
Under review as a conference paper at ICLR 2021

A DERIVATIONS OF THE AUGMENTED (PSEUDO) PRIOR

A.1 INDUCING AUXILIARY VARIABLES: MULTIVARIATE GAUSSIAN CASE

Suppose each weight matrix has an isotropic Gaussian prior with zero mean, i.e. vec(W) ∼
N (0, σ2I) where vec concatenates the columns of a matrix into a vector and σ is the standard
deviation. Augmenting this Gaussian with an auxiliary variable U that also has a mean of zero and
some covariance that we are free to parameterise, the joint distribution is(

vec(W)
vec(U)

)
∼ N (0,Σ) with L =

(
σI 0
Z D

)
s.t. Σ = LL> =

(
σ2I σZ>

σZ ZZ> +D2

)
where D is a positive diagonal matrix and Z a matrix with arbitrary entries. Through defining the
Cholesky decomposition of Σ we ensure its positive definiteness. By the usual rules of Gaussian
marginalisation, the augmented model leaves the marginal prior on W unchanged. Further, we can
analytically derive the conditional distribution on the weights given the inducing weights:

p(vec(W)| vec(U)) = N (µW |U ,ΣW |U), (14)

µW |U = σZ>Ψ−1 vec(U), ΣW |U = σ2(I − Z>Ψ−1Z), Ψ = ZZ> +D2.

For inference, we now need to define an approximate posterior over the joint space q(W,U). We
will do so by factorising it as q(W,U) = q(W |U)q(U). Factorising the prior in the same way leads
to the following KL term in the ELBO:

KL [q(W,U)||p(W,U)] = Eq(U) [KL [q(W |U)||p(W |U]] + KL [q(U)||p(U)]

A.2 INDUCING AUXILIARY VARIABLES: MATRIX NORMAL CASE

Now we introduce the inducing variables in matrix space, and, in addition to the inducing weight U ,
we pad in two inducing matrices Ur, Uc, such that the full augmented prior is:(

W Uc
Ur U

)
∼ p(W,Uc, Ur, U) :=MN (0,Σr,Σc), (15)

with Lr =

(
σrI 0
Zr Dr

)
s.t. Σr = LrL

>
r =

(
σ2
rI σrZ

>
r

σrZr ZrZ
>
r +D2

r

)
,

and Lc =

(
σcI 0
Zc Dc

)
s.t. Σc = LcL

>
c =

(
σ2
cI σcZ

>
c

σcZc ZcZ
>
c +D2

c

)
.

Matrix normal distributions have similar marginalisation and conditioning properties as multivariate
Gaussians. As such, the marginal both over some set of rows and some set of columns is still
a matrix normal. Hence, p(W) = MN (0, σ2

rI, σ
2
cI), and by choosing σrσc = σ this matrix

normal distribution is equivalent to the multivariate normal p(vec(W)) = N (0, σ2I). Also p(U) =
MN (0,Ψr,Ψc), where again Ψr = ZrZ

>
r +D2

r and Ψc = ZcZ
>
c +D2

c . Similarly, the conditionals
on some rows or columns are matrix normal distributed:

Uc|U ∼MN (σrZ
>
r Ψ−1

r U, σ2
r(I − Z>r Ψ−1

r Zr),Ψc), (16)

Ur|U ∼MN (UΨ−1
c σcZc,Ψr, σ

2
c (I − Z>c Ψ−1

c Zc)), (17)

W |Uc ∼MN
(
UcΨ

−1
c σcZc, σ

2
rI, σ

2
c (I − Z>c Ψ−1

c Zc)
)

(18)

W,Ur|Uc, U ∼MN (

(
Uc
U

)
Ψ−1
c σcZc,Σr, σ

2
c (I − Z>c Ψ−1

c Zc)), (19)

W |Ur, Uc, U ∼MN (MW , σ
2
r(I − Z>r Ψ−1Zr), σ

2
c (I − Z>c Ψ−1

c Zc)), (20)

MW = σ(Z>r Ψ−1
r Ur + UcΨ

−1
c Zc − Z>r Ψ−1

r UΨ−1
c Zc). (21)

B KL DIVERGENCE FOR RESCALED CONDITIONAL WEIGHT DISTRIBUTIONS

For the conditional distribution on the weights, in the simplest case we set q(W |U) = p(W |U),
hence the KL divergence would be zero. For the most general case of arbitrary Gaussian distributions

13

Under review as a conference paper at ICLR 2021

with q = N (µq,Σq) and p = N (µp,Σp), the KL divergence is:

KL [q||p] =
1

2
(log

det Σp
det Σq

− d+ tr(Σ−1
p Σq) + (µp − µq)>Σ−1

p (µp − µq)),

where d is the number of elements of µ. As motivated, it is desirable to make q(W |U) similar
to p(W |U). We consider a scalar rescaling of the covariance, i.e. for p = N (µ,Σ) we set q =
N (µ, λ2Σ). This leads to the final term, which is the Mahalanobis distance between the means
under p, cancelling out entirely and the log determinant and trace terms becoming a function of λ
only: with d = dim(vec(W)),

KL [q||p] =
1

2
(log

det Σ

detλ2Σ
− d+ tr(Σ−1λ2Σ))

=
1

2
(log

det Σ

λ2d det Σ
− d+ tr(λ2I))

=
1

2
(−2d log λ− d+ dλ2)

= d(
1

2
λ2 − log λ− 1

2
).

C THE EXTENDED MATHERON’S RULE TO MATRIX NORMAL DISTRIBUTIONS

The original Matheron’s rule (Journel & Huijbregts, 1978; Hoffman & Ribak, 1991; Doucet, 2010)
for sampling conditional Gaussian variables states the following. If the joint multivariate Gaussian
distribution is(

vec(W)
vec(U)

)
∼ p(vec(W), vec(U)) := N (0,Σ), Σ =

(
ΣWW ΣWU

ΣUW ΣUU

)
,

then, conditioned on U , sampling W ∼ p(vec(W), vec(U)) can be done as

vec(W) = vec(W̄) + ΣWUΣ−1
UU (vec(U)− vec(Ū)), vec(W̄), vec(Ū) ∼ N (0,Σ).

Matheron’s rule can provide significant speed-ups if vec(U) has significantly smaller dimensions
than that of vec(W), and the Cholesky decomposition of Σ can be computed with low costs (e.g.
due to the specific structure in Σ). Recall from the main text that the augmented prior is

p(vec(W), vec(U)) = N
(

0,

(
σ2
cI ⊗ σ2

rI σcZ
>
c ⊗ σrZ>r

σcZc ⊗ σrZr Ψc ⊗Ψr

))
,

and the corresponding conditional distribution is:

p(vec(W)| vec(U)) = N (σcσr vec(ZrΨ
−1
r UΨ−1

c Z>c), σ2
cσ

2
r(I−Z>c Ψ−1

c Zc⊗Z>r Ψ−1
r Zr)). (22)

Therefore, while dim(vec(U)) is indeed significantly smaller than of dim(vec(W)) by construction,
the joint covariance matrix does not support fast Cholesky decompositions, meaning that Matheron’s
rule for efficient sampling does not directly apply here.

However, in the full augmented space, the joint distribution does have an efficient matrix normal
form: p(W,Uc, Ur, Uc) =MN (0,Σr,Σc). Furthermore, the row and column covariance matrices
Σr and Σc are parameterised by their Cholesky decompositions, meaning that sampling from the
joint distribution p(W,Uc, Ur, U) can be done in a fast way. Importantly, Cholesky decomposi-
tions for p(U)’s row and column covariance matrices Ψr and Ψc can be computed in O(M3

out) and
O(M3

in) time, respectively, which are much faster than the multi-variate Gaussian case that requires
O(M3

inM
3
out) time. Observing these, we extend Matheron’s rule to sample p(W |U) where p(W,U)

is the marginal distribution of p(W,Uc, Ur, Uc) =MN (0,Σr,Σc).

In detail, for drawing a sample from p(W |U) we need to draw a sample from the joint p(W,U). To
do so, we sample from the augmented prior W̄ , Ūc, Ūr, Ū ∼ p(W̄ , Ūc, Ūr, Ū) = MN (0,Σr,Σc),
computed using the Cholesky decompositions of Σr and Σc:(

W̄ Ūc
Ūr Ū

)
=

(
σrI 0
Zr Dr

)(
E1 E2

E3 E4

)(
σcI Z>c
0 Dc

)
,

14

Under review as a conference paper at ICLR 2021

where E1 ∈ Rdout×din , E2 ∈ Rdout×Min , E3 ∈ RMout×din , E4 ∈ RMout×Min are standard Gaus-
sian noise samples, and W̄ ∈ Rdout×din and Ū ∈ RMout×Min . Then we construct the conditional
sample W ∼ p(W |U) as follows, similar to Matheron’s rule in the multivariate Gaussian case:

W = W̄ + σrσcZ
>
r Ψ−1

r (U − Ū)Ψ−1
c Zc. (23)

From the above equations we see that Ūr and Ūc do not contribute to the final W sample. Therefore
we do not need to compute Ūr and Ūc, and we write the separate expressions for W̄ and Ū as:

W̄ = σrσcE1, Ū = ZrE1Z
>
c︸ ︷︷ ︸

Ū1

+ZrE2Dc︸ ︷︷ ︸
Ū2

+DrE3Z
>
c︸ ︷︷ ︸

Ū3

+DrE4Dc︸ ︷︷ ︸
Ū4

. (24)

Note that Ū is a sum of four samples from matrix normal distributions. In particular, we have that:

Ū2
d∼MN (0, ZrZ

>
r , D

2
c) and Ū3

d∼MN (0, D2
r , ZcZ

>
c).

Hence instead of sampling the “long and thin” Gaussian noise matrices E2 and E3, we can reduce
variance by sampling standard Gaussian noise matrices Ẽ2, Ẽ3 ∈ RMout×Min , and calculate Ū as

Ū = ZrE1Z
>
c + L̂rẼ2Dc +DrẼ3L̂

>
c +DrE4Dc. (25)

This is enabled by calculating the Cholesky decompositions L̂rL̂>r = ZrZ
>
r and L̂cL̂>c = ZcZ

>
c ,

which haveO(M3
out) andO(M3

in) run-time costs, respectively. As a reminder, the Cholesky factors
are square matrices, i.e. L̂r ∈ RMout×Mout , L̂c ∈ RMin×Min). We name the approach the extended
Matheron’s rule for sampling conditional Gaussians when the full joint has a matrix normal form.

As to verify the proposed approach, we compute the mean and the variance of the random variable
W defined in (23), and check if they match the mean and variance of (22). First as W̄ , Ū have zero
mean, it is straightforward to verify that E[W] = σrσcZ

>
r Ψ−1

r UΨ−1
c Zc which matches the mean

of (22). For the variacne of vec(W), it requires computing the following terms:

V(vec(W)) =V(vec(W̄)) + V(vec(σrσcZ
>
r Ψ−1

r ŪΨ−1
c Zc))

− 2Cov[vec(W), vec(σrσcZ
>
r Ψ−1

r ŪΨ−1
c Zc)] := A1 +A2 − 2A3.

(26)

First it can be shown that

A1 = σ2
rσ

2
cI since W̄ ∼MN (0, σ2

rI, σ
2
cI),

A2 = σ2
rσ

2
cZ
>
c Ψ−1

c Zc ⊗ Z>r Ψ−1
r Zr since Z>r Ψ−1

r ŪΨ−1
c Zc

d∼MN (0, Z>r Ψ−1
r Zr, Z

>
c Ψ−1

c Zc).

For the correlation term A3, we notice that W̄ and Ū only share the noise matrix E1 in the joint
sampling procedure eq. (24). This also means

A3 = σ2
rσ

2
cCov[vec(E1), vec(Z>r Ψ−1

r ZrE1Z
>
c Ψ−1

c Zc)] = σ2
rσ

2
cZ
>
c Ψ−1

c Zc ⊗ Z>r Ψ−1
r Zr.

Plugging inA1, A2, A3 into eq. (26) verifies that V(vec(W)) matches the variance of the conditional
distribution p(vec(W)| vec(U)), showing that the proposed extended Matheron’s rule indeed draws
samples from the conditional distribution.

As for samplingW from q(W |U), since it has the same mean but a rescaled covariance as compared
with p(W |U), we can compute the samples by adapting the extend Matheron’s rule as follwos.
Notice that the mean of W in (23) is E[W |U] = σrσcZ

>
r Ψ−1

r UΨ−1
c Zc, therefore by rearranging

terms, eq. (23) can be re-written as

W = Z>r Ψ−1
r UΨ−1

c Zc + [W̄ − σrσcZ>r Ψ−1
r ŪΨ−1

c Zc] := mean + noise.

So sampling from q(W |U) can be done by rescaling the noise term in the above equation with the
scale parameter λ. In summary, the extended Matheron’s rule for sampling q(W |U) is as follows:

W = λW̄ + σrσcZ
>
r Ψ−1

r (U − λŪ)Ψ−1
c Zc, W̄ , Ū ∼ p(W̄ , Ūc, Ūr, Ū). (27)

Plugging in σrσc = σ here returns the conditional sampling rule (10) in the main text.

15

Under review as a conference paper at ICLR 2021

D FUNCTION-SPACE VIEW OF INDUCING WEIGHTS

Here we present the detailed derivations of Section 3.3. Assume a neural network layer with weight
W computes the following transformation of the input X = [x1, ...,xN],xi ∈ Rdin×1:

F = WX, H = g(F), W ∈ Rdout×din ,X ∈ Rdin×N , g(·) is the non-linearity.

Therefore the Gaussian prior p(W) = N (0, σ2I) induces a Gaussian distribution on the linear
transformation output F, in fact each of the rows in F = [f1, ..., fdout

]>, fi ∈ RN×1 has a Gaussian
process form with linear kernel:

fi|X ∼ GP(0,KXX), KXX(m,n) = σ2x>mxn. (28)

Performing inference on F directly hasO(N3 +doutN
2) cost, so a sparse approximation is needed.

Slightly different from the usual approach, we introduce “scaled noisy inducing outputs” Uc =
[uc1, ...,u

c
dout

]> ∈ Rdout×Min in the following way, using shared inducing inputs Z>c ∈ Rdin×Min :

p(fi, ûi|X) = GP
(
0,

(
KXX KXZc

KZcX KZcZc

))
, p(uci |ûi) = N

(
ûi
σc
, σ2
rD

2
c

)
,

with KZcX = σ2ZcX and KZcZc
= σ2ZcZ

>
c . By marginalising out the “noiseless inducing

outputs” ûi, we have the joint distribution p(fi,ui) as

p(uci) = N (0, σ2
rΨc), Ψc = ZcZ

>
c +D2

c ,

p(fi|X,uci) = N
(
σcσ
−2KXZc

Ψ−1
c uci ,KXX − σ−2KXZc

Ψ−1
c KZcX

)
.

Collecting all the random variables in matrix forms, this leads to

p(Uc) =MN (0, σ2
rI,Ψc), (29)

p(F|X, Uc) =MN
(
σcσ
−2UcΨ

−1
c KZcX, σ

2
rI, σ

−2
r (KXX − σ−2KXZc

Ψ−1
c KZcX)

)
(30)

=MN
(
UcΨ

−1
c σcZcX, σ

2
rI,X

>σ2
c (I − Z>c Ψ−1

c Zc)X
)
.

Also recall from conditioning rules of matrix normal distributions, we have that

p(W |Uc) =MN
(
UcΨ

−1
c σcZc, σ

2
rI, σ

2
c (I − Z>c Ψ−1

c Zc)
)
.

Since for W ∼ MN (M,Σ1,Σ2) we have WX
d∼ MN (MX,Σ1,X

>Σ2X), this immediately
shows that p(F|X, Uc) is the push-forward distribution of p(W |Uc) for the operation F = WX. In
other words:

F ∼ p(F|X, Uc) ⇔ W ∼ p(W |Uc), F = WX.

This confirms the interpretation of Uc as ”scaled noisy inducing outputs” that lies in the same space
as F. Notice that in the main text we provide a pictorial visualisation of Uc by selecting σc = 1. As
the inducing weights U are the focus of our analysis here, we conclude that this specific choice of
σc is without loss of generality.

So far theUc variables assist the posterior inference to capture correlations across functions values of
different inputs. Up to now the function values remain independent across output dimensions, which
is also reflected by the diagonal row covariance matrices in the above matrix normal distributions.
As in neural networks the output dimension can be fairly large (e.g. dout = 1000), to further improve
memory efficiency, we proceed to project the column vectors of Uc to an Mout dimensional space
with Mout << dout. This dimension reduction step is done with a generative approach, similar to
probabilistic PCA (Tipping & Bishop, 1999):

U ∼MN (0,Ψr,Ψc), Uc|U ∼MN (σrZ
>
r Ψ−1

r U, σ2
r(I − Z>r Ψ−1

r Zr),Ψc). (31)

Note that the column covariance matrices in the above two matrix normal distributions are the same,
and the conditional sampling procedure is done by a linear transformation of the columns in U plus
noise terms. Again from the marginalisation and conditioning rules of matrix normal distributions,
we have that the full joint distribution (5), after proper marginalisation and conditioning, returns

p(U) =MN (0,Ψr,Ψc), p(Uc|U) =MN (σrZ
>
r Ψ−1

r U, σ2
r(I − Z>r Ψ−1

r Zr),Ψc).

16

Under review as a conference paper at ICLR 2021

This means U can be viewed as “projected noisy inducing points” for the GP p(F), whose corre-
sponding “inducing inputs” are row vectors in Zc. Similarly, column vectors in UrX can be viewed
as the noisy projections of the column vectors in F, in other words Ur can also be viewed as “neural
network weights” connecting the data inputs X to the projected output space that U lives in.

As for the variational objective, since q(W |U) and p(W |U) only differ in the scale of the covariance
matrices, it is straightforward to show that the push-forward distribution q(W |U) → q(F|X, U)
has the same mean as p(F|X, U), but with a different covariance matrix that scales p(F|X, U)’s
covariance matrix by λ2. As the operation F = WX maps W ∈ Rdout×din to F ∈ Rdout×N , this
means the conditional KL is scaled up/down, depending on whether N ≥ din or not:

KL[q(F|X, U)||p(F|X, U)] =
N

din
R(λ), R(λ) := KL[q(W |U)||p(W |U)].

In summary, the push-forward distribution of q(W1:L, U1:L)→ q(F1:L, U1:L) is

q(F1:L, U1:L) =
∏L
l=1 q(Fl|Fl−1, Ul)q(Ul), F0 := X,

and the corresponding variational lower-bound for q(F1:L, U1:L) becomes (with D = (X,Y))

L(q(F1:L, U1:L)) = Eq(F1:L)[log p(Y|FL)]−
∑L
l=1

(
N
dlin
R(λl) + KL[q(Ul)||p(Ul)]

)
, (32)

with dlin the input dimension of layer l.

Note that Eq(F1:L)[log p(Y|FL)] = Eq(W1:L)[log p(Y|X,W1:L)] = Eq(W1:L)[log p(D|W1:L)].
Comparing equations (8) and (32), we see that the only difference between weight-space and
function-space variational objectives comes in the scale of the conditional KL term. Though not
investigated in the experiments, we conjecture that it could bring potential advantage to optimise the
following variational lower-bound:

L̃(q(F1:L, U1:L)) = Eq(F1:L)[log p(Y|FL)]−
∑L
l=1 (βlR(λl) + KL[q(Ul)||p(Ul)]) , (33)

βl = min(1,
N

dlin
).

The intuition is that, as uncertainty is expected to be lower when N ≥ din, it makes sense to use
β = 1 ≤ N/din to reduce the regularisation effect introduced by the KL term. In other words,
this allows the variational posterior to focus more on fitting the data, and in this “large-data” regime
over-fitting is less likely to appear. On the other hand, function-space inference approaches (such as
GPs) often return better uncertainty estimates when trained on small data (N < din). So choosing
β = N/din < 1 in this case would switch to function-space inference and thereby improving
uncertainty quality potentially. In the CIFAR experiments, the usage of convolutional filters leads
to the fact that N ≥ dlin for all ResNet layers. Therefore in those experiments βl = 1 for all layers,
which effectively falls back to the weight-space objective (8).

E WHITENING AND HIERARCHICAL INDUCING VARIABLES

The inducing weights U1:L further allow for introducing a single inducing weight matrix U that is
shared across the network. By doing so, correlations of weights between layers in the approximate
posterior are introduced. The inducing weights are then sampled jointly conditioned on the global
inducing weights. This requires that all inducing weight matrices are of the same size along at least
one axis, such that they can be concatenated along the other one.

The easiest way of introducing a global inducing weight matrix is by proceeding similarly to the
introduction of the per-layer inducing weights. As a pre-requisite, we need to work with “whitened”
inducing weights, i.e. set the covariance of the marginal p(Ul) to the identity and pre-multiply the
covariance block between Wl and Ul with the inverse Cholesky of Ψl. In this whitened model, the

17

Under review as a conference paper at ICLR 2021

full augmented prior per-layer is:(
W Uc
Ur U

)
∼ p(W,Uc, Ur, U) : =MN (0, Σ̃r, Σ̃r), (34)

with L̃r =

(
σrI 0

L−1
r Zr L−1

r Dr

)
s.t. Σ̃r = L̃rL̃

>
r =

(
σ2
rI σrZ

>
r L
−>
r

σrL
−1
r Zr I

)
and L̃c =

(
σcI 0

L−1
c Zc L−1

c Dc

)
s.t. Σ̃c = L̃cL̃

>
c =

(
σ2
cI σcZ

>
c L
−>
c

σcL
−1
c Zc I

)
.

One can verify that this whitened model leads to the same conditional distribution p(W |U) as pre-
sented in the main text. After whitening, for each Ul we have that p(vec(Ul)) = N (0, I), therefore
we can also write their joint distribution as p(vec(U1:L)) = N (0, I). In order to construct a matrix
normal prior p(U1:L) =MN (0, I, I), the inducing weight matrices U1:L needs to be stacked either
along the rows or columns, requiring the other dimension to be matching across all layers. Then, As
the covariance is the identity with σ = σr = σc = 1, we can augment p(U1:L) in the exact same
way as we previously augmented the prior p(Wl) with Ul.

F EXPERIMENTAL DETAILS

F.1 REGRESSION EXPERIMENTS

Following (Foong et al., 2019), we sample 50 inputs each from U [−1,−0.7] and U [0.5, 1] as inputs
and targets y ∼ N (cos(0.4x + 0.8), 0.01). As a prior we use a zero-mean Gaussian with standard
deviation 4√

din
for the weights and biases of each layer. Our network architecture has a single hidden

layer of 50 units and uses a tanh-nonlinearity. All three variational methods are optimised using
Adam (Kingma & Ba, 2014) for 20, 000 updates with an initial learning rate of 10−3. We average
over 32 MC samples from the approximate posterior for every update. For Ensemble-U and FCG-
U we decay the learning rate by a factor of 0.1 after 10, 000 updates and the size of the inducing
weight matrix is 2× 25 for the input layer (accounting for the bias) and 25× 1 for the output layer.
Ensemble-U uses an ensemble size of 8.

For NUTS we use the implementation provided in Pyro (Bingham et al., 2019). We draw a total
of 25, 000 samples, discarding the first 5000 as burn-in and using 1000 randomly selected ones for
prediction.

F.2 CLASSIFICATION EXPERIMENTS

We base our implementation on the Resnet-18 class in torchvision (Paszke et al., 2017), replacing
the input convolutional layer with a 3× 3 kernel size and removing the max-pooling layer. We train
the deterministic network on CIFAR-10 using Adam with a learning rate of 3×10−4 for 200 epochs.
On CIFAR-100 we found SGD with a momentum of 0.9 and initial learning rate of 0.1 decayed by
a factor of 0.1 after 60, 120 and 160 epochs to lead to better accuracies. The ensemble is formed of
the five deterministic networks trained with different random seeds.

For FFG-W we initialised the mean parameters using the default initialisation in pytorch for the
corresponding deterministic layers. The initial standard deviations are set to 10−4. We train using
Adam for 200 epochs on CIFAR-10 with a learning rate of 3×10−4, and 300 epochs on CIFAR-100
with an initial learning rate of 10−3, decaying by a factor of 0.1 after 200 epochs. On both datasets
we only use the negative log likelihood part of the variational lower bound for the first 100 epochs as
initialisation to the maximum likelihood parameter and then anneal the weight of the kl term linearly
over the following 50 epochs. For the prior we use a standard Gaussian on all weights and biases and
restrict the standard deviation of the posterior to be at most σmax = 0.1. We also experimented with
a larger upper limit of σmax = 0.3, but found this to negatively affect both accuracy and calibration.

All the U -space approaches use Gaussian priors p(vec(Wl)) = N (0, 1/
√
din), motivated by the

connection to GPs. Hyperparameter and optimisation details for the inducing weight methods on
CIFAR-10 are discussed below in the details on the ablation study. On CIFAR-100, we use the
same optimisation settings as for FFG-W , but train for an extra 50 epochs for Ensemble-U as the
optimisation had not converged after 300 epochs. For the tables and figures in the main text, we set

18

Under review as a conference paper at ICLR 2021

λmax = 0.1 for Ensemble-U on both dataset, and σmax = 0.1, λmax = 0.03 on CIFAR-10 and
σmax = 0.03, λmax = 0.1 on CIFAR-100 for FFG-U . We initialise the entries of the Z matrices
by sampling from a zero-mean Gaussian with variance 1

M and set the diagonal entries of the D
matrices to 10−3. For FFG-U we initialise the mean of the variational Gaussian posterior in U -
space by sampling from a standard Gaussian and set the initial variances to 10−3. For Ensemble-U
initialisation, we draw an M ×M shaped sample from a standard Gaussian that is shared across
ensemble members and add independent Gaussian noise with a standard deviation of 0.1 for each
member. We use an ensemble size of 5. During optimisation, we draw 5 MC samples per update
step for both FFG-U and Ensemble-U (such that each ensemble member is used once). For testing
we use 20 MC samples for all variational methods. We fit BatchNorm parameters by minimising the
negative log likelihood.

The study of hyper-parameter selection on CIFAR-10 We run the inducing weight method with
the following options:

• Row/column dimensions of Ul (M): M ∈ {16, 32, 64, 128}.
We set M = Min = Mout except for the last layer, where we use Min = M and Mout =
10.

• λmax values for FFG-U and Ensemble-U : λmax ∈ {0, 0.03, 0.1, 0.3}.
When λmax = 0 it means q(W |U) is a delta measure centered at the mean of p(W |U).

• σmax values for FFG-U : σmax = {0, 0.1, 0.3}.
When σmax = 0 we use a MAP estimate for U .

Each experiment is repeated with 5 random seeds to collect the averaged results. The models are
trained with 100 epochs in total. We first run 50 epochs of maximum likelihood to initialise the
model, then run 40 epochs training on the modified variational lower-bound with KL annealing
(linear scaling schedule), finally we run 10 epochs of training with the variational lower-bound
(i.e. no KL annealing). We use Adam optimiser with learning rate 3e − 4 and the default β1, β2

parameters in pytorch’s implementation.

G ADDITIONAL RESULTS

Below we provided extended versions of Table 2 for CIFAR-10 (Table 4) and CIFAR-100 (Table 5).
These tables contain standard errors across the random seeds for the corresponding metrics and
we additionally report negative log likelihoods (NLL) and Brier scores. The error bar results are
not available for Ensemble-W , as it is constructed by 5 independently trained deterministic neural
network with maximum likelihood.

Table 4: CIFAR-10 complete in-distribution results

CIFAR-10
Method Acc. (%)↑ NLL ↓ ECE (%)↓ Brier ↓
Deterministic 93.02±0.10 0.42±0.01 5.23±0.10 0.12±0.00

Ensemble-W 94.94 0.18 1.25 0.08
FFG-W 93.22±0.03 0.20±0.00 0.55±0.04 0.10±0.00

FFG-U 91.52±0.12 0.26±0.00 1.31±0.12 0.12±0.00

Ensemble-U 92.20±0.11 0.24±0.00 0.80±0.04 0.11±0.00

The number of parameters for FFG-U in the ResNet-18 experiments is reported in Table 6.

In Tables 7-10 we report the numerical results for Figure 6.

19

Under review as a conference paper at ICLR 2021

Table 5: CIFAR-100 complete in-distribution results

CIFAR-100
Method Acc. (%)↑ NLL ↓ ECE (%)↓ Brier ↓
Deterministic 72.68±0.20 1.80±0.01 19.41±0.19 0.45±0.00

Ensemble-W 76.61 1.10 6.25 0.34
FFG-W 73.44±0.13 1.10±0.01 5.49±0.06 0.37±0.00

FFG-U 75.69±0.26 0.96±0.02 5.20±0.46 0.34±0.00

Ensemble-U 76.10±0.18 0.94±0.01 2.49±0.12 0.33±0.00

Table 6: Parameter counts for the FFG-U models with different U size M .

M M = 16 M = 32 M = 64 M = 128 M = 256 Deterministic

Abs. value 602261 1216045 2509205 5352853 12072341 11173962
relative size (%) 5.39 10.88 22.46 47.90 108.04 100

Table 7: Corrupted CIFAR-10 accuracy (↑) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 85.12±2.46 78.35±3.08 71.95±4.09 64.47±5.15 54.51±5.30

Ensemble-W 88.89±2.24 83.33±2.67 77.73±3.61 70.56±4.62 60.05±4.98

FFG-W 84.63±2.14 77.86±2.45 71.01±3.31 62.76±4.17 52.02±4.51

FFG-U 83.42±2.48 76.72±3.02 71.18±3.72 64.14±4.44 54.04±4.44

Ensemble-U 85.19±2.21 79.06±2.77 73.28±3.71 67.16±4.39 57.34±4.38

Table 8: Corrupted CIFAR-10 ECE (↓) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 11.70±2.11 17.39±2.70 22.99±3.71 29.74±4.71 38.27±4.98

Ensemble-W 2.81±1.03 4.71±1.28 7.37±2.13 11.23±2.84 16.89±3.23

FFG-W 13.37±0.64 12.36±0.83 10.89±0.89 10.36±1.00 11.61±1.43

FFG-U 4.56±1.39 7.87±1.78 10.99±2.40 15.33±2.86 21.65±3.03

Ensemble-U 2.88±0.96 5.65±1.53 9.04±2.45 12.25±2.92 17.31±3.06

Table 9: Corrupted CIFAR-100 accuracy (↑) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 63.12±2.24 55.73±2.61 50.58±3.19 44.05±3.61 34.50±3.38

Ensemble-W 67.32±2.37 59.77±2.78 54.46±3.45 47.70±4.00 37.78±3.75

FFG-W 58.46±2.92 48.76±3.57 43.12±4.19 36.77±4.27 27.93±3.72

FFG-U 63.56±3.11 54.83±3.76 49.44±4.39 43.27±4.64 33.41±4.06

Ensemble-U 62.55±3.39 53.48±4.22 48.30±4.68 42.38±4.74 32.75±3.95

20

Under review as a conference paper at ICLR 2021

Table 10: Corrupted CIFAR-100 ECE (↓) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 26.36±1.75 31.83±2.00 35.88±2.49 41.14±2.94 48.91±2.84

Ensemble-W 9.79±1.27 13.01±1.43 15.85±1.89 19.69±2.39 25.42±2.35

FFG-W 12.69±0.62 10.69±0.77 11.09±0.95 11.21±1.31 11.76±1.74

FFG-U 8.99±1.75 13.29±2.24 16.65±2.97 20.46±3.46 25.76±3.17

Ensemble-U 7.56±1.65 12.08±2.39 14.82±2.79 17.60±2.88 22.61±2.46

21

