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Abstract

The traditional process of creating labeled datasets is not only labor-intensive
but also expensive. Recent breakthroughs in open-source large language models
(LLMs), such as Llama-3, have opened a new avenue in generating labeled datasets
automatically for various natural language processing (NLP) tasks to provide an
alternative to such expensive annotation process. However, the reliability of such
auto-generated labels remains a significant concern due to inherent inaccuracies.
When learning from such noisy labels, the model’s generalization is likely to be
harmed as it is prone to overfit those label noises. In this paper, we propose the
Simplex Diffusion with a Dynamic Prior (SiDyP) model to calibrate classifier’s
predication, thus enhancing its robustness towards noisy labels. Our framework
leverages simplex diffusion model to iteratively correct noisy labels conditioned
on training dynamic trajectories obtained from classifier finetuning. The Prior in
SiDyP refers to the potential true label candidates which was obtained according to
neighborhood label distribution in text embedding space. It is Dynamic because
we progressively distill these candidates based on the feedback of the diffusion
model. Our SiDyP model can increase the performance of the BERT classifier
fine-tuned on both zero-shot and few-shot Llama-3 generated noisy label datasets
by an average of 5.33% and 7.69% respectively. Our extensive experiments, which
explore different LLMs, diverse noise types (real-world and synthetic), ablation
studies, and multiple baselines, demonstrate the effectiveness of SiDyP across a
range of NLP tasks. We will make code and data publicly (under a CC BY 4.0
license) available on GitHub upon publication of the work.

1 Introduction

In the realm of machine learning, the effectiveness of Deep Neural Networks (DNNs) in a variety
of applications is largely contingent on the availability of well-annotated datasets (Fisher, 1936;
Deng et al., 2009; Touvron et al., 2023a). Traditionally, this annotation process has been carried out
manually by subject matter experts (Ratner et al., 2017), ensuring high accuracy but at a substantial
cost in terms of time and resources. In response to these constraints, the field has gradually pivoted
towards alternative strategies such as active learning (Ren et al., 2021; Kartchner et al., 2020; Yu
et al., 2022), transfer learning (Pan & Yang, 2009; Howard & Ruder, 2018), and weak supervision
(Stephan et al., 2022; Yu et al., 2020; Lison et al., 2021). These methods help alleviate some of the
burdens of manual annotation, yet they often introduce a new challenge: the incorporation of noise in
the training data.

The susceptibility of DNNs, especially pre-trained language models to the noise inherent in training
data is a formidable challenge, particularly for models like BERT (Devlin et al., 2019b), which can
inadvertently fit to inaccuracies. This issue is compounded by weak supervision types—described by
Zhou (2018) as incomplete, inexact, and inaccurate supervision—that introduce various forms of
label noise. Without appropriate denoising, these models risk learning from erroneous data rather
than genuine patterns. Robust denoising strategies, therefore, play a crucial role in refining training
datasets. By systematically identifying and amplifying the impact of mislabeled data, these strategies
ensure that models are trained on more accurate representations of the data, as demonstrated by efforts
in advanced denoising techniques (Ratner et al., 2017; Yu et al., 2020; Zhang et al., 2022; Zhuang
et al., 2023).
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Transitioning to the era of advanced open-source language models like Llama-3 (Dubey et al., 2024),
the capabilities for initial data annotation have seen remarkable improvements (Tan et al., 2024; Yu
et al., 2023; Brown et al., 2020). LLMs can generate initial labels for datasets, leveraging its extensive
training on diverse textual data. Although numerous methods have been proposed to enhance the
capabilities of LLMs, aiming to improve the accuracy and reliability of their annotation (Yu et al.,
2023; Yu & Bach, 2023; Wang et al., 2023; Oliveira et al., 2024; Li et al., 2024; Burns et al., 2023),
complete immunity to inaccuracies in LLM-generated labels is unattainable, necessitating a robust
mechanism to mitigate the harmful impact of their noisy labels. However, LLM-generated label noise
is under exploration as previous studies mainly focus on either synthetic noise or real-world noise (Han
et al., 2018b; Bae et al., 2022; Zhuang et al., 2023; Wei et al., 2020; Chen et al., 2023a). Synthetic
noise is often impractical since it fails to reflect real-world scenarios, where no gold-standard dataset
exists for injection. On the other hand, real-world noise is costly to obtain, as it requires subject
matter experts (Ratner et al., 2017) to create labeling functions. To bridging this gap, we propose an
innovative denoising approach that strengthens classifiers’ resilience to LLM-generated noisy labels.

Our approach aims to purify noisy labels via transition matrix-based methods (Patrini et al., 2017;
Yao et al., 2021; Zhang et al., 2021b; Xia et al., 2020; Berthon et al., 2021). Adopting the framework
from Bae et al. (2022), our denoising method consists of two stages: finetuning pre-trained language
classifiers (PLCs) and denoising via generative models. Finetuning a PLC on a noisy dataset yields
data’s embedding dynamic trajectories (Zhuang et al., 2023) and prior probability p(ỹ|x). By referring
to the neighbor’s label distribution in embedding space, we are able to collect a list of potential true
label candidates and their corresponding weights. We design a simplex diffusion (Mahabadi et al.,
2024) label model to reconstruct true labels from noisy labels and training dynamics. The potential
true label candidates are refined progressively throughout the training of the diffusion model based on
its prediction. The overall framework is presented in Figure 1.

Figure 1: The SiDyP framework, containing (1) pre-trained classifier fine-tuning; (2) dynamic label
candidates retrieval and distillation; (3) denoising label using simplex diffusion; (4) co-regularization
between multiple model branches; (5) inference process to predict refined labels from noisy labels.

The main contribution of our work include:

• We evaluate previous state-of-the-art baselines, validated on both synthetic and real-world
noise, under a novel type of noise: LLM-generated label noise. To the best of our knowledge,
this is the first study aimed at enhancing learning under LLM-generated label noise.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We propose SiDyP, a robust framework using dynamic priors to derive reliable true labels
and the simplex denoising label diffusion model to calibrate classifier’s predication.

• We conduct extensive experiments of our frameworks compared to 5 state-of-the-art baselines
across 4 NLP tasks, 5 LLMs, and 3 different type of noises. Our approach outperforms all
the baselines in all the experiments. The effectiveness of each component is also verified.

2 Background and Motivation

Problem Definition Let X ∈ Rd and Y = {0, 1, ..., c} be the d-dimension input and the target
label in a classification task with c classes. Following the joint probability distribution P over X ×Y ,
the i.i.d samples forms a gold classification dataset, D = {xi, yi}Ni=1. Our assumption of learning
from noisy labels indicates that the only accessible dataset is D̃train = {xi, ỹi}Ni=1, sampling from P̃

over X × Ỹ where Ỹ are potential noisy targets. For a traditional classification problem, the training
objective of a classifier fθ is to minimize the true risk RL(fθ) := EP [L(fθ(x), y)]. However, in
the realm of learning from noisy labels, the only accessible risk function is the noisy empirical risk
R̃emp

L (fθ) := EP [L(fθ(x), ỹ)] due to the absence of true labels y. Therefore, our goal is to find a
function minimizing the true risk RL(fθ) during learning with noisy empirical risk R̃emp

L (fθ).

With the only observable target labels being noisy, we manage to train a model that generates
probability distribution of true label y given arbitrary input x, p(y|x). Taking advantage of noisy
labels in our training dataset, we can decompose our objective further as:

p(y|x) =
∑
ỹ

p(ỹ|x)p(y|ỹ, x)

In this revised objective, the prior p(ỹ|x) can be directly estimated by finetuning a PLC Fψ on the
accessible noisy dataset. We can approximate the posterior p(y|ỹ, x), expressing the probability
distribution of true label y given noisy label ỹ and input x, by a generative model. Unlike synthetic
noise, which has been extensively studied, LLM-generated label noise is more intricate, contextually
influenced, and reflective of real-world class relationships (we include a more detailed discussion in
Appendix G). This triggers a more challenging estimation of the posterior as the relation between ỹ
and y becomes less predictable and more context-dependent. To tackle this, we begin by focusing on
these two key aspects:

1. How can a promising and reliable true label be derived from the noisy dataset?

2. How can we estimate such probabilistic relation between true labels, corrupted labels, and
input features accurately?

We define corrputed labels as one which is mislabeled thus incorrect. In the following sections,
we introduce our true label candidates dynamic distillation (Section 3) and simplex denoising label
diffusion model (Section 4) to address these two concerns respectively. We also adopt training
dynamics during PLC fine-tuning and co-regularization mechanism (Appendix C) to make SiDyP
tolerant to noises.

3 True Label Candidates Dynamic Distillation

Extracting true labels from a noisy dataset is crucial, as it directly impacts the quality of the subsequent
generative posterior approximation. Our derivation of true label is based on the assumption that textual
embeddings are robust enough to discriminate between clean and corrupted data samples(Ortego
et al., 2021). Texts belonging to the same class typically exhibit similar semantics, making them more
likely to cluster together in the embedding space. Therefore, the neighboring labels reveal information
about the true labels. Different from prior works(Zhuang et al., 2023; Bae et al., 2022), we retrieve a
list of true label candidates for each individual data sample (Algorithm 1). These true label candidates
are distilled according to our diffusion model’s feedback during training (Algorithm 2).
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3.1 Label Candidate Retrieval

Our main purpose is re-assigning labels to noisy samples leveraging true label information in
embedding space. First, we need to discriminate noisy samples in the dataset. During the PLC
fine-tuning in Stage I, there exist training dynamics in embedding space. The noisy samples tend
to exhibit larger mean and standard deviation of Euclidean distances towards their assigned labels
(incorrect) compared to clean samples (Zhuang et al., 2023). We split the original dataset into Dnoisy

train
and Dclean

train by cutting off the top σ percent of training trajectories, where σ is the estimated error
rate. We apply K Nearest Neighbor (KNN) algorithm on Dnoisy

train with Dclean
train as the reference. Instead

of assigning a single deterministic label, a list of label candidates and its corresponding weights
(probability) are generated by KNN classifier. We manage to alleviate the uncertainty injected into
training of diffusion model in Stage II by two filters: (1) we preserve the candidate if its associated
probability greater than a threshold λ. These data instances are regarded as deterministic instance
since their potential true label is single and certain. The remaining data instances are regarded as
uncertain and linked with a list of candidates. (2) For uncertain data instances, we extract the two
candidates with highest probabilities. If their summation is greater than a specified threshold γ, we
then eliminate other candidates and only preserve these two dominant candidates.

Algorithm 1: Potential True Label Candidates Retrieval

Input: Dnoisy
train : {xi, ỹi}ni , Mtrain, Cknn, K,λ, γ

Output: Dcertain
train : {xi,yi}mi , Duncertain

train : {xi, (y
0
i ,y

1
i , . . . )}

n−m
i , Wuncertain

train :
{(w0

i ,w
1
i , . . . )}

n−m
i

1 Split Dnoisy
train into {D̄clean

train , D̄noisy
train } according to noisy marker Mtrain

2 Fit D̄clean
train into KNN classifier Cknn

3 Predict Ptrain : {(p0
i ,p

1
i , . . . )}ni of entire dataset Dnoisy

train using Cknn based on K neighbors
4 Initialize Dcertain

train = {},Duncertain
train = {} and Wuncertain

train ={}
5 for i = 0 to n do
6 pmax

i = max{(p0
i ,p

1
i , . . . )}

7 if pmax
i ≥ λ then

8 Insert (xi,y
max
i ) into Dcertain

train

9 else
10 pmax1

i ,pmax2
i = top2{(p0

i ,p
1
i , . . . )}

11 if pmax1
i + pmax2

i ≥ γ then
12 Insert (xi, {ymax1

i ,ymax2
i }) into Duncertain

train
13 pmax1

i ,pmax2
i = softmax(pmax1

i ,pmax2
i )

14 Insert (pmax1
i ,pmax2

i ) into Wuncertain
train

15 else
16 Insert (xi, {y0

i ,y
1
i , . . . }) into Duncertain

train
17 Insert (p0

i ,p
1
i , . . . ) into Wuncertain

train

3.2 Candidate Dynamic Distillation

Our true label candidates distillation is established based on the observation that the generative model
gains the capability to calibrate certain amount of noisy data instances after training on our derived
deterministic (certain) dataset. Adhere to the observation, we first train our generative model only on
deterministic dataset for α warm-up epochs. We rely on such capable model to evaluate our uncertain
dataset over a specified iteration β. During each evaluation, if model’s predicted label lies in the
candidate lists, the matched label candidate will increase accordingly. The weight list will then be
normalized as well to maintain a summation to 1. After candidate weight update and model evaluation
for uncertain data samples, we sample a specific label candidate from the candidate list multinomially
based on the candidate weights. We treat such a sample label as the true label in this training epoch.
The generative model is then trained on both deterministic pair and uncertain pair. Subsequently, the
loss of generative model for uncertain sample is weighted by the sampled candidate’s weight.
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Algorithm 2: Distill True Label from Candidates during Training
Input: Gmodel, Dcertain

train : {xi,yi}mi , Duncertain
train : {xi, (y

0
i ,y

1
i , . . . )}

n−m
i , Wuncertain

train :
{(w0

i ,w
1
i , . . . )}

n−m
i , α, E, β

Output: Gmodel
1 for e = 0 to E do
2 if e ≤ α then
3 {ȳi}mi = Gmodel[{xi}mi ] for Dcertain

train
4 loss = Floss[{ȳi}mi , {yi}mi ]
5 Optimize Gmodel

6 else
7 for i = 0 to β do
8 {ȳi}n−m

i = Gmodel[{xi}n−m
i ] for Duncertain

train
9 if {ȳi}n−m

i in (y0
i ,y

1
i , . . . ) then

10 Increase corresponding w∗
i by 1−w∗

i

β

11 (w0
i ,w

1
i , . . . ) = softmax[(w0

i ,w
1
i , . . . )]

12 {yi}n−m
i = sample (y0

i ,y
1
i , . . . ) multinomially according to Wuncertain

train
13 {ȳi}n−m

i = Gmodel[{xi}n−m
i ] for Duncertain

train
14 {ȳi}mi = Gmodel[{xi}mi ] for Dcertain

train
15 certain_loss = Floss[{ȳi}mi , {yi}mi ]

16 uncertain_loss = {w̄i}n−m
i ×Floss[{ȳi}n−m

i , {yi}n−m
i ]

17 loss = certain_loss + uncertain_loss
18 Optimize Gmodel

4 Simplex Denoising Label Diffusion Model

In terms of posterior approximation via generative models, we tackle it from the perspective of
denoising diffusion models, which is designed for reconstructing high-fidelity data from pure noise
iteratively. We view the true label inference as an progressively denoising process from noisy label
based on input feature x. In this paper, we apply simplex diffusion model (Mahabadi et al., 2024),
one of the continuous diffusion model, to approximate the true label posterior probability from noisy
labels. Simplex diffusion model diffuses in simplex probability space, which aligns with our attempt
to estimate the posterior distribution.

Label Simplex Representation True label y will be represented in one-hot encoded format
y ∈ {0, 1}C . For specific category c, yc = 1 and yi = 0 where i ̸= c. Given the discrete nature of
one-hot data representation, we need to first map such categorical data to continuous space to fit our
continuous simplex diffusion model. We map the one-hot label representation y ∈ {0, 1}C to k-logit
simplex to generate sy ∈ {±k}|C|, whose i-th component satisfies

sc(i) =

{
k, if i = c,

−k otherwise.
(1)

where k ∈ R is a hyperparameter.

Training Let y ∈ pdata be the one-hot representation of a label with C classes and sy = {±k}|C|

be its k-logit simplex representation of y. The simplex diffusion model forward process q(syt |s
y
t−1)

is defined as a Gaussian-Markov process that produces a sequence of latent variables sy1 , . . . , s
y
T by

gradually adding Gaussian noise at each time step t ∈ 1, 2, . . . , T with variance βt ∈ R>0:

q(syt |s
y
t−1) = N (syt |(1− βt)s

y
t−1, βtI) (2)

Let ϵt ∼ N (0, k2I) as we convert data into simplex space, αt = 1 − βt, and ᾱt =
∏t

j=1 αj .
Sampling syt at an arbitrary time step t has a closed-form solution:

5
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syt =
√
ᾱts

y
0 +

√
1− ᾱtϵt (3)

Given a well-behaved noise schedule {βt}Tt=1, a little amount of Gaussian noise with variance βt is
injected, while a large amount 1−βt of previous sample syt−1 is preserved for each time step t. At the
last time step t = T , our original data is expected to be no different from pure Gaussian distribution
N (0, I). Therefore, in the denoising process, we can sample random noise from a standard Gaussian
distribution and recover it sequentially to samples from pdata. Such an approximation of the reverse
process q(syt−1|st, s0) can be delivered via a neural network with parameters θ, pθ(syt−1|s

y
t ). In the

context of our posterior estimation, neural network is conditioned on sỹ , where ỹ is the noisy label,
to approximate syt−1 at time step t. The reverse process then is parameterized as

pθ(s
y
t−1|s

y
t , s

ỹ,x) = N (µθ(s
y
t , t|sỹ,x),Σθ(s

y
t , t|sỹ,x)) (4)

As cross-entropy loss is typical in classification problem, we adopt it between the ground truth label
and the model prediction given a noisy logit simplex st at time step t.

L = Lt,q(sy0 |sỹ,xi),q(s
y
t |s

y
0 ,s

ỹ,xi)

[
−

L∑
i=1

log pθ(yi|syi

t , t, sỹi ,xi)
]

(5)

Noise Schedule One important component in the diffusion forward process is the noise schedule.
We follow the following cosine schedule for αt:

ᾱt =
f(t)

f(0)
, f(t) = cos

( t
T + s

1 + s
· π
2

)2

(6)

Inference During the inference of the simplex diffusion model, sT is sampled from the prior
N (0, k2I). The model predictions are iteratively denoised for t = T, . . . , 1 starting from k-logit
simplex Gaussian noise. This reverse process can be approximated via an adjustment of Equation (3):

st−1 =
√
ᾱt−1Ŝθ(st, t|sỹ,x) +

√
1− ᾱt−1ϵt (7)

where Ŝθ is the model prediction of the ground-truth, sỹ is noisy label simplex and x is the input
embedding, on which the model is conditioned. The model prediction Ŝθ(st, t|sỹ,x) is regarded as
the hypothetical ground-truth and corrupt it by (t− 1) time steps. To construct the model prediction,
we project the logits produced by the underlying conditional model via argmax to match the initial
k-logit representation:

ŝc(i) =

{
k, if i = argmax(sy),
−k otherwise.

(8)

5 Experiments & Results

First, we introduce the tasks and datasets (20News Group, NumClaim, TREC, SemEval) that our
experiments are conducted on (Section 5.1). Then, we describe our experimental setup (Section
5.2). Subsequently, we present the results of LLMs noise (Section 5.3) and synthetic noise, and real
world noise (Section 5.4). Finally, we validate the effectiveness of each component in our framework
(Section 5.5).

5.1 Tasks and Datasets

6
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Dataset # Labels Dataset Size
Train Valid Test

NumClaim 2 1715 429 537
TREC 6 5033 500 500
SemEval 9 1749 178 600
20News 20 9051 2263 7532

Table 1: Summary of datasets used. Dataset size
denotes the number of samples in the benchmark.

For our experiments, we include financial nu-
merical claim detection from Shah et al. (2024),
question classification from Li & Roth (2002),
semantic relation classification task from Hen-
drickx et al. (2019), and news topic modeling
task from Lang (1995). A summary of datasets
used with the train-validation-test split is pro-
vided in table 1. We provide brief details about
each task and dataset in Appendix A.

5.2 Experimental Setup

Baselines We compare SiDyP with the most
relevant state-of-the-art baselines from three different categories in the realm of learning from noisy
labels: (1) Basic Performances without specific design tackling noisy labels (Devlin et al., 2019a); (2)
Multi-Model Training Strategies: Co-Teaching (Han et al., 2018a) and JoCoR (Wei et al., 2020).
Co-Teaching trains two networks simultaneously and selects small-loss instances as clean samples
for subsquent training. JoCoR also trains two networks simultaneously and use co-regularization to
achieve agreement to filter out noisy samples by selecting instances with small losses; (3) Generative
Models for Noisy Maxtrix Estimation: NPC (Bae et al., 2022) and DyGen (Zhuang et al., 2023).
NPC utilize a generative model to calibrate the prediction of classifiers trained on noisy labels via a
transition matrix. DyGen leverages the training dynamics to detect noisy samples and use a generative
model to calibrate.

Evaluation We evaluate all the experiments using accuracy on clean test datasets. We only run the
model on the test dataset at the point when the validation accuracy achieves the highest during training.
The reported test performances of all baselines and our SiDyP is selected by this procedure. Given
that the success of existing weakly-supervised learning methods relies heavily on clean validation
samples (Zhu et al., 2023), we use noisy validation sets for model selections in all experiments. All
experiments are run under 5 random seeds. We report the mean of the performances and the standard
deviation.

Implementation Details We implement SiDyP using PyTorch (Paszke et al., 2019) and HuggingFace
(Wolf et al., 2020). We use BERT (Devlin et al., 2019a) as our PLC in Stage I. For our baselines
which contains PLC fine-tuning on noisy label datasets (NPC, DyGen, GaDyP), we use only one
coherent PLC results for their individual post process to ensure a fair comparison as random seeds
affect network initialization, synthetic noise generation, etc. More training details are revealed in
Appendix D.

5.3 LLMs Noise Experiments

We run extensive experiments on various tasks and diversified LLM noises. First, we exam-
ine our framework in NumClaim, TREC, and SemEval labelled by Llama-3-70b-chat-hf
(Dubey et al., 2024) in both zero-shot and few-shot manner. We only prompt 20News Group
in zero-shot manner as it is a document level task, and Llama-3-70b has a context length lim-
itation of 8192, which is not sufficient for few-shot learning. Then, to test SiDyP under diver-
sified LLM noises, we prompt Meta-Llama-3.1-70B-Instruct-Turbo (Dubey et al., 2024),
Meta-Llama-3.1-405B-Instruct-Turbo (Dubey et al., 2024), gpt-4o (OpenAI et al., 2024),
and Mixtral-8x22B-Instruct-v0.1 (Jiang et al., 2024) in both zero-shot and few-shot prompting
manners on SemEval task. We address the experiment details and results in the following.

LLM Prompting For both zero-shot and few-shot manners, we use same prompts of same tasks
for different LLMs (See prompting details in Appendix B.2). Notably, when prompting the LLM
to label data, it is not guaranteed that it would follow the instructions and output in the specified
format. It leads to missing labels for some data samples in our annotated datasets. Although we
observe that the portion of missing labels is trivial (i.e. highest missing label ratio (only 0.014%)
happens in 20News Group dataset. See full statistics in Appendix E), we still want to preserve those
data samples to maintain data’s integrity for training. Therefore, we randomly assign a label to those

7
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missing-label samples according to a uniform distribution over all labels. We use the dataset after
random assignment for both training and validation. We do not apply random assignment for test
dataset and report LLMs’ raw accuracy in Table 2 and 3.

Results Table 2 shows the results of Llama-3-70b on all four tasks. Our method (SiDyP) outperforms
all baselines by a notable margin 2.05& across all tasks in both prompting manners. There are
averagely 6.34% samples of a fine-tuned PLC, and 5.77% of raw Llama-3-70b labelled samples
successfully corrected by SiDyP. The performance gain on SemEval task is the most significant,
achieving an average increase of 3.7%. This indicates that SiDyP is robust to high noise ratio dataset.
Although the base performance of NumClaim is competitive, SiDyP is able to bring an average
of 20.19% marginal increase. For NumClaim in few-shot manner, our method is the only one to
outperform Llama-3-70b raw labelling accuracy and fine-tuned PLC. We also observe that both
methods of multi-model training strategies struggle in these tasks. We think it’s because of its training
from scratch as PLC possesses prior knowledge that would be helpful despite that they are prone to
noisy labels. Transition matrix-based methods performs generally better as it leverages pre-trained
models and calibrate it via a post-process.

Datasets (→) NumClaim TREC SemEval 20News

Method (↓) Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot Zero-shot

Llama-3-70b 89.94 95.53 81.80 84.00 47.50 48.50 74.04

PLC 90.54±0.72 95.11±0.30 80.64±0.94 77.72±1.34 51.59±0.44 50.46±0.72 71.2±0.52

Co-teaching 82.31±1.11 83.77±4.05 69.20±2.09 67.20±2.21 46.53±4.16 44.29±6.18 35.28±12.18

JoCoR 83.35±1.97 85.82±2.05 70.80±3.00 65.82±2.17 45.66±3.25 44.11±2.23 42.39±11.98

NPC 90.83±0.62 95.04±0.61 79.48±1.97 78.88±1.47 50.73±1.70 47.53±1.26 70.60±0.51

DyGen 91.13±0.30 95.41±0.28 82.88±0.71 84.80±0.86 60.86±0.81 60.79±2.23 71.42±0.31

SiDyP 93.63±0.84 95.97±0.15 84.76±0.79 85.60±0.44 64.26±0.27 64.79±0.96 72.66±0.58

Table 2: Performance comparison of Llama-3-70b on zero-shot and few-shot learning tasks across
multiple datasets, including NumClaim, TREC, SemEval, and 20News. Results are reported as
classification accuracy with mean and standard deviations of 5 runs under different seed. Bold
represents the best performance, while underline presents the second-best performance. Same seed
setting and presentation apply in the following tables.

Robustness Check for Diversified LLMs Instead of limiting to Llama-3-70b, we extend our
experiments to a variety of LLMs of different families with different sizes. We follow the same
prompting and assignment procedure as describe above (See details in Appendix B.1). We aim to
check the robustness of our SiDyP framework under multiple LLM-generated label noise. Table 3
shows the results of various types of LLM label noise on SemEval. Our method (SiDyP) achieves
a significantly better performance compared to all baselines across all LLMs and both prompting
manners. Specifically, SiDyP obtain an average of 4.47% performance gain than the second best
baseline. Comparing to a fine-tuned PLC on noisy dataset, our method is able to boost the performance
by an average of 8.02%. Notably, a significant average increase of 11.73% than LLMs raw accuracy is
brought by our method. Combining all, we validate that our method is robust and resilient to different
types of LLM noise and different prompting methods.

5.4 Synthetic and Real-world Noise Experiments

Observing significant performance improvement in LLM-generated label noises, we further test our
method under different families of noises, synthetic and real-world, on SemEval task. We reveal the
experiment details and results below.

Noise Generation We inject three types of synthetic noises, including Symmetric Noise (SN),
Asymmetric Noise (ASN), and Instance-Dependent Noise (IDN). Symmetric Noise flips labels
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Dataset (→) SemEval

Method (↓)
Llama-3.1-70b Llama-3.1-405b GPT4o Mixtral-8x22b

Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot

Base 52.66 55.16 55.16 52.16 56.50 57.66 42.66 40.83
PLC 60.26±0.89 57.70±1.10 54.76±1.24 53.96±0.12 58.63±0.86 61.56±0.93 49.29±1.31 46.33±1.32

Co-teaching 52.50±5.35 54.09±3.56 45.51±1.96 51.36±0.89 52.13±5.36 60.91±5.58 39.3±6.79 27.35±2.55

JoCoR 45.06±0.97 44.26±9.55 45.39±4.29 50.28±3.07 53.31±5.43 53.05±4.78 32.94±8.73 27.26±1.46

NPC 60.13±0.77 57.49±3.00 55.06±2.99 54.53±1.24 59.56±0.90 61.40±1.53 47.56±1.26 41.96±0.70

DyGen 68.53±0.88 64.53±2.85 59.69±1.31 51.69±2.02 62.63±0.91 64.03±0.82 50.63±6.43 40.23±1.41

SiDyP 71.66±0.91 67.43±1.36 62.76±0.99 60.46±2.06 66.86±0.48 68.83±1.07 57.96±1.94 50.66±2.02

Table 3: Performance comparison of Llama-3.1-70b, Llama-3.1-405b, GPT4o, and Mixtral-8×22b
on zero-shot and few-shot learning tasks on SemEval. "Base" represents LLM’s raw accuracy on test
sets.

uniformly to other classes (Zhuang et al., 2023; Bae et al., 2022; Han et al., 2018a). Asymmetric
Noise flips labels with similar classes (Zhuang et al., 2023; Bae et al., 2022). Instance-Dependent
Noise flips label with a probability proportional to the features of the sample (Zhuang et al., 2023; Bae
et al., 2022). As synthetic noise is controlled, we use the noise ratio of 50% to make a comparison
with LLM noise. We choose 50% because LLM noises ratio on SemEval are around 50%. For
real-world noise, we take majority vote on the 164 labeling functions’ output provided in WRENCH
(Zhang et al., 2021a) for the SemEval dataset.

Datasets (→) SemEval

Method (↓) SN ASN IDN Real World

Base 50.00 50.00 50.00 82.50
PLC 65.06±2.13 40.96±2.60 59.83±2.65 84.13±0.68

Co-teaching 49.78±7.82 38.79±9.04 37.00 ±3.88 70.2±0.7

JoCoR 51.66±7.88 44.84±4.75 41.91±6.64 69.71±1.17

NPC 57.73±3.61 42.60±5.46 54.16±4.91 81.23±1.88

DyGen 73.06±2.07 53.16±5.46 71.40±1.80 82.3±0.13

SiDyP 74.26±1.99 59.63±3.06 73.19±2.22 85.86±0.52

Table 4: Performance comparison on SemEval with synthetic
noise (SN, ASN, IDN) and real-world noise.

Results In Table 4, we present
the results of various synthetic
noises and real-world noises on
SemEval. SiDyP achieves an
average of 2.80% increase com-
pared to the second-best baseline.
We observe that the performance
increase between SiDyP and a
strong baseline DyGen on LLM
noises (5.21%) is higher than it on
synthetic noises (3.26%). This
is because DyGen performs bet-
ter on synthetic datasets as such
noises are less intricate (Zhuang
et al., 2023). It further validates
that LLM-generated label noises
align more with real-world noise,
making it more challenging for
other baselines to arrive at accurate estimates. SiDyP, on the other hand, is resilient to all types of
label noise, and brings improvement consistently. Moreover, all baselines are prone to the real-world
noise as they struggle to be comparable with Base and PLC performances. SiDyP is the only one
outperforming them by 3.36% and 1.73% increase respectively.

5.5 Effectiveness of Different Components

We investigate the effectiveness of each component in our SiDyP framework on Llama-3-70b labelled
SemEval dataset in both zero-shot and few-shot manners. We eliminate them individually to validate
their impact on performances: (1) Replacing our dynamic distillation priors with fix certain priors
(for each sample, it’s only associated with one fix certain label) in Stage II; (2) Substituting Stage
II’s generative model, simplex diffusion model with Dirichlet variational auto-encoder (VAE) (Joo
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et al., 2019) and Gaussian diffusion model (Sohl-Dickstein et al., 2015; Han et al., 2022; Chen
et al., 2023b). Table 5 indicates the result. All experiments are conduct using same PLC fine-tuned
results, and share the same value of hyper-parameters. Our simplex denoising label diffusion model
surpasses Dirchlete VAE by an average of 2.17%. We believe such an enhancement comes from the
de-noising capability of diffusion model. Moreover, it outperforms the Gaussin diffusion model by
8.58%. Our simplex denoising label diffusion model, which diffuses in probability simplex space,
constructs a more reliable and accurate label probability from noisy labels. Besides, our dynamic
prior distillation brings 1.53% increase. We further validate the improvement source of our dynamic
prior by comparing the portion of correct labels we collect with fix prior method (See Appendix F for
more details). Combining all, it confirms that our candidate retrieval algorithm could derive more
true labels, and our prior distillation could find the correct labels among the candidates.

6 Related Work

Datasets (→) SemEval

Method (↓) Zero-shot Few-shot

FP + Dir-VAE 60.86±0.81 60.79±2.23

FP + Sim-Diff 62.73±1.06 63.26±1.06

DP + Gau-Diff 54.53±3.48 57.36±3.64

DP + Sim-Diff (SiDyP) 64.26±0.27 64.79±0.96

Table 5: Different components efficacy on zero-shot and
few-shot labelled SemEval by Llama-3-70b. "FP"=fix
prior. "DP"=our dynamic prior. "Dir-VAE"=Dirchlete
VAE. "Gau-Diff"=Gaussian diffusion model. "Sim-
Diff"=simplex diffusion model.

Weak-supervision in machine learning in-
cludes incomplete, inexact, and inaccurate
categories, each tailored to specific imper-
fections in data (Zhou, 2018). Inexact su-
pervision deals with broad labels, while
inaccurate supervision, where labels are
erroneous, employ techniques like data pro-
gramming (Ratner et al., 2017), human-
in-the-loop strategies (Zhang et al., 2022),
and contrastive loss for enhanced learning
from data similarities and differences (Yu
et al., 2020). Zhang et al. (2021a) apply
a two-stage model to manage inaccurate
supervision, initially denoising data before
training on refined labels. In the landscape
of learning from noisy labels, Iscen et al.
(2022) proposed that there supposed to be
similarities among training instances in the
feature/embedding space, leading to the
consistency of labels between data instances and their neighbors. NPC proposed by Bae et al. (2022),
lies in the class of transition matrix base method. The true label is inferred by a prior, estimated by
a pretrianed classifer, and a posterior, approximated by a generative model. DyGen (Zhuang et al.
(2023)) infers true label based on the training dynamics during finetuning the pretrained language
model. The feasibility of Diffusion Models in classification problems are explored and validated
by Han et al. (2022). Chen et al. (2023a) is the very first to exploit the Gaussian diffusion model
in the context of noisy label learning. LLMs have also been leveraged to iteratively expand label
space under extremely weak supervision. X-MLClass (Li et al., 2024) demonstrated significant
improvements in label discovery and multi-label classification accuracy in open-world settings.
Additionally, explanation-aware ensembling methods like EASE (Yu et al., 2023) further illustrate how
LLMs can be used to improve in-context learning by effectively guiding predictions and mitigating
label noise.

7 Discussion

In this paper, we propose a denoising framework, SiDyP, to enhance the learning from Llama-3
generated labels noise. Leveraging the principle of partial label learning and neighbor consistency,
our label candidate retrieval and prior dynamic refinement algorithm alleviate the harm of incorrect
labels during the training of a classifier. We introduce a simplex diffusion model to reconstruct
categorical label data and utilize it as a posterior probability distribution estimator to calibrate the
inaccurate prior distribution. Our framework boosts few-shot Llama-3 classification accuracy by a
7.69% average increase across all datasets of diverse noise ratios. We believe that our work sheds
light on the realm of employing the diffusion model in the context of learning from noisy labels as
well as the topics of calibrating incorrect llm-generated datasets.
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A Dataset and Task Detail

• Numerical Claim Detection (NumClaim): This involves extracting numerical claims from
financial texts like analysts’ reports to forecast stock price volatility. Using a dataset with
binary labels for sentences, this task distinguishes between "in-claim" sentences that predict
financial outcomes and "out-of-claim" sentences that state factual information.

• Question Classification (TREC): This task involves classifying questions into predefined
categories based on their intent and content, as outlined in the TREC dataset from Li & Roth
(2002) study. Using a dataset of labeled questions, this task assigns each question to one of
six categories: location, entity, description, human, numeric value, and abbreviation. The
goal is to determine the type of answer each question seeks, thereby facilitating targeted
information retrieval and enhancing the efficiency of question-answering systems.

• Semantic Relation Extraction (SemEval): This task focuses on the multi-way classification
of semantic relations between pairs of nominals, as defined in SemEval-2010 Task 8
(Hendrickx et al., 2019). Utilizing a dataset where each pair of nominals is annotated with
one of nine (Cause-Effect, Instrument-Agency, etc.) possible semantic relations, this task
involves determining the specific type of relationship that exists between the two terms.
The nine categories include Cause-Effect, Instrument-Agency, Product-Producer, Content-
Container, Entity-Origin, Entity-Destination, Component-Whole, Member-Collection, and
Message-Topic. The objective is to enhance the understanding of linguistic patterns and to
improve the semantic analysis capabilities of natural language processing systems.

• News Topic Modeling (20News): This task involves classifying news articles into different
topics using the well-known 20 Newsgroups dataset (Lang, 1995). The dataset contains
around 20,000 documents collected from newsgroups, organized into 20 different categories
such as ’rec.sport.baseball’, ’comp.graphics’, and ’sci.med’. Each document is assigned to
one of these categories. The task’s objective is to train models to effectively capture the
topical structure of news articles, which helps improve text categorization and topic detection
capabilities in natural language processing applications.

B LLM Prompting Details

B.1 Model Implementation Details

We use the Llama-3-70b-chat-hf (Touvron et al., 2023b) model for all of our inferences. We take
advantage of API from together.ai. We are grateful to them for providing free credits and making it
possible. We use the model with a temperature value of 0.00 (for reproducibility) and max_token
of 100. The same hyper-parameters are used for Meta-Llama-3.1-70B-Instruct-Turbo,
Meta-Llama-3.1-405B-Instruct-Turbo, Mixtral-8x22B-Instruct-v0.1, and gpt-4o.

B.2 Prompt Templates

Numerical Claim Detection
We use the following zero-shot prompt for numerical claim detection:

prompt_json = [

"role": "user", "content": f“Classify the following sentence into ’INCLAIM’, or ’OUTOFCLAIM’
class. ’INCLAIM’ refers to predictions or expectations about financial outcomes, it can be thought of
as ’financial forecasts’. ’OUTOFCLAIM’ refers to sentences that provide numerical information or
established facts about past financial events. Now, for the following sentence provide the label in the
first line and provide a short explanation in the second line. The sentence: sentence”,

]

We use the following few-shot prompt for numerical claim detection:

prompt_json = [

"role": "user", "content": f“Classify the following sentence into ’INCLAIM’, or ’OUTOFCLAIM’
class. ’INCLAIM’ refers to predictions or expectations about financial outcomes, it can be thought of
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as ’financial forecasts’. ’OUTOFCLAIM’ refers to sentences that provide numerical information or
established facts about past financial events. Here are two examples: \nExample 1: consolidated total
capital was $2.9 billion for the quarter. // OUTOFCLAIM\nExample 2: we expect revenue growth
to be in the range of 5.5% to 6.5% year on year. // INCLAIM \nNow, for the following sentence
provide the label in the first line and provide a short explanation in the second line. The sentence:
{sentence}”,

]

TREC
We use the following zero-shot prompt for the TREC dataset:

prompt_json = [

"role": "user", "content": f“For the following question, which belongs to a specific category, categorize
it into one of the following classes based on the type of answer it requires: Abbreviation (ABBR),
Entity (ENTY), Description (DESC), Human (HUM), Location (LOC), Numeric (NUM). Provide the
label in the first line and provide a short explanation in the second line. The question: {question},

]

We use the following few-shot prompt for the TREC dataset:

prompt_json = [

"role": "user", "content": f“For the following question, which belongs to a specific category, categorize
it into one of the following classes based on the type of answer it requires: Abbreviation (ABBR),
Entity (ENTY), Description (DESC), Human (HUM), Location (LOC), Numeric (NUM). Here are
six examples:\nExample 1: how did serfdom develop in and then leave russia ? // DESC\nExample
2: what films featured the character popeye doyle ? // ENTY\nExample 3: what contemptible
scoundrel stole the cork from my lunch ? // HUM\nExample 4: what is the full form of .com ? //
ABBR\nExample 5: what sprawling u.s. state boasts the most airports ? // LOC\nExample 6: when
was ozzy osbourne born ? // NUM \nNow for the following question provide the label in the first line
and provide a short explanation in the second line. The question: {question},

]

SemEval
We use the following zero-shot prompt for the SemEval dataset:

prompt_json = [

"role": "user", "content": f“The task is to identify the type of semantic relationship between two
nominals in a given sentence. Below are the definitions of the nine relationship categories you must
choose from:\nCause-Effect (CE): An event or object leads to an effect.\nInstrument-Agency (IA): An
agent uses an instrument.\nProduct-Producer (PP): A producer causes a product to exist.\nContent-
Container (CC): An object is physically stored in a delineated area of space.\nEntity-Origin (EO): An
entity is coming or is derived from an origin (e.g., position or material).\nEntity-Destination (ED): An
entity is moving towards a destination.\nComponent-Whole (CW): An object is a component of a larger
whole.\nMember-Collection (MC): A member forms a nonfunctional part of a collection.\nMessage-
Topic (MT): A message, written or spoken, is about a topic.\nFor the provided sentence below,
determine the most accurate relationship category based on the descriptions provided. Respond by
selecting the label (e.g., CE, IA, PP, etc.) that best matches the relationship expressed in the sentence.
Provide the label in the first line and provide a short explanation in the second line. The sentence:
{sentence},

]

We use the following few-shot prompt for the SemEval dataset:

prompt_json = [

"role": "user", "content": f“The task is to identify the type of semantic relationship between two
nominals in a given sentence. Below are the definitions of the nine relationship categories you must
choose from:\nCause-Effect (CE): An event or object leads to an effect. (Example: As the right front
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wheel of Senna ’s car hit the wall , the violent impact caused a torsion on the steering column , causing
it to break .)\nInstrument-Agency (IA): An agent uses an instrument. (Example: The necromancer
wields the power of death itself , a power no enemy can stand against .)\nProduct-Producer (PP): A
producer causes a product to exist. (Example: This website , www.fertilityuk.org , shows how to
interpret the changes that take place in the mucus secretions produced by the cells lining the cervix
.)\nContent-Container (CC): An object is physically stored in a delineated area of space. (Example: I
sent you a suitcase with cash in it so you can fill it up with wine gummies .)\nEntity-Origin (EO): An
entity is coming or is derived from an origin (e.g., position or material) (Example: I have always
felt so relieved that Roy and the boys had left the creek .).\nEntity-Destination (ED): An entity is
moving towards a destination. (Example: The machine blows water into the connecting conduit
.)\nComponent-Whole (CW): An object is a component of a larger whole. (Example: He noticed a
speck of blood on the man ’s thumb and what he thought were several corresponding drops on the
driver ’s door of the truck .)\nMember-Collection (MC): A member forms a nonfunctional part of a
collection. (Example: With the conquest of Jerusalem in 1099 , Geoffrey de Bouillon established a
chapter of secular canons in the basilica of the Holy Sepulcher to offer the sacred liturgy according to
the Latin rite .)\nMessage-Topic (MT): A message, written or spoken, is about a topic. (Example:
A number of scientific criticisms of Duesberg ’s hypothesis were summarised in a review article
in the journal Science in 1994 .)\nFor the provided sentence below, determine the most accurate
relationship category based on the descriptions provided. Respond by selecting the label (e.g., CE,
IA, PP, etc.) that best matches the relationship expressed in the sentence. Provide the label in the first
line and provide a short explanation in the second line. The sentence: {sentence},

]

20News
We use the following zero-shot prompt for the 20News dataset:

prompt_json = [

"role": "user", "content": f“The task is to classify the given text into one of the 20 news group cate-
gories. Below are the 20 categories you must choose from:\n1. ’alt.atheism’: Discussions related to
atheism.\n2. ’comp.graphics’: Topics about computer graphics, including software and hardware.\n3.
’comp.os.ms-windows.misc’: Discussions about the Microsoft Windows operating system.\n4.
’comp.sys.ibm.pc.hardware’: Topics related to IBM PC hardware.\n5. ’comp.sys.mac.hardware’:
Discussions about Mac hardware.\n6. ’comp.windows.x’: Topics about the X Window System.\n7.
’misc.forsale’: Posts related to buying and selling items.\n8. ’rec.autos’: Discussions about
automobiles.\n9. ’rec.motorcycles’: Topics related to motorcycles.\n10. ’rec.sport.baseball’: Discus-
sions about baseball.\n11. ’rec.sport.hockey’: Discussions about hockey.\n12. ’sci.crypt’: Topics
about cryptography and encryption.\n13. ’sci.electronics’: Discussions about electronic systems
and devices.\n14. ’sci.med’: Topics related to medical science and healthcare.\n15. ’sci.space’:
Discussions about space and astronomy.\n16. ’soc.religion.christian’: Topics about Christianity and
related discussions.\n17. ’talk.politics.guns’: Discussions about gun politics and related debates.\n18.
’talk.politics.mideast’: Topics about politics in the Middle East.\n19. ’talk.politics.misc’: General
political discussions not covered by other categories.\n20. ’talk.religion.misc’: Discussions about
miscellaneous religious topics.\nFor the provided text below, determine the most appropriate category
based on the descriptions above. Respond by selecting the label (e.g., alt.atheism, comp.graphics,
etc.) that best matches the topic of the text. Provide the label in the first line and a brief explanation
in the second line. The sentence: {sentence},

]

C Training Dynamics and Co-Regularization

Training Dynamics The training dynamics during PLC fine-tuning (Stage I in Figure 1) is not
only beneficial for clean and noisy sample separation (as we discuss in Section 3), but also contains
rich information attributing to generative model learning (Stage II in Figure 1) (Zhuang et al., 2023).
Leveraging such dynamics, our empirical objective becomes:

p(y|x) ∝
∑
ŷ

p(ŷ|x)p(y|ŷ,W )
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where W denotes the training dynamics for each sample.

Co-Regularization Although we manage to mitigate the negative impact of label noises (Section
3,4), it is inevitable that small deviations in p(ŷ|x) and p(y|ŷ, x) could propagate to later stages,
thus affecting the objective p(y|x). We leverage multiple branches with identical architecture but
different initializations (Zhuang et al., 2023). A co-regularization loss across branches is introduced to
achieve consensus. Such a loss is calculated as the KL Divergence between the consensus probability
(the average probability of models’ predicted probability in different model branches) and each
individual model’s predicted probability. We apply co-regularization mechanism to both Stage I PLC
Fφ(ŷ|x) and Stage II generative model pθ(y|ŷ, x). To begin, we initialize M copies of F(m)

φ (ŷ|x)
and p

(m)
θ (y|ŷ, x). Passing instances xi to different model branches, we can obtain corresponding

model predicted probabilities p(m)
i . Then, a aggregated probability qi can be calculated by averaging

all predicted probabilities:

qi =
1

M

M∑
m=1

p
(m)
i

Given these, a co-regularization loss can be calculated as follows:

ℓCR =
1

MN

N∑
i=1

M∑
m=1

KLK(qi||p(m)
i )

=
1

MN

N∑
i=1

M∑
m=1

C∑
c=1

qic log
( qic + ϵ

p
(m)
ic + ϵ

)
where ϵ indicates a small positive number to avoid division by zero.

D SiDyP Training Details

All experiments are conducted on CPU: Intel(R) Xeon(R) W-2295 CPU @ 3.00GHz and GPU:
NVIDIA GeForce RTX A6000 GPUs using Python 3.11.5 and PyTorch 2.0.1. Table 6 indicates
all specific hyper-parameters we use in different datasets. We use Adam (Kingma & Ba, 2017) as
optimizer. EBERT is the training epochs for the BERT classifier. ESD is the training epochs for the
simplex diffusion model. σ is the estimated error rate in Algorithm 1. λ is the threshold that we
separate certain and uncertain prior in Algorithm 1. γ is the threshold that we preserve the dominance
candidates in uncertain prior in Algorithm 1. In Algorithm 2, α is the warmup epochs for Stage II
generative model training. m is the number of model branch. β is the number of sample times that
we use to refine our uncertain prior based on model’s predictions.

Time Complexity We perform Big-O analysis for SiDyP. The time complexity for SiDyP is
O(W 2 × T ) where W denotes the embedding size of training dynamics and T is either training
timesteps or inference timesteps of our simplex diffusion model. We choose γ based on our empirical
estimation. To make a fair comparison, we use the same estimate error rate in all other baselines
which requires one. We grid search these hyper-parameters: λ in [0.7, 0.8, 0.9, 1.0], γ in [0.4, 0.6,
0.8], α in [1, 2, 3, 4, 5, 6], β in [2, 4, 6, 8], K in [10, 20, 30], train timesteps in [400, 500, 600, 700,
800], inference timesteps in [10, 20, 50, 100], learning rate in [1e-3, 6e-4, 3e-4, 1e-5].
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LLM (→) Llama-3-70b
Datasets (→) NumClaim TREC SemEval 20News
Method (↓) Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot Zero-shot
EBERT 20 20 20 20 20 20 20
batch size 128 128 128 128 128 128 128
learning rate (BERT) 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
max length 128 128 64 64 128 128 128
σ 0.1 0.05 0.3 0.3 0.5 0.5 0.5
λ 0.9 0.9 0.9 0.9 0.9 0.9 0.9
γ 0.8 0.8 0.8 0.8 0.8 0.8 0.8
α 2 1 1 1 2 3 4
m 3 3 3 3 3 3 3
β 4 4 4 4 4 4 4
ESD 10 10 10 10 10 10 10
batch size (SD) 128 128 128 128 128 128 128
learning rate (SD) 6e-4 6e-4 6e-4 6e-4 6e-4 6e-4 6e-4
train timesteps 800 500 800 600 800 500 500
inference timesteps 10 10 50 80 10 10 10
K 20 20 20 10 10 10 10

Table 6: Training hyper-parameters details for SiDyP on all six Llama-3 generated datasets.

E LLM Noise Ratio

See Table 8

LLM (→) Llama-3-70b
Datasets (→) NumClaim TREC SemEval 20News
Method (↓) Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot Zero-shot
Noise Ratio (Original) 91.69 95.85 70.35 69.72 50.96 50.64 76.13
No Answer Ratio 0.00 0.00 3.6e−4 1.8e−4 2.5e−3 4.1e−3 1.4e−2

Noise Ratio (After RA) 91.69 95.85 70.35 69.72 50.96 50.64 76.23

Table 7: Llama-3-70b label noise ratio on training sets of NumClaim, TREC, and SemEval in
zero-shot and few-shot manners, and 20News Group in zero-shot manner. "RA" represents random
assignment.

Dataset (→) SemEval

Method (↓) Llama-3.1-70b Llama-3.1-405b GPT4o Mixtral-8x22b
Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot

Noise Ratio (Original) 57.39 56.66 57.70 55.78 60.61 61.49 44.94 44.42
No Answer Ratio 0.00 0.00 0.001 0.0005 0.00 0.00 0.009 0.001
Noise Ratio (After RA) 57.39 56.66 57.75 55.78 60.61 61.49 44.94 44.42

Table 8: Label noise ratio of SemEval training set by Llama-3.1-70b, Llama-3.1-405b, GPT4o, and
Mixtral-8×22b in both zero-shot and few-shot manners. "RA" represents random assignment.

F Label Candidate Efficacy

We calculate the accuracy of our label candidate compared to true labels for Llama-3-70b zero-shot
labeled 20News Group, NumClaim, Trec, and SemEval across a wide-range of certain threshold
λ and dominant threshold γ. For certain candidate, the accuracy is easy to calculate as we can
directly compare to its corresponding true label. For uncertain candidate, we either compare the
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specific candidate with maximum probability with true label, or we check if true label lies in our
uncertain candidate. Notably, when λ = γ = 0, our dynamic prior turns into fix prior. Our label
candidate achieves an average of 9.5% improvement compared to fix prior. Figure 2 presents the
entire distribution of our dynamic prior accuracy.

G LLM-generated Label Noise Characteristics

We plot SemEval’s noise distribution of three different types of noise: LLM, synthetic, real-world in
Figure 3. Except for real-world noise which has lower noise ratio (16%), both LLM-generated noise
and synthetic noise’s ratio are around 50%. Our observations are listed in the follow:

• Although the noise ratio of LLM-generated labels is comparable to that of synthetic noise,
the correct ratio (the diagonal) is more diverse. In contrast, the correct ratios for all three
types of synthetic noise are approximately 50%, reflecting an equal distribution of noise
injection across classes.

• In synthetic noise, incorrect labels often show clear patterns (e.g., being consistently off by
one class in ASN, noise distributed relatively equally in SN). The label noise introduced by
IDN changes significantly depending on the seed used. Such a sensitivity to initial random
state impacts model’s robustness.

• While the distribution of synthetic noise indicates that this type of mislabeling often lacks
contextual correlation, LLM-generated label noise reflects underlying relationships between
classes (as evidenced by the similarity among the three LLMs), making it more aligned with
real-world noise.
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Figure 2: Label candidate accuracy distribution across different combinations of certain threshold
λ and dominant threshold γ on 20 News Group, NumClaim, TREC, and SemEval labelled by
Llama-3-70b in the zero-shot manner.
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Figure 3: Noise distribution of differet types of noise: IDN under three seeds, Llama-3-70b zeroshot,
Llama-3-70b fewshot, gpt4o, SN, ASN, and real-world

H Candidate Distillation Efficacy

Figure 4 presents the performance increase brought by our candidate dynamic distillation algorithm.
We use all four datasets labelled by Llama-3-70B. We obtain the amount of data instances in our
training set of each dataset being corrected. The corrected uncertain ratio is calculated by such an
amount dividing the total number of uncertain data instances which contains true labels in their
candidates. We observe that more noise the datasete has, more significant improvement our distillation
can bring. Notably, it is able to correct 8.6% label in SemEval few-shot prompting.
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Figure 4: The ratio of uncertain labels being corrected by our candidate dynamic distillation.
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