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ABSTRACT

Aligning diffusion models for downstream tasks often requires finetuning new
models or costly inference-time solutions (e.g., gradient-based guidance) to al-
low sampling from the reward-tilted posterior. In this work, we explore a sim-
ple and low-cost inference-time gradient-free guidance approach, called condi-
tional controlled denoising (C-CoDe), that circumvents the need for differentiable
guidance functions and model finetuning. C-CoDe is a block-wise sampling
method with adjustable conditioning on a reference image applied during inter-
mediate denoising steps, allowing for efficient alignment with downstream re-
wards. Experiments demonstrate that, despite its simplicity, C-CoDe offers a
balanced trade-off between reward alignment, prompt instruction following, and
inference cost, outperforming state-of-the-art baselines. Our code is available at:
https://anonymous.4open.science/r/CoDe-Repo.

1 INTRODUCTION

Figure 1: C-CoDe can flexibly generate high qual-
ity style, face and stroke guided images, while
being considerably faster than most counterparts.

Generative modeling has witnessed tremendous
breakthroughs in recent years where diffusion
models have emerged as a powerful tool for
generating high-fidelity realistic images, videos,
natural language content and even molecular
data (Ho et al., 2020; Song et al., 2020; Bar-Tal
et al., 2024; Wu et al., 2022). While diffusion
models have demonstrated effectiveness in mod-
eling complex and realistic data distributions,
their successful application often hinges on fol-
lowing user-specific instructions in the form of
images, text, bounding-boxes or downstream
reward-functions. A common approach for con-
ditioning diffusion models on user-specific input
involves training them on data paired with fixed-
modality instruction signals in the form of descriptive text-prompts, segmentation maps, class-labels,
etc. Another strategy for conditioning involves finetuning a pretrained diffusion model, either on a
task-specific dataset or a reward-function. Finetuning is typically governed by reinforcement learning
(RL), where the goal is to generate samples that optimize for a downstream reward-function while
maintaining a low divergence with the pretraining data distribution. Despite their effectiveness, these
conditioning strategies face their own set of challenges such as limited flexibility w.r.t. different
instruction modalities, hindered generalizability to various domains due to their dependence on
task-specific datasets, and high computational costs of training from scratch.

Guidance-based approaches keep the diffusion model intact and control its output by aligning its
generative process to a reward function at inference-time; thus, offering potential remedies to the
aforementioned challenges. Our proposed approach lies under this category. In this space, gradient-
based guidance methods utilize gradients of the reward model at each diffusion denoising step to align
the generated samples with the downstream task. Interesting follow-up works have addressed bias
estimation challenges in computing gradients (Chung et al., 2023; Yu et al., 2023; Bansal et al., 2024b;
He et al., 2024). Despite their flexibility to handle various downstream tasks, these approaches require
memory-intensive gradient computation of differentiable guidance models. Staying under the premise
of inference-time guidance, we propose a gradient-free block-wise guidance approach drawing
inspiration from a related line of research in the context of language model (LM) alignment (Mudgal
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et al., 2024), which capitalizes on the empirical strength of Best of N (a.k.a. BoN) sampling (Gao
et al., 2022; Mudgal et al., 2024), which is also theoretically shown to closely follow the optimal
Kullback-Leibler (KL)-regularized objective (Yang et al., 2024). We introduce a simple block-wise
controlled denoising (CoDe) method for diffusion models outperforming BoN at a fraction of its
cost (much smaller N ). Our end solution, termed as conditional controlled denoising (C-CoDe),
incorporates adjustable noise conditioning on input images further optimizing CoDe from sampling
efficiency perspective, as well as providing greater control over reward vs. divergence trade-off for
more versatile generation. Our key contributions can be summarized as follows:

I. We propose an inference-time block-wise guidance approach (CoDe) which samples from an opti-
mal KL-regularized objective. Building upon this base module, we further optimize it from sampling
efficiency perspective and enhance it to offer adjustable reward-divergence trade-off (C-CoDe).

II. We assess the performance of the aligned diffusion model structurally for two case studies
(Gaussian Mixture Model, and image generation), and three scenarios under image generation (style,
face, and stroke guidance), by probing different aspects of the performance.

III. Our extensive (qualitative and quantitative) experimental results demonstrate that C-CoDe
outperforms state-of-the-art baselines, while offering a balanced trade-off between reward alignment,
prompt instruction following, and inference cost.

2 RELATED WORK

Finetuning-based Alignment. Prominent methods in this category typically involve either training
a diffusion model to incorporate additional inputs such as category labels, segmentation maps, or
reference images (Ho et al., 2021; Li et al., 2023; Zhang et al., 2023; Bansal et al., 2024a; Mou
et al., 2024; Ruiz et al., 2023) or applying reinforcement learning (RL) to finetune a pretrained
diffusion model to optimize for a downstream reward function (Prabhudesai et al., 2023; Fan et al.,
2023; Wallace et al., 2023; Black et al., 2023; Gu et al., 2024; Lee et al., 2024; Uehara et al., 2024).
While these approaches have been successfully employed to satisfy diverse constraints, they are
computationally expensive. Furthermore, finetuning diffusion models is prone to “reward hacking”
or “overoptimization” (Clark et al., 2024; Jena et al., 2024), where the model loses diversity and
collapses to generate samples that achieve very high rewards. This is often due to a mismatch between
the intended behavior and what the reward model actually captures. In practice, a perfect reward
model is extremely difficult to design. As such, here we focus on inference-time guidance-based
alignment approaches where these issues can be circumvented.

Gradient-based Alignment. There are two main divides within this category: (i) guidance based
on a value function, and (ii) guidance based on a downstream reward function. In the first divide,
a value function is trained offline using the noisy intermediate samples from the diffusion model.
Then, during inference, gradients from the value function serve as signals to guide the generation
process (Dhariwal & Nichol, 2021; Yuan et al., 2023). A key limitation of such an approach is that
the value functions are specific to the reward model and the noise scales used in the pretraining stage.
Thus, the value function has to be retrained for different reward models as well as base diffusion
models. The second divide of methods successfully overcomes this by directly using the gradients of
the reward function based on the approximation of fully denoised images using Tweedie’s formula
(Chung et al., 2022; 2023; Yu et al., 2023). Interesting follow-up research has explored methods to
reduce estimation bias (Zhu et al., 2023; Bansal et al., 2024b; He et al., 2024) and to scale gradients
for maintaining the latent structures learned by diffusion models (Guo et al., 2024). Despite such
advancements, the need for differentiable guidance functions can limit the broader applicability of
the gradient-based methods.

Tree-Search-based Alignment. Tree-search alignment has recently gained attention in the context
of autoregressive language models (LMs), where it has been demonstrated that Best of N (BoN)
approximates sampling from a KL-regularized objective, similar to those used in reinforcement
learning (RL)-based finetuning methods (Gui et al., 2024; Beirami et al., 2024; Gao et al., 2022). This
approach facilitates the generation of high-reward samples while maintaining closeness to the base
model. (Mudgal et al., 2024) demonstrates that the gap between Best of N (BoN) and token-wise
decoding (Yang & Klein, 2021) can be bridged using a block-wise decoding strategy. Inspired by this
line of research, we propose a simple block-wise alignment technique (tree search with a fixed depth)
that offers key advantages: (i) it preserves latent structures learned by diffusion models without
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requiring explicit scaling adjustments, unlike gradient-based methods, and (ii) it avoids "reward
hacking" typically associated with learning-based approaches. Concurrently, Li et al. (2024) propose
a related method, called SVDD-PM, based on the well-known token-wise decoding strategy in the
LM space. In contrast, we devise a block-wise strategy (CoDe, in Section 6) because it allows
further control on the level of intervention, and offers a trade-off between divergence and alignment
which is of primal interest in the context of guided generation. We further enhance our approach
by introducing a noise-conditioned variant (C-CoDe in Section 4.2) to offer greater control over
guidance signals and to further improve alignment.

3 PRELIMINARIES

3.1 DIFFUSION MODELS

An unconditional diffusion model estimates probability density q(x) by learning to invert a forward
diffusion process. The forward process is a Markov chain iteratively adding small amount of random
noise to “clean” data point x0 ∈ X sampled from q(x) over T steps. The noisy sample at step

t is given by xt =
√
ᾱtx0 +

√
1− ᾱtϵt, where ϵt ∼ N (0, 1), αt = 1 − βt, ᾱt =

∏T
t=1 αt, and

βt ∈ (0, 1)
T
t=1 is a variance schedule (Ho et al., 2020; Nichol & Dhariwal, 2021). The forward

process can then be expressed as:

q(x1:T |x0) =

T
∏

t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (1)

Now, to estimate q(x), the diffusion model pθ learns the conditional probabilities q(xt−1|xt) to
reverse the diffusion process starting from a fully noisy sample xT ∼ N (0, 1) as:

pθ(x0) = p(xT )

T
∏

t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t), βtI), (2)

where the variance is fixed at βtI, and only µθ(xt, t) is learned as

µθ(xt, t) =
1√
αt

(

xt −
1− αt√
1− ᾱt

ϵθ(xt, t)

)

. (3)

Here, ϵθ is a neural network which attempts to predict the noise added to xt−1 in the forward as:

ϵθ(xt, t) ≈ ϵt =
xt −

√
ᾱtx0√

1− ᾱt

. (4)

Furthermore, using a conditioning signal c, diffusion models can be extended to sample from pθ(x|c).
The conditioning signal can take diverse forms, from text prompts and categorical information to
semantic maps (Zhang et al., 2023). Our work uses a text-conditioned model, Stable Diffusion
(Rombach et al., 2021), which has been trained on a large corpus consisting of M image-text pairs
D = {(xi, ci)}Mi=1 using a reweighed version of the variational lower bound (Ho et al., 2020)

Et∼[1,T ], x0,ϵt

[

∥ϵt − ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵt, c, t)∥2

]

as optimization loss function.

3.2 KL-REGULARIZED OBJECTIVE

Consider we have access to a text-conditioned diffusion model pθ(·|c), which we refer to as the
base model. Our goal is to obtain samples from the base model that optimize a downstream reward
function r(·) : X → R, while ensuring that the sampled data points do not deviate significantly from
pθ to prevent degeneration in terms of image fidelity and diversity of the output samples (Ruiz et al.,
2023). Thus, we aim to sample from a reward aligned diffusion model (πθ) that optimizes for a
KL-regularized objective to satisfy both requirements. Let us start by defining some key concepts.

Value function. It captures the expected reward when decoding continues from a partially decoded
sample xt given text prompt c as:

V (xt; pθ, c) = Ex0∼pθ(x0|xt, c)[r(x0)]. (5)
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Advantage function. We can define a one-step advantage of using another text-conditioned diffusion
model πθ for optimizing the downstream reward as:

A(xt;πθ, c) := Ext−1∼πθ(xt−1|xt, c) [V (xt−1; pθ, c)]− Ext−1∼pθ(xt−1|xt, c) [V (xt−1; pθ, c)] . (6)

It is important to note that the advantage of the base model (when πθ = pθ) is 0. Thus, we aim to
choose an aligned model πθ to achieve a positive advantage over the base model.

Divergence. We further denote the KL divergence between the aligned model πθ and the base model
pθ at each intermediate step xt as:

D(xt;πθ, c) := KL
[

πθ(xt−1|xt, c) ∥ pθ(xt−1|xt, c)
]

. (7)

Objective. Using Eq. 6 and 7, we can now formulate the KL-regularized objective as:

π∗θ = argmax
πθ

[

Jλ(xt, πθ, c) := λA(xt;πθ, c)−D(xt;πθ, c)
]

, (8)

where λ ∈ R
≥0 trades off reward for drift from the base diffusion model pθ.

Theorem 3.1. The optimal model π∗θ for the objective formulated in Eq. 8 is

π∗θ(xt−1|xt, c) ∝ pθ(xt−1|xt, c) e
λV (xt−1;pθ, c). (9)

The proof of Theorem 3.1 is deferred to the Appendix A. A similar objective (or its variant) has been
used in some learning-based methods (Prabhudesai et al., 2023; Fan et al., 2023; Wallace et al., 2023;
Black et al., 2023; Gu et al., 2024; Lee et al., 2024) discussed in Section 2 for finetuning a diffusion
model. However, contrary to the prior art, we use this objective for a guidance-based alignment. In
Appendix B, we demonstrate that this can be achieved using Langevin dynamics (Welling & Teh,
2011), resulting in a generalized form of classifier guidance (Dhariwal & Nichol, 2021). A key
limitation of such an approach is the need for a differentiable reward function. Therefore, we explore
a sampling-based method for alignment with downstream rewards.

4 (CONDITIONAL) CONTROLLED DENOISING

Inspired by recent RL-based alignment strategies for LLM’s (Yang & Klein, 2021; Mudgal et al.,
2024), we propose a sampling-based guidance method to align a pretrained diffusion model (pθ)
following the optimal solution described in Theorem 9 (π∗θ ). First, we outline an approach to
approximate the value function for intermediate noisy samples. Building on this approximation,
we introduce our sampling-based alignment method coined as CoDe. We additionally introduce a
variant of CoDe, termed as C-CoDe, by conditioning the initial noise on an input image provided by
the user offering extra degrees of control and allowing for applications such as reference face/style
conditioning (Bansal et al., 2024b) and stroke painting generation (Meng et al., 2021). Notably, this
lowers the overall computational complexity substantially, by reducing the number of denoising steps
as well as the number of samples, while achieving effective alignment in high-dimensional spaces.

Approximation of the value function. To compute the value function in Eq. 5 for an intermediate
noisy sample xt, it is necessary to compute the expectation over x0 ∼ pθ(x0|xt). Note that for
diffusion models such as DDPMs (Ho et al., 2020), the predicted clean sample x0 can be estimated
given an intermediate sample xt using Tweedie’s formula (Efron, 2011) as follows:

x̂0 = E[x0|xt] =
xt −

√
1− ᾱtϵθ(xt, c, t)√

ᾱt

. (10)

By plugging Eq. 10 into Eq. 5, the value function can be approximated as:

V (xt; pθ, c) = Ex0∼pθ(x0|xt,c)[r(x0)] ≥ r(E[x0|xt]) = r(x̂0). (11)

The benefit of such an approximation is that it circumvents the need for training a separate model
to learn the value function, as is for instance adopted by DPS (Chung et al., 2023) and Universal
Guidance (Bansal et al., 2024b).

Best-of-N (BoN) sampling for diffusion models. A naïve sampling-based approach for generating
images from a diffusion model aimed at optimizing a downstream reward is Best-of-N (BoN). Here,
first N samples are obtained from the diffusion model by completely unrolling it out over T denoising
steps. Then, the most favorable image based on a value function is selected. Empirical evidence
from the realm of large language models (LLMs) (Gao et al., 2022; Mudgal et al., 2024; Gui et al.,
2024) suggests that BoN closely approximates sampling from the optimal solution presented in
Theorem 3.1, which is theoretically corroborated by Yang et al. (2024).
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4.1 BLOCK-WISE SAMPLING-BASED ALIGNMENT (CODE)

Algorithm 1: CoDe

Require: pθ , T , N , B, xT , c
1 Initialize counter: s = 1
2 for t ∈ [T − 1, · · · , 0] do

3 if mod(s,B) = 0 then

4 Sample N times over B steps:

{x(n)
t−1}Nn=1 ∼

∏
t+B

i=t
pθ(xi−1|xi)

5 Select the sample with maximum value:

xt−1 ← argmax

{x
(n)
t−1

}N
n=1

V (x
(n)
t−1; pθ, c)

6 end

7 s← s + 1

8 end

Return: x0

Our objective is to achieve an improved alignment
vs. divergence trade-off by sampling from the op-
timal solution presented in Theorem 3.1. There-
fore, by taking advantage of the approximation in
Eq. 11, we present a simple yet elegant sampling-
based alignment method for diffusion models, termed
as Controlled Denoising (CoDe) and outlined in Al-
gorithm 1. CoDe integrates BoN sampling into the
standard inference procedure of a pretrained diffusion
model. However, instead of rolling out the entire dif-
fusion model N times and selecting the best sample,
we opt for performing block-wise BoN. Specifically,
for each block of B steps, we unroll the diffusion
model N times independently (Algorithm 1, line 5). Then, based on the value function, select the
best sample (Algorithm 1, line 6) to continue the reverse process till we obtain a clean image at t = 0.
For the sake of brevity, we assume T to be divisable by B; otherwise, we apply the same steps on
a last but smaller block. Note that in terms of computational complexity, both BoN sampling and
CoDe require the same number of inference steps. However, unlike BoN, CoDe introduces control at
every block of B steps, offering a more granular approach. A key advantage of CoDe is its ability to
achieve similar alignment-divergence trade-offs while using a significantly lower value of N , as is
demonstrated in Section 5.

4.2 C-CODE : NOISE CONDITIONING FOR CODE

Algorithm 2: C-CoDe

Require: pθ , T , N , B, η, xref , c
1 Sample conditional initial noise:

2 τ = η × T

3 xτ =
√
ᾱτxref +

√
1− ᾱτz, z ∼ N (0, I)

4 Sample using CoDe:

5 x0 ← CoDe(pθ, τ, N,B, xτ , c)
Return: x0

When the reward distribution deviates significantly
from the base distribution pθ, CoDe and any other
sampling-based approach would require a relatively
larger value of N to achieve alignment. To tackle
this, we introduce a variant of our method, termed
as Conditional CoDe (C-CoDe), as described in Al-
gorithm 2. In this variant, a reference target image
xref , such as a specific style or even stroke painting,
is provided as an additional conditioning input. Inspired by image editing techniques using diffu-
sion (Meng et al., 2021; Koohpayegani et al., 2023), we add partial noise corresponding to only
τ = η × T steps of the forward diffusion process, instead of the full noise corresponding to T steps
(Algorithm 2, line 2 and 3). Then, starting from this noisy version of the reference image xτ , CoDe
progressively denoises the sample for only η× T steps to generate the clean, reference-aligned image
x0 (Algorithm 2, line 4, 5). By conditioning the initial noise sample xτ on the reference image xref ,
we can generate images x0 that better incorporate the characteristics and semantics of the reference
image xref while adhering to the text prompt c. As we demonstrate throughout our experimentation,
threshold η now provides an extra knob allowing the user to efficiently trade off divergence for reward.
Here, the reward-conditioning of the generated image is inversely proportional to the value of η.
Notably, adopting C-CoDe alleviates the need for a large number of samples N for reward-aligned
generation, where the reward distribution deviates considerably from the base distribution (e.g. in
style guidance). It also results in compute efficiency, as is discussed in Section 6.

5 EXPERIMENTS

We analyze the performance of CoDe and C-CoDe, comparing them against a suite of existing
state-of-the-art guidance methods. Unless otherwise mentioned, for all experiments, we use a
pretrained Stable Diffusion version 1.5 (Rombach et al., 2021) as our base model, which is trained
on the LAION-400M dataset (Schuhmann et al., 2021). As highlighted earlier, we strive to present
meaningful comparative (both qualitative and quantitative) results across a variety of scenarios. For
quantitative evaluations, we generate 50 images per setting (i.e., prompt-reference image pair) with
500 DDPM steps. To achieve this, we have used NVIDIA A100 GPUs with 80GB of RAM. Through
extensive experiments, we aim to answer:
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[Q1]. Does (C-)CoDe achieve a better alignment-divergence trade-off compared to other baselines?
[Q2]. How does (C-)CoDe perform across guidance tasks qualitatively and quantitatively?
[Q3]. Does (C-)CoDe offer better image vs. text alignment compared to other baselines?

Baselines. We sub-select a set of widely adopted baselines from the literature. Recall that our goal
is to sample from the optimal value of the KL-regularized objective, as outlined in Theorem 3.1.
One approach to achieve this, as detailed in Appendix B, is using a gradient-based method with
an approximated value function, as in DPS (Chung et al., 2023), which serves as our first baseline.
Further, Universal Guidance (UG) (Bansal et al., 2024b), our second baseline, improves upon DPS
by offering better gradient estimation. Another way to sample from Theorem 3.1 is by using a
sampling-based approach such as in CoDe and C-CoDe. In this direction, we consider Best-of-N
(BoN) (Gao et al., 2022) and SVDD-PM (Li et al., 2024) as our third and fourth baselines.

Evaluation Settings and Metrics. We consider two evaluation setting. Setting I: a prototypical 2D
Gaussian Mixture Models (GMMs) in Section 5.1, as is also studied in (Ho et al., 2021; Wu et al.,
2024); Setting II: widely adopted image based evaluations using Stable Diffusion in Section 5.2
across three scenarios: (i) style, (ii) face and (iii) stroke guidance. For Setting I, we present trade-off
curves for expected reward versus KL-divergence for all baselines. For Setting II, since calculating
KL-divergence in high-dimensional image spaces is intractable, we use Frechet Inception Distance
(FID) (Heusel et al., 2017). To ensure we capture alignment w.r.t reference image (and avoid using
the guidance reward itself) we borrow an image alignment metric commonly used in style transfer
domain (Gatys et al. (2016); Yeh et al. (2020)), referred to as I-Gram here. Further, we assess
prompt alignment using CLIPScore (Hessel et al., 2021), referred to as T-CLIP throughout the paper.
Additionally, we consider Win-Rate (commonly adopted in the LM space) as yet another evaluation
metric, where it reflects on the number of samples offering larger reward than the base model. To
sum up, we consider expected reward, FID, I-Gram, T-CLIP, and Win-Rate.

5.1 CASE STUDY I: GAUSSIAN MIXTURE MODELS (GMMS)

Figure 2: Setup (top row) and reward vs.
divergence trade-off (bottom row) for Case
Study I. C-CoDe offers highest reward at low-
est divergence with much lower N than BoN.

To establish an in-depth understanding of the
impact of the proposed methods, we start with
a simple model/reward distribution as shown
in Fig. 2 (top row). For the prior distribu-
tion, we consider a 2D Gaussian mixture model
p(x0) =

∑2
i=0 wiN (µi,σ

2I2), where σ = 2,
[µ1,µ2,µ3] = [(5, 3), (3, 7), (7, 7)], and Id
is an d-dimensional identity matrix. Addi-
tionally, we define the reward distribution as
p(r|x) = N (µr,σ

2
rI2) with µr = [14, 3] and

σr = 2. As can be seen in the figure, in this
case and by design, reward distribution is far
off the peak of the prior. For a different sce-
nario, see Appendix C. Using the closed-form
expressions for both prior and reward distribu-
tions in this setting, we compute the posterior
distribution as p(x|r) = p(x)p(r|x)/Z where
Z is the normalizing constant. Note that this
posterior corresponds to the optimal solution
in Theorem 3.1 as p(r|x) ∝ exp(r(x)) with
r(x) = −1/2(x − µr)

T (x − µr). Here, we
train a diffusion model with a 3-layer MLP that
takes as input (xt, t) and predicts the noise ϵt.
This model is trained over 200 epochs with T = 1000 denoising steps. Note that all other discussed
baselines can straightforwardly be trained in this setting.

The results are illustrated in Fig. 2 (bottom row) where we plot the normalized expected reward and
Win-Rate vs. KL-divergence for different value of N ∈ [2, 500] as parameter. For the guidance-based
methods DPS and UG, the guidance scale is varied between 1 and 50, whereas for the sampling-based
methods BoN, SVDD, CoDe, and C-CoDe, the number of samples N is varied between 2 and 500.
As can be seen, for the expected reward, our proposed methods (CoDe and C-CoDe) offer the upper
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Figure 3: In contrast to BoN, proposed approaches are robust against increased distance between
reward and prior distributions. C-CoDe (CoDe) achieves the same reward as BoN at much lower N .

bound of performance with a slight advantage over BoN. This order seems to be flipped when it
comes to Win-Rate, which aligns with the observations from the realm of Language Models (LMs)
(Beirami et al., 2024; Gui et al., 2024). In contrast, UG and DPS tend to exhibit higher KL divergence,
as they often collapse to the mode of the reward distribution when the guidance scale is increased,
leading to a reduction in diversity among the sampled data points, a phenomenon also noted in prior
research (Sadat et al., 2024; Ho et al., 2021). In both scenarios, SVDD achieves a high expected
reward (or Win Rate) but at the expense of significantly higher divergence, even for smaller values
of N . In contrast, our methods offer flexibility, allowing users to balance the trade-off by adjusting
parameters such as N and B, as is demonstrated here and

Let us dive one step deeper into the performance of our proposed approaches and BoN. To this aim,
in Fig. 3, we vary the distance between the mean of the reward and prior distributions, gradually
shifting the reward further away. This is shown for N = 10, 50 in Fig. 3 where the expected reward
sharply drops for BoN regardless of choice of N , whereas it drops less or remains almost intact
for CoDe and C-CoDe, with N = 10 and 50, respectively. The key takeaway is that our proposed
approach offers a consistently higher reward even when the prior and reward distributions are distant.
To further probe this, we fix the reward and investigate with how many samples each method achieves
the target reward. As can be seen on the right most figure, C-CoDe and CoDe meet this condition by
outperforming significantly in terms of sample efficiency.

5.2 CASE STUDY II: IMAGE GENERATION WITH STABLE DIFFUSION

We consider three commonly adopted guidance scenarios: style, stroke and face guidance. For each
scenario, the rewards model is task specific as elaborated in the following. A text prompt as well as a
reference image are used as guidance signals. A total of 33 generation settings (i.e., text prompt -
reference image pairs) are used for evaluations in this section. Per setting, we generate 50 samples
and estimate the evaluation metrics accordingly. On the qualitative side, to demonstrate the capacity
of C-CoDe compared to other baselines, we illustrate a few generated examples across two reference
images for two different text prompts. On the quantitative side, we evaluate the performance across
all scenarios/settings combined for further statistical significance.

Style guidance. We guide image generation based on a reference style image (Bansal et al., 2024b;
He et al., 2024; Yu et al., 2023). Following the reward model proposed in Bansal et al. (2024b),
we use the CLIP image extractor to obtain embeddings for the reference style and the generated
images. The cosine similarity between these embeddings is then used as the guidance signal. Face
guidance. To guide the generation process to capture the face of a specific individual (as in (He
et al., 2024; Bansal et al., 2024b)), we employ a combination of multi-task cascaded convolutional
network (MTCNN) (Zhang et al., 2016) for face detection and FaceNet (Schroff et al., 2015) for
facial recognition, which together produce embeddings for the facial attributes of the image. The
reward is then computed as the negative ℓ1 loss between the face feature embeddings of the reference
and generated images. Stroke guidance. A closely related scenario to style guidance is Stroke
generation, where a high-level reference image containing only coarse colored strokes is used as
reference (Cheng et al., 2023; Meng et al., 2021). The objective in this setting is to produce images
that remain faithful to the reference strokes. To achieve this, similar to style guidance, we employ
the CLIP image extractor to obtain embeddings from both the reference and generated images and
compute the reward by measuring the cosine similarity between these embeddings.

Qualitative Comparisons. A comparative look across baselines, scenarios and settings is illustrated
in in Figs. 4, 5 and 6. Let us start with style guidance in Fig. 4. As can be seen, C-CoDe shows
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Figure 4: C-CoDe is a versatile approach presenting best alignment to the reference image, while
adhering to the text prompt. The style alignment offered by C-CoDe outperforms other baselines by
a margin in terms of quality and preserving nuances.

Figure 5: Same narrative as in Fig. 4 with C-CoDe outperforming other baselines by a margin.

versatility and superior performance in capturing the style of the reference image, regardless of the
text prompt. Apart from UG, all other baselines (including our base module CoDe in certain cases),
fail to capture the essence of the reference style. When it comes to alignment to the text prompt,
however, UG seems to suffer to some extent with “woman” fading away in the bottom two rows. All
other baselines tend to capture the text prompt predominantly and arguably fail to capture style. Note
that from this angle C-CoDe outperforms UG by a noticeable margin, regardless of the reference
image or the text prompt. Note that even our base module (CoDe) offers arguably similar results to
those of SVDD-PM at the cost of much lower computational complexity (as is detailed in Tables 1).
Further qualitative results for face and stroke guidance scenarios are summarized in Figs. 5 and 6.
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Figure 6: Same narrative as in Fig. 4 with C-CoDe outperforming other baselines by a margin.

Same narrative and observations extend here. The adherence of C-CoDe to the reference faces is
worth highlighting. Same conclusions can drawn in the case of stroke guidance in Fig. 6 where no
other baseline preserves the boundaries, color palette and nuances of the strokes as good as C-CoDe.
The rest of the illustrations are self-explanatory.

Table 1: Quantitative performance evaluation (± std.).

Method FID (↓) I-Gram (↑) T-CLIP (↑) Runtime (↓)

Base-SD (2021) 1.0 1.0 1.0 1.0

BoN (2022) 1.19 1.07 (± 0.004) 0.99 (± 0.001) 18.90 (± 0.01)

SVDD-PM (2024) 1.42 1.24 (± 0.02) 0.98 (± 0.004) 99.10 (± 0.08)

DPS (2023) 1.14 1.12 (± 0.01) 0.98 (± 0.004) 5.82 (± 0.02)

UG (2024b) 2.91 1.86 (± 0.03) 0.85 (± 0.005) 87.92 (± 0.03)

CoDe (Ours) 1.17 1.30 (± 0.009) 0.99 (± 0.001) 34.63 (± 0.04)

C-CoDe (Ours) 3.00 3.19 (± 0.05) 0.87 (± 0.006) 23.82 (± 0.03)

Quantitative Evaluations. Table 1
summarizes the performance across
all scenarios (including all settings)
over four metrics: I-Gram, FID, T-
CLIP and runtime (in second/image,
and detailed Section 5.4). The rea-
son why we use I-Gram (instead of
expected reward per scenario) in our
evaluations is because expected re-
ward has been “seen” by the model
throughout the guidance process. For more complete set of results, see Appendix D. We report
scores across all metrics by normalizing them w.r.t. the base Stable Diffusion model (denoted by
Base-SD). As can be seen, our base module CoDe offers performance gains in terms of image and
text alignment (I-Gram and T-CLIP scores) while deviating lesser from the base model (FID score),
compared to all baselines except UG. While at the same time CoDe is considerably faster than both
SVDD-PM and UG. C-CoDe outperforms all other baselines in terms of image alignment while
staying competitive in terms of text alignment. This is also corroborated qualitatively by Figs. 4, 5,
6, where C-CoDe incorporates the reference image semantics and the text prompt better than its
counterparts across all image generation settings. When reference images differ considerably from
the prior distribution (of Base-SD), better image alignment naturally comes at the cost of higher
divergence (reward-divergence trade-off). While diverging as much as UG, C-CoDe achieves the
highest overall image alignment with roughly 4× faster runtime performance.

5.3 ABLATIONS

Fig. 7 investigates the impact of varying block size (B) and noise ratio (η) for C-CoDe on image
vs. text alignment. For reference, CoDe and UG are also depicted. Here, different points per
curve represent sweeping on their main parameter (N = [5, 10, 20, 30, 40, 100] for (C-)CoDe, and
guidance scale of [1, 3, 6, 12, 24] for UG). On the left image, increasing block size seems to limit the
image alignment performance; or put differently same performance at a much larger N . Regardless
of block size, C-CoDe curves fall on top of UG indicating a superior overall performance. On the
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Figure 7: Ablation on the block size (B) and the noise ratio (η).

right, changing the noise ratio η toward higher values, reduces the conditioning strength (as indicated
also in (Meng et al., 2021; Koohpayegani et al., 2023)) resulting in lower image alignment capacity
(I-Gram). Yet again, C-CoDe variants fall on top of the UG curve suggesting better image vs. text
alignment performance. More detailed ablation studies are provided in Appendix D. Further note that
the operation points with very low T-CLIP scores on UG curves ended up degenerating to the extent
that images did not have anything in common with the text prompt, which was another consideration
for choosing the best trade-off point.

5.4 COMPUTATIONAL COMPLEXITY.

Table 2: Computational complexity.

Methods Inf. Steps Rew. Queries Runtime [sec/img]

Base-SD (2021) T - 14.12

BoN (2022) NT N 266.77

SVDD-PM (2024) NT NT 1399.36

DPS (2023) T T 82.19

UG (2024b) mKT mKT 1241.47

CoDe (Ours) NT NT/B 489.00

C-CoDe (Ours) NT rNT/B 336.39

We provide a comparative look at the complex-
ity of the proposed approaches against the base-
lines. To this aim, we consider two aspects: (i)
the number of inference steps, (ii) the number
of queries to the reward model. We then mea-
sure the overall runtime complexity in terms of
time (in sec.) required to generate one image.
This is summarized in Table 2. From a runtime
perspective, within the gradient-based guidance
group, DPS is considerably faster across all three generation scenarios. This is due to the m gradient
and K refinement steps used in UG, which are not used in DPS. Within the sampling based group,
SVDD-PM, imposing token-wise agressive guidance, turns out to be an order of magnitude slower
than BoN. CoDe asserting a block-wise guidance remains to be faster and more efficient than BoN as
well as UG. C-CoDe further optimizes CoDe and offers a runtime of about 4× faster than UG.

6 CONCLUDING REMARKS

We introduce a gradient-free block-wise inference-time guidance approach for diffusion models. By
combining block-wise optimal sampling with an adjustable noise conditioning strategy, C-CoDe
offers extra control over reward vs. divergence trade-off outperforming state-of-the-art baselines.

Limitations and future work. Diffusion models are computationally intensive; as such, extracting
quantitative results on the performance of (inference-time) guidance-based alignment methods calls
for massive resources, especially when ablating across numerous design parameters. We have used
up to 32 NVIDIA A100’s solely dedicated to the presented evaluation results. Yet, the 33 (most
commonly adopted) settings we have experimented with to arrive at the numerical results of Table 1
is on the lower end of statistical significance. This calls for future work to carefully curate new
benchmarks for evaluating these image generation tasks.

Broader impact. This work strives to take a meaningful step towards structurally analyzing the
performance of diffusion models, in general, and provide simple alignment techniques. As such, we
hope that it helps pave the way for a more in-depth study upon creation of a standard benchmark
for this very purpose; something we have left as future work. However, we also caution against the
blind use of the proposed techniques as the alignment methods are prone to reward over-optimization,
which needs care especially in socially consequential applications.
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A PROOFS

Proof of Theorem 3.1.

Jλ(xt, πθ, c) = Ext−1∼πθ

[

λ(V (xt−1; pθ, c)− V (xt; pθ, c)) + log
pθ(xt−1|xt, c)

πθ(xt−1|xt, c)

]

(12)

= Ext−1∼πθ

[

log
pθ(xt−1|xt, c) e

λ(V (xt−1;pθ,c)−V (xt;pθ,c))

π(xt−1|xt, c)

]

(13)

= Ext−1∼πθ

[

log
pθ(xt−1|xt, c) e

λV (xt−1;pθ,c)

πθ(xt−1|xt, c)
+ log eλV (xt;pθ,c)

]

(14)

= Ext−1∼πθ

[

log
pθ(xt−1|xt, c) e

λV (xt−1;pθ,c)

πθ(xt−1|xt, c)

]

+ λV (xt; pθ, c) (15)

Now, let

pλ(xt−1|xt, c) :=
pθ(xt−1|xt, c)e

λV (xt−1;pθ,c)

Zλ(xt, c)
, (16)

where the normalizing constant Zλ(xt, c) is given by

Zλ(xt, c) = Ext−1∼pθ

[

pθ(xt−1|xt, c)e
λV (xt−1;pθ,c)

]

. (17)

Putting it back in Eq. 15, we get

Jλ(xt, πθ, c) = Ext−1∼πθ

[

log
pλ(xt−1|xt, c)

πθ(xt−1|xt, c)
Zλ(xt, c)

]

+ λV (xt; pθ, c) (18)

= Ext−1∼πθ

[

log
pλ(xt−1|xt, c)

πθ(xt−1|xt, c)
+ logZλ(xt, c)

]

+ λV (xt; pθ, c) (19)

= Ext−1∼πθ

[

log
pλ(xt−1|xt, c)

πθ(xt−1|xt, c)

]

+ logZλ(xt, c) + λV (xt; pθ, c) (20)

= −Ext−1∼πθ

[

log
πθ(xt−1|xt, c)

pλ(xt−1|xt, c)

]

+ logZλ(xt, c) + λV (xt; pθ, c) (21)

= −KL(πθ(xt−1|xt, c) ∥ pλ(xt−1|xt, c)) + logZλ(xt, c) + λV (xt; pθ, c) (22)

Eq. 22 is uniquely maximized by π∗θ(xt−1|xt, c) = pλ(xt−1|xt, c).

B SAMPLING FROM OPTIMAL MODEL USING LANGEVIN DYNAMICS

Given the optimal policy given in Eq. 9, our goal is to now sample from π∗ instead of p. However,
given only p, it is difficult to sample from this optimal policy. To overcome this problem, we
look at the score-based sampling approach as in NCSN (Song & Ermon, 2019). Starting from an
arbitrary point xT , we iteratively move in the direction of ∇xt

log π∗(xt), which is equivalent to
∇xt

log pλ(xt). We can derive an equivalent form:

pλ(xt) =
p(xt)e

λV (xt)

Zλ

(23)

log pλ(xt) = log p(xt) + λV (xt)− logZλ (24)

∇xt
log pλ(xt) = ∇xt

log p(xt) +∇xt
λV (xt)−∇xt

logZλ (25)

sλ(xt, t) = sθ(xt, t) + λ∇xt
V (xt). (26)

As the above derivation is limited to stochastic diffusion sampling, we leverage the connection
between diffusion models and score matching (Song & Ermon, 2019):

∇xt
log p(xt) = − 1√

1− ᾱt

ϵt. (27)
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Similarity with classifier guidance. Starting from an arbitrary point xT , we iteratively move in the
direction of ∇xt

log p(xt|y). We can derive an equivalent form:

p(xt|y) =
p(y|xt)p(xt)

Z
(28)

log p(xt|y) = log p(xt) + log p(y|xt)− logZ (29)

∇xt
log p(xt|y) = ∇xt

log p(xt) +∇xt
log p(y|xt)−∇xt

logZ (30)

sλ(xt|y, t) = sθ(xt, t) +∇xt
log p(y|xt). (31)

C ADDITIONAL RESULTS FOR SETTING I

Figure 8: Setup (top row) and reward vs. diver-
gence trade-off (bottom row) for another setting
of Case Study I. C-CoDe offers highest reward at
lowest divergence with much lower N than BoN.

For the sake of completeness, we also study
a variant of the GMM setting as discussed in
Section 5.1, where the mean of the reward distri-
bution is equal to the mean of one of the compo-
nents in the prior distribution, as shown in Fig. 8.
The prior distribution p(x) is modelled as a 2-
dimensional Gaussian mixture model (GMM)

p(x0) =
∑3

i=1 wiN (µi,σ
2I2), with σ = 2,

[µ1,µ2,µ3] = [(5, 3), (3, 7), (7, 7)], and Id is
an d-dimensional identity matrix, as shown in
Fig. 2. All mixture components are equally
weighted with, i.e., w1 = w2 = w3 = 0.33.
In contrast to the previous setup, we define the
reward distribution as p(r|x) = N (µr,σ

2
rI2)

with µr = [5, 3] and σr = 2. Based on this
setup, we train a diffusion model pθ(x) to esti-
mate the prior distribution p(x). For this we use
a 3-layer MLP that takes as input (xt, t) and pre-
dicts the noise ϵt. It is trained over 200 epochs
with T = 1000 denoising steps. Then, we im-
plement the baselines, CoDe and C-CoDe, to
guide the trained diffusion model to generate
samples with high likelihood under the reward
distribution. Additionally, using the closed-form
expressions for both the prior and reward distri-
butions in this GMM configuration, we compute
the posterior distribution as p(x|r) = p(x)p(r|x)/Z where Z is the normalizing constant as shown
in Fig. 8. This corresponds to the optimal solution in Theorem 3.1 as p(r|x) ∝ exp(r(x)) with
r(x) = −1/2(x− µr)

T (x− µr).

In Fig. 8, we present the trade-off curves for normalized expected reward (or Win-Rate) versus KL
divergence by adjusting the hyperparameters of the respective methods. For the guidance-based
methods DPS and UG, the guidance scale is varied between 1 and 50, whereas for the sampling-based
methods BoN, SVDD, CoDe, and C-CoDe, the number of samples N is varied between 2 and 500.
Similar to the results in Section 5.1, we observe C-CoDe and CoDe achieve the most favorable
trade-off between normalized expected reward and KL divergence, with BoN performing closely
behind. In the case of Win-Rate vs. KL divergence, BoN demonstrates the best trade-off, consistent
with findings from the literature on Language Model (LM) alignment. Furthermore, guidance-based
methods tend to exhibit higher KL divergence, as they often collapse to the mode of the reward
distribution when the guidance scale is increased, leading to a reduction in diversity among the
sampled data points. In both scenarios, SVDD achieves a high expected reward or win rate but at
the expense of significantly increased divergence, even for smaller values of N . Whereas CoDe and
C-CoDe offer the widely sought-after flexibility, allowing users to balance the trade-off by adjusting
parameters such as N and B.
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D ADDITIONAL RESULTS FOR SETTING II

Here, we provide further details about the quantitative evaluations summarized in Table 1 and
computational complexity analysis in Table 2.

Further details on evaluation metrics. For computing I-Gram, we utilize VGG (Simonyan &
Zisserman, 2014) Gram matrices of the reference and generated images to measure image alignment
across all scenarios/settings, as commonly followed in the literature (Somepalli et al., 2024; Gatys
et al., 2016; Yeh et al., 2020). Specifically, these are computed using the last layer feature maps of
an ImageNet-1k pretrained VGG backbone (Simonyan & Zisserman, 2014). For face guidance, we
utilize the last layer feature maps of an InceptionResNetV1 pretrained on the VGGFace2 dataset
(Parkhi et al., 2015) in order to build the gram matrix. Image alignment between a reference, generated
image pair is then measured by computing the dot product of their gram matrices. Further, we report
a recently proposed CLIP-based Maximum Mean Discrepancy (CMMD) (Jayasumana et al., 2024)
as a divergence measure. It overcomes the drawback of FID stemming from the underlying Gaussian
assumption in the representation space of the Inception model (Szegedy et al., 2015).

Quantitative performance. In this section, we break down the quantitative performance of all
methods across the three different scenarios of style, face and stroke guidance. We summarize the
results in Tab. 3, 4, 5 with the first row corresponding to the base Stable Diffusion model and Rew.
indicating the reward metric used for guiding the diffusion model

Figure 9: Quality evaluation across methods for style guidance

Table 3: Quantitative metrics for style guidance.

Method
R1: Style Guidance

Rew. (↑) FID (↓) CMMD (↓) T-CLIP (↑) I-Gram (↑)
Base-SD (2021) 1.0 1.0 1.0 1.0 1.0

BoN (2022) 1.14 1.30 2.25 0.99 1.1

SVDD-PM (2024) 1.44 1.81 10.93 0.99 1.6

DPS (2023) 1.22 1.29 5.46 0.99 1.2

UG (2024b) 1.39 4.27 91.13 0.82 2.9

CoDe(Ours) 1.34 1.49 7.40 1.0 1.6

C-CoDe(Ours) 1.52 3.64 84.45 0.86 3.4

Style Guidance. The results are sum-
marized in Table 3. Compared to the
sampling-based guidance counterpart
BoN, CoDe achieves a higher reward
at the cost of slightly higher diver-
gence (FID and CMMD). Yet, with
a slightly smaller reward CoDe of-
fers a better performance than UG and
SVDD-PM across FID, CMMD and
T-CLIP. The overall highest reward is
obtained by C-CoDe, which naturally comes with higher FID and CMMD scores. However, note
that the divergence of C-CoDe is smaller than UG, the second-best method in this setting. This is
also illustrated in Fig. 10 where C-CoDe consistently outperforms UG in terms of image alignment
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Figure 10: Reward vs. divergence trade-off curves for style guidance.

Figure 11: Reward vs. divergence trade-off curves for face guidance.

(normalized expected reward as well as win rate), while also offering lesser divergence w.r.t. both
FID and CMMD as compared to UG.
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Figure 12: Quality evaluation across methods for style guidance

Table 4: Quantitative metrics for face guidance.

Method
R2: Face Guidance

Rew. (↑) FID (↓) CMMD (↓) T-CLIP (↑) I-Gram (↑)
Base-SD (2021) 1.0 1.0 1.0 1.0 1.0

BoN (2022) 1.08 1.22 2.52 0.99 1.0

SVDD-PM (2024) 1.42 1.42 9.67 0.97 0.74

DPS (2023) 1.04 1.09 1.36 0.99 1.03

UG (2024b) 1.66 1.69 29.76 0.86 1.06

CoDe(Ours) 1.30 1.25 6.76 0.98 0.91

C-CoDe(Ours) 1.5 1.86 42.40 0.88 1.91

Face Guidance. We summarize the
results in Table 4. As the rewards are
negative, we first compute the nega-
tive log of the reward values and then
normalize it with respect to the base.
Compared to BoN, CoDe provides
higher rewards with slightly higher
divergence (FID and CMMD). Al-
though SVDD-PM achieves slightly
higher rewards, CoDe provides better
performance than UG, SVDD-PM and in terms of FID, CMMD and T-CLIP. Additionally, C-CoDe
provides competitive results as compared to UG, which is the second-best method while offering
better prompt alignment as reflected in a higher T-CLIP score. We draw similar conclusions from the
reward vs. divergence curves presented in Fig. 11, where C-CoDe achieves competitive rewards but
on-par win-rates as compared to UG, at the cost of slightly higher FID and CMMD scores.

Table 5: Quantitative metrics for stroke generation.

Method
R3: Stroke Generation

Rew. (↑) FID (↓) CMMD (↓) T-CLIP (↑) I-Gram (↑)
Base-SD (2021) 1.0 1.0 1.0 1.0 1.0

BoN (2022) 1.25 1.05 4.5 0.99 1.12

SVDD-PM (2024) 1.56 1.04 12.0 0.99 1.38

DPS (2023) 1.34 1.04 14.0 0.97 1.13

UG (2024b) 1.55 2.78 78.0 0.88 1.63

CoDe(Ours) 1.41 0.78 6.5 0.99 1.38

C-CoDe(Ours) 1.75 3.50 178.5 0.87 4.25

Stroke. As shown in Table. 5, among
the sampling-based methods, CoDe
provides better results than BoN in
terms of expected reward and FID
while maintaining the same T-CLIP
score. Although UG and SVDD-PM
offer higher rewards, CoDe offers
lower divergence (FID and CMMD)
and better T-CLIP scores. Overall, we
observe that C-CoDe has the highest
rewards while offering competitive FID, CMMD and T-CLIP.

Table 6: Computational Complexity

Methods Inf. Steps Rew. Queries
Runtime [sec/img]

Style Face Stroke

Base-SD 2021 T - 14.12 14.12 14.12

BoN 2022 NT N 266.02 268.43 265.86

SVDD-PM 2024 NT NT 1168.74 1859.67 1169.68

DPS 2023 T T 62.52 122.21 61.83

UG 2024b mKT mKT 1588.41 543.12 1592.89

CoDe (Ours) NT NT/B 441.81 583.12 442.08

C-CoDe (Ours) NT rNT/B 331.42 403.19 274.56

Computation Complexity. We
present a breakdown of the compu-
tational complexities of all baselines
across each of the guidance scenar-
ios. DPS is considerably faster across
all three generation scenarios among
the gradient-based guidance methods.
This is due to the m gradient and K
refinement steps used in UG, which
are not used in DPS. The difference is
more pronounced in the case of style-
and stroke guidance as UG uses a higher number of gradient steps m. Further, among the sampling-
based approaches, SVDD-PM is slower than BoN in order of magnitude as it applies token-wise
guidance. On the contrary, our block-wise approach C-CoDe is more efficient than UG and SVDD-
PM and closely follows BoN.
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E MISCELLANEOUS RESULTS

In this section, we illustrate several additional generated images across all baselines and guidance
scenarios. We also provide additional results for C-CoDe across various different reference images
and text prompt pairs, that are different from the ones already explored in the main manuscript, as
illustrated in Fig

To broaden the understanding of our proposed approach C-CoDe, we utilize only the noise-
conditioning aspect of C-CoDe to generate multiple images across all the style guidance (reference
image, text prompt) settings. As can be seen in Figs. 13 only using reference image noise conditioning
can also be used as a naive baseline for guided image generation. However, it is to be noted that
using CoDe in conjunction with noise-conditioning, as demonstrated with C-CoDe, renders more
sophisticated results in terms of capturing the nuances and subtleties of the reference image, while
incorporating the semantics of the text prompt.

Figure 13: Multiple generated samples for the text prompt A colorful photo of eiffel

tower.
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