊤z

n

)
(55)

Put Eq.(45), Eq.(50) and Eq.(55) together , we know that365

e2(Hk;P) =
∑

k∈Zd,k ̸=0

γα(k)
1

n

n∑
j=1

exp

(
2πijk⊤z

n

)
(56)

Note that for a prime number n, we have366

1

n

n∑
j=1

exp

(
2πijk⊤z

n

)
=

{
1 if k⊤z ≡ 0 mod n

0 otherwise
(57)

It follows that367

e2(Hk;P) = sup
f∈Hk,∥f∥Hk

≤1

∣∣∣∣∣∣
∫
[0,1]d

f(x)dx− 1

n

n−1∑
j=0

f (xj)

∣∣∣∣∣∣
2

=
∑

k∈L⊥\{0}

γα(k), (58)
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where L⊥ := {k|k⊤z ≡ 0 (mod n),k ∈ Zd} denotes the dual lattice.368

369

Lemma 2. Given a prime n , construct a rank-1 lattice P = [x1, · · · ,xn] by the generating vector370

z = [z1, · · · , zd], then we have that371

e2(Hk;P) = −1 +
1

n

n−1∑
j=0

d∏
i=1

( ∑
ki∈{1,··· ,n}

χ(ki) exp

(
2πi

kijzi
n

))
, (59)

where function χ(·) on domain {1, · · · , n} is given as Eq.(60)372

χ(ki) =

{
1 + 2

nα ζ(α, 1) if ki = n
1
nα

(
ζ(α, ki

n ) + ζ(α, n−ki

n )
)

otherwise
, (60)

where ζ(·, ·) denotes the Hurwitz zeta function.373

Proof. From Lemma 1, we know that374

e2(Hk;P) =
∑

k∈Zd\{0}

γα(k)

 1

n

n−1∑
j=0

exp

(
2πi

k⊤xj

n

) (61)

= −1 +
1

n

n−1∑
j=0

∑
k∈Zd

γα(k)exp

(
2πi

k⊤xj

n

)
(62)

= −1 +
1

n

n−1∑
j=0

d∏
i=1

( ∑
ki∈Z

γα(ki) exp

(
2πi

kijzi
n

))
(63)

= −1 +
1

n

n−1∑
j=0

d∏
i=1

( ∑
ki∈{1,··· ,n}

( ∑
qi≡ki mod n

γα(qi)
)
exp

(
2πi

kijzi
n

))
(64)

Now, we check the term
∑

ki∈{1,··· ,n}
(∑

qi≡ki mod n γα(qi)
)
. From the definition of the function375

γα(·), for ∀ki ∈ {1, · · · , n}, we have that376

χ(ki) =
∑

qi≡ki mod n

γα(qi) =

{
1 + 2

∑∞
m=1

1
(mn)α if ki = n∑∞

m=0
1

(ki+mn)α +
∑∞

m=0
1

(n−ki+mn)α otherwise
(65)

Note that series
∑∞

m=1
1

(mn)α ,
∑∞

m=0
1

(ki+mn)α and
∑∞

m=0
1

(n−ki+mn)α can be rewritten as377

∞∑
m=1

1

(mn)α
=

1

nα

∞∑
m=1

1

mα
=

1

nα
ζ(α, 1) (66)

∞∑
m=0

1

(ki +mn)α
=

1

nα

∞∑
m=0

1

(ki

n +m)α
=

1

nα
ζ(α,

ki
n
) (67)

∞∑
m=0

1

(n− ki +mn)α
=

1

nα

∞∑
m=0

1

(n−ki

n +m)α
=

1

nα
ζ(α,

n− ki
n

) (68)

where ζ(·, ·) denotes the Hurwitz zeta function.378

Plug them into Eq.(65), we know that379

χ(ki) =
∑

qi≡ki mod n

γα(qi) =

{
1 + 2

nα ζ(α, 1) if ki = n
1
nα

(
ζ(α, ki

n ) + ζ(α, n−ki

n )
)

otherwise
(69)

Plug Eq.(69) into Eq.(64), we have that380

e2(Hk;P) = −1 +
1

n

n−1∑
j=0

d∏
i=1

( ∑
ki∈{1,··· ,n}

χ(ki) exp

(
2πi

kijzi
n

))
(70)

381
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Lemma 3. Let n be a prime number. Let γ = [γ1, · · · , γn]⊤ be a vector with γk = χ(k) for382

k ∈ {1, · · · , n}, where χ(·) is defined in Lemma 2. The square worst-case integral approximation383

error of rank-1 lattice P constructed by generating vector z = [z1, · · · , zd] can be rewritten in a384

matrix form as Eq.(71)385

e2(Hk;P) =
1

n
1⊤
(
h0 ⊙ · · · ⊙ hd−1 − 1

)
(71)

where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones, and386

hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn ), and F i denotes the matrix387

after permutation of the rows of F such that the jth row of F i equals to the j̃th row of F , where388

j̃ = jzi+1 mod n.389

Proof. Define hi as Eq.(72)390

hi = F iγ (72)

where F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn ), and F i denotes the matrix after391

permutation of the rows of F such that the jth row of F i equals to the j̃th row of F , where392

j̃ = jzi+1 mod n, and g denotes the primitive root modulo n.393

From Lemma 2, we know that394

e2(Hk;P) = −1 +
1

n

n−1∑
j=0

d∏
i=1

( ∑
ki∈{1,··· ,n}

χ(ki) exp

(
2πi

kijzi
n

))
(73)

Note that γ = [γ1, · · · , γn]⊤ is a vector with γk = χ(k) for k ∈ {1, · · · , n}, it follows that395

e2(Hk;P) = −1 +
1

n
1⊤
(
F 0γ ⊙ · · · ⊙ F d−1γ

)
(74)

= −1 +
1

n
1⊤
(
h0 ⊙ · · · ⊙ hd−1

)
(75)

=
1

n
1⊤
(
h0 ⊙ · · · ⊙ hd−1 − 1

)
(76)

396

Lemma 4. Let n be a prime number such that (2d− 1)|(n− 1). Let γ = [γ1, · · · , γn]⊤ be a vector397

with γk = χ(k) for k ∈ {1, · · · , n}, where χ(·) is defined in Lemma 2. Given a rank-1 lattice P398

constructed by generating vector in Eq.(31), then we have Eq.(77)399

1⊤(h0 ⊙ · · · ⊙ hd−1 − 1) = 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1) +
〈
hd ⊙ · · · ⊙ h2d−2 − 1,h0 − 1

〉
+ 1⊤(h0 − 1) (77)

where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones, and400

hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn ), and F i denotes the matrix401

after permutation of the rows of F such that the jth row of F i equals to the j̃th row of F , where402

j̃ = jg
i(n−1)
2d−1 mod n, and g denotes the primitive root modulo n.403

Proof. Note that hi = F iγ is a permutation of h0. From the definition of permutation F i, we know404

that the jth row of F i equals to the j̃th row of F with j̃ = jg
i(n−1)
2d−1 mod n. Note that (2d−1)|(n−1)405

and n is a prime number, we know {1, g
1(n−1)
2d−1 , · · · , g

(2d−2)(n−1)
2d−1 } modulo n forms a subgroup of406

{1, · · · , n − 1} modulo n. Thus, we know {h0,h1, · · · ,h2d−2} forms a group, and h0 = h2d−1.407

Furthermore, we know that hk is a permutation of hi such that jth row of F k equals to the j̄th row408

of F i with j̄ = jg
(k−i)(n−1)

2d−1 mod n. Thus, we know that409

1⊤(h0 ⊙ · · · ⊙ hd−1) = 1⊤(hd ⊙ · · · ⊙ h2d−1) (78)

15



Note that h0 = h2d−1. It follows that410

1⊤(h0 ⊙ · · · ⊙ hd−1 − 1) = 1⊤(hd ⊙ · · · ⊙ h2d−1 − 1) (79)

= 1⊤(hd ⊙ · · · ⊙ h2d−2 ⊙ h0 − 1) (80)

In addition, we have that411 〈
hd ⊙ · · · ⊙ h2d−2 − 1,h0 − 1

〉
(81)

=
〈
hd ⊙ · · · ⊙ h2d−2,h0

〉
− 1⊤(hd ⊙ · · · ⊙ h2d−2)− 1⊤h0 + 1⊤1 (82)

= 1⊤(hd ⊙ · · · ⊙ h2d−2 ⊙ h0)− 1⊤(hd ⊙ · · · ⊙ h2d−2)− 1⊤h0 + 1⊤1 (83)

= 1⊤(hd ⊙ · · · ⊙ h2d−2 ⊙ h0)− 1⊤1− 1⊤(hd ⊙ · · · ⊙ h2d−2) + 1⊤1− 1⊤h0 + 1⊤1 (84)

= 1⊤(hd ⊙ · · · ⊙ h2d−2 ⊙ h0 − 1)− 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1)− 1⊤(h0 − 1) (85)

It follows that412

1⊤(hd⊙· · ·⊙h2d−2⊙h0 − 1) =
〈
hd ⊙ · · · ⊙ h2d−2 − 1,h0 − 1

〉
+ 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1)

+ 1⊤(h0 − 1) (86)

Plug Eq.(86) into Eq.(80), we know that413

1⊤(h0 ⊙ · · · ⊙ hd−1 − 1) =
〈
hd ⊙ · · · ⊙ h2d−2 − 1,h0 − 1

〉
+ 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1)

+ 1⊤(h0 − 1) (87)

414

Lemma 5. Let n be a prime number such that (2d− 1)|(n− 1). Let γ = [γ1, · · · , γn]⊤ be a vector415

with γk = χ(k) for k ∈ {1, · · · , n}, where χ(·) is defined in Lemma 2. Given a rank-1 lattice P416

constructed by generating vector in Eq.(31), then we have Eq.(88)417

1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1) = 1⊤(h0 ⊙ · · · ⊙ hd−1 − 1) + 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1)

+
〈
h0 ⊙ · · · ⊙ hd−1 − 1,hd ⊙ · · · ⊙ h2d−2 − 1

〉
(88)

where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones, and418

hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn ), and F i denotes the matrix419

after permutation of the rows of F such that the jth row of F i equals to the j̃th row of F , where420

j̃ = jg
i(n−1)
2d−1 mod n, and g denotes the primitive root modulo n.421

Proof. Similar to the proof of Lemma 4 , we have that422 〈
h0 ⊙ · · · ⊙ hd−1 − 1,hd ⊙ · · · ⊙ h2d−2 − 1

〉
(89)

=
〈
h0⊙· · ·⊙hd−1,hd⊙· · ·⊙h2d−2

〉
− 1⊤(h0⊙· · ·⊙hd−1)− 1⊤(hd⊙· · ·⊙h2d−2) + 1⊤1

(90)

= 1⊤(h0 ⊙ · · · ⊙ h2d−2)− 1⊤(h0 ⊙ · · · ⊙ hd−1)− 1⊤(hd ⊙ · · · ⊙ h2d−2) + 1⊤1 (91)

= 1⊤(h0⊙· · ·⊙h2d−2)− 1⊤1− 1⊤(h0⊙· · ·⊙hd−1) + 1⊤1− 1⊤(hd⊙· · ·⊙h2d−2) + 1⊤1
(92)

= 1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1)− 1⊤(h0 ⊙ · · · ⊙ hd−1 − 1)− 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1) (93)

It follows that423

1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1) = 1⊤(h0 ⊙ · · · ⊙ hd−1 − 1) + 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1)

+
〈
h0 ⊙ · · · ⊙ hd−1 − 1,hd ⊙ · · · ⊙ h2d−2 − 1

〉
(94)

424
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Lemma 6. Let n be a prime number such that (2d− 1)|(n− 1). Let γ = [γ1, · · · , γn]⊤ be a vector425

with γk = χ(k) for k ∈ {1, · · · , n}, where χ(·) is defined in Lemma 2. Given a rank-1 lattice P426

constructed by generating vector in Eq.(31), then we have Eq.(95)427

1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1) = 1⊤((h1 ⊙ · · · ⊙ hd−1 − 1)⊙ h0 ⊙ (h−(d−1) ⊙ · · · ⊙ h−1 − 1)
)

+ 21⊤(h0 ⊙ · · · ⊙ hd−1 − 1)− 1⊤(h0 − 1) (95)

where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones, and428

hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn ), and F i denotes the matrix429

after permutation of the rows of F such that the jth row of F i equals to the j̃th row of F , where430

j̃ = jg
i(n−1)
2d−1 mod n, and g denotes the primitive root modulo n.431

Proof. Plug Eq.(77) in Lemma 4 into Eq.(88) in Lemma 5, we know that432

1⊤(h0⊙· · ·⊙h2d−2−1) = 21⊤(h0⊙· · ·⊙hd−1−1)− 1⊤(h0−1)−
〈
hd⊙· · ·⊙h2d−2−1,h0−1

〉
+
〈
h0 ⊙ · · · ⊙ hd−1 − 1,hd ⊙ · · · ⊙ h2d−2 − 1

〉
(96)

Now we check the last two terms in Eq.(96). Note that433 〈
h0 ⊙ · · · ⊙ hd−1 − 1,hd ⊙ · · · ⊙ h2d−2 − 1

〉
−
〈
hd ⊙ · · · ⊙ h2d−2 − 1,h0 − 1

〉
(97)

=
〈
h0 ⊙ · · · ⊙ hd−1 − 1− (h0 − 1),hd ⊙ · · · ⊙ h2d−2 − 1

〉
(98)

=
〈
h0 ⊙ · · · ⊙ hd−1 − h0,hd ⊙ · · · ⊙ h2d−2 − 1

〉
(99)

=
〈
h0 ⊙ (h1 ⊙ · · · ⊙ hd−1 − 1),hd ⊙ · · · ⊙ h2d−2 − 1

〉
(100)

= 1⊤((h1 ⊙ · · · ⊙ hd−1 − 1)⊙ h0 ⊙ (hd ⊙ · · · ⊙ h2d−2 − 1)
)

(101)

It follows that434

1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1) = 21⊤(h0 ⊙ · · · ⊙ hd−1 − 1)− 1⊤(h0 − 1)

+ 1⊤((h1 ⊙ · · · ⊙ hd−1 − 1)⊙ h0 ⊙ (hd ⊙ · · · ⊙ h2d−2 − 1)
)

(102)

Because {h0,h1, · · · ,h2d−2} forms a group, and h0 = h2d−1 with a modulo period 2d − 1, we435

know that436

hd ⊙ · · · ⊙ h2d−2 = h−(d−1) ⊙ · · · ⊙ h−1 (103)

Plug Eq.(103) into Eq.(102), we have that437

1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1) = 21⊤(h0 ⊙ · · · ⊙ hd−1 − 1)− 1⊤(h0 − 1)

+ 1⊤((h1 ⊙ · · · ⊙ hd−1 − 1)⊙ h0 ⊙ (h−d−1 ⊙ · · · ⊙ h−1 − 1)
)

(104)

438

Now, we are ready to prove our main Theorem 1.439

Proof. From Lemma 3, we know that440

e2(Hk;P) =
1

n
1⊤
(
h0 ⊙ · · · ⊙ hd−1 − 1

)
(105)

From Lemma 6, we know that441

1⊤(h0 ⊙ · · · ⊙ hd−1 − 1)

=
1

2
1⊤(h0 ⊙ · · · ⊙ h2d−2−1− (h1 ⊙ · · · ⊙ hd−1−1)⊙ h0 ⊙ (h−1 ⊙ · · · ⊙ h−(d−1)−1)

)
+

1

2
1⊤(h0 − 1) (106)
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Plug Eq.(106) into Eq.(105), we have that442

e2(Hk;P)

=
1

2n
1⊤(h0 ⊙ · · · ⊙ h2d−2−1− (h1 ⊙ · · · ⊙ hd−1−1)⊙ h0 ⊙ (h−1 ⊙ · · · ⊙ h−(d−1)−1)

)
+

1

2n
1⊤(h0 − 1) (107)

Note that h0 = Fγ and F denotes the discrete Fourier matrix, we have that443

1⊤(h0 − 1) = 1⊤Fγ − n (108)

= b⊤γ − n (109)

where b = [0, 0, · · · , 0, n]⊤.444

Note that the nth element in γ is γn = 1+ 2
nα ζ(α, 1), where ζ(·, ·) denotes the Hurwitz zeta function.445

It follows that446

1⊤(h0 − 1) = b⊤γ − n = n+ n
2

nα
ζ(α, 1)− n = n

2

nα
ζ(α, 1) (110)

Plug Eq.(110) into Eq.(107), we achieve the result in Theorem 1447

e2(Hk;P)

=
1

2n
1⊤(h0 ⊙ · · · ⊙ h2d−2−1− (h1 ⊙ · · · ⊙ hd−1−1)⊙ h0 ⊙ (h−1 ⊙ · · · ⊙ h−(d−1)−1)

)
+

1

nα
ζ(α, 1) (111)

448

B Benchmark Test Functions449

The benchmark test functions employed in section 4.1 are listed in Table 1, which contains multi-mode450

functions and non-smooth functions that are challenging for optimization.451

Table 1: Test functions

name function

Rosenbrock
d−1∑
i=1

(
100(xi+1 − x2

i )
2
+ (1− xi)

2
)

Nesterov 1
4 |x1 − 1|+

d−1∑
i=1

|xi+1 − 2 |xi|+ 1|

Rastrigin 10d+
∑d

i=1

(
x2
i − 10 cos (2πxi)

)
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C Training Time and Fast Coordinate Search Time452
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Figure 4: Training Time and Fast Coordinate Search Time (seconds) v.s. the number of samples

We provide the training time of our rank- 1 lattice GP and the time of our fast coordinate453

search for targeted sampling in Figure 4(a) and Figure 4(b), respectively. The dimension of454

the rank-1 lattice data is set to d = 50. The number of samples n is set to the parameter in455

{1783, 5347, 10099, 51283, 100189, 501139, 1000099}. The number of samples n is a prime num-456

ber such that (2d− 1)|(n− 1) to achieve our closed-form rank-1 lattice construction. The number of457

epochs of training is set to 2000. The number of iterations of fast coordinate search is set to T = 50.458

All the experiments are performed in 50 runs on a single NVIDIA A40 card.459

We report the mean value ± std in Figure 4. The standard deviation of the time is small. From460

Figure 4(a), we can see that it takes around 50 seconds for our rank-1 GP training with one million461

lattice data. Moreover, our fast coordinate search for targeted sampling takes around 1.5 seconds to462

optimize rank-1 lattice GP posterior prediction conditioned on one million lattice data.463

D Additional Experiments of Black-box Prompt Fine-tuning464
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Figure 5: Hinge loss v.s. the number of queries on different black-box fine-tuning models.
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We provide additional experimental results of black-box prompt fine-tuning for large language models.465

We employ the deep model in Sun et al. [2022a] as the backbone. It has 24 layers. For each layer,466

we set the dimension of the continuous prompt to 500. Thus, the total dimension is 24× 500. We467

employ the hinge loss of training data as the black-box objective.468

In all the experiments, we keep the number of batch samples and the initialization the same for RLTS,469

INGO and CMAES. We set the number of batch samples to 2000. Our RLTS employs 1999 rank-1470

lattice QMC Gaussian samples and one sample from targeted sampling. INGO employs 1999 rank-1471

lattice QMC Gaussian samples and one Gaussian sample. CMAES employs 2000 Gaussian samples.472

We initialize the µ = 0 for all the methods. For INGO and RLTS, we set the step-size parameter473

β = 0.2 in all experiments. For RLTS, we set the parameter η = 1 in all experiments. All the474

experiments are performed in five independent runs with seeds in {1, 2, 3, 4, 5}.475

The experimental results of mean objective ± std v.s. the number of queries are shown in Figure 5.476

From Figure 5, we can observe that our RLTS decreases the objective significantly faster than INGO477

and CMAES on all six fine-tuning tasks, which shows the superior query efficiency of our RLTS.478
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